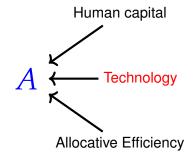
Innovative Growth Accounting


Peter J. Klenow Huiyu Li (Stanford) (Fed SF)

NBER Macroeconomics Annual April 2020

Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau or the Federal Reserve System. All results have been reviewed to ensure that no confidential information is disclosed.

Macro growth accounting

$$\frac{\Upsilon}{L} = A^{\frac{1}{1-\alpha}} \times \left(\frac{K}{\Upsilon}\right)^{\frac{\alpha}{1-\alpha}}$$

- A accounts for almost all of growth of Y/L
- Technology accounts for bulk of growth in A

Innovative growth accounting

We decompose the technology term into contribution from

- innovation types:
 - creative destruction (CD)
 - new varieties (NV)
 - own-innovation (OI)
- · firm types:
 - young vs old
 - small vs large

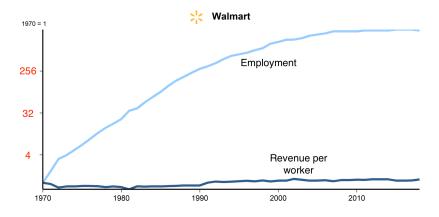
Motivation

The U.S. economy over the past 30 years:

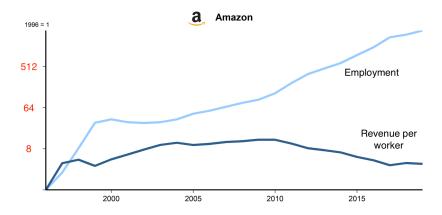
- Falling growth (interrupted by a 10-year burst of growth)
- 2 Falling rates of firm entry, exit and job reallocation
- 3 Rising firm concentration within industries

Intuition for our method

Model based accounting: silent on determinants of innovation


Feenstra (1994):

changes in market share reflect changes in relative productivity


Garcia, Hsieh and Klenow (2020):

CD generates more job reallocation than innovation

Why not revenue productivity?

Why not revenue productivity?

Method: Environment

Aggregate output:

$$Y = \left[\int_0^N \left[q(j) y(j) \right]^{1 - 1/\sigma} dj \right]^{\frac{\sigma}{\sigma - 1}}$$

Product-level output:

$$y(j) = l(j)$$

Aggregate productivity:

$$Q \equiv \frac{Y}{L} = \left[\int_0^N q(j)^{\sigma - 1} dj \right]^{\frac{1}{\sigma - 1}}$$

Arrival rates and step sizes of innovation

	Creative destruction	New varieties	Incumbents on own products
Arrival rate	δ	ν	0
Step size $\frac{q_{t+1}(j)}{q_t(j)}$	Δ	V	0

Timing: obsolescence \rightarrow CD and NV \rightarrow OI

A firm's contribution to growth

$$\begin{split} g_f &:= \nu_f V_f^{\sigma-1} + \delta_f(\Delta_f^{\sigma-1} - 1) & \text{NV, CD} \\ &+ o_f(O_f^{\sigma-1} - 1) \frac{\mathbb{E}_{G_{f,t-1}}(q^{\sigma-1})}{\mathbb{E}_{G_{t-1}}(q^{\sigma-1})} & \text{OI} \\ &+ \left(\int_j \nu_j V_j^{\sigma-1} + \delta_j(\Delta_j^{\sigma-1} - 1) \; dj \right) \left(\left(\frac{\widehat{Q}}{Q} \right)^{\sigma-1} - 1 \right) \frac{G_{f,t-1}(\kappa_t) N_{f,t-1}}{G_{t-1}(\kappa_t) N_{t-1}} \\ &+ o_f(O_f^{\sigma-1} - 1) \left(\frac{\mathbb{E}_{G_{f,t-1}}(q^{\sigma-1}|q \geq \kappa_t)}{\mathbb{E}_{G_{t-1}}(q^{\sigma-1})} - 1 \right) & \text{Selection} \\ &- \mathbb{E}_{G_{f,t-1}}[s_{t-1}|q < \kappa_t] G_{f,t-1}(\kappa_t) N_{f,t-1}, & \text{Variety loss} \end{split}$$

Growth from each type of firm

Aggregate growth

$$g = \frac{1}{\sigma - 1} \ln \left[1 + \int_f g_f \, df \right] \approx \frac{1}{\sigma - 1} \int_f g_f \, df$$

Contribution of a firm group

$$\frac{\int_{f \in \mathcal{F}} g_f df}{\int_{f'} g_{f'} df'}$$

Growth from each type of innovation

Creative destruction:

$$\frac{\int_f \delta_f (\Delta_f^{\sigma-1} - 1) \ df}{\int_f \ g_f \ df}$$

New variety:

$$\frac{\int_f \nu_f V_f^{\sigma-1} \ df}{\int_f \ g_f \ df}$$

Own innovation:

$$\frac{\int_{f} o_{f}(O_{f}^{\sigma-1}-1) \frac{\mathbb{E}_{G_{f,t-1}}(q^{\sigma-1})}{\mathbb{E}_{G_{t-1}}(q^{\sigma-1})} \ df}{\int_{f} \ g_{f} \ df}$$

U.S. Census Data

Longitudinal Business Database (LBD)

all nonfarm private sector plants

employment, wage bill, firm, industry

- results for 1982–2013
 - subperiods 1982–1995, 1996–2005, 2006–2013

Mapping to Moments

Assume existing plants carry out OI but not CD or NV \Rightarrow plant entry and exit reflects arrival of NV, CD, and obsolescence

CES implies a plant's market share is isoelastic wrt to its quality ⇒ change in market share reflects relative quality growth

Data Target Moments

For	each	firm	group	F
	ouon		group	9

$\mathcal{E}_{\mathcal{F}t}/N_{t-1}$	# of new plants
$\mathcal{X}_{\mathcal{F},t-1}/N_{t-1}$	# of exiting plants
${S}_{\mathcal{E}_{\mathcal{F}t}}$	employment share of new plants
${\mathcal