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1 Introduction

The rational expectations hypothesis is one of the most influential and widely applied ideas in macroe-

conomics. It is often combined with a strong, complementary hypothesis that the information on which

these rational expectations are based is common to all people. But an explosion of recent theoretical and

empirical work has questioned both premises. This has pushed the discipline back toward reckoning with

a “wilderness” of alternative models for expectations formation and equilibrium.

What does survey evidence on expectations tell us within the space of the alternative hypotheses? Are

“imperfect expectations” due to informational frictions, systematic biases in beliefs, or both? And which

kind of evidence is most useful for gauging the quantitative bite of belief frictions?

In the hopes of answering these questions, and helping identify “where we are in the wilderness,” this

article attempts to draw some of the recent theoretical and empirical literature on macroeconomic ex-

pectations under a common umbrella. We develop a parsimonious framework that allows for both infor-

mational frictions and mis-specified beliefs (or bounded rationality). We use this framework to organize

existing survey evidence on expectations, guide the discovery of new evidence, and ultimately pin down

the “right” model of expectations for the business-cycle context.

Previous empirical studies have also tried to disentangle mechanisms from surveys of expectations.1

But we will argue that our own empirical strategy, with its focus on dynamic impulse responses to shocks

that account for the bulk of the business-cycle variation in unemployment and inflation, provides sharper

guidance. This positive contribution dovetails with our offering guidance about how to interpret, and use,

the evidence in a general equilibrium context, where expectations and outcomes feed to one another.

We find that the right model combines dispersed information with over-extrapolation. Following any

innovation, the informational friction is the dominant force initially, helping explain not only why average

forecasts under-react on impact but also why one’s forecast error is predictable by the past revisions of

others. But as time passes and agents learn, over-extrapolation eventually takes over. This helps explain

why average forecast errors reverse sign after a few quarters—a fact that favors over-extrapolation over

under-extrapolation and the latter’s close cousins, cognitive discounting and level-K thinking.

A flexible framework. The theoretical framework we use in this paper is an extension of that developed

in Angeletos and Huo (2019). Our extension is both highly tractable and highly parsimonious: just three

parameters govern beliefs away from the full-information, rational-expectations benchmark. And yet, it is

flexible enough to capture the essence of a large literature on imperfect macroeconomic expectations.

One strand of this literature emphasizes dispersed private information (Lucas, 1972; Lorenzoni, 2009),

rational inattention (Sims, 2003; Mackowiak and Wiederholt, 2009), and sticky information (Mankiw and

Reis, 2002). Another strand emphasizes the importance of strategic complementarity and higher-order un-

certainty in such environments (Morris and Shin, 2002; Woodford, 2003; Nimark, 2008; Angeletos and Lian,

2016, 2018). Moving beyond the rational model, some authors emphasize biases to over-extrapolate the

past (Gennaioli, Ma, and Shleifer, 2015a; Fuster, Laibson, and Mendel, 2010; Guo and Wachter, 2019), or

1e.g., Coibion and Gorodnichenko (2012, 2015); Kohlhas and Broer (2019); Bordalo et al. (2018); Fuhrer (2018)
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“cognitively discount” the future (Gabaix, 2019). An emerging macroeconomic literature on level-K think-

ing also boils down to discounting of the future (Garcıa-Schmidt and Woodford, 2019; Farhi and Werning,

2019). A final strand emphasizes under- or overconfidence in various information sources (Kohlhas and

Broer, 2019), or prioritization of those that seem “representative” (Bordalo, Gennaioli, and Shleifer, 2017).

Because of the desire for parsimony, our framework does not give full justice to the entire richness

of this diverse set of theories. Instead, it distills their most essential ingredients, those that drive their

business cycle implications and their empirical footprint on expectations.

Another quality of our framework is the accommodation of the equilibrium fixed point between expec-

tations and behavior. This is paramount for quantifying the causal effect of belief frictions on macroeco-

nomic outcomes. But it is not strictly needed for organizing the empirical evidence: for this purpose, it is

fine to treat the macroeconomic outcomes as exogenous processes and focus on the forecasting problem

of the individuals. This motivates the step-by-step approach described next.

Evidence. In Sections 3 and 4, we revisit two existing facts about the predictability of forecast errors and

provide a new, third fact about their dynamic response to shocks.

F1. For both unemployment and inflation, aggregate forecast errors are positively related to lagged ag-

gregate forecast revisions, as in Coibion and Gorodnichenko (2015). This pattern suggests that ag-

gregate forecasts under-react to aggregate news.

F2. The corresponding individual-level relation, previously explored in Bordalo et al. (2018) and Kohlhas

and Broer (2019), is more complicated. In the case of inflation, individual forecasts appear to over-

react to own revisions, in sharp contrast to the corresponding aggregate fact. And in the case of

unemployment, they under-react, as in the aggregate evidence but with less ferocity.

F3. Consider two semi-structural shocks, one that accounts for most of the business-cycle variation in

unemployment and other macroeconomic quantities, and another that accounts for most of the

business-cycle variation in inflation.2 Construct the Impulse Response Functions (IRFs) of the av-

erage forecasts of unemployment and inflation to the corresponding shocks. In both cases, aver-

age forecasts are initially under-react before over-shooting later on, or predicting larger and longer-

lasting effects of the shock than those that occur.

Interpretation. In Section 5, we offer a structural interpretation of the aforementioned facts under the

lens of a simplified version of the framework, which abstracts from the fixed-point relation between ex-

pectations and outcomes. This makes the exercise directly comparable to the related empirical literature

and lets us extract the relevant information from the data in the most transparent manner.

We first explain why Facts 1 and 2, by themselves, cannot discern the distortions in beliefs. For in-

stance, Coibion and Gorodnichenko’s (2015) interpretation of Fact 1 as a measure of the informational

friction is invalid when there is a departure from rational expectations. Similarly, Kohlhas and Broer (2019)

and Bordalo et al. (2018) use Fact 2 to argue that the requisite departure from rational expectations is

2These shocks are described at the end of Section 2 and are obtained from Angeletos, Collard, and Dellas (2019).
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overconfidence (over-estimating the precision of one’s information), or a close cousin of it (“representa-

tiveness”). But the same fact could also be consistent with over-extrapolation (over-estimating the per-

sistence of the underlying process). Furthermore, the evidence itself is not clear-cut: the unemployment

forecasts exhibit the opposite individual-level pattern than the inflation forecasts.

We next explain how Fact 3 alone helps nail down the “right” combination of frictions: to match this

fact, it is necessary to combine slow learning with over-extrapolation, regardless of the degree of over-

or under-confidence. We provide additional, more direct evidence of over-extrapolation by showing that

the subjective persistence, as revealed by the term structure of expectations, is larger than the objective

persistence, as measured by the impulse response of the outcome. We finally show how the three facts

together help identify the precise quantitative combination of the underlying belief parameters.

GE and application to New Keynesian model. In Section 6, we incorporate a GE feedback between ex-

pectations and outcomes. We explain how the fixed point works and highlight how it depends not only

the considered frictions in beliefs but also on parameters that determine the relative strength of PE and

GE effects.3 On the one hand, this helps us underscore how the bite of the belief distortions hinges

of GE multipliers and policy. On the other hand, it allows us to illustrate the tight connection between

under-extrapolation, cognitive discounting, and levek-K thinking—and to extend the aforementioned les-

son about the “right” model of beliefs to a GE context.

In Section 7, we finally illustrate the “bite” of imperfect expectations within the three-equation New

Keynesian model. We do so by mapping this bite to the survey evidence documented in the first part of

our paper. We explain how the dynamic properties of the average forecasts we emphasize in this paper can

serve as “sufficient statistics” for the counterfactuals of interest, leaving the properties of the individual

forecasts emphasized in Bordalo et al. (2018) to an afterthought.

Discussion. The evidence we marshal suggests that a combination of noisy information (or imprecise

perception), slow learning, and over-extrapolation best describes the “business cycle behavior” of survey

expectations for unemployment and inflation. This is a positive result, which generates new, and quantifi-

able, predictions for the actual macroeconomic dynamics. But it also reveals two slightly more “negative”

lessons about what models are not ideal for fitting the evidence and, symmetrically, which evidence is not

ideal for informing macroeconomic theory.

The first lesson concerns the behavioral interpretation of persistence. What we can rule out as good

models of macro expectations “on average” are those that rely heavily on under-extrapolation of the present

to the future. The theories of cognitive discounting and level-K thinking have this property. We argue they

are not ideally suited to standard business cycle analysis for a slightly subtle reason that emerges only af-

ter we try to calibrate to many different moments at once—while macro expectations are indeed sluggish

and myopic, they do seem to over-extrapolate the effects of a given shock over time. This conclusion need

not invalidate such models in inherently non-stationary regimes, including the time at the ZLB during the

3Echoing lessons from Angeletos and Lian (2018), Angeletos and Huo (2019), and Farhi and Werning (2019), such parame-

ters include the subjective discount factor and the slope of the Keynesian cross—objects that drop out in the full-information,

rational-expectations benchmark but are crucial away from it, for they determine the importance of higher-order beliefs.
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Great Recession and the abrupt rate changes of the Volcker disinflation.4 But it does suggest that such

theories do not capture the behavior of expectations during more usual fluctuations.

The second lesson concerns the appropriate interpretation of individual-level rejections of rational

expectations (like those presented by Bordalo et al., 2018; Kohlhas and Broer, 2019; Fuhrer, 2018). Our

overall finding, from combining individual and aggregate moments, is that the combination of noise and

over- and under-extrapolation is a more compelling theory than “overconfidence” in one’s own projec-

tions. Once we allow for the kind of over-extrapolation needed to account for the dynamic response of the

average forecasts, the evidence on individual forecast error predictability seem to require underconfidence.

How this finding should relate to the theoretical and experimental literatures on subjective confidence in

beliefs is beyond the scope of this article. But we also argue that such a decomposition of individual devi-

ations into “extrapolation” versus “confidence” effects, while appropriate for understanding the complete

landscape of expectations formation, could be inconsequential for the main counterfactual of interest.

Other related literature. The macroeconomics literature on informational frictions and non-rational

expectations is large and growing. A few examples among the many issues we abstract from are: the

endogeneity of market signals (e.g. Amador and Weill, 2010; Chahrour and Gaballo, 2018; Hassan and

Mertens, 2014); information choice (e.g., Mackowiak and Wiederholt, 2009, 2015; Sims, 2010; Veldkamp,

2006, 2011); the macro-finance implications of heterogeneous or mis-specified beliefs (e.g., Caballero and

Simsek, 2017; Geanakoplos, 2010; Simsek, 2013); noise- or sentiment-driven fluctuations (e.g., Angeletos

and La’O, 2013; Benhabib, Wang, and Wen, 2015; Lorenzoni, 2010); non-rational belief contagion (e.g.,

Burnside, Eichenbaum, and Rebelo, 2016; Carroll, 2001); robustness and ambiguity (e.g., Ilut and Schnei-

der, 2014; Bhandari, Borovička, and Ho, 2019); and adaptive expectations (e.g., Eusepi and Preston, 2011;

Evans and Honkapohja, 2012; Sargent, 2001). Instead, we opt to focus on what, at least in our view, are the

common threads of the particular strands of the theoretical literature we mentioned earlier and to connect

them with the emerging survey evidence on expectations.

Related to our evidence about dynamic responses (Fact 3) above is an earlier literature documenting

the pattern of slow initial reaction and subsequent over-reaction in individual stock prices (De Bondt and

Thaler, 1985; Cutler, Poterba, and Summers, 1991; Lakonishok, Shleifer, and Vishny, 1994). Theoretical

work such as Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and

Hong and Stein (1999) provide parsimonious interpretations which combine tentative initial reactions (ei-

ther at the individual or group level) with medium-run over-reaction to news. More recently, Greenwood

and Shleifer (2014) and Gennaioli, Ma, and Shleifer (2015b) demonstrate patters in survey expectations of

stock returns and firm earnings that are also suggestive of over-extrapolation. However, all these works do

not share our focus on business cycles and, most importantly, do not provide the kind of evidence we offer

about the dynamics responses (IRFs) of forecast errors to shocks and the term structure of forecasts.

Roadmap. We review data and measurement in Section 2. We present our “three facts” in Sections 3 and

4 and interpret them in a simplified, non-GE version of our model in Section 5. We show in Section 6 how

4For studies of the former topic that rely on variations of “under-extrapolation,” see Farhi and Werning (2019), Gabaix (2019),

Iovino and Sergeyev (2017), Garcıa-Schmidt and Woodford (2019), and Angeletos and Sastry (2020).
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to integrate the obtained lessons tractably into a GE context and how to connect to various strands of the

literature. We illustrate the “bite” of the documented frictions within the New Keynesian model in Section

7. We conclude with a discussion of our findings and the implications for future work in Section 8.

2 Data and Measurement

We will focus on two macroeconomic outcomes: unemployment and inflation. We now review the exact

data sources we use for forecasts and realized outcomes of these variables.

Forecasts from the Survey of Professional Forecasters. Our main dataset for forecasts is the Survey of

Professional Forecasters, a panel survey of about 40 experts from industry, government, and academia,

currently administered by the Federal Reserve Bank of Philadelphia. Every quarter, each survey respon-

dent is asked for point-estimate projections of several macro aggregates. Our main sample runs from Q4

1968 to Q4 2017. We will use forecasts of the civilian unemployment rate (averaged over the quarter) and

the growth rate in GDP deflator.

At various points in the analysis, we will require “consensus” and “individual-level” forecasts of each

macro variable. For the “consensus,” we always use the median forecast of the object of interest (e.g.,

unemployment or inflation at a given horizon). Using the median instead of the mean alleviates concerns

about outliers and/or data-entry errors, which could be quite influential in the 40-forecaster cross section,

from driving the results.

For the individual-level results, we always trim outliers in forecast errors and revisions that are plus or

minus 4 times the inter-quartile range from the median, where both reference values are calculated over

the entire sample. 5

Other survey sources. We also provide corroborating evidence from two additional survey datasets. The

first is the Blue Chip Economic Indicators Survey, a privately-operated professional forecast with a similar

scale and scope to the SPF. We use Blue Chip data from 1980 to 2017 and focus on the reported “consensus

forecast” for unemployment and GDP deflator. This dataset is available at the monthly frequency, so we

use end-of-quarter forecasts (i.e., those made in March, June, September, and December) for comparabil-

ity with the SPF.

The second source is the University of Michigan Survey of Consumers, which is (for our purposes)

a repeated cross-section of about 500 members of the “general public” contacted by phone.6 Like with

the Blue Chip survey, we focus on end-of-quarter waves. We take the Michigan survey inflation forecast

5For context, in a Gaussian distribution, the probability of an observation so far in the tails is about 6.8×10−8. Nonetheless,

in the sample of three-quarter ahead inflation forecast errors, there are 57 such observations out of 7,438 forecaster-quarter

observations, or 112,408 times the expectation were the data Gaussian. To give a sense of magnitude (and “plausibility” of making

such errors), all of the outliers involve forecast errors greater than 5.37 percentage points in the estimate of annual inflation.
6There is a panel component of the Michigan survey, in which some respondents are re-contacted after 6 months, but this

does not help us calculate forecast revisions since the forecasting horizon has changed so much.
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as the median response to the question about price increases.7 We code also a forecast for the growth

rate of unemployment based on a question about whether unemployment will increase or decrease over

the coming twelve months.8 For this measure we take the cross-sectional mean, which corresponds to a

“consensus forecast” about the sign of the growth rate of unemployment.

Macro data (and vintages thereof ). Our unemployment measure ut will be the average BLS unemploy-

ment rate in a given quarter t . Our inflation measure πt ,k will be the percentage increase in GDP or GNP

deflator between period t and period t −k −1.9 The timing assumption matches the fact that forecasters

have access to (first-revision) data for inflation and the price level at t −k −1 when forecasting k-periods

ahead at t − k. We will let outcome xt+k refer to ut+k , unemployment k periods ahead, or πt+k,k , the

inflation from the reference period t −1 to the future period t +k.

In our replication of Coibion and Gorodnichenko (2015) and Bordalo et al. (2018) in Sections 3.1-3.2,

we will use first-vintage macro data to measure actual outcomes, because this is what these papers did

in the first place.10 However, such measurement is not necessarily the right one from the perspective of

theory. If agents are try to forecast the actual levels of unemployment and inflation, the “econometrician”

should use the final-release data. We will thus verify the robustness of the relevant exercises to the use of

final-release data.

Finally, in our study of IRFs in Section 4, we will use final-release data both for the aforementioned

reason and for consistency with the main macro time-series literature. But once again, we will consider

the “opposite” measurement (in this case, first-vintage data in place of final-release data) for robustness.

Shocks. Finally, we use two semi-structurally identified shocks from Angeletos, Collard, and Dellas (2019).

The empirical strategy taken in that paper builds on the max-share approach (Uhlig, 2003; Barsky and

Sims, 2011) but is guided by the following goal: providing a parsimonious representation of the business

cycle in terms of one or a dominant business cycle shock.

To this goal, Angeletos, Collard, and Dellas (2019) run a VAR on a set of ten or more key macroeco-

nomic variables that includes the two variables we focus on here, the rate of unemployment and the rate

of inflation.11 They then compile a collection of multiple shocks, each identified by maximizing its contri-

bution to the volatility of a particular variable over a particular frequency band, and they draw lesson from

comparing the empirical footprint of all these shocks.

7The exact question is the following: “By about what percent do you expect prices to go (up/down) on the average, during the

next 12 months?” Respondents can key in a response rounded to the nearest whole number.
8The exact question is the following: “How about people out of work during the coming 12 months. Do you think that there

will be more unemployment than now, about the same, or less?” There are three responses, as indicated in the question.
9The ambiguity between GDP and GNP matches the fact that the Survey of Professional Forecasters changed its main target

variable from GNP (and the deflator thereof) to GDP (and the deflator thereof) starting in 1992.
10We take all vintage data series from the Philadelphia Fed’s website: https://www.philadelphiafed.org/

research-and-data/real-time-center/survey-of-professional-forecasters/
11The other eight variables in their baseline VAR are: the per-capita levels of GDP, investment (inclusive of consumer durables),

consumption (of non-durables and services), and total hours worked; labor productivity in the non-farm business sector;

utilization-adjusted TFP; the labor share; and the federal funds rate. Larger VARs that add stock prices and credit indicators

yield similar results.
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Consider the shock that is constructed by maximizing its contribution to the variation in unemploy-

ment at business-cycle frequencies (6-32 quarters). This shock is found to have the following proper-

ties. First, it is nearly identical, in terms of IRFs and variance contributions, to the shocks that target

the business-cycle variation in any of the following other variables: hours worked, GDP, investment, con-

sumption, and the output or unemployment gap. Second, it captures the majority of the business-cycle

variation in all these variables, and strong positive co-movement among them. Third, it has a negligible

footprint on TFP at all horizons. And finally, it has a small to modest footprint on inflation.

These facts together provide support for parsimonious theories that attribute the bulk of the business

cycle to a single, non-inflationary or mildly-inflationary, demand shock. They also motivate us to con-

sider, in our empirical exercises, a single-shock representation of the joint dynamics of actual unemploy-

ment and the forecasts thereof, where the underlying driving force is the aforementioned “unemployment

shock” from Angeletos, Collard, and Dellas (2019)

The second shock we borrow from Angeletos, Collard, and Dellas (2019) is identified by maximizing its

contribution to the business cycle variation in inflation. This shock accounts for over 80% of the business-

cycle variation in inflation, but is is found to have a small footprint on all real quantities, including TFP. It

can thus be interpreted as some kind of non-technology supply shock, or a markup shock, which manifests

primarily in inflation. And it motivates us to consider, in our empirical exercises, a single-shock represen-

tation of the joint dynamics of actual inflation and the forecasts thereof, where the underlying driving force

is this “inflation shock.”

Whether these shocks, or any other SVAR-based shocks, are “truly” structural is beyond the scope of

the present paper. For our purposes, the appeal of these particular shocks compared to others found in

the literature is that they drive a significant component of the business cycle variation in macroeconomic

activity and inflation. There is thus a good chance that they also drive a significant component of the

corresponding variation in people’s expectations.

3 Two (Unconditional) Facts About Forecasts

This section presents two facts about macro survey forecasts and forecast errors, which relate to uncon-

ditional moments and are known from the literature. They concern the correlation between forecast er-

rors and previous-period forecast revisions at the average level (Fact 1) and the individual level (Fact 2).

The final fact (Fact 3), which is new, concerns the IRFs of average forecasts and average forecast errors

to macroeconomic shocks, and in particular the “reversal of sign” of dynamic response of the errors at

medium horizons. We will first present all the facts “as is,” and then in Section 5 suggest a unifying theo-

retical explanation.12

12The empirical literature on forecasts is large and growing. The papers we build more heavily on are Coibion and Gorod-

nichenko (2012, 2015), Bordalo et al. (2018), Kohlhas and Broer (2019), and Fuhrer (2018); the connections are explained below.

An earlier important contribution is Mankiw, Reis, and Wolfers (2004); but this paper focuses on the cross-section dispersion of

forecast errors, a moment that is of little use for our purposes for reasons explained in due course.
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Table 1: Predicting Aggregate Forecast ErrorsKCG-3

Page 1

(1) (2) (3) (4)
Unemployment Inflation

sample 1968-2017 1984-2017 1968-2017 1984-2017

0.741 0.809 1.528 0.292

(0.232) (0.305) (0.418) (0.191)

0.111 0.159 0.278 0.016

Observations 191 136 190 135

Error
t,k

= K
CG

 · Revision
t,k 

+ α + u
t,k

Revision
t,k 

(K
CG

)

R2

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between 
Q4-1968 and Q4-2017. All regressions include a constant. The forecast horizon is 3 quarters. Standard 
errors are HAC-robust, with a Bartlett (“hat”) kernel and lag length equal to 4 quarters. The data used 
for outcomes are first-release (“vintage”).

3.1 Fact 1: Aggregate errors are predictable by aggregate past revisions

Coibion and Gorodnichenko (2015), henceforth CG, test for a departure from full-information rational

expectations (or FIRE for short) by estimating the predictability of professionals’ aggregate (“consensus”)

forecast errors using information in previous forecast-revisions.

Let Ēt [xt+k ] denote the average or median expectation of variable xt+k (either unemployment or infla-

tion) measured at time t . Let Ēt−1[xt+k ] be the median forecast at time t−1.13 The associated forecast error

from time t is Errort ,k ≡ xt+k − Ēt [xt+k ], suppressing notation for what variable x is being forecast, and the

forecast revision is Revisiont ,k ≡ Ēt [xt+k ]− Ēt−1[xt+k ].

CG run the following regression that projects aggregate forecast errors onto aggregate forecast revi-

sions:

Errort ,k =α+KCG ·Revisiont ,k +uk,t (1)

where KCG, in shorthand notation that references the authors, is the main object of interest.

The fact: KCG > 0 for both inflation and unemployment. Table 1 reports results from estimating (1) at

the horizon k = 3 for both unemployment and inflation in our data. We report results over the full sample

1968-2017 (columns 1 and 3), and also over a restricted sample after 1984 (columns 2 and 4). We may

believe a priori that the latter is a more consistent and “stationary” regime for the US macroeconomy (i.e.,

after the oil crisis and Volcker disinflation).

Like Coibion and Gorodnichenko (2015), we find in all specifications a point estimate of KCG > 0: when

professional forecasters, in aggregate, revise upward their estimation of unemployment or inflation, they

on average always “undershoot” the eventual truth. For inflation, we find the predictability is considerably

lower on the restricted sample. Appendix Tables A.1 and A.2 show the results for all horizons over the full

sample and post-1984 sample, respectively.

13In the data, we prefer to use the median to limit the influence of outliers and/or data entry errors. But results with the mean are

essentially identical. In the theory, means and medians coincide because we let all variables and signals be Normally distributed.
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Interpretation. Suppose we approach regression (1) through the perspective of FIRE, that is, with a

model featuring a representative, rational agent. Under this perspective, Errort ,k and Revisiont ,k are em-

pirical proxies of that single agent’s realized forecast error and past forecast revisions, respectively. In

theory, the forecast error has to be unpredictable by past information, and hence also by past revisions. It

follows that, unless the measurement error in these proxies is correlated, KCG ought to be zero.

We just saw that KCG > 0 in the data. This finding rejects FIRE and gives some guidance on what kind of

departures from that benchmark one should contemplate. In particular, the following literal interpretation

of the sign of KCG is valid: whenever forecasts adjust upward today, forecast errors tomorrow tend to be

positive, or forecasts should have adjusted upward even more to accurately track the actual outcome. In

other words, aggregate forecasts too “sluggishly” relative to FIRE.

Coibion and Gorodnichenko (2015) interpret this finding as evidence of noisy, dispersed information.

Indeed, models such as those articulated in Mankiw and Reis (2011), Woodford (2003), and Nimark (2008),

naturally give rise the aforementioned empirical pattern. But it is important to keep in mind the following

two qualifications.

First, what is key for the ability of such models to generate KCG > 0 is the assumption that informa-

tion is not only noisy but also dispersed, or heterogeneous: when information is noisy but commonly

shared, rational expectations imposes KCG = 0 regardless of what that information is. By the same to-

ken, rational inattention (Sims, 2003) helps accommodate KCG > 0 only insofar rational inattention is a

micro-foundation of dispersed private information.

Second, although dispersed, noisy information is sufficient for KCG > 0, it is not necessary: the same

fact could also mean a departure from rational expectations. For instance, adaptive expectations, under-

extrapolation, cognitive discounting, and level-K thinking can also generate KCG > 0. We will clarify the

mapping from KCG to these theories in Sections 5 and 6, and we will show how the combination of KCG > 0

with the additional two facts reported in the rest of this section help select the “right” explanation among

the multiple candidates allowed.

Notwithstanding these points, what is clear at this point is that KCG > 0 is, even by itself, is a rejection

of “perfect expectations.” A “business-cycle” version

A business-cycle-IV version of the CG regression . One immediate limitation of estimating (1) is that it

makes no distinction between sources of variation in forecast revisions—that is, the business cycle vari-

ation that matters in models is treated equally with measurement corrections, seasonal fluctuations, and

other “less interesting” sources of variation. As one simple alternative, we estimate a version of (1) with

the forecast revision instrumented by the current value and six lags of the variable-specific “business-cycle

shock” from Angeletos, Collard, and Dellas (2019). This allows us to zoom in on the forecast revision varia-

tion that is germane to main business-cycle fluctuations in unemployment and GDP deflator, respectively.

Table 2 shows that, for unemployment, this estimate tends to agree with the OLS or suggest weakly

that predictability has increased over the modern sample; while for inflation, it agrees with OLS on the

full sample and provides a much larger estimate on the modern sub-sample. This last point suggests that

much of the difference between sub-samples in Table 1 relates to the composition of shocks rather than
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Table 2: Predicting Aggregate Forecast Errors: An IV ApproachCG-IV_3

Page 1

(1) (2) (3) (4)
Unemployment Inflation

sample 1968-2017 1984-2017 1968-2017 1984-2017

0.585 0.983 1.460 1.038

(0.393) (0.264) (0.521) (0.467)

Instruments

7.527 4.736 3.517 5.047

OLS Estimate 0.741 0.809 1.528 0.292

Observations 189 130 188 130

Error
t,k

= K
CG

 · Revision
t,k 

+ α + u
t,k

Revision
t,k 

=  ρ  ·  Shock
t
 + ϕ + u

t,k

Revision
t,k 

(K
CG

)

UnempShock
t-h 

: 0≤h≤6 InflShock
t-h 

: 0≤h≤6

First-stage F

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between 
Q4-1968 and Q4-2017. All regressions include a constant. The forecast horizon is 3 quarters. Standard 
errors are HAC-robust, with a Bartlett (“hat”) kernel and lag length equal to 4 quarters. The data used 
for outcomes are first-release (“vintage”).

the conditional response of inflation and forecasts thereof to specific shocks. This will be one of multiple

motivating reasons for us to switch the focus to conditional shock responses later in the empirical analysis.

Robustness. With an eye looking ahead to calibrating macroeconomic models, it is not clear whether

we want to focus on the first-release data releases for outcomes rather than the final-release data on out-

comes, which may be purged from measurement errors and otherwise be a more correct gauge of eco-

nomic activity. The latter is preferable if forecasters are trying to forecast the “truth,” and seems more

appropriate vis-a-vis the theories we consider in this paper. For this reason, Table A.3 recreates the CG

evidence using the final release data for the outcomes. The results are extremely similar.

Finally, Table A.4 in the Appendix recreates the CG evidence using Blue Chip Economic Indicators data

(1980-2017). This uncovers largely the same patterns, especially compared to the later sub-sample.

3.2 Fact 2: Individual errors are predictable by own past revisions

Models with noisy and dispersed information, in their simplest form, retain individual-level rationality.

As such, these models allow for predictability of forecast errors at the aggregate level but rule out such

predictability at the individual level. That is, a given agent’s forecast error should be predictable by their

own past information.

Recent papers by Bordalo et al. (2018), Fuhrer (2018), and Kohlhas and Broer (2019) have turned to

individual-level, panel data on forecasts to test such a prediction. All three estimate an analogue to (1) at

the individual level. Bordalo et al. (2018) contain a relatively more extensive exploration across forecasts

of different objects (inflation, unemployment, output, and various interest rates). For our purposes, we

focus on forecasts of inflation and unemployment.

Let Errori ,t ,k ≡ xt+k −Ei ,t [xt+k ] and Revisioni ,t ,k ≡ Ei ,t [xt+k ]−Ei ,t−1[xt+k ] denote forecast errors and
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Table 3: Predicting Individual Forecast ErrorsBGMS-highlights

Page 1

(1) (2) (3) (4)
Unemployment Inflation

sample 1968-2017 1984-2017 1968-2017 1984-2017

0.321 0.398 0.143 -0.263

(0.107) (0.149) (0.123) (0.054)

0.028 0.052 0.005 0.025

Observations 5383 3769 5147 3643

Error
i,t,k

= K
BGMS

 · Revision
i,t,k

 + α + u
i,t,k

Revision
i,t,k 

(K
BGMS

)

R2

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. The forecast horizon 
is 3 quarters.  Standard errors are clustered two-way by forecaster ID and time period. Both errors and 
revisions are winsorized over the sample to restrict to 4 times the inter-quartile range away from the 
median. The data used for outcomes are first-release (“vintage”).

revisions for a particular forecaster, indexed by i . The regression of interest is the following:

Errori ,t ,k =α+KBGMS ·Revisioni ,t ,k +ui ,k,t (2)

where the main outcome and regressor are individual-level forecast errors and revisions; α is a constant;

and KBGMS, in shorthand reference to the authors of Bordalo et al. (2018), is the individual level analogue

to KCG.

Regardless of the information structure, individual-level rationality imposes KBGMS = 0.14 The literal

interpretation of KBGMS > 0 is that individuals update sluggishly in the direction of the truth; whereas if

KBGMS < 0, they generally revise beyond the realization of the data.

The fact: KBGMS < 0 for inflation but KBGMS > 0 for unemployment. In columns 1 and 3 of Table 3, we

provide estimates of the individual-level regression (2) in the Survey of Professional Forecasters over the

full sample. We focus on the horizon k = 3; results for other horizons are qualitatively similar and reported

in Appendix Table A.5. Columns 2 and 4 of the same table conduct the analysis on the sub-sample from

1984 to the present.

For unemployment, we find substantial evidence that KBGMS > 0 over the full and restricted sample

period. And for inflation, we find imprecise evidence that KBGMS > 0 over the full sample, including the

1970s and Volcker disinflation, but strong evidence of KBGMS < 0 in the more stationary environment post

1984. The latter piece is consistent with the findings reported in Table 1, which showed that aggregate-level

forecast inertia was much lower over this sample period.

These findings provide suggestive, if not completely conclusive, evidence that some departure from ra-

tional expectations is needed. Both Kohlhas and Broer (2019) and Bordalo et al. (2018) focus on KBGMS < 0

14To be precise, KBGMS = 0 follows from individual rationality together with perfect recall of one own’s previous-period forecast

revision. Imperfect recall could naturally give KBGMS > 0 at the individual level, in a similar way that, as we will see more clearly in

the next section, dispersed noisy information gives KCG > 0. Intuitively, imperfect recall transforms a single forecaster to multiple

“selves,” one per period, each of whom has private information that can help forecast the forecast error of other “selves.” As in

the rest of the literature, we will largely ignore this possibility. But we will later explain why our own main lessons could be robust

to it.
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and argue that the necessary departure from rational expectations is a model in which agents over-react

to recent information because they treat it as “over-representative” of the truth. Bordalo et al. (2018) of-

fer a closely related explanation in terms of agents’ being “over-confident” about the precision of their

information.

In Section 5, we will illustrate how KBGMS < 0 could indeed be explained by such over-confidence or

over-representativeness. But we will also point out that another plausible departure from rational expec-

tations, a form of over-extrapolation, could also give rise to KBGMS < 0. This complicates the the structural

interpretation of this moment of the expectations.

For now, we wish to iterate that while KBGMS < 0 applies to forecasts of inflation (and also to forecasts

of certain nominal interest rates, as shown in Bordalo et al., 2018), the opposite fact, KBGMS > 0, applies to

forecasts of unemployment. Therefore, the requisite departure from rational expectations is not the same

across different forecasted variables.

The “right” variation. A final issue, that is ultimately unsurmountable in standard panel datasets, is that

there is no analogue to our business-cycle-IV version of the CG regression at the individual level. It is hard

to think of, let alone implement, an individual-specific treatment that isolates idiosyncratic information

about a specific business-cycle shock (outside, potentially, a randomized control trial).15 In that sense it

is inevitable that the individual-level analysis conflate idiosyncratic interpretations of macro news and/or

pieces of individual information about the macroeconomy, the theoretically “correct” variation, with slight

differences in timing of response or actual mistakes filling out the form, a “less interesting” source of vari-

ation.

4 A New Fact: Delayed Over-shooting

So far we have focused on the unconditional relationship between forecast revisions and subsequent fore-

cast errors. For our perspective, this approach has two main limitations. First, it “averages over” multiple

shocks that may be driving actual outcomes and forecasts. This includes various “true” macroeconomic

shocks of the kind included in mainstream models or identified in SVARs and more “residual” shocks,

such as those associated with measurement error, correlated noise in information, or even seasonal fluc-

tuations. And second, it gives a sense of the under-reaction of the average forecasts on impact but does

not permit one to see the the dynamic adjustment of forecasts at longer horizons.

To address these limitations, we now focus on a pair of macroeconomic shocks and trace the IRFs of

actual outcomes, forecasts, and forecast errors to these shocks.

15Recent contributions by Coibion, Gorodnichenko, and Kumar (2018) and Coibion, Gorodnichenko, and Ropele (2019) have

this flavor, though the treatments do not necessarily embody the full general-equilibrium properties of a macro shock (i.e., the

fact that everyone else will know of the change and also adjust their expectations, which will have real effects on outcomes).
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4.1 Methodology

Identified shocks. As explained in more detail in Section 2, we consider two candidate shocks in the data

that map roughly to “demand and supply shocks” in the theory (which we develop later on, in Sections 5

and 6). Both shocks are drawn from the SVAR analysis of Angeletos, Collard, and Dellas (2019).

The first shock is constructed by maximizing its contribution to the business cycle variation in unem-

ployment and is found to have the following properties: it encapsulates strong positive co-movement in

employment, output, investment, and consumption only over the business cycle; it has a negligible foot-

print on TFP at all horizons; and it has a small to modest footprint on inflation. It can thus be interpreted

as an non- or mildly-inflationary demand shock.

The second shock is identified by maximizing its contribution to the business cycle variation in infla-

tion and it is found to have a negative but very small footprint on real quantities and zero footprint on

TFP. It can thus be interpreted as some kind of non-technology supply shock, or a markup shock, which

manifests primarily in inflation.

One can quibble on whether these shocks are “truly” structural. This depends on what kind of models

one has in mind. Angeletos, Collard, and Dellas (2019) show that the first of the aforementioned empiri-

cal shocks is closely related to certain theoretical counterparts: the investment-specific demand shock in

Justiniano, Primiceri, and Tambalotti (2010), the risk shock in Christiano, Motto, and Rostagno (2014), and

the confidence shock in Angeletos, Collard, and Dellas (2018). And the second of the two empirical shock

is closely related to the markup or cost-push shock in such DSGE models.

Regardless of these specific structural interpretations, we contend that the aforementioned shocks are

preferable for our purposes to other candidates, such as the technology and monetary shocks identified

via timing restrictions in the SVAR literature (e.g., Galí, 1999; Sims and Zha, 2006), because they account

for a much larger fraction of the business cycle variation in macroeconomic activity and inflation and may

therefore also be the main driver in the corresponding variation in people’s expectations.

We denote the two shocks, respectively, as (εD
t ,εS

t ) for “demand” and “supply”. We finally note that,

while these shocks are not constructed to be orthogonal to one another, they are very close to being so in

the data.

Main specification. To estimate dynamic responses to the aforementioned shocks, we consider two dif-

ferent empirical strategies.

The first is to estimate the IRFs via a parsimonious, instrumental-variables ARMA(P,K ) representation.

In particular, we estimate the following regression:

xt =α+
P∑

p=1
γp · xIV

t−p +
K∑

k=1
βk ·εt−k +ut (3)

Depending on the variable whose dynamic response we want to look at, xt is the actual outcome (unem-

ployment or inflation), the relevant forecast, or the corresponding forecast error. In all cases, εt ∈ {εD
t ,εS

t }

is one of the aforementioned two shocks drawn from Angeletos, Collard, and Dellas (2019). Finally, for
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p ∈ {1, ...,P }, xIV
t−p are the lagged values of xt instrumented by the lagged values of εt .16 This instrumental-

variable approach allows us to recover the conditional dynamic responses to the structural shock under

consideration—intuitively, how xt moves when driven by the shock process of interest. We will call this

method the “ARMA-IV” estimation.

By estimating (3) for outcomes (e.g., xt equal to that quarter’s unemployment rate or the past four

quarters’ inflation rate), we can generate dynamic impulse response coefficients (βout,h)H
h=0 as functions

of (β0, (γp )P
p=1). For forecasts, we can do the same thing with xt equal to the forecast in period t (e.g,.

Ēt [ut+3] and Ēt [πt+3,t−1]): estimate the impulse response coefficients (β̃fc,h)H
h=0 and then “re-index” these

coefficients to line up with the realized outcomes. More specifically, we generate (βfc,h)H
h=0 such thatβfc,h =

0 for h < 3 (effectively imposing unpredictability of the shocks), and βfc,h = β̃fc,h−3 for h ≥ 3. Finally, we

can construct the IRF of the forecast errors either by taking the difference between the IRF of the outcome

and the forecasts, or by repeating the aforementioned procedure with xt being the average forecast error.

In all cases, we construct standard errors for the coefficients that are heteroskedasticity and autocorre-

lation robust (HAC) with a 4-quarter Bartlett kernel; and then use the delta method to calculate standard

errors for the impulse response functions. All reported error bands are 68% confidence intervals (±1 ·SE).

An “unrestricted” projection. Our main strategy strives for parsimony by requiring the IRFs to accept a

low-dimension ARMA representation as in (3). But we can also estimate impulse responses directly using

the projection method of Jordà (2005). In this case, the estimating equation, for each horizon 0 ≤ h ≤ H , is

the following:

xt+h =αh +βh ·εt +γ′Wt +ut+h (4)

where (βh)H
h=0 trace out the dynamic response of the outcome, Wt is a vector of control variables, and γ

are the coefficients on these controls. Consistently, across specifications, we include the lagged outcome

xt−1 and the lagged forecast Ēt−k−1[xt−1] as control variables. Conceptually, as long as these controls are

orthogonal to the structural shock εt , these should not affect the population estimate we get of the impulse

response parameters; but their inclusion may help with small-sample precision. We find overall that re-

sults are not sensitive to choices of controls. Standard errors are constructed in the same, aforementioned

way.

For our main analysis, we set k = 3 quarters as the forecast horizon and set H = 20 quarters as the

maximum period for tracing out IRFs. The former assumption allows us to use the exact same data on

unemployment and annualized inflation forecasts that formed the center of our analysis in Section 3.
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Figure 1: Dynamic Responses in the Data: Outcomes and Forecasts
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Notes: The sample period is Q1 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett (“tent”) kernel and 4 lags. The x-axis denotes quarters from the shock, starting at 0. In the first row the outcome is

ut and the forecast is Ēt−3[ut ]; in the second row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].

4.2 The fact: dynamic over-shooting

Figure 1 shows, in a two-by-two grid, the main impulse response estimates. In the first column, we show

the dynamic response of unemployment and median forecasts thereof to the demand shock εD
t . The first

row shows the instrumented ARMA method of equation (3) , and the second row shows the projection

method of (4). For both methods, we “align” the forecast responses such that, at a given vertical slice of the

plot, the outcome and forecast responses are measured over the same horizon, and the difference thereof

is a measure of the response of forecast errors. In the second column, we plot the same for the response of

one-year-average inflation to the supply shock εS
t .

The consistent pattern across specifications is an initially delayed, and then over-persistent response

of forecasts to the shock. Consider, as an illustration, the response of unemployment and forecasts thereof

16The first-stage equation is given, in vector form, by

Xt−1 = η+E ′
t−1Θ+et

where Xt−1 ≡ (xt−p )P
p=1, Et−1 ≡ (εt−K− j )J

j=1 and J ≥ P . Our main specifications use P = 3 and J = 6, but the results are robust to

P = 2 and P = 4, as well as to different J .
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Figure 2: Dynamic Responses in the Data: Forecast Errors
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Notes: The sample period is Q1 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett (“tent”) kernel and 4 lags. The x-axis denotes quarters from the shock, starting at 0. In the first row the outcome is

ut and the forecast is Ēt−3[ut ]; in the second row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].

to εD
t . Unemployment spikes around quarter 3 in both estimation methods before reverting back to its

long-run mean. The point-estimate is extremely close to zero by t = 12 in both cases.

Now consider the response of forecasts at t = 3 in the plot. These are forecasts made at t = 0, when

the very first macro data (e.g., BLS reports) from t = 0 become available. Forecasted unemployment im-

mediately spikes and begins to decay over the next 5-6 quarters. Forecasters remain convinced there are

adverse demand conditions, when in reality conditions have reverted back to the mean. A similar, and

indeed more dramatic, pattern is visible in the response of inflation to the supply shock (second row). And

these patterns look qualitatively and quantitatively quite similar with both the smooth, ARMA estimates

(left column) and the unrestricted projection regression estimates (right column).

Figure 2 shows this overshooting pattern more clearly in terms of the impulse response of forecast er-

rors. For both the ARMA and projection methods, this is obtained by taking the difference of the previous

estimates for outcomes and forecasts. For both unemployment and inflation, we find evidence that fore-

cast errors start positive and then turn negative at longer horizons. The estimated “crossing points” of the

forecast errors response with 0, using the ARMA method, are K u
IRF = 4.14 and K π

IRF = 6.43, respectively.17’

Finally, in Appendix Figure A.1, we complete the picture with the “off-diagonal” impulse responses of

inflation to the demand shock and unemployment to the supply shock. The former is weakly inflationary

at longer horizons and the latter weakly contractionary at medium horizons. And in both cases we have

modest evidence of the over-shooting pattern of interest.

Other shocks of interest. An appealing feature of using projections and the ARMA-IV method is that it

is easy to combine with auxiliary identification techniques, without fully specifying a multivariate model

and considering the problem of jointly identifying many shocks. To illustrate this property, and probe

the robustness of our results to other candidate “supply and demand” shocks from the macroeconomics

17The corresponding estimates from the projection regressions are 4.87 and 7.79.
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Figure 3: Responses to Other Structural Shocks
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Notes: The sample period is Q4 1968 to Q4 2017. The x-axis denotes quarters from the shock (starting at 0). The shaded areas

are 68% confidence intervals based on HAC standard errors with a Bartlett (“tent”) kernel and 4 lags. The x-axis denotes quarters

from the shock, starting at 0. The first shock is a technology shock à la (Galí, 1999), as obtained from Coibion and Gorodnichenko

(2012) and normalized to be inflationary and contractionary. The second is an oil shock à la Hamilton (1996), again obtained from

Coibion and Gorodnichenko (2012). The third is the investment-specific shock of Justiniano, Primiceri, and Tambalotti (2010),

updated to cover the full sample until 2017. See Appendix B for details.

literature, Figure 3 replicates our main analysis for three different shocks: a technology shock à la Galí

(1999), normalized here to be inflationary and contractionary; an oil price shock à la Hamilton (1996); and

the investment-specific shock extracted from the DSGE model of Justiniano, Primiceri, and Tambalotti

(2010). The former two are variations of “supply shocks” (to productivity or input costs), and we show the

response of inflation; the last is like a demand shock, and we show the response of unemployment. In all

cases we see evidence of the overshooting pattern.

Methods for estimating dynamics. Our ARMA-IV method resembles the technique suggested by Romer

and Romer (2004), and applied by Coibion and Gorodnichenko (2012) in their study of how forecast errors

respond to structural shocks. The Romer and Romer (2004) technique estimates an empirical ARMA pro-

cess like (3) via ordinary least squares (“ARMA-OLS”). This method uses the unconditional auto-covariance
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Figure 4: The Term Structure of Forecasts and Outcomes
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Notes: The sample period is Q4 1968 to Q4 2017. The x-axis denotes quarters from the shock or horizon of forecast (starting at 0).

The lines are one-standard-error bars. The orange lines plot the terms structure of forecasts, or β
f
k from (5), and the blue lines

show the response of outcomes, or βo
k from (6).

properties of the outcome variable in order to quantify dynamics. Our prior is that, in a world of very

different, shock-specific dynamics (induced, for instance, by differential persistence in the driving pro-

cess or differential ability to learn about these shocks), the ARMA-OLS method could give mis-leading re-

sults. Indeed, in our replication of two key results from Coibion and Gorodnichenko (2012), the response

of inflation and forecast errors thereof to technology and oil shocks (Figure 3), we find evidence of our

overshooting patterns when we use our methods. Appendix B unpacks more thoroughly the differences

in methodology and demonstrates that both using unconditional dynamics and restricting, via model-

selection tools, to models with only one root in dynamics makes it impossible to see the over-shooting

patterns uncovered here.

Another option for estimating more complex dynamics, of course, is to jointly estimate a multivari-

ate model. A VAR model will use unconditional information (i.e., the reduced-form representation) to

project forward dynamics of the identified shocks—but it will have much more richness in modeling cross-

variable interactions, and will certainly allow two shocks with equal instantaneous effects on a variable of

interest (say, unemployment) but different effects on other variables (say, labor productivity or TFP) to

have different dynamic responses. We will pursue such a strategy in the next section.

The “term structure” of forecasts. Finally, a complementary way of organizing the evidence on over-

shooting is to focus on the “term structure” of forecasts at a given point in time—how much do profes-

sionals move their long-horizon forecasts (say, one-year-out) versus their now-casts? To estimate this in

the data, we consider the following “slice” of the projection regression for forecasted variable x at different

horizons k:

Ēt [xt+k ] =αk +β f
k ·εt +γ′Wt +ut+k (5)
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and the same for realized outcomes

xt+k =αk +βo
k ·εt +γ′Wt +ut+k (6)

We run these specifications for x equal to unemployment and (cumulative k-period) inflation. For con-

sistency, we use the two control variables corresponding to horizon k = 3 that we used in the projection

regression (4)—that is, ut−1 and Ēt−4[ut−1] for unemployment and πt−1,t−5 and Ēt−4[πt−1,t−5] for inflation.

The coefficients of interest are (β f
k ,βo

k ), which reveal the persistence of outcomes and forecasts. If

β
f
k < βo

k , which we have already verified for k = 3, we know agents under-react on impact. If βo
k is much

more persistent across k than β
f
k , this is also evidence of over-extrapolation right at the impact of the

shock—that is, agents end up being more correct about impacts further in the future because their over-

extrapolation partially cancels out their under-reaction.

Figure 4 plots the results, showing the sequences of (βo
k ,β f

k ) on the left and right scales, respectively,

for unemployment (left graph) and inflation (right graph). Observe both that agents under-react (com-

paring the left and right scales), but also that under-reaction is most severe at the two shorter horizons.

At horizon 0, agents incorporate into their forecasts R0 ≡ 100 ·β f
0 /βo

0 = 100 · 0.105/0.188 = 55.9% of the

forecast, compared with 45.4% and 59.4% respectively at horizons 1 and 4. Comparing k = 4 to k ∈ {0,1},

the term structure “slopes up”—agents are actually more correct about the further future. For inflation,

the corresponding “ratios” at horizons 0, 1, and 4 are 31.0%, 33.8%, and 34.4%—fairly flat but still upward

sloping.

4.3 A Structural VAR Approch

We now probe the robustness of our result to estimation in a multi-variate VAR model.

We consider two specific models. Both are based on the same 14-variable reduced-form VAR com-

prised of the ten key macroeconomic variables from Angeletos, Collard, and Dellas (2019) plus the three

forecast variables: the three-period-ahead unemployment forecast, the three-period-ahead annual infla-

tion forecast, and the three-period-ahead quarterly inflation forecast. The macro variables are the follow-

ing: real GDP, real investment, real consumption, labor hours, the labor share, the Federal Funds Rate,

labor productivity, and utilization-adjusted TFP.18 The forecast variables are are the three-step-ahead un-

employment and inflation forecasts from the SPF. The sample period is Q4 1968 to Q4 2017. We apply the

same Bayesian inference procedure as Angeletos, Collard, and Dellas (2019), including prior specification

and posterior sampling procedures, and replicate their identification of shocks that target the “max share

of variation” in both unemployment and inflation.

On the left side of Figure 5, we show what happens when we replicate the identification scheme of

Angeletos, Collard, and Dellas (2019). In the first row, we show the response of unemployment, forecasts

thereof, and forecast errors to the “unemployment shock.” This can be compared directly to the first col-

umn of Figures 1 and 2, and largely agrees about the potential for large and persistent “overshooting” in

forecast errors. The second and third row show the response of outcomes and forecasts to the inflation

18Full variable descriptions and data construction discussion is in Angeletos, Collard, and Dellas (2019).
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Figure 5: Dynamic Responses in a Structural VAR

ACD identification Triangular identification

0 10 20

-0.4

-0.2

0

0.2

0.4

0 10 20

-0.1

0

0.1

0.2

0.3

0 10 20

-0.1

0

0.1

0.2

0.3

0.4

0 10 20

-0.1

0

0.1

0.2

0.3

0 10 20

-0.2

0

0.2

0.4

0.6

0 10 20

0

0.2

0.4

0 10 20

-0.2

0

0.2

0.4

0.6

0.8

0 10 20

0

0.2

0.4

0.6

0 10 20

-0.1

0

0.1

0.2

0.3

0 10 20

0

0.05

0.1

0.15

0.2

0.25

0 10 20

-0.1

0

0.1

0.2

0.3

0 10 20

0

0.1

0.2

Notes: The sample period is Q4 1968 to Q4 2017. The x-axis denotes quarters from the shock (starting at 0). The shaded areas

are 68% high-posterior-density regions and the point estimate is the posterior median. In the first row the outcome is ut and

the forecast is Ēt−3[ut ]; in the second row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4]; and in the

last row, the outcome is πt ,t−1, or one-quarter inflation, and the forecast is Ēt−3[πt ,t−1]. The columns show results from a "max

share" identification and a triangular identification, respectively; see the main text for details.

shock in the same SVAR model, but with different forecast horizons and transformations of the outcome

variable (annual averages in Row 2 versus quarter-to-quarter rates in Row 3). Here we find quantiatively

smaller effects per period, but also very persistent ones. In Appendix Figure A.2, we show the “missing”

impulse responses of unemployment to the supply shock and inflation to the demand shock; they, too,

match the patterns in the projections of Figure A.1 and show evidence of the overshooting.

On the right side of Figure 5, we show just the results of two different “Cholesky” identifications based

on triangular short-run restrictions (ordering unemployment or inflation first). The first row shows the im-

pulse response of unemployment, forecasts thereof, and forecast errors to the “one-step-ahead” shock to

unemployment (i.e., the shock in the triangular-identified SVAR in which unemployment is the “slowest”

variable, hit only by one shock). We find corroborating evidence of the “over-shooting” pattern docu-

mented earlier. The second row and third rows show, respectively, the response of inflation and forecasts

thereof in either the quarter-to-quarter or annual-average units to the one-step-ahead shock to inflation

(i.e., when inflation is ordered first). Here, there is evidence of over-shooting in point estimate, but not

very large magnitudes or precision.

Taking the evidence together, we conclude that the fact for unemployment is particularly robust to
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Figure 6: Dynamic Responses in the Michigan Survey
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Notes: The sample period is Q1 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett (“tent”) kernel and 4 lags. In the first plot the outcome is UnempUpt ,t−4 and the forecast is Ēt−4[UnempUpt ,t−4];

in the second plot the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−4[πt ,t−4].

different shock identification methods. The result for inflation is somewhat more dependent on the par-

ticular variation on which we focus.

4.4 “General public” forecasts

We also investigate whether these patterns hold in non-professional forecast data. Our source for these

data is the University of Michigan Survey of Consumers. We construct an “unemployment expectation”

using the survey’s question about whether unemployment will go up, stay the same, or go down over the

next 12 months. We code a variable Ēt [UnempUpt+4] that averages the “up” responses, and code a data

equivalent UnempUpt+4 using the BEA unemployment rate.19 For inflation, we use the Michigan survey’s

main estimate for inflation over the next 12 months. For consistency with the previous analysis, we com-

pare this to data on the GDP deflator, even though this is almost certainly not a perfect match for the price

variable households have in mind when making their forecast.20

Figure 6 shows the results from projecting our business cycle shocks on these variables using (4). The

left panel shows the response of the UnempUp variable and forecasts thereof to εD
t . The Michigan survey

expectations perk up slightly before the shock hits (i.e.,. for t < 4) and then spike one quarter “too late.”

We see further evidence that the general public is also particularly unable to forecast the “mean-reverting”

part of the shock, or the eventual downward trend in unemployment.

The right panel shows the response of the response of GDP deflator and the annual inflation expec-

tation of the Michigan survey to εS
t . Here, responses are much too noisy to pick out an obvious “peak

response.” Again, there is some weak evidence of anticipation, and at quarters 10 and onward evidence of

19Results are similar if we treat a different portion (e.g., 1/2 or all) of the “about the same” responses as corresponding to “up.”
20See the exact question in Footnote 7, which refers to “prices” in general and may match some notion of a consumer spending

basket better than the GDP deflator basket.
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some over-extrapolation of recent price trends.

4.5 Robustness: different data and methodologies

We conduct a number of additional robustness checks and extensions, the results of which are reported in

the Appendix.

Appendix Figure A.3 replicates all of the previous patterns using the “vintage” data on unemployment

and GDP/GNP deflator that are used in the forecast error predictability exercises, and finds consistent

patterns. Appendix Figure A.4 recreates the regression results in the SPF, back again with modern-vintage

data, in the sample 1984-2017. As discussed previously, we might think of the post-Volcker and post-oil-

crisis data as a more “consistently stationary” regime for forecasters trying to model the world. We find

largely the same patterns in forecast errors. Appendix Figure A.5 recreates the main analysis with forecast

data from Blue Chip Economic Indicators over the shorter available sample (1980-2017) and again finds

the same patterns.

5 A Simple Model

The overarching goal of the remainder of this article is to identify a parsimonious model that explains the

previous three facts, and then use this model to determine the “causal effect of imperfect expectations”—

that is, compare the real world with the counterfactual world of “perfect rational expectations.” The latter

task will involve fully accounting for general equilibrium feedback, or the endogeneity of the forecasted

outcomes to forecasts. We grapple with this task fully in Sections 6 and 7. This section instead concentrates

on the intermediate step of differentiating mechanisms for imperfect expectations in a much simplified

environment that treats the forecasted outcomes as exogenous. A principal advantage of this approach is

that it is simpler, and in many cases produces closed-form mappings between theoretical forces of interest

and the moments we have measured so far.

Our main finding is that a combination of noise and over-extrapolation is needed to match Facts 1-3.

On the way, we also explain how to “correct” the original CG coefficient so as to partial out the effect of

irrationality and isolate the effect of noise.

5.1 Primitives

Let {zt } be a stochastic process that a group of agents, indexed by i ∈ [0,1], are trying to forecast. Ulti-

mately, we want to think of these processes as endogenous to the agents’ behavior. But for now we assume

that zt follows an exogenous first-order auto-regressive process with Gaussian errors. Let ρ ∈ (0,1) be the

persistence parameter and εt ∼ N (0,1) a Gaussian innovation. The evolution of {zt } can be described as

(1−ρL)zt = εt , (7)

where L denotes the lag operator (i.e., Lzt = zt−1).
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Agents do not observe zt , but instead only private signals of it. An agent’s signal is contaminated with

idiosyncratic noise τ−1/2ui ,t , where τ is a precision parameter and ui ,t ∼ N (0,1) is idiosyncratic Gaussian

noise. In math, the actual realization of si ,t is given by

si ,t = zt +
ui ,tp
τ

(8)

As in a large literature, we can think of this noise either literally, as the product of dispersed noisy

information (Lucas, 1972; Morris and Shin, 2002; Lorenzoni, 2009), or metaphorically, as a representation

of rational inattention and bounded information processing capacities (Sims, 2003, 2010; Woodford, 2003,

2009; Mackowiak and Wiederholt, 2009; Mankiw and Reis, 2002). Unlike these earlier works, however, we

combine “rational confusion” with two forms of irrationality.

First, we allow agents to have a misspecified belief about the process of the object they are trying to

forecast. Whereas the true process from zt is given by (7), agents perceive this process to be

(1− ρ̂L)zt = rεt (9)

for some perceived persistence ρ̂ which may not equal ρ.

And second, we allow agents to have a misspecified belief about their information. Whereas the true

process of the private signal is given by (8), agents perceive this process to be

si ,t = zt +
ui ,tp
τ̂

(10)

for some perceived precision τ̂> 0 that may differ from τ.

We can think of τ̂ > τ as a model of individual overconfidence: each forecaster systematically thinks

their information is better than it truly is. The opposite case of τ̂< τ captures individual underconfidence:

an individual thinks their information is systematically worse than it really is. Moore and Healy (2008)

provide a representative review of the experimental psychological evidence for such biases. Their broad

conclusion is that overconfidence is consistently prevalent for reported beliefs in the laboratory, but that

the extent of effects can be context-specific.

The case ρ̂ > ρ encodes an “over-extrapolation” of today’s state to tomorrow, whereas ρ̂ < ρ encodes

“under-extrapolation.” Both narratives are appealing in different economic contexts. On the one hand,

Greenwood and Shleifer (2014) and Gennaioli, Ma, and Shleifer (2015a) argue that over-extrapolation, or

ρ̂ > ρ, is evident both in stock-market expectations and in expectations of firms’ sales forecasts; see also

Guo and Wachter (2019) for how a simple model with over-extrapolation over dividend growth can explain

a variety of asset-price phenomena. On the other hand, level-K thinking (Garcıa-Schmidt and Woodford,

2019; Farhi and Werning, 2019) and cognitive discounting (Gabaix, 2019) are close “close in spirit” to the

opposite scenario, ρ̂ < ρ, because they cause agents to be under-estimate the (endogenous or exogenous)

response of future outcomes to current innovations. We will make this connection formal in Section 6.4.3,

once we extend the analysis to a GE context and properly nest these models.
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5.2 Characterization of forecasts and errors

The agent’s information set in period t is given by Ii ,t = {si ,t−v }v=0,1,..., the history of these signals up to

period t . We will use the short-hand notation Ei ,t [·] to denote the agent’s subjective expectation conditional

on this information.

Our main goal in this section is to construct the theoretical counterparts of the various forecast mo-

ments we estimated in the empirical part of the paper. To this goal, let us first note that the law of motion

for Ei ,t [zt ], the “nowcast,” can then be written as follows:

Ei ,t [zt ] = (1− ĝ )Ei ,t−1[zt ]+ ĝ si ,t = (1− λ̂)Ei ,t−1[zt−1]+
(

1− λ̂

ρ̂

)
si ,t

where

ĝ ≡ 1− λ̂

ρ̂
∈ (0,1)

is the Kalman gain and λ̂ is the unique root within (0, ρ̂) to the following quadratic equation:

λ̂+ 1

λ̂
= ρ̂+ 1+ τ̂

ρ̂
(11)

All this is exactly as in the textbook Kalman filter, except for the fact that ρ̂ and τ̂ have taken the place of

the corresponding true parameters, since we are describing the evolution of subjective expectations.

Using the above result, we can characterize the k-step ahead forecasts and the relevant forecast errors

and forecast revisions as follows:

Lemma 1. The one-step-ahead forecasts obey

Ei ,t [zt+1] = (ρ̂− λ̂)
1

1− λ̂L si ,t = (ρ̂− λ̂)
1

1− λ̂L

(
1

1−ρLεt +ui ,t

)
(12)

The corresponding forecast errors obey

Errori ,t ≡ zt+1 −Ei ,t [zt+1] = 1− ρ̂L
(1−ρL)(1− λ̂L)

εt+1 − (ρ̂− λ̂)
1

1− λ̂Lui ,t (13)

And finally the forecast revisions obey

Revisioni ,t ≡ Ei ,t [zt+1]−Ei ,t−1[zt+1] = (
ρ̂− λ̂) 1

1− λ̂L

(
1− ρ̂L

1−ρL
εt +ui t − ρ̂ui t−1

)
(14)

Three properties are worth noting. First, the parameter controlling the persistence of forecasts, the

previously defined λ̂, decreases in perceived signal precision τ̂, to a minimum value of 0, from a maximum

value of ρ̂. Second, the forecast error 13 contains both aggregate terms (i.e., functions of (εs)s<t ) and

idiosyncratic terms (i.e., functions of (ui ,s)s<t ).

5.3 Forecast error predictability (Facts 1 and 2)

We are now ready to offer a structural interpretation to Facts 1 and 2, regarding the predictability of forecast

errors by lagged forecast revisions.
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Proposition 1 (Facts 1 and 2). Let Vind ≡ Var[Ei ,t [xt+1]−Ei ,t−1[xt+1]] and Vagg ≡ Var[Ēt [xt+1]−Ēt−1[xt+1]] be

the variances of, respectively, individual and aggregate forecast revisions; the former is a function of (τ̂,ρ, ρ̂)

and τ, the latter is a function of (τ̂,ρ, ρ̂) but not of τ. The theoretical counterparts of coefficients of regressions

(2) and (1) are given by, respectively,

KBGMS = −κ1(τ−1 − τ̂−1)+κ2(ρ− ρ̂)

Vind
(15)

KCG = κ1τ
−1

Vagg
+ Vind

Vagg
KBGMS (16)

for some κ1 > 0 and κ2 > 0 that are functions of (τ̂,ρ, ρ̂) but not on τ.

Condition (15) illustrates how the sign of KBGMS, which pertains to the individual-level regression

(2), hinges on the two departures from rational expectations. Under rational expectations (which herein

means τ̂= τ and ρ = ρ̂), we have KBGMS = 0. Relative to this benchmark, both overconfidence (τ̂> τ) and

over-extrapolation (ρ̂ > ρ) contribute towards KBGMS < 0. And the converse is true for underconfidence or

under-extrapolation.

Corollary 1. The following properties hold for KBGMS:

1. τ̂= τ and ρ̂ = ρ (noisy but rational expectations) restrict KBGMS = 0.

2. τ̂≥ τ (overconfidence) and ρ̂ ≥ ρ (over-extrapolation), with complementary slackness, imply KBGMS <
0, or over-reaction of individual forecasts in the sense of regression (2).

3. τ̂≤ τ (underconfidence) and ρ̂ ≤ ρ (under-extrapolation), with complementary slackness, imply KBGMS >
0, or over-reaction of individual forecasts in the sense of regression (2).

Condition (16) shifts focus to the aggregate-level regression (1) and the sign of KCG. To understand

this condition, let us first focus on the special case of rational expectations (which herein means τ̂= τ and

ρ = ρ̂). The formula for the CG regression coefficient then reduces to

KCG = κ1τ
−1

Vagg
.

If we use the formula for κ1 (which can be found in the Appendix) and calculate Vagg, we can re-express the

above more simply as follows:

KCG = 1− g

g

where g ∈ (0,1) is now the objective Kalman gain.21 It follows that KCG is decreasing in τ, or equivalently

increasing in the level of noise, with KCG = 0 when the noise is zero and KCG →∞ as the noise becomes

infinite.

This sums up the structural interpretation adopted in Coibion and Gorodnichenko (2015): in their

framework, the coefficient KCG obtained from regression (1) is interpreted as a direct measure of the in-

formational friction. The essence of this structural interpretation extends to the larger class of models that

21Although KCG = 1−g
g when τ= τ̂ and ρ̂ = ρ, in general KCG 6= 1−ĝ

ĝ .

25



Figure 7: Parameter Cases for KBGMS and KCG in the Theory
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allow for various kinds of informational frictions and a GE feedback between expectations and outcomes,

while maintaining the pillar of rational expectations.22 In this class of models, the exact mapping from KCG

to the primitive informational parameter is more convoluted, but KCG can differ from zero only because of

the informational friction. In this sense, KCG alone remains a useful measure of the informational friction.

Our result illustrates how this structural interpretation crucially depends on ruling out a departure

from rationality. When, instead, agents have a misspecified model for either their information (τ̂ 6= τ) or

the stochastic process of the object they are trying to forecast (ρ̂ 6= ρ), the CG coefficient confounds the

informational friction with the departure from rationality. In particular, KCG > 0 could mean either that

there is an informational friction or that there is a departure from rationality in the particular direction of

underconfidence or under-extrapolation.

We summarize these lessons below.

Corollary 2. The following properties hold for KCG:

1. When τ̂= τ and ρ̂ = ρ (noisy but rational expectations), KCG is non-negative and strictly increasing in

the level of noise. In this sense, KCG is a measure of the informational friction.

2. More generally, the measure of the informational friction contained in KCG is contaminated by the

departure from rational expectations: a high positive value for KCG could also be the implication of

underconfidence (τ̂< τ) or under-extrapolation (ρ̂ < ρ).

22This includes models with sticky information (Mankiw and Reis, 2002), rational inattention (Sims, 2003; Mackowiak and

Wiederholt, 2009), endogenous signals (Lucas, 1972; Nimark, 2008), and rich higher-order uncertainty (Acharya, Benhabib, and

Huo, 2017; Angeletos and La’O, 2013; Bergemann and Morris, 2013; Nimark, 2008).

26



Facts 1 and 2 combined. Figure 7 illustrates how the combination of KCG and KBGMS depends on the

combination of the two forms of mis-specification allowed here. The figure presumes a certain pair of

values for ρ and τ, and shows how the space of ρ̂ and τ̂ can be split in four areas, each corresponding to a

different combination of signs for the CG and BGMS regression coefficients.

In Region I, which corresponds to large enough underconfidence and/or large enough under-extrapolation,

both coefficients are positive (and in this sense we forecasts under-react at both the individual and the

aggregate level). In Region III, which corresponds to large enough overconfidence and/or large enough

over-extrapolation, we get the exact opposite: both coefficients to are negative (or forecasts over-react at

both the individual and the aggregate level). Finally, in Regions II and IV, the two coefficients have opposite

signs (or forecasts exhibit under-reaction in one level and over-reaction in the other).

By combining this figure with Facts 1 and 2 from the previous section, we can indeed infer that the

empirically relevant case is a point within Region I for the case of unemployment forecasts and a point

within Region II for the case of inflation forecasts. But the construction of this figure presumes knowledge

of both ρ and τ. The analyst (“econometrician”) may be able to identify ρ from the time series of the ac-

tual outcome (unemployment or inflation, depending on the case considered). But how can she possible

identify τ, or the true level of noise?23

To identify all the three belief-related parameters, namely τ, τ̂, and ρ̂, we need three moments. The

two moments are those already discussed: the empirical estimates of KCG and KBGMS from Facts 1 and 2.

The third relates to Fact 3.

5.4 Dynamic responses: under-shooting early, over-shooting later on (Fact 3)

Let us now turn to the structural interpretation of Fact 3, the sign reversal in the IRF of the aggregate

forecast errors. This will complete the explanation of how the three facts fit in our framework, and the

foundation of our identification strategy.

Proposition 2 (Fact 3). Let {ζk }∞k=1 be the Impulse Response Function (IRF) of the average forecast error. That

is, for all k ≥ 1,

ζk ≡ ∂
(
zt+k −Et+k−1[zt+k ]

)
∂εt

is the k-th coefficient in the moving-average representation of the average forecast error.24

1. If ρ̂ < ρ, or agents under-extrapolate, then ζk > 0 for all k ≥ 1. That is, the IRF of the average forecast

error is uniformly positive.

2. If ρ̂ > ρ and λ̂> ρ̂−ρ, or agents over-extrapolate and learning is slow enough, then ζk > 0 for 1 ≤ k <
23It is true of course that Facts 1 and 2 together say something about this level of noise, albeit not independently from other

parameters. Appendix C shows more clearly how to make this connection and use a hybrid regression of individual and aggregate

predictability to test for noisy signals in this class of models.
24Note that we exclude ζ0 ≡ ∂(

zt −Et−1[zt ]
)

/∂εt for the present statement, because this is mechanically 1 no matter the belief

structure.
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Figure 8: IRF of Aggregate Forecasts and Errors in the Theory (without GE)
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KIRF and ζk < 0 for k > KIRF, where

KIRF = log
(
ρ̂−ρ)− log

(
ρ̂− λ̂)

log λ̂− logρ
> 1 (17)

That is, the IRF of the average forecast errors starts positive but eventually switches negative.

3. Finally, if ρ̂ > ρ but λ̂< ρ̂−ρ, or agents over-extrapolate but learning is fast, then ζk < 0 for all k ≥ 1.

That is, the IRF of the average forecast errors is uniformly negative.

There are two key take-aways. First, a “sign-switch” in the impulse response of forecast errors to a

macro shock necessitates the combination of over-extrapolation and noise. Second, the speed with which

the sign flip occurs (e.g., how small is KIRF) provides direct evidence on the extent of over-extrapolation

relative to the informational friction.25

Figure 8 illustrates these patterns by plotting the IRFs of outcomes and forecasts (left column) and

forecast errors (right column) in two scenarios: a benchmark without over-extrapolation (top row), and

a variant with (bottom row). In each case, we report both the one-step-ahead forecasts and errors (light

dashed lines) and their three-step-ahead counterparts (dark dashed lines). The former correspond the

25On a more technical level, note that, as written, KIRF need not be an integer. It is indeed obtained from the continuous-time

limit of the ARMA process that describes the average forecast error. But the result, as stated, holds for the true, discrete-time

process.
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objects we characterized analytically in this section. The latter are the exact counterparts of the empirical

objects we documented in Section 3. Clearly, the qualitative pattern is the same regardless of whether we

look at one- or three-step ahead forecasts (the same of course applies to other choices of horizon). And the

key observation is that only with the combination of slow learning and over-extrapolation can the theory

generate a sign reversal for the aggregate forecast errors, or average forecasts that undershoot initially and

overshoot later on.

In the data, we found that both the impulse response of unemployment forecast errors to the “unem-

ployment shock” and the impulse response of inflation forecast errors to the “inflation shock” displayed

the kind of sign reversal seen in the bottom row of Figure 8. Under the lens of the theory, this is strong

evidence of both over-extrapolation, or ρ̂ > ρ, and slow enough learning, or τ̂ small enough.

5.5 Reconciling theory and facts, and an identification strategy

To put everything together, recall the empirical patterns that we found in Section 3:

• For unemployment, KCG > 0, KBGMS > 0, and KIRF ∈ (1,∞).

• For inflation, KCG > 0, KBGMS < 0, and KIRF ∈ (1,∞).

That is, the only essential difference between the two cases is that KBGMS switches signs.

Regardless, the following properties hold by implication of Propositions 1 and 2:

• The last fact, KIRF ∈ (1,∞), necessitates both over-extrapolation, ρ̂ > ρ, and slow enough learning, or

a value for τ̂ not too high.

• Given that some over-extrapolation is needed, the first fact, KCG > 0, puts an additional upper bound

on τ̂.

• Suppose the econometrician knows ρ (say, by observing the true outcome zt and identifying its true

persistence). Then, because KIRF and KCG are only functions of (τ̂,ρ, ρ̂) and not of τ, whereas KBGMS

is also a function of τ, the econometrician can use KIRF and KCG to identify (τ̂, ρ̂) regardless of the

values of KBGMS.

• With (τ̂, ρ̂) identified as above, τ can be chosen so as to match the value of KBGMS.

• This procedure necessarily produces ρ̂ > ρ, τ̂ ∈ (0,∞) and τ ∈ (0,∞) for both cases.

• In the case of unemployment, it also produces τ̂ < τ, or underconfidence, because this is strictly

needed in order to generate KBGMS > 0 in the presence of over-extrapolation.

• In the case of inflation, on the other hand, τ̂ could be either lower or higher than τ, depending on

how large the over-extrapolation and how negative KBGMS.

This summarizes how the facts fit in our framework, and how the empirical moments we have documented

provide identification for the underlying deep belief parameters.
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In the next section, we will show how these lessons can be adapted to a GE context. On the one hand,

we will explain why the two-step, “triangular” identification strategy proposed above—first get the key

parameters (τ̂, ρ̂) and the counterfactual of interest from Facts 1 and 3 alone, then get τ as a “residual”

from Fact 2—remains valid in a GE context. On the other hand, we will show how that the identification of

(τ̂, ρ̂) and the counterfactual of interest crucially depend, not only on these facts, but also on parameters

that govern GE feedbacks, such as the slope of the Keynesian cross. On the way, we also discuss lessons

for two types of imperfect expectations that we have not addressed so far, namely Level-k Thinking and

cognitive discounting.

6 Into the Wilderness: Imperfect Expectations in GE

We just argued, using a simple framework that abstracted from the endogeneity of inflation and unem-

ployment, that the data require the combination of dispersed private information with a departure from

the pillar of rational expectations. The specific required deviation was perceived over-persistence in fun-

damentals leading to over-extrapolation (and perhaps over- or underconfidence, too). Our ultimate goal

is to integrate these insights into the New Keynesian model and quantify their importance. But to do this,

we must first understand how imperfect expectations matter in a GE context. This brings us squarely into

the “wilderness” of equilibrium fixed-points with noisy and non-rational expectations.

To extract a clear structure out of this wilderness, in this section we accomplish the following tasks.

We embed the previously-introduced model of imperfect expectations into a simplified version of the New

Keynesian model (with perfectly rigid prices) and analytically characterize the fixed point between ex-

pectations and outcomes. We use this to illustrate how the imperfection in expectations influences the

dynamic response of the economy to monetary policy or demand shocks. We show in detail how our

framework helps capture under the same umbrella the diverse set of theories mentioned in the Introduc-

tion. And we finally clarify which moments of the expectations data are most relevant for quantifying the

bite of the frictions.

6.1 The Keynesian cross, with and without perfect expectations

When prices are completely rigid, the New Keynesian model boils down to the following equations:

yt = ct (18)

ct = −ςrt +E∗t [ct+1]+εt (19)

where yt is aggregate output, ct is aggregate spending, rt is the nominal interest rate (also the real one since

prices are completely rigid), ς is the EIS, εt is an exogenous discount factor shock (demand shock), and E∗t
is the rational expectation of the representative agent. The first condition is market clearing in the goods

market. The second condition is the Euler condition of the representative consumer, or the Dynamic IS

curve.

The textbook derivation of this condition is deceptively simple: by imposing a representative con-

sumer, it obscures the GE interaction of multiple consumers. To see this, let us instead allow consumers
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to different, and potentially irrational, expectations. Following the same steps as in Angeletos and Lian

(2018), one can obtain the following modern version of the Keynesian cross:

ct =β
∞∑

k=0
βkEt [−ςrt +εt ]+ (1−β)

∞∑
k=0

βkEt [yt+k ] (20)

where Et denote the average expectation in period t and β is the subjective discount factor. This condi-

tion follows directly from aggregating the log-linearized optimal consumption function and aggregating.

The second term captures the consumers’ present discounted value income, as in the Permanent Income

Hypothesis (PIH).

To see more clearly how (20) captures the Keynesian cross, let Y = ∑∞
k=0β

kEt [yt+k ] be the average,

possibly irrational, expectation of permanent income. We can then read the above condition as c = a +
bY , where a ≡ ∑∞

k=0β
kEt [−ςrt + εt ] is the intercept of the Keynesian cross and b ≡ (1−β) is its slope, or

equivalently the marginal propensity to consume out of income (MPC).26

For our purposes, it is therefore best to think of β in condition (20) as an inverse measure of the MPC,

or the slope of the Keynesian cross. But why does this object drops out from the textbook version of the

Dynamic IS curve? Because of “perfect” expectations.

With full information and rational expectations, the average subjective expectation in the population,

Et , can be replaced by that of a single, representative, rational agent. One can then apply the Law of Iterated

Expectations on condition (20) to reduce it to condition (19). The parameter β, and by the same token the

MPC and the slope of the Keynesian cross, then drop out of the picture. But away from that benchmark,

one is “stuck” with condition condition (20), and the slope of the Keynesian cross remains a potentially

crucial determinate of the aggregate dynamics.

Angeletos and Lian (2018) and Angeletos and Huo (2019) have explored the implications of this insight

away from full information. Even if one preserves the pillar of rational expectations, one obtains two dis-

tortions in the aggregate spending dynamics—myopia towards the future and anchoring to the past—that

both increase not only with the level of noise but also with the slope of the Keynesian cross. In the sequel,

we extend their analysis to the richer model of “imperfect expectations” introduced here, explain how the

resulting framework helps proxy for additional departures from rational expectations such as cognitive

discounting and level-k thinking, and, last but not least, connect to the empirical evidence reported in the

first part of the paper.

26In the textbook version of the PIH and the New Keynesian model alike, the MPC equals the steady-state interest rate. But

consider an OLG version of the New Keynesian model, along the lines of Del Negro, Giannoni, and Patterson (2015) and Piergallini

(2007). In each period, a consumer remains alive with probability χ ∈ (0,1]; with the remaining probability, he dies and gets

replaced by a new consumer; and markets are complete, inclusive of annuities. In this case, condition (20) holds with β replaced

by βχ. By varying χ, we can thus vary the slope of the Keynesian cross, or the strength of the GE feedback, holding constant the

“true” discount factor. Furthermore, as shown in ?, χ can be recast as the probability of binding liquidity constraints. In this sense,

a lower value for βχ can be interpreted of as tighter consumer credit.
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6.2 Belief structure

The assumptions made about beliefs are essentially the same as before. The only difference is that we now

let the imperfection in expectations feed into actual behavior (and vice versa).

Let ξt ≡−ςrt +εt . We henceforth treat ξt as an exogenous process and concentrate on how imperfect

expectations influence the response of aggregate spending to innovations in ξt . In particular, we let ξt

follow an AR(1) process:

ξt = 1

1−ρLηt , (21)

where ρ ∈ (0,1) is a persistence parameter, L is the lag operator, and ηt is an independently, identically, and

normally distributed innovation. A positive ηt can be interpreted as an expansionary momentary policy

or an expansionary demand shock.

Consistent with Section 3.1, we let each consumer observe only a noisy private signal of ξt , the true

precision of which is given by τ> 0. In particular, the signal received in period t is

si ,t = ξt +
ui ,tp
τ

,

where ui ,t ∼ N (0,1) is idiosyncratic Gaussian noise, and the information of the consumer in period t is

given by the history of this signal up to, and including, period t .

As in Section 5, we instead add two behavioral twists. First, we let consumers’ subjective perception

of the precision of their information be some τ̂ > 0, where τ̂ may differ from τ. And second, we let their

subjective perception of the persistence of the underlying impulse be some ρ̂ ∈ (0,1), where ρ̂ may differ

from ρ.

6.3 Solving the fixed point

As already mentioned, Angeletos and Huo (2019) have solved the fixed point of such a beauty contest

under the restriction of rational expectations, or ρ̂ = ρ and τ̂= τ. The following proposition extends their

solution to the present environment, with the two behavioral twists.

Proposition 3. 1. The equilibrium exists, is unique, and is such that the aggregate spending and income

obey the following law of motion:

yt =
(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1− ρ̂
)(

1

1−ϑL
)

y∗
t , (22)

where

y∗
t ≡

(
1

1−ρ
)(

1

1−ρL
)
ηt

is the frictionless counterpart and ϑ is a scalar contained in (0, ρ̂).

2. The average equilibrium forecasts obey the following law of motion:

Et [yt+1] =
(

1− λ̂

ρ̂

)
1

1−ϑλ̂
ρ̂+ϑ− ρ̂ϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)

(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1− ρ̂
)

y∗
t

where ρy∗
t is the frictionless counterpart and L is a is a scalar contained in (0,ϑ).
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3. The scalar ϑ is given by the reciprocal of the largest root of the following cubic:

C (z) ≡ 1−mpc−
(
1+ (

1−mpc
)(
ρ̂+ 1

ρ̂

)
+ τ̂

ρ̂

)
z +

(
1−mpc+ ρ̂+ 1

ρ̂
+ τ̂

ρ̂

)
z2 − z3. (23)

It is thus increasing in ρ̂, decreasing in τ̂, invariant in ρ and τ, and increasing in mpc. And the scalar

λ̂, which is the same as that in (11), coincides with the value of ϑ corresponding to mpc = 0.

In the rest of this Section, we will expand on the economics behind this result and on its usefulness for

both theoretical and empirical purposes. For now, we make the following “technical” remarks.

• With perfect expectations, yt is given by y∗
t , which is merely a rescaling of ξt . So in this case, yt

follows an AR(1) process, with root ρ exogenously fixed by the process of ξt . With imperfect expec-

tations, instead, yt follows an AR(2) process, with roots ρ and ϑ. The latter is endogenous, not only

to the belief parameters, but also to the slope of the Keynesian cross. This underscores how the GE

feedback between expectations and outcomes, which was absent in our earlier analysis, shapes the

persistence of yt .

• In addition to being the source of such endogenous persistence, the belief frictions also influence

the scale of the response of yt to the underlying monetary policy or demand shocks. This scale

effect is captured by the term
(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1−ρ̂
)

in condition (22) and will be later related to whether

the economy displays, in effect, a form of myopia or hyperopia.

• The fact that yt is, endogenously, an AR(2) process complicates the characterization of the forecasts

of yt and of the corresponding moments (KCG,KBGMS,KIRF,etc). Fortunately, this does not upset

our earlier interpretation of the documented facts: using the characterization of the forecasts in the

second part of Proposition 3, we will be able verify that all the qualitative properties stated in Section

5 go through.

• There is, however, a twist, which matters quantitatively: because the footprint of the various frictions

on the joint equilibrium dynamics of the outcome yt and the expectations thereof depend on the

slope of the Keynesian cross, the theoretical counterparts of the empirical moments we looked at

before also depend on it. This is evident in Proposition 3 from the property that the root ϑ, which

depends not only on the deep belief parameters but also on the MPC, enters the dynamics of both

yt and the average forecasts thereof

A corollary of the last point is that, from the perspective of econometric identification, the moments of the

expectations we documented in the data no more offer a direct measurement of the “extent of friction.”

This anticipates our later quantitative implementation, which will rely on microeconomic estimates of the

MPC (and other relevant GE parameters of the full New Keynesian model) both to extract an estimate of

the deep belief parameters from the aforementioned moments and to provide an estimate of the causal

effect of the various belief frictions on the actual dynamics.
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6.4 Empirical footprint

Building on Proposition 3, we can characterize the empirical footprint of imperfect expectations on equi-

librium behavior in the following terms.

Proposition 4 (Equilibrium Outcomes). There exist functionsΩ f andΩb such that the equilibrium dynam-

ics of the imperfect-expectations economy is the same as that of a perfect-expectations counterpart in which

condition (19), the Euler condition of the representative agent, is modified as follows:

ct =−rt +ω f E
∗
t [ct+1]+ωbct−1 (24)

where ω f =Ω f (τ̂,ρ, ρ̂,mpc), ωb =Ωb(τ̂,ρ, ρ̂;mpc), and E∗t is the rational, full-information, expectation op-

erator.

This result extends the observational-equivalence result stated in Proposition 3 of Angeletos and Huo

(2019) to the forms of irrationality accommodated here. First, it result offers a bridge to simple representative-

agent macro models: ωb resembles habit persistence, ω f represents a form of myopia (if ω f < 1) or hyper-

opia (if ω f > 1). And second, it lets us understand the variety of beliefs friction we have accommodate so

far, as well as cognitive discounting and level-k thinking (more on this momentarily), in terms of different

combinations of the coefficients ωb and ω f .

The next result shifts focus from the properties of equilibrium behavior to the properties of equilibrium

expectations.

Proposition 5 (Equilibrium Expectations). There exist functions KCG, KBGMS, KIRF and F such that the

following properties hold:

1. The CG regression coefficient is given by KCG =KCG(τ̂,ρ, ρ̂;mpc)

2. The BGMS regression coefficient is given by KBGMS =KBGMS(τ, τ̂,ρ, ρ̂;mpc)

3. The IRF of the average forecast errors is given by{
∂Errort+k

∂ηt

}
k≥1

= F (τ̂,ρ, ρ̂;mpc),

where Errort ≡ yt −Et−1[yt ], and the point it first crosses zero from above is given by

KIRF =KIRF(τ̂,ρ, ρ̂;mpc).

This result and a few related results presented in the sequel facilitate the mapping of the theory to the

evidence on expectations. As anticipated, the theoretical counterparts of the moments we documented in

the empirical part of the paper are herein now shown to depend, not only on the “deep” belief parameters,

but also on the MPC, or the slope of the Keynesian cross. Notwithstanding this point, the following prop-

erty from Section 5 generalizes: the actual level of noise does not enter any of the moments of the average

forecasts. This is simply because of the law of large numbers: only the perceived level of noise matters.
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We now proceed to provide a more detailed intuition for how noise and mis-specification work in equi-

librium, generate concrete testable predictions, and relate to the facts we documented earlier on. On the

way, we explain how our incorporation of under-extrapolation in a GE context helps proxy for level-k think-

ing and cognitive discounting, and spell out the testable predictions of these theories, too.

6.4.1 Noise and confidence

Let us first isolate the role of noise, with or without overconfidence. This shuts down over- and under-

extrapolation (i.e., it sets ρ = ρ̂) and recovers, in effect, the scenario studied in Angeletos and Huo (2019).

Proposition 6 (No Over/under-extrapolation). Suppose ρ̂ = ρ ∈ (0,1) and (τ, τ̂) ∈ (0,∞)2 but, potentially,

τ̂ 6= τ. Then the following statements are true:

1. [Myopia and anchoring] ωb > 0 and ω f < 1. Furthermore, for given belief parameters, ωb increases

with mpc and ω f falls with it.

2. [Predictability of average forecasts] KCG > 0.

3. [Predictability of individual forecasts] sign(KBGMS) = sign(τ− τ̂).

4. [IRF of forecast errors] KIRF =∞. That is, the IRF of the average forecast errors is uniformly positive.

Point 1 is essentially the main result from Angeletos and Huo (2019): the introduction of dispersed

private information and higher-order uncertainty is akin to the introduction of two distortions, myopia

and anchoring, that both increase with the strength of the GE feedback (which, in the present context, is

the slope of the Keynesian cross). We refer the reader to this paper for the robustness of this perspective to

richer specifications of the information structure (including noisy public signals, endogenous signals, and

sticky information); for a thorough discussion of the distinct roles of first- and higher-order uncertainty;

and for a translation in terms of “slowing down GE multipliers.”

Points 2 and 3 show that this case restricts KCG > 0 and leaves the sign of KBGMS to be determined by

the agents’ relative confidence. In particular, the scenario on which Angeletos and Huo (2019), Coibion

and Gorodnichenko (2012, 2015), Woodford (2003), and the broader literature on informational frictions

have focused on, is herein nested with ρ̂ = ρ and therefore KCG > 0 = KBGMS. Adding over/underconfidence

allows the theory to accommodate KBGMS 6= 0, but preserves KCG > 0.

Finally, Point 4 shows that, in the absence of over- or under-extrapolation, the theory cannot explain

the “sign-switch” in impulse responses which we showed in the data. This extends Corollary 2 to the GE

context.

6.4.2 Over- or under-extrapolation

Let us now isolate the role of over- or underconfidence. That is, we now set τ= τ̂=∞ and instead let ρ 6= ρ̂.

In analogy to Proposition 6, we can prove the following result:
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Proposition 7 (No Informational Friction). Suppose τ = τ̂ =∞ but, potentially, ρ̂ 6= ρ. Then the following

statements are true:

1. [Myopia or hyperopia, but no anchoring] ωb = 0 and ω f < 1.

2. [Predictability] KCG = KBGMS and sign(KBGMS) = sign(ρ− ρ̂).

3. [Uniform dynamic response] KIRF =∞ if ρ̂ < ρ and KIRF < 1 if ρ̂ > ρ. That is, the IRF of the average

forecast errors is either uniformly positive or uniformly negative.

The first point shows that over- or under-extrapolation by itself can never create anchoring, for it

operates purely by affecting the forward-looking channel. In particular, under our representation, over-

extrapolation alone corresponds to pure myopia, and under-extrapolation corresponds to pure hyperopia.

The second points are the GE counterparts of the related points we made in Section 5: over- or under-

extrapolation accommodates predictability of forecast errors, but does not allow their dynamic response

to switch sign. And the restriction KCG = KBGMS encapsulates a lesson that extends to a much larger class

of models that allow for misspecified but common beliefs: such models impose that the predictability of

forecast errors at individual-level and aggregate-level regressions are the same. It is only the heterogene-

ity of beliefs, or information, that allows for the predictability in forecast errors to vary with the level of

aggregation.27

6.4.3 Higher-order doubts, level-k thinking, and cognitive discounting

We now explain how the form of under-extrapolation we have allowed here proxy for the effects of the

following three other kinds of departure from rational expectations:

1. The first is a model of pure “higher-order doubts,” without either heterogeneous information or

learning. Assume that each consumer observes ξt with probability 1 but attaches only probability

q ∈ (0,1) that any other consumers also observes ξt ; with the remaining probability, any other agent

is expected to have her belief about ξt reset to the prior. Such a model is the main specification in

Angeletos and Sastry (2020).28

2. The second is a model of level-k thinking. Assume that a consumer of “level 1” perfectly observes ξt

but assumes all others consumers a default action cd
i ,t = 0; an agent of level 2 also perfectly observes

ξt but assumes all other agents play the level-1 action; and this definition recursively extends for any

k > 2. Such models have been used to explain the sluggish, and often incomplete, convergence to

Nash equilibrium play in laboratory settings (e.g., Nagel, 1995) and, more recently, agents’ expecta-

tions formation about “unconventional” policy (e.g., Garcıa-Schmidt and Woodford, 2019; Farhi and

Werning, 2019; Iovino and Sergeyev, 2017).

27This is true asymptotically: in small samples, there can of course be differences,
28See also Angeletos and La’O (2009) for an earlier incarnation within the context of the New Keynesian Philips curve, and

Izmalkov and Yildiz (2010) for a close cousin in the context of global games.
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3. The third is a model of “cognitive discounting,” as proposed by Gabaix (2019). Agents observe the

fundamental but have misspecified priors about the process of ξt and/or that of yt . In particular,

whenever that the actual laws of motion are

ξt = ρξt−1 +εt and yt = R yt−1 +Dεt ,

for some constants R and D (to be determined as part of the solution), the agents believe that

ξt = ρ̂ξt−1 +εt and ct = R̂ct−1 +Dεt ,

with ρ̂ ≡ mρ and R̂ ≡ mR, for some exogenous scalar m ∈ (0,1) that represents the degrees of “cog-

nitive discounting” applied when the consumers contemplate the future values of both the funda-

mental and the outcome.

These models have different methodological underpinnings. The first is grounded in the literature on

higher-order beliefs (“forecasting the forecasts of others”). The second is motivated by laboratory ex-

periments documenting behavior inconsistent with Nash equilibrium (or REE) and better described by

“shallow” recursive reasoning. The third is related to a literature explaining consumer indifference to non-

obvious attributes of the economic environment (Gabaix and Laibson, 2006; Gabaix, 2014).

Despite these differences, all these model impose essentially the same distortion in the forecasts of

future economic outcomes. In particular, it is easy to show that all three models impose that the average

subjective expectation and the corresponding rational expectation are connected by the following restric-

tion:

Et [yt+1] = dE∗t [yt+1],

where d ∈ (0,1) is a scalar that depends on the “deep” parameter ζ ∈ {q,k,m} of the respective model. This

scalar measures how much consumers underestimate the future response in the behavior of others and,

equivalently, the future response of yt .

In the first model (higher-order doubts), d < 1 is the product of underestimating the knowledge of oth-

ers. In the second (level-k thinking), it is the product of underestimating the rationality of others. And in

the third (cognitive discounting), it is the product of applying a “cognitive discount” when contemplat-

ing the future. But in all cases, the essential friction in beliefs is the same and, by direct implication, the

observable effect on behavior is also the same.

But now note that the form of under-extrapolation accommodated in our framework plays the same

role as well. Indeed, if we shut down the noise, we can show that

Et [yt+1] = ρ̂

ρ
E∗t [yt+1].

It follows that, for any of the aforementioned three models, we can find a value of ρ̂ less than ρ such that

our model implies the same effective friction in the expectations. The next result verifies that this logic

carries over to the entire set of predictions about outcomes, forecasts, and dynamic responses.
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Proposition 8. Consider any of the three models described above, and let ζ ∈ {q,k,m} denote the key param-

eter for each. For any of these models and any value for the corresponding ζ, there exists some ρ̂(ρ,ζ,mpc) <
ρ,such that

1. The outcomes of the original model is observationally equivalent to our own model without noise

(τ= τ̂=∞) and under-extrapolation (ρ̂ < ρ).

2. The forecasts of the original model feature KCG = KBGMS > 0 and KIRF =∞, as in Proposition 7 with

under-extrapolation.

To iterate, the basic idea is that all three models have consumers under-estimate the future response of

others, which in turn impact behavior in a similar way as an under-estimation of the persistence of ξt .

The only subtle difference between all these cases is whether the belief mis-specification operates through

both PE and GE considerations, or only through GE.

Under-extrapolation and cognitive discounting operate through both channels. By contrast, higher-

order doubts and level-k thinking operate only through GE considerations, for they introduce a mis-specification

in how consumers reason about the behavior of others without a mis-specification in how they reason

about exogenous impulses. This means that the mapping from the primitive parameters of these two

models (the degree of higher-order doubt, q, or the depth of thinking, k) to the value of ρ̂ in our isomor-

phic model is modulated by the MPC, or the relative importance of GE considerations, but does not change

the essence.

We conclude that one can think of the case ρ̂ < ρ in our framework as a proxy for both level-k think-

ing and cognitive discounting. This also makes clear that, at least for our purposes, the theories put for-

ward in Gabaix (2019) and Garcıa-Schmidt and Woodford (2019) are the antithesis of those postulated in

the finance literature on over-extrapolation (Barberis, Shleifer, and Vishny, 1998; Hong and Stein, 1999;

Greenwood and Shleifer, 2014; Gennaioli, Ma, and Shleifer, 2015a). And they are at odds with the evidence

presented in the first part of our paper.

First, neither of these theories, at least in the versions postulated so far, helps explain why forecasts

eventually over-shoot: such overshooting is prima-facie evidence of over-extrapolation. Second, both of

these theories restrict KCG = KBGMS > 0. But even if they were to be augmented with dispersed private

information so as to accommodate KCG > KBGMS, they would still imply KBGMS > 0, which contradicts

the data.29 This is simply because cognitive discounting and level-k thinking are based on premise that

individual forecasts are misspecified in the particular direction of underestimating the impact of shocks

on future outcomes.30

The obvious caveat to this conclusion is that it only applies to the particular evidence we have consid-

ered here and may not extend to other contexts. Another caveat is that this conclusion is modulated by

29To be precise, KBGMS > 0 contradicts the evidence on forecasts of inflation and of various asset prices (Bordalo et al., 2018),

but not those of unemployment.
30This also corrects a claim made in Gabaix (2019): the relevant test of cognitive discounting is the contradictory evidence

regarding individual forecast errors provided in Bordalo et al. (2018) and Kohlhas and Broer (2019), not the seemingly favorable

evidence about average forecast errors provided in Coibion and Gorodnichenko (2015).
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parsimony: given the evidence at hand, we cannot reject the hypothesis that agents over-extrapolate the

aggregate shocks at the same time that are sallow thinkers with respect to GE, in manner that the total net

effect looks as over-extrapolation.31 But such a fine distinction is irrelevant for our purposes, insofar as the

goal is to provide a simple and parsimonious explanation for the facts.

6.5 The bottom line: the “right” theory and its mapping to the data

The combination of our exploration of the survey evidence on expectations and of our unifying prism

into the theoretical literature has suggested that the “winner” among the candidate theories is one that

combines over-extrapolation with dispersed private information. The basic intuition can be summarized

as follows.

To match the fact that KCG is higher than KBGMS, it is necessary that there is enough idiosyncratic

noise, or sufficiently dispersed private information. To match the fact that KCG itself is significantly pos-

itive, or relatedly that average forecast errors are positive for a few quarters before turning negative, it is

necessary that slow learning overwhelms over-extrapolation over short horizons. But as time passes and

people accumulate more information, over-extrapolation takes over, producing the observed overshooting

in forecasts, or the reversal of sign in the forecast errors.

In Section 5, we formalized these intuitions in a simpler framework that abstracted from the feedback

of expectations to actual behavior. The next result extends the argument to the present GE context. It also

describes our “identification strategy,” or how to extract the deep belief parameters from the documented

moments of the macroeconomic forecasts.

Theorem 1. Consider the following empirical targets:

KCG > 0 KCG > KBGMS and KIRF ∈ (1,∞),

that is, a coefficient in the CG regression that is both positive and “larger” than the BGMS regression coeffi-

cient, and overshooting in the IRF of the average forecasts.

1. These empirical targets can be met in the theory only if all of the following parameter restrictions hold:

ρ̂ > ρ, τ̂ ∈ (0,b), and τ ∈ (0,∞),

for some b small enough relative to ρ̂−ρ.

2. For any given (ρ,mpc), the pair (τ̂, ρ̂) that matches the empirical targets for KCG and KIRF, and that

also pins down that actual dynamics of yt , is invariant to τ.

3. With the pair (τ̂, ρ̂) identified as above, the empirical value for KBGMS can be matched by choosing

appropriately τ.

31Testing this hypothesis would require using simultaneously data on forecasts of unemployment and inflation (the responses

of others) and data on forecasts of empirical proxies of exogenous impulses. But we have difficulty imagine the second type of

data, except perhaps in an experimental setting.
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The first point establishes the claims made above. The second point highlights that τ̂ and ρ̂ can be

identified from moments of the average forecasts alone, ignoring moments of the individual forecasts. As

noted earlier, this is because the joint dynamics of the aggregate outcome and of the average expectations

of it are invariant to τ, or the true level of noise. The latter, or equivalently the difference between τ̂ and τ,

can then be identified as a “residual” from KBGMS, or equivalently from the gap between KCG and KBGMS.

This echoes the point made earlier. The evidence on the individual forecasts is crucial for understand-

ing the complete landscape of the departure for FIRE, and for conducting certain counterfactuals, such as

the following: what would the aggregate dynamics be if one were to switch off over/underconfidence hold-

ing the rest of the frictions constant? But such evidence is not essential for understanding the quantitative

importance of the overall departure from FIRE: the counterfactual of restoring FIRE can be constructed

using merely evidence on aggregate forecasts.

7 The Macroeconomic Effects of Noise and Over-Extrapolation

In the previous section, we simplified the exposition by assuming that prices are infinitely rigid and mon-

etary policy is unresponsive. We now relax these assumptions, allow expectations be imperfect not only

for the consumers but also for the firms, connect the theory to the data.

The model’s three equations can then be expressed as follows:

ci ,t = Ei ,t

[
−ς

∞∑
k=0

(1−mpc)k+1(it+k −πt+k+1)+mpc
∞∑

k=0
(1−mpc)k ct+k +ξd

t

]

πi ,t = Ei ,t

[
θ

∞∑
k=0

(χθ)kκ(ct +ξs
t )+ (1−θ)

∞∑
k=0

(χθ)kπt+k

]
it =φππt

The first equation is the Dynamic IS Curve, modified to allow for informational frictions and mis-specified

beliefs, as in the previous section. The second equation is the corresponding modification of the NKPC.

The third equation is the rule for monetary policy. ξd
t is the demand shock (a discount-factor shock). ξs

t is

the supply shock (a monopoly-markup, or cost-push, shock).

We close the model by specifying the shock processes and the belief structures in the same way as

before. Using the methods of Angeletos and Huo (2019), we then analytically solve for the equilibrium

responses of inflation and consumption as functions of two sets of parameters: the behavioral and pol-

icy parameters seen in the above equations (ς,mpc,χ,θ,κ,φπ); the actual and perceived persistence of

the shocks (ρ, ρ̂); and the perceived precision (τ̂). For the reasons already explained, the actual level of

noise (or τ) does not enter the determination of either the aggregate outcomes or the average expectations

thereof. 32

32Also note that the relevant GE feedbacks are now three: the Keynesian multiplier, which runs inside the DIS curve and was

emphasized in the previous section; the dynamic strategic complementary in the firms’ price-setting decisions, which running

inside the NKPC and is emphasized in XXX and XXX; and the feedback between real interest rates, spending, and inflation, which

runs across the DIS and the NKPC and is modulated by monetary policy.
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To connect the model to the data, we interpret πt the quarterly rate of inflation and the negative of

yt as the quarterly rate of unemployment. The first choice requires no justification. The second one is

based on the logic that, in our model, yt coincides with the output gap, which in turn is closely related

to unemployment both in richer models and in the data. We next fix the model’s behavioral and policy

parameters to conventional values, as shown in Table X. We finally pick, for each shock, the values of ρ, ρ̂

and τ̂ so as to match as well as possible the evidence reported in Section 4.33 This yields the parameters

values seen in Table 2.

Table 4: Exogenously Set Parameters

Parameter Description Value

θ Calvo prob 0.6

κ Slope of NKPC 0.02

χ Discount factor 0.99

mpc MPC 0.3

ς IES 1.0

φ Monetary policy 1.5

Table 5: Calibrated Parameters

ρ̂ ρ τ

Demand shock 0.94 0.80 0.38

Supply shock 0.82 0.57 0.15

Figure 9 illustrates the model’s fit vis-a-vis the empirical IRFs seen earlier in Figure 1. The fit is quite

good in the context of the demand shock, but mediocre in the context of the supply shock. This under-

scores that, although the model has the right qualitative ingredients, its quantitative performance is not

automatic: there is no abundance of degrees of freedom.

We henceforth focus on the demand shock and study two counterfactuals. In the one, we shut down

the over-extrapolation, isolating the role of the information friction. In the second, we shut down both

frictions, recovering the textbook New Keynesian model. These counterfactuals are illustrated in, respec-

tively, the second and third column of Figure 10. (The first column is the full model, with both frictions, as

calibrated above.)

By comparing the second column to the third one, we see that the informational friction alone is the

source of both significant dampening and significant persistence relative to the frictionless benchmark.

Compared to the textbook model, the informational friction—calibrated to the evidence presented in this

paper—decreases the impact of the demand shock on the output gap by about 50% and its impact on

33Namely, we minimize the distance between the model-implied IRF of outcomes and forecasts, as well as the term structure of

forecasts on impact, from their data counterparts.
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Figure 9: Model vs Data

inflation by about 75%. As for the induced persistence, it is quantitatively comparable to that obtained in

richer DSGE model with the use of habit persistence in consumption and the hybrid version of the NKPC.

This offers a quantitative assessment, based on forecast evidence, of the common core of Sims (1998,

2003), Mankiw and Reis (2002, 2007), Mackowiak and Wiederholt (2009, 2015), Nimark (2008), Woodford

(2003) and a large related literature. But all these works, as well as the related quantitative exercises con-

ducted in Angeletos and Huo (2019), abstract from over-extrapolation. And when over-extrapolation is

absent, the model fails to capture our Fact 3: as seen in the second column of Figure 10, the forecasts in

the noise-only model do not overshoot. This verifies, once again, that the insight developed in Section 5

about the necessity of combining dispersed information with over-extrapolation extends to the present

GE context.

By comparing the first column of Figure 10 to the second one, we then see that the main effect of over-

extrapolation on actual outcomes is to amplify their responses to the shock. And while the over-shooting

looks “small” in terms of the size of the forecast errors (the gap between the IRFs of forecasts and outcomes

after the former have crossed above the latter), its equilibrium footprint is sizable for two reasons. First, a

small difference between ρ̂ and ρ translates to a large difference in the kind of discounted present values

that drive individual behavior. And second, any such belief mistake gets amplified at the aggregate level

by GE feedbacks.

So far, we have utilized only evidence on average forecasts, ignoring the kind of individual-level evi-

dence that are the focus of Bordalo et al. (2018), Kohlhas and Broer (2019) and Fuhrer (2018). As previously

explained, this is because, under the prism of the theories we have considered in this paper, such evidence

helps pin down a “residual” parameter that does not enter the dynamics of either the aggregate outcomes

or the average forecasts. Such evidence are therefore not strictly needed for the counterfactuals conducted

above. But they were useful in pinning down the right model of beliefs. And in the present context, they

are essential for conducting another counterfactual of interest: what would happen if agents did not suffer

from over- or under-confidence. [to be added]
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Figure 10: Counterfactuals (Demand Shock)
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Needless to say, the above quantitative findings should not be taken too seriously. The exercise con-

ducted here is based not only on an overly simplified model but also on imperfect evidence. Ideally, we

would like to have evidence about the expectations of firms and consumers, as opposed to those of pro-

fessional forecasters. Although firms and consumers are almost surely less informed than professional

forecasters, it is unclear which class of agents is more prone to over-extrapolation. And while the evidence

we presented from the University of Michigan Survey of Consumer Sentiment offers some support for

over-extrapolation, the qualitative nature of the questions in this survey preclude the kind of quantitative

exercise conducted here.

Last but not least, the most relevant expectations in practice are presumably those that consumers

form about their income and their mortgage rates, or those that firms form about the demand for their

products and their production and financing costs—but comprehensive, time-series evidence about this

kind of expectations is missing.

We therefore view the above exercise only as an illustration of how the marriage of theory with supe-

rior evidence on expectations could facilitate a quantitative evaluation of how “imperfect expectations”

matters for business cycles.

8 Conclusion

Where are we in the “wilderness” of imperfect expectations? This paper organized theory and empirical

evidence from surveys of macroeconomic expectations to show how to best answer that question, taking

into account the possibility for multiple competing distortions in expectations formation and the endo-
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geneity of outcomes to expectations in general equilibrium.

Our overall conclusion is that, at least to explain the fluctuations most important for business-cycle

fluctuations in unemployment and inflation, the data require a combination of (i) informationalfrictions

and (ii) a behavioral tendency to over-extrapolate macroeconomic dynamics. Informational frictions help

explain, not only why average forecast under-react to innovations on impact, but also why the forecast

errors of one agent tend to be forecastable by the forecast errors of other agents. Over-extrapolation, on

the other hand, helps explain why, following any given shock, average forecasts eventually over-shoot the

actual outcome, or equivalently why forecast errors reverse sign after a few quarters.

This kind of over-shooting was the key new fact presented in this paper. Additional, more direct evi-

dence in favor of over-extrapolation was provided by comparing the subjective persistence, as inferred by

the term structure of forecasts, to the objective persistence, as inferred from the dynamic response of the

actual outcome. Theories that emphasize under-extrapolation, or close cousins thereof such as cognitive

discounting and level-K thinking, are at odds with this kind of aggregate-level evidence, as well as with

some of the individual-level evidence presented in Bordalo et al. (2018) and Kohlhas and Broer (2019).

At the same time, our analysis has shed new light on which kind of expectations evidence is most

relevant for quantifying the overall distortion in expectations. We argued that, at least within the class of

economies studied, the overall distortion is best identified by properties of the aggregate forecasts and, in

particular, those conditional on appropriate shocks. These are the most direct counterparts of the objects

that matter in the theory.

Unconditional properties of the aggregate forecasts, such as those considered in Coibion and Gorod-

nichenko (2015), are informative but non-ideal because they confound the adjustment of beliefs to multi-

ple shocks, each of which may be associated with different imperfections in beliefs. And while properties

of the individual forecasts, such as those reported in Bordalo et al. (2018) and Kohlhas and Broer (2019),

are essential for understanding the complete landscape of expectations, they drop out of the picture when

one focuses on the specific counterfactual of what is the overall departure from full-information, rational

expectations.

We completed our contribution by an illustration of these points in the context of the New Keynesian

model, augmented with informational frictions and over-extrapolation. In our model, similarly to what

we found in the data, people are initially slow to catch on to macro changes but eager to ride onto the

narrative that these changes are permanent.

A similar co-existence of under-reaction and over-extrapolation is a “classic fact” for many asset prices

(De Bondt and Thaler, 1985; Cutler, Poterba, and Summers, 1991; Lakonishok, Shleifer, and Vishny, 1994).

Our findings thus represent a step toward unifying our understanding of imperfect expectations in both

macroeconomics and finance. This opens up significant possibilities for more sophisticated quantification

and interaction with other important macro mechanisms including financial frictions, investment, and

housing. In each of these contexts, expectations are paramount; and the possibility of “initial sluggishness

combined with eventual overshooting” in expectations could potentially shed new light on boom-and-

bust cycles.
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Appendices

A Extra Tables and Figures

Table A.1: Predicting Aggregate Forecast Errors (All Horizons)CG, SPF

Page 1

(1) (2) (3) (4) (5) (6)

Unemployment Inflation

horizon k 1 2 3 1 2 3

0.384 0.606 0.741 0.649 1.048 1.528

(0.128) (0.178) (0.232) (0.290) (0.337) (0.418)

0.111 0.143 0.111 0.122 0.200 0.278

Observations 196 196 191 195 195 190

Error
t,k

= K
CG

 · Revision
t,k 

+ α + u
t,k

Revision
t,k 

(K
CG

)

R2

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between 
Q4-1968 and Q4-2017. All regressions include a constant. Standard errors are HAC-robust, with a 
Bartlett (“hat”) kernel and lag length equal to 4 quarters. The data used for outcomes are first-
release (“vintage”).

Table A.2: Predicting Aggregate Forecast Errors (1984 to Present)CG, SPF, post 84

Page 1

(1) (2) (3) (4) (5) (6)

Unemployment Inflation

horizon k 1 2 3 1 2 3

0.385 0.657 0.809 -0.100 0.160 0.292

(0.203) (0.255) (0.305) (0.159) (0.174) (0.191)

0.116 0.195 0.159 0.002 0.005 0.016

Observations 136 136 136 135 135 135

Error
t,k

= K
CG

 · Revision
t,k 

+ α + u
t,k

Revision
t,k 

(K
CG

)

R2

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between 
Q1-1984 and Q4-2017. All regressions include a constant. Standard errors are HAC-robust, with a 
Bartlett (“hat”) kernel and lag length equal to 4 quarters. The data used for outcomes are first-
release (“vintage”).
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Table A.3: Predicting Aggregate Forecast Errors (Final Release Data)KCG-modern

Page 1

(1) (2) (3) (4) (5) (6)

Unemployment Inflation

horizon k 1 2 3 1 2 3

0.411 0.612 0.731 0.578 0.991 1.403

(0.127) (0.180) (0.233) (0.215) (0.261) (0.334)

0.135 0.147 0.108 0.104 0.200 0.249

Observations 199 198 192 199 198 192

Error
t,k

= K
CG

 · Revision
t,k 

+ α + u
t,k

Revision
t,k 

(K
CG

)

R2

Notes: The dataset is the Survey of Professional Forecasters and the observation is a quarter between 
Q4-1968 and Q4-2017. All regressions include a constant. Standard errors are HAC-robust, with a 
Bartlett (“hat”) kernel and lag length equal to 4 quarters. The data used for outcomes are modern 
(“final release”)

Table A.4: Predicting Aggregate Forecast Errors (Blue Chip Data)CG, BCEI

Page 1

(1) (2) (3) (4) (5) (6)

Unemployment Inflation

horizon k 1 2 3 1 2 3

0.310 0.544 0.804 0.024 0.378 0.618

(0.129) (0.213) (0.231) (0.204) (0.188) (0.205)

0.091 0.132 0.149 0.000 0.033 0.067

Observations 151 151 150 150 150 149

Error
t,k

= K
CG

 · Revision
t,k 

+ α + u
t,k

Revision
t,k 

(K
CG

)

R2

Notes: The observation is a quarter between Q1-1980 and Q4-2017. Blue Chip publications are matched to 
quarters by taking the last survey within the quarter (e.g., March for Q1). All regressions include a constant. 
Standard errors are HAC-robust, with a Bartlett (“hat”) kernel and lag length equal to 4 quarters. The data 
used for outcomes are first-release (“vintage”).
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Table A.5: Predicting Individual Forecast Errors (All Horizons)BGMS, everything

Page 1

(1) (2) (3) (4) (5) (6)
Unemployment

horizon k 1 2 3

Period 1968-2017 1984-2017 1968-2017 1984-2017 1968-2017 1984-2017

0.186 0.182 0.300 0.322 0.321 0.398

(0.077) (0.115) (0.094) (0.141) (0.107) (0.149)

0.029 0.030 0.042 0.052 0.028 0.052

Observations 5808 3986 5699 3918 5383 3769

(7) (8) (9) (10) (11) (12)
Inflation

horizon k 1 2 3

Period 1968-2017 1984-2017 1968-2017 1984-2017 1968-2017 1984-2017

-0.100 -0.439 0.024 -0.360 0.143 -0.263

(0.084) (0.045) (0.098) (0.044) (0.123) (0.054)

0.004 0.089 0.000 0.053 0.005 0.025

Observations 5496 3779 5458 3745 5147 3643

Error
i,t,k

= K
BGMS

 · Revision
i,t,k

 + α + u
i,t,k

Revision
i,t,k 

(K
BGMS

)

R2

Revision
i,t,k 

(K
BGMS

)

R2

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. Standard errors are clustered 
two-way by forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict to 4 
times the inter-quartile range away from the median. The data used for outcomes are first-release (“vintage”).
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Figure A.1: The Dynamic Response of Unemployment (above) and Inflation (below), All Shock Combinations
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Notes: The sample period is Q4 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett (“tent”) kernel and 4 lags. In the first row of each panel the outcome is ut and the forecast is Ēt−3[ut ]; in the second

row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].
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Figure A.2: Dynamic Responses in the Angeletos, Collard, and Dellas (2019) SVAR, All Responses

“Unemployment shock” “Inflation shock”
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Notes: The sample period is Q4 1968 to Q4 2017. The x-axis denotes quarters from the shock (starting at 0). The shaded areas

are 68% high-posterior-density regions and the point estimate is the posterior median. In the first row the outcome is ut and the

forecast is Ēt−3[ut ]; in the second row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4]; and in the last

row, the outcome is πt ,t−1, or one-quarter inflation, and the forecast is Ēt−3[πt ,t−1]. The first column shows the response to a

shock that maximizes the business-cycle variation in unemployment; the second for a shock that maximizes the business-cycle

variation in GDP deflator inflation.
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Figure A.3: The Dynamic Response of Unemployment (above) and Inflation (below), Vintage Data
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Notes: The sample period is Q4 1968 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett (“tent”) kernel and 4 lags. In the first row of each panel the outcome is ut and the forecast is Ēt−3[ut ]; in the second

row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].
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Figure A.4: The Dynamic Response of Unemployment (above) and Inflation (below), Post 1984
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Notes: The sample period is Q1 1984 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett (“tent”) kernel and 4 lags. In the first row of each panel the outcome is ut and the forecast is Ēt−3[ut ]; in the second

row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].
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Figure A.5: The Dynamic Response of Unemployment (above) and Inflation (below), Blue Chip Data
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Notes: The sample period is Q1 1980 to Q4 2017. The shaded areas are 68% confidence intervals based on HAC standard errors

with a Bartlett (“tent”) kernel and 4 lags. In the first row of each panel the outcome is ut and the forecast is Ēt−3[ut ]; in the second

row the outcome is πt ,t−4, or annual inflation, and the forecast is Ēt−3[πt ,t−4].
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B Conditional vs. Unconditional Dynamics

Coibion and Gorodnichenko (2012) test models of expectations inertia by estimating the dynamic re-

sponse of outcomes, forecasts, and forecast errors to shocks, just like this paper does in Section 4. But,

while this paper and Coibion and Gorodnichenko (2012) agree about the initial under-reaction of profes-

sional forecasters to economic shocks, only the present paper finds robust evidence of the “over-shooting”

that we characterize as Fact 3. What explains the differences in results, given that our analyses study similar

data over a similar time period?

In this section, we will show via a replication of an illustrative main result in Coibion and Gorod-

nichenko (2012), the response of inflation forecasts and forecast errors to an identified technology shock,

that a major difference is estimation methodology—simpler functional forms for the impulse response,

while they are parsimonious fits to the data, may not capture all the interesting dynamics (or, for that

matter, allow for a very good mapping to what a more structured theory like ours demands).

B.1 Measurement and Methods

We will focus on one main result from Coibion and Gorodnichenko (2012): that inflation expectations re-

spond sluggishly to an inflationary negative supply shock. In this Appendix, we will recreate this fact using

the data directly provided by Coibion and Gorodnichenko (2012) for the strongest comparability, although

these data are of course essentially identical to those used in our own main analysis.34 The sample period

runs from Q4 of 1974 to Q4 of 2007.

To identify a technology shock, the authors run a four-lag, three-variable VAR with labor productivity,

the change in labor hours, and the (one-quarter-ahead) GDP deflator inflation and apply the long-run

restrictions introduced by Galí (1999). The estimation period for this VAR covers Q2 1952 to Q3 2007.

Finally, to make the shock inflationary, we take the negative shock which corresponds to a technological

contraction.

Romer and Romer (2004) Impulse Response Estimation. To estimate impulse responses, Coibion and

Gorodnichenko (2012) apply the following method due to Romer and Romer (2004). For a given variable

xt (e.g., forecast errors), they estimate the empirical ARMA process via Ordinary Least Squares (OLS):

xt =α+
P∑

p=1
γp · xt−p +

K∑
k=0

βk ·εt−k +ut (25)

where the (εt−k )K
k=0 are the identified shocks. The authors use information criteria to pick an optimal lag

length combination (P,K ). In the empirical application, for estimating the response of inflation, forecasts,

and forecast errors to the technology shocks, they find that K = 1 and P = 1 uniformly fits the data the best

34There are two salient differences. The first is that Coibion and Gorodnichenko (2012) use forecast means rather than medians

as a measure of the aggregate. The second is that Coibion and Gorodnichenko (2012) measure expected annual inflation with the

forecast of the 4-quarter-ahead price level relative to the now-cast of the (unreleased) current-quarter price level; whereas our

main analysis uses three-quarters-ahead relative to the previous quarter.
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subject to their chosen penalty for extra parameters. Finally, given the empirical ARMA representation,

they can directly compute impulse response coefficients.

Our approach. This paper’s approach in Section 4 is similar but has two key differences. First, we fix

a larger value of K (in our preferred specification, K = 3), in anticipation of the fact that the model may

demand more complex dynamics than an AR(1). Second, we instrument for lagged values of xt using

past shocks. Intuitively, this is meant to isolate the possibility that dynamics may be “shock-specific” and

not informed entirely by the unconditional auto-covariance patterns in xt . More formally, this is to be

expected if the data-generating process does in fact involve multiple shocks and/or variables, so thinking

of the model as exactly a single-shock ARMA could be very inaccurate.

For comparability with (25), we will estimate the following system of equations with two-stage least

squares. The reduced-form equation is exactly (25) with K = 1 and P = 3 (to capture higher-order dynam-

ics):

xt =α+
3∑

p=1
γp xt−p +

1∑
k=0

βkεt−k +ut (26)

The “first-stage” relates the lags of xt with shocks before t −1. In vector form, if X t−1 := [xt−1, xt−2, xt−3]

and Et−2 = [εt−2− j ]J
`=0(with J = 8, like in the main text), has the following form:

X t−1 = η+E ′
t−2Θ+et (27)

Armed with these IV estimates of the γ and β coefficients, we can calculate an alternative impulse re-

sponse.

Local projections. Finally, we can also run the following local projection regression separately for each

horizon h:

xt+h =αh +βh,d ·εt +γ′Wt +ut+h (28)

For controls Wt we will use the four lags each of labor productivity, the change in labor hours, and inflation

that entered the original VAR. This is necessary, in the smaller sample, to make the estimated shock series

truly orthogonal to lagged macro conditions.

B.2 Results

Figure A.6 compares the results, extended out to 28 quarters. Plotted in the blue dotted line, with a shaded

68% confidence interval, is the projection estimate of impulse responses for outcomes (left), forecasts

(middle), and forecast errors. Plotted in green is the point estimate of the Coibion and Gorodnichenko

(2012) method, or the estimate that comes from (25). Plotted in orange are the estimates from the IV

method, or the combination of (26) and (27). And plotted in the orange dashed line is the difference

between the orange lines for outcomes and forecasts, which is a different estimator for the response of

forecast errors.
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Figure A.6: Comparison of IRF Methods for Response to Technology Shock
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The green lines in all cases are much more persistent than the projection responses. In the first and

third case, in particular, the green lines smoothly and slowly converge back to zero. The unrestricted pro-

jection estimator, however, suggests that the response of inflation eventually turns negative (slightly, but

not completely, offsetting the effects on the price level) and that the response of forecast errors also turns

negative.

The ARMA-IV estimator, compared to the Coibion and Gorodnichenko (2012) method, gives a very

similar response of forecast errors but a much less persistent response of the outcome. This estimation

of the outcome IRF more closely matches the projection estimates. As such the “difference” estimator, or

the dashed orange line in the third panel, shows evidence of over-extrapolation in the point estimate at

moderate (>10 quarter) horizons. The ARMA-IV estimator directly applied to forecast errors, on the other

hand, shows only modest evidence of over-shooting.

B.3 Suggestions for practice

The upshot of this might be summarized in the following points:

1. A method that imposes uniform dynamics as if the data-generating process involved only one shock,

like that introduced by Romer and Romer (2004) and adopted by Coibion and Gorodnichenko (2012),

may provide a particularly incomplete picture of dynamics of forecasts and forecast errors.

2. The possible solutions include the “shock-specific” IV approach introduced here, a flexible local-

projection, or a more structured multi-variate model. The trade-offs between these models involve

robustness and small-sample efficiency.

3. For the first and third methods discussed above, it is not unreasonable based on the theory to have

an informed prior to favor dynamics that are more complicated than an AR(1) or ARMA(1,K) to char-

61



Table A.6: Predicting Individual Forecast Errors with Aggregate Revisions (All Horizons)
BGMS-agg-everything

Page 1

(1) (2) (3) (4) (5) (6)
Unemployment

horizon k 1 2 3

Period 1968-2017 1984-2017 1968-2017 1984-2017 1968-2017 1984-2017

-0.183 -0.217 -0.189 -0.264 -0.166 -0.162

(0.035) (0.039) (0.043) (0.043) (0.043) (0.053)

0.441 0.462 0.642 0.722 0.745 0.841

(0.114) (0.159) (0.138) (0.183) (0.173) (0.210)

0.120 0.136 0.147 0.195 0.103 0.152

Observations 5808 3986 5699 3918 5383 3769

(7) (8) (9) (10) (11) (12)
Inflation

horizon k 1 2 3

Period 1968-2017 1984-2017 1968-2017 1984-2017 1968-2017 1984-2017

-0.422 -0.517 -0.427 -0.481 -0.346 -0.410

(0.047) (0.034) (0.036) (0.035) (0.042) (0.041)

0.675 -0.070 1.108 0.179 1.550 0.412

(0.209) (0.185) (0.245) (0.178) (0.278) (0.180)

0.168 0.106 0.194 0.085 0.211 0.072

Observations 5496 3779 5458 3745 5147 3643

Error
i,t,k

= -K
noise

 · (Revision
i,t,k

-Revision
t,k

)
 
+ K

agg
 · Revision

t,k
 + α + u

i,t,k

Revision
i,t,k

-Revision
t,k

 (-K
noise

)

Revision
t,k 

(K
agg

)

R2

Revision
i,t,k

-Revision
t,k

 (-K
noise

)

Revision
t,k 

(K
agg

)

R2

Notes: The observation is a forecaster by quarter between Q4-1968 and Q4-2017. Standard errors are clustered two-
way by forecaster ID and time period. Both errors and revisions are winsorized over the sample to restrict to 4 times the 
inter-quartile range away from the median. The data used for outcomes are first-release (“vintage”).

acterize forecasts and forecast errors. These more complicated dynamics open up the possibility for

“over-shooting” beyond a (usually small) period K .

C Noise and a Hybrid Regression

Corollary 2 underscored that, away from rational expectations, the CG regression coefficient is no more a

measure of the informational friction alone: it is “contaminated” by the departure from the rationality. But

the BGMS coefficient isolates the role of the latter. This suggests that the gap between the two coefficients

ought to say something about the actual level of noise. Condition (16) makes clear that this intuition is

correct up to a rescaling: the term κ1τ
−1

Vagg
, which isolates the effect of the actual noise, can be obtained by

subtracting Vind
Vagg

KBGMS from KCG.

We next show how one can arrive at essentially the same answer with a “hybrid” of the CG and BGMS

regressions:Define the new coefficient

Knoise ≡ κ1τ
−1

Vagg
= KCG − Vind

Vagg
KBGMS (29)
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In the theory, the following regression holds:

Errori ,t ,k = KCG ·Revisiont ,k −Knoise · Vagg

Vidio
· (Revisioni ,t ,k −Revisiont ,k

)+ui ,t ,k (30)

Furthermore, Knoise is non-negative and strictly increasing in the level of noise, or decreasing in τ, with

Knoise → 0 as τ→∞.

From the perspective of this regression, KCG measures the predictability in individual forecast errors

attributed to the common component of the lagged forecast revisions, and Knoise the one attributed to

the purely idiosyncratic components of the lagged forecast revisions. As already explained, the former

confounds the effects of misspecification and information. The latter, which is again the gap between KCG

and KBGMS appropriately rescaled, isolates the effect of the idiosyncratic noise.35

Table A.6 shows results from estimating the hybrid regression over the full and restricted samples for

all horizons of forecast. Across these margins, the estimated value of Knoise is positive (and statistically

different from zero). This is lines up with the following observation: if we go back to the results presented

in Section 3 and the Appendix regarding Facts 1 and 2, we can readily verify that KBGMS was consistently

lower that KCG, even in specifications where both were positive.36

Of course, as evident from Proposition C, the hybrid regression does not provide independent informa-

tion compared to Facts 1 and 2: the coefficients of the hybrid regression can be inferred from the original

CG and BGMS regressions, and vice versa.37 What this regression however accomplishes is to combine

Facts 1 and 2 in way that more clearly illustrates how the gap between KCG and KBGMS, or more precisely

the object Knoise described above, provides the needed “correction” of the original CG coefficient. With

rational expectations, Knoise coincides with KCG. Away from that benchmark, Knoise partials out from KCG

the component due to irrationality. In both cases, Knoise isolates the effect of idiosyncratic noise.38

Let us close this detour with the following remark. So far, we have have focused on how the three

frictions jointly shape KCG and KBGMS, or equivalently KCG and Knoise, and how one could get a measure of

the true level of noise. But as anticipated in the Introduction, the true level of noise is ultimately irrelevant

for the particular question of how all three frictions combined affect the aggregate dynamics. In the sequel,

we will therefore show how one can bypass the individual-level evidence, or Fact 2 and the coefficients

KBGMS and Knoise, and identify the overall effect on the aggregate dynamics solely from Facts 1 and 3, or

from KCG and the reversal of sign in the IRF of aggregate forecast errors.

35To the best of our knowledge, the particular regression we propose here and the offered structural interpretation are novel.

However, Fuhrer (2018) and Kohlhas and Broer (2019) contain a few empirical specifications that have a similar spirit, namely the

separately test the extent to which aggregate-level and ind individual-level variables help predict forecast errors.
36The same seems to be true for almost all the specifications considered in Bordalo et al. (2018), including those regarding a

variety of interest rates and spreads.
37To be precise, one also needs to compute Vidio and Vagg, the variances of, respectively, the individual and aggregate forecast

revisions. But these variances are already implicit in the calculation of KBGMS and KCG: they are the variances of the respective

regressors.
38The following caveat applies to the adopted interpretation of Knoise. In the model we work with in this paper, idiosyncratic

noise is the sole source of heterogeneity in beliefs: irrationality is a (possibly time-varying) fixed effect in the cross-section of the

population. Without this restriction, Knoise may confound the effects of “rational” noise (due to idiosyncratic information) and

“irrational” noise (due to idiosyncratic misspecification).
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D Proofs

Proof of Lemma 1

We normalize the scaling coefficient r = 1. The perceived signal process can be represented as

si ,t = M(L)

[
ηt

ui ,t

]
, with M(L) =

[
1

1−ρ̂L τ̂−
1
2

]
.

Let B(L) denote the fundamental representation of the perceived signal process,39 which is given by

B(L) = τ̂− 1
2

√
ρ̂

λ̂

1− λ̂L
1− ρ̂L , where λ̂= 1

2

(
ρ̂+ 1+ τ̂

ρ̂
+

√(
ρ̂+ 1+ τ̂

ρ̂

)2

−4

)
.

It is useful to note that λ̂< ρ̂. By the Wiener-Hopf prediction formula, the individual forecast about zt is

Ei ,t [zt ] =
[

1

1− ρ̂LM ′(L−1)B(L−1)−1
]
+

B(L)−1si ,t =
(

1− λ̂

ρ̂

)
1

1− λ̂L si ,t .

Alternatively, this forecast rule can be written as

Ei ,t [zt ] = (1− ĝ )ρ̂Ei ,t−1[zt−1]+ ĝ si ,t ,

which is a weighted average of the prior ρEi t−1[zt−1] and the new signal si ,t , where the weight on the signal

is the Kalman gain ĝ = 1− λ̂
ρ̂ . In the equations above, note that only perceived ρ̂ and τ̂matter for how agents

use their signals. The actual ρ and τ matter for how the signal si ,t evolves overtime.

Accordingly, the one-period ahead forecast is

Ei ,t [zt+1] = ρ̂Ei ,t [zt ] = (ρ̂− λ̂)
1

1− λ̂L si ,t = (ρ̂− λ̂)
1

1− λ̂L

(
1

1−ρLεt +τ−
1
2 ui ,t

)
.

The individual forecast error and revision are then straightforward to obtain:

Errori ,t = zt+1 −Ei ,t [zt+1] = 1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1 − ρ̂− λ̂

1− λ̂Lτ
− 1

2 ui ,t ,

Revisioni ,t = Ei ,t [zt+1]−Ei ,t−1[zt+1] = (ρ̂− λ̂)(1− ρ̂L)

(1−ρL)(1− λ̂L)
εt + (ρ̂− λ̂)(1− ρ̂L)

1− λ̂L τ−
1
2 ui ,t .

Proof of Proposition 1

First consider the calculation of KBGMS.

Cov(Errori ,t ,Revisioni ,t )

=Cov

(
1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1,

(ρ̂− λ̂)(1− ρ̂L)

(1−ρL)(1− λ̂L)
εt

)
+Cov

(
− ρ̂− λ̂

1− λ̂Lτ
− 1

2 ui ,t ,
(ρ̂− λ̂)(1− ρ̂L)

1− λ̂L τ−
1
2 ui ,t

)

=− (ρ̂− λ̂)
λ̂

(1− λ̂2)
τ̂
(
τ−1 − τ̂−1

)
+ (ρ− ρ̂)(ρ̂− λ̂)

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)

39B(L) satisfies the requirement B(L)B ′(L−1) = M(L)M ′(L−1) and B(L) is invertible.
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Denote κ1 and κ2 as

κ1 = (ρ̂− λ̂)
λ̂

(1− λ̂2)
τ̂, κ2 = (ρ̂− λ̂)

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)
.

It follows that

KBGMS = −κ1(τ−1 − τ̂−1)+κ2(ρ− ρ̂)

Vind

As 1 > ρ̂ > λ̂ > 0, κ1 > 0. To show that κ2 > 0, it is equivalent to show that (1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂) > 0. Given

that ρ̂ < 1, it follows that

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂) > (1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ−1) = (1−ρ)(1− λ̂+ λ̂2(1+ρ)) > 0.

Now turn to the calculation of KCG .

Cov(Errort ,Revisiont ) =Cov

(
1− ρ̂L

(1−ρL)(1− λ̂L)
εt+1,

(ρ̂− λ̂)(1− ρ̂L)

(1−ρL)(1− λ̂L)
εt

)

=(ρ̂− λ̂)

(
λ̂

1− λ̂2
+ (ρ− ρ̂)

(1+ λ̂2)(1−ρ2)+ (λ̂+ρ)(ρ− ρ̂)

(1− λ̂2)(1−ρ2)(1− λ̂ρ)

)
=Cov(Errori ,t ,Revisioni ,t )+κ1τ

−1,

which leads to

KCG = κ1τ
−1

Vagg
+ Vind

Vagg
KBGMS

Proof of Proposition C

We consider the case with k = 1. Note that average revision, Revisiont , and the idiosyncratic component of individual

revision, (Revisioni ,t −Revisiont ), are independent of each other. Therefore, the regression coefficient on the average

forecast revision remains to be KCG.

The covariance between individual forecast error and idiosyncratic revision component is

Cov(Errori ,t ,Revisioni ,t −Revisioni ,t ) = Cov

(
− ρ̂− λ̂

1− λ̂L
ui t ,

ρ̂− λ̂
1− λ̂L

(τ−
1
2 ui ,t − ρ̂τ−

1
2 ui ,t−1)

)

=−(ρ̂− λ̂)
τ̂

τ

λ̂

1− λ̂2

=−κ1τ
−1.

Denote the regression coefficient on (Revisioni ,t −Revisiont ) as β. It follows that

β= Cov(Errori ,t ,Revisioni ,t −Revisiont )

Vidio
= Cov(Errori ,t ,Revisioni ,t )−Cov(Errort ,Revisiont )

Vidio

= Vind

Vidio
KBGMS −

Vagg

Vidio
KCG,

and

Knoise ≡ κ1τ
−1

Vagg
=−βVidio

Vagg
= KCG − Vind

Vagg
KBGMS

Because κ1 and Vagg are independent of τ, Knoise is decreasing in τ, and vanishes when τ→∞.
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Proof of Proposition 2

The law of motion of the average forecast error is given by

Errort = 1− ρ̂L
(1−ρL)(1− λ̂L)

εt+1 =
(
ρ− ρ̂
ρ− λ̂

1

1−ρL
+ ρ̂− λ̂
ρ− λ̂

1

1− λ̂L

)
εt+1.

Suppose ρ > ρ̂, then ρ > λ̂. The coefficients of the two AR(1) terms are both positive, and the responses are therefore

all positive.

Suppose ρ < ρ̂. Consider the following continuous time version of the response

g (t ) = ρ− ρ̂
ρ− λ̂ρ

t + ρ̂− λ̂
ρ− λ̂ λ̂

t ,

and g (t ) = ζk when t = k ∈ {0,1, . . .}. Note that: (1) g (t ) is negative when t is large enough (no matter ρ > λ̂ or ρ < λ̂);

(2) when t = 0, g (0) = 1 > 0; (3) there is at most one root of g (t ). As a result, {ζk }∞k=1 eventually stay negative, but they

might be positive or negative for k small enough.

The root of g (t ) is

KIRF = log
(
ρ̂−ρ)− log

(
ρ̂− λ̂)

log λ̂− logρ
.

To have {ζk }∞k=1 switch signs, it is necessary that g (1) > 0 and ρ̂ > ρ, which correspond to

g (1) = ρ+ λ̂− ρ̂ > 0, and ρ̂ > ρ,

or

λ̂> ρ̂−ρ, and ρ̂ > ρ.

When ρ̂ > ρ but λ̂> ρ̂−ρ, the sequences {ζk }∞k=1 stay negative all the time.

Proof of Proposition 3

The aggregate consumption satisfy the fixed point restriction

ct =
∞∑

k=0
βkEt [ξt+k ]+ (1−β)

∞∑
k=0

βkEt [ct+k+1],

where we have used the market clearing condition yt = ct , and the assumption that agents observe yt but not extract

information from it. This aggregate outcome is the outcome of the following beauty-contest game

ci ,t = Ei ,t [ξt ]+βEi ,t [ci ,t+1]+ (1−β)Ei ,t [ct+1].

Denote the agent’s equilibrium policy function as

ci ,t = h(L)si ,t

for some lag polynomial h(L). The actual law of motion of aggregate outcome can then be expressed as follows

ct = h(L)ξt = h(L)

1−ρLεt .

However, the perceived law of motion by consumers is

ct = h(L)

1− ρ̂Lεt .
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Similar to the case where the outcome is given by the exogenous AR(1) process, the forecast about the fundamental

is

Ei ,t [ξt ] =
(

1− λ̂

ρ̂

)
1

1− λ̂L si ,t ≡G1(L)si ,t .

Consider the forecast of the future own and average actions. The perceived law of motion of ci ,t+1 and ct+1 are

ct+1 =
[

h(L)
L(1−ρ̂L) 0

][
εt

ui ,t

]
, ci ,t+1 − ct+1 =

[
0 τ̂−

1
2

h(L)
L

][
εt

ui ,t

]
,

and the forecasts are

Ei ,t [ct+1] =G2(L)si ,t , G2(L) ≡ λ̂

ρ̂
τ̂

(
h(L)

(1− λ̂L)(L− λ̂)
− h(λ̂)(1− ρ̂L)

(1− ρ̂λ̂)(L− λ̂)(1− λ̂L)

)
,

Ei ,t
[
ci ,t+1 − ct+1

]=G3(L)si ,t , G3(L) ≡ λ̂

ρ̂

(
h(L)(L− ρ̂)

L(L− λ̂)
− h(λ̂)(λ̂− ρ̂)

λ̂(L− λ̂)
− ρ̂

λ̂

h(0)

L

)
1− ρ̂L
1− λ̂L

Recall that fixed point problem that characterizes the equilibrium is

ci ,t = Ei ,t [ξt ]+βEi ,t [ci ,t+1]+ (1−β)Ei ,t [ct+1].

We can replace the left-hand side with h(L)si ,t . Using the results derived above, on the other hand, we can replace

the right-hand side with
[
G1(L)+G2(L)+βG3(L)

]
si ,t . It follows that in equilibrium

h(L) =G1(L)+G2(L)+βG3(L).

Equivalently, we need to find an analytic function h(z) that solves

h(z) = λ̂

ρ̂
τ̂

1

1− ρ̂λ̂
1

1− λ̂z
+ λ̂

ρ̂
τ̂

(
h(z)

(1− λ̂z)(z − λ̂)
− h(λ̂)(1− ρ̂z)

(1− ρ̂λ̂)(z − λ̂)(1− λ̂z)

)

+βλ̂
ρ̂

(
h(z)(z − ρ̂)

z(z − λ̂)
− h(λ̂)(λ̂− ρ̂)

λ̂(z − λ̂)
− ρ̂

λ̂

h(0)

z

)
1− ρ̂z

1− λ̂z
,

which can be transformed as

C̃ (z)h(z) = d(z;h(λ̂),h(0))

where

C̃ (z) ≡ z(1− λ̂z)(z − λ̂)− λ̂

ρ̂

{
β(z − ρ̂)(1− ρ̂z)+ τ̂z

}
d(z;h(λ̂),h(0)) ≡ λ̂

ρ̂
τ̂

1

1− ρ̂λ̂ z(z − λ̂)− 1

ρ̂

(
τ̂

λ̂

1− ρ̂λ̂ +β(λ̂− ρ̂)

)
z(1− ρ̂z)h(λ̂)−β(z − λ̂)(1− ρ̂z)h(0)

Note that C̃ (z) is a cubic equation and therefore contains with three roots. We will verify later that there are two

inside roots and one outside root. To make sure that h(z) is an analytic function, we choose h(0) and h(λ̂) so that the

two roots of d(z;h(λ̂),h(0)) are the same as the two inside roots of C̃ (z). This pins down the constants {h(0),h(λ̂)},

and therefore the policy function h(L) is

h(L) =
(
1− ϑ

ρ̂

)
1

1− ρ̂
1

1−ϑL ,

where ϑ−1 is the root of C̃ (z) outside the unit circle.
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Now we verify that C̃ (z) has two inside roots and one outside root. C̃ (z) can be rewritten as λ̂C (z) where

C (z) =−z3 +
(
ρ̂+ 1

ρ̂
+ 1

ρ̂
τ̂+β

)
z2 −

(
1+β

(
ρ̂+ 1

ρ̂

)
+ 1

ρ̂
τ̂

)
z +β,

=−z3 +
(
ρ̂+ 1

ρ̂
+ 1

ρ̂
τ̂+1−mpc

)
z2 −

(
1+ (1−mpc)

(
ρ̂+ 1

ρ̂

)
+ 1

ρ̂
τ̂

)
z +1−mpc.

With the assumption that 1 > mpc > 0, it is straightforward to verify that the following properties hold:

C (0) = 1−mpc > 0, C (λ̂) =−mpc
τ̂

ρ̂
< 0, C (1) = mpc

(
1

ρ̂
+ ρ̂−2

)
> 0.

Therefore, the three roots are all real, two of them are between 0 and 1, and the third one ϑ−1 is larger than 1.

To show that ϑ is less than ρ̂, it is sufficient to show that

C

(
1

ρ̂

)
= τ̂(1− ρ̂)

ρ̂3 > 0.

Since C (ϑ−1) = 0, it has to be that ϑ−1 is larger than ρ̂−1, or ϑ< ρ̂.

It also implies that C (z) is decreasing in z in the neighborhood of z =ϑ−1, a property that we use to characterize

comparative statics of ϑ. Taking derivative of C (z) with respect to mpc, and evaluating that derivative at z = ϑ−1, we

get
∂C (ϑ−1)

∂mpc
=−(ϑ−1 − ρ̂)(ϑ−1 − ρ̂−1) < 0

Combining this with the earlier observation that ∂C (ϑ−1)
∂z < 0, and using the Implicit Function Theorem, we infer that

ϑ is an increasing function of mpc.

When mpc=0, we have

ci ,t = Ei ,t [ξt ]+Ei ,t [ci ,t+1] =
∞∑

k=0
Ei ,t [ξt+k ] = 1

1−ρ Ei ,t [ξt ],

and

yt = ct = 1

1−ρ Et [ξt ] = 1

1−ρ

(
1− λ̂

ρ̂

)
1

1− λ̂L
1

1−ρLεt .

That is, ϑ= λ̂ in this case.

In Angeletos and Huo (2019), the equilibrium policy rule is derived under the assumption that ρ = ρ̂ and τ= τ̂.

In the derivation above, note that h(L) does not depend on ρ nor τ. The actual law of motion of yt = ct will depend

on ρ

yt = 1

1− ρ̂
(
1− ϑ

ρ̂

)
1

1−ϑL
1

1−ρLεt .

On the other hand, the frictionless case is given by

y∗
t = 1

1−ρ
1

1−ρLεt .

Combining these two leads to

yt =
(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1− ρ̂
)(

1

1−ϑL
)

y∗
t .

Turn to the forecast of the future outcome. By the Wiener-Hopf prediction formula, the individual forecast about

yt+1 is

Ei ,t [yt+1] =
[

1

1− ρ̂
(
1− ϑ

ρ̂

)
1

1−ϑL
1

1−ρLM ′(L−1)B(L−1)−1
]
+

B(L)−1si ,t ,

= 1

1− ρ̂
(
1− ϑ

ρ̂

)(
1− λ̂

ρ̂

)
1

1−ϑλ̂
ρ̂+ϑ− ρ̂ϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
si ,t ,
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and the average forecast is

Et [yt+1] =
(

1− λ̂

ρ̂

)
1

1−ϑλ̂
ρ̂+ϑ− ρ̂ϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)

(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1− ρ̂
)

y∗
t

Proof of Proposition 4

Denote κ≡
(
1− ϑ

ρ̂

)(
1+ ρ̂−ρ

1−ρ̂
)

1
1−ρ . If ct = κ 1

(1−ϑL)(1−ρL) is the outcome of the perfect information outcome, it has to be

that

ct =ξt +ω f E
∗
t [ct+1]+ωbct−1

= 1

1−ρL +ω f κ
ϑ+ρ−ϑρL

(1−ϑL)(1−ρL)
+ωbκ

L

(1−ϑL)(1−ρL)

where the right-hand side is simply the perfect information expectation of the behavioral equilibrium. This leads to

ω f =
ρ̂2 −ϑ

(ϑ+ρ)(ρ̂−ϑ)
,

ωb = ϑ(ρ(ρ̂−ϑ)+ϑρ̂(1− ρ̂))

(ϑ+ρ)(ρ̂−ϑ)
.

Proof of Proposition 6

With ρ = ρ̂, it follows that

ω f =
ρ2 −ϑ

(ϑ+ρ)(ρ−ϑ)
,

ωb = ϑρ2(1−ϑ)

(ϑ+ρ)(ρ−ϑ)
.

Note that

ω f <
ρ2 −ϑ2

(ϑ+ρ)(ρ−ϑ)
= 1

and ωb > 0 as ϑ< ρ < 1. For the comparative statics, we have

∂ω f

∂ϑ
= −(ρ2 +ϑ2)+2ρ2ϑ

(ρ2 −ϑ2)2 < −(ρ2 +ϑ)+2ρϑ

(ρ2 −ϑ2)2 = −(ρ−ϑ)2

(ρ2 −ϑ2)2 < 0

∂ωb

∂ϑ
= ρ2(ρ2 +ϑ2 −2ϑρ2)

(ρ2 −ϑ2)2 > ρ2(ρ2 +ϑ2 −2ϑρ)

(ρ2 −ϑ2)2 =
(

ρ

ρ+ϑ
)2

> 0

Since ϑ is increasing in mpc, ω f is decreasing in mpc and ωb is increasing in mpc.

Now consider the regression coefficient KCG and KBGMS. The individual forecast error and forecast revision are

given by

yt+1 −Ei ,t [yt+1] = 1

1−ρ
(
1− ϑ

ρ

)(
g ε1 (L)εt+1 + g u

1 (L)ui ,t
)

,

Ei ,t [yt+1]−Ei ,t−1[yt+1] = 1

1−ρ
(
1− ϑ

ρ

)(
g ε2 (L)εt + g u

2 (L)ui ,t
)

,
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where

g ε1 (L) = 1

(1−ϑL)(1−ρL)
−

(
1− λ̂

ρ

)
1

1−ϑλ̂
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)(1−ρL)
L,

g ε2 (L) =
(

1− λ̂

ρ

)
1

1−ϑλ̂

(
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)(1−ρL)
(1− (ϑ+ρ)L)+ ρϑ(1−ρϑλ̂L)

(1−ϑL)(1− λ̂L)(1−ρL)
L

)
,

g u
1 (L) =−

(
1− λ̂

ρ

)
1

1−ϑλ̂
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
τ−1,

g u
2 (L) =

(
1− λ̂

ρ

)
1

1−ϑλ̂

(
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
(1− (ϑ+ρ)L)+ ρϑ(1−ρϑλ̂L)

(1−ϑL)(1− λ̂L)
L

)
τ−1.

The covariance between individual forecast error and individual forecast revision is

Cov
(
Errori ,t , Revisioni ,t

)= (
1

1−ρ
(
1− ϑ

ρ

))2 (
Cov

(
g ε1 (L)εt+1, g ε2 (L)εt

) + Cov
(
g u

1 (L)ui ,t , g u
2 (L)ui ,t

))
,

and a long but straightforward calculation yields the following expression:

Cov(g u
1 (L)ui ,t , g u

2 (L)ui ,t ) =−τ−1

((
1− λ̂

ρ

)
1

1−ϑλ̂

)2
1− λ̂ρ

(1− λ̂ϑ)(1− λ̂2)
∆,

where

∆≡ (
ϑ3λ̂

(
1− λ̂2)−3ϑλ̂

(
1−ϑλ̂)+ (

1−ϑ2))ρ2 − (
ϑ3 (

1− λ̂2)+ϑ(
3ϑλ̂−2

))
ρ+ϑ2.

We will verify that ∆> 0 at the end of this proof.

If τ= τ̂, then agents are rational and KBGMS = 0, that is, Cov
(
Errori ,t , Revisioni ,t

)= 0. It follows that

Cov(Errort , Revisiont ) =
(

1

1−ρ
(
1− ϑ

ρ

))2

Cov
(
g ε1 (L)εt+1, g ε2 (L)εt

)
=−

(
1

1−ρ
(
1− ϑ

ρ

))2

Cov
(
g u

1 (L)ui ,t , g u
2 (L)ui ,t

)> 0,

which implies that KCG > 0. If we fix the perceived τ̂ and vary the actual τ, it will not affect the average forecast error

and forecast revision. Therefore, KCG > 0 even with τ 6= τ̂.

However, when we fix the perceived τ̂ and vary the actual τ, this will change Cov(g u
1 (L)ui ,t , g u

2 (L)ui ,t ). To sign

KBGMS away from the τ = τ̂ benchmark, it is sufficient to check whether Cov(g u
1 (L)ui ,t , g u

2 (L)ui ,t ) is increasing or

decreasing in τ. It follows that Cov(g u
1 (L)ui ,t , g u

2 (L)ui ,t ) is strictly increasing in τ and, therefore, KBGMS switches sign

from negative to positive as τ crosses τ̂ from below. That is,

sign(KBGMS ) = sign(τ− τ̂) .

The argument is completed by the lemma below, which helps verify that ∆> 0 by mapping ρ to x, ϑ to y , and λ

to z.

Lemma. When x, y, z ∈ (0,1), the following inequality holds

(
y3z

(
1− z2)−3y z

(
1− y z

)+ (
1− y2))x2 − (

y3 (
1− z2)+ y

(
3y z −2

))
x + y2 > 0

Proof. Recast the left hand side of the above inequality as a quadratic in x:

C (x) ≡ (
y3z

(
1− z2)−3y z

(
1− y z

)+ (
1− y2))x2 − (

y3 (
1− z2)+ y

(
3y z −2

))
x + y2.
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This has two real roots, x = x1 and x = x2, given by

x1 =− y

1− y z
and x2 =− y

y2z2 −2y z − y2 +1
.

Clearly, given the assumption that y, z ∈ (0,1) , x1 is negative and C (0) = y2 > 0. If x2 is negative, then C (x) is positive

when x ∈ (0,1). If x2 is positive, to guarantee that C (x) is positive when x ∈ (0,1), we need to show that x2 > 1, which

is equivalent to show that

y2z2 −2y z + (
y − y2 +1

)> 0

Define the following quadratic equation in z:

D(z) = y2z2 −2y z + (
y − y2 +1

)
.

Its discriminant is −4y3
(
1− y

)
, which is negative given that y ∈ (0,1). Therefore, D(z) is always positive, which in

turn verifies x2 > 1.

Lastly, the IRF of the average forecast error is

yt+1 −Et [yt+1] = 1

1−ρ
(
1− ϑ

ρ

)
1

1−ϑL
ξt+1 − 1

1−ρ
(
1− ϑ

ρ

)(
1− λ̂

ρ

)
1

1−ϑλ̂
ρ+ϑ−ρϑ(L+ λ̂)

(1−ϑL)(1− λ̂L)
ξt

= 1

1−ρ
(
1− ϑ

ρ

)
1

1−ϑL

(
εt+1 +

(
ρ−

(
1− λ̂

ρ

)
1

1−ϑλ̂
ρ+ϑ−ρϑ(L+ λ̂)

1− λ̂L

)
ξt

)

= 1

1−ρ
(
1− ϑ

ρ

)(
λ̂ϑ(1−ρϑ)

ρ(ϑ−ρ)(1− λ̂ϑ)

1

1−ϑL
+ λ̂+ϑ(ρ− λ̂)

ρ(ϑ−ρ)(1− λ̂ϑ)

1

1− λ̂L

)
εt+1

Since λ̂< ρ, the IRF of forecast error is always positive.

Proof of Proposition 7

If τ̂= τ=∞, then λ̂=ϑ= 0. As a result, ω f = ρ̂
ρ , and ωb = 0. In this case, all agents receive the same signal, and there

is no distinction between Ei ,t [·] and Et [·]. It follows that KCG = KBGMS.

To derive the KBGMS, note that

zt+1 −Ei ,t [zt+1] = εt+1 + (ρ− ρ̂)zt

Ei ,t [zt+1]−Ei ,t−1[zt+1] = ρ̂(zt − ρ̂zt−1)

It follows that

KBGMS = ρ̂(1−ρρ̂)(ρ− ρ̂)

ρ̂2 + ρ̂4 −2ρρ̂3

Clearly, the sign of KBGMS is the same as the sign of ρ− ρ̂.

The law of motion of the forecast error is

zt+1 −Ei ,t [zt+1] = 1− ρ̂L
1−ρLεt+1.

The responses {ζk }∞k=1 are given by

ζk = ρk−1(ρ− ρ̂),

which are either all positive or all negative.
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Proof of Proposition 8

We first consider the case with “higher-order doubts”. The recursive formulation of individual consumer i ’s con-

sumption choice is

ci ,t = Et [ξt ]+βEt [ci ,t+1]+ (1−β)Et [ct+1]

As ξt is perfectly observed by consumer i , we guess the policy function is

ci ,t = aξt ,

for some constant a.

Under the assumption that agent i believes that other agents observe the fundamental shock with probability q ,

it follows that

Ei ,t [ci ,t+1] = Ei ,t [aξt+1] = aρξt

Ei ,t [Et [ξt ]] = qξt

Ei ,t [ct+1] = Ei ,t [Et [aξt+1]] = aqρξt .

Substituting these expectations into consumers’ optimal response leads to

aξt = ξt +βaρξt + (1−β)aqρξt ,

which further verifies our guess by setting the constant a as

a = 1

1− (βρ+ (1−β)qρ)
< 1

1−ρ .

In the economy without higher-order doubts but with mis-perceived ρ̂, the aggregate outcome is

ct = 1

1− ρ̂ ξt .

The outcomes in the two economies are observationally equivalent iff

1

1− ρ̂ = 1

1− (βρ+ (1−β)qρ)
→ ρ̂ = ρ− (1−β)ρ(1−q) < ρ

In terms of forecasts, in the economy with higher-order doubts,

Ei ,t [ct+1] = Et [ct+1] = qE∗t [ct+1].

where E∗t [·] is the perfect-information rational expectation operator.

Next, we consider the level-k thinking. The agents are assumed to observe the fundamental and to have the

correct prior about its process but a mis-specified prior about the behavior of others: they are “level-k thinkers” for

some finite integer k ≥ 0. Level 0 agents are assumed to play ct = c0
t ≡ 0, for all t and for all ξt . Level 1 agents believe

that other agents are level 0. They therefore play ct = c1
t , where c1

t is given by the solution to

c1
t = ξt +βEt [c1

t+1]

Level 2 agents believe that other agents are level 1. They therefore choose ct = c2
t , where c2

t is given by the solution to

c2
t = ξt +βEt [c2

t+1]+ (1−β)Et [c1
t+1].
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Similarly, the aggregate outcome for level-k agent when k > 0 satisfies

ck
t = ξt +βEt [ck

t+1]+ (1−β)Et [ck−1
t+1 ].

We proceed by a guess-and-verify approach. Suppose that ck
t = akξt . Then for k > 0, ak has the following recursive

structure

ak = 1+βρak + (1−β)ρak−1.

Using the fact g0 = 0, we have for k > 0,

ak = 1

1−ρ

(
1−

(
(1−β)ρ

1−βρ
)k

)
,

which has proved the conjecture.

Compared with the economy with mis-perceived ρ̂, the aggregate outcomes are equivalent iff

1

1− ρ̂ = 1

1−ρ

(
1−

(
(1−β)ρ

1−βρ
)k

)
.

Since

(
1−

(
(1−β)ρ
1−βρ

)k
)
< 1, we have ρ̂ < ρ.

In terms of the forecast, in the level-k economy,

Ei ,t [ct+1] = Et [ct+1] = ak−1ρξt = ak−1

ak
E∗t [ct+1],

where ak−1
ak

< 1.

Lastly, consider the cognitive discounting economy. We still proceed by a guess-and-verify approach. Suppose

that the actual law of motion of ct is

ct = Rct−1 +Dεt ,

and the perceived law of motion is

ct = mRct−1 +Dεt .

Meanwhile, the perceived law of motion of ξt is

ξt = mρξt−+εt .

Recall that the aggregate outcome is given by

ct =
∞∑

k=0
βkEt [ξt+k ]+ (1−β)

∞∑
k=0

βkEt [ct+k+1].

Using the mis-specified priors, we have

ct = 1

1−βmρ
ξt + (1−β)

mR

1−βmR
ct ,

which leads to the actual law of motion of ct as

ct = ρct−1 + 1−βmR

1−mR

1

1−βmρ
εt .

To be consistent with our guess, we have

R = ρ, D = 1

1−mρ
.
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Compared with the economy with mis-perceived ρ̂, the aggregate outcomes are equivalent iff

1

1− ρ̂ = 1

1−mρ
, → ρ̂ = mρ < ρ.

In terms of the forecast, in the cognitive-discounting economy,

Ei ,t [ct+1] = Et [ct+1] = mE∗t [ct+1].

In all the three economies (higher-order doubts, level-k, cognitive discounting), the individual forecast is the

same as the average forecast about the aggregate outcome , and it follows that KCG = KBGMS. In addition, in all the

three economies,

ct =ϕξt , and Et [ct+1] = ζE∗t [ct+1] = ζρϕξt ,

for some constant ϕ and ζ ∈ (0,1). Therefore, we have

Cov(Errort ,Revisiont ) = Cov(ϕξt+1 −ζρϕξt ,ζρϕξt −ζ2ρ2ϕξt−1) =ϕ2ρ2ζ(1−ζ)
1−ζρ2

1−ρ2 ,

which implies KCG = KBGMS > 0.

In addition, the law of motion of the forecast error is

Errort =ϕ1−ζρL
1−ρL εt+1 =ϕ

(
(1−ζ)

1

1−ρL
+ζ

)
εt+1,

and the corresponding IRF is always positive given ζ ∈ (0,1).
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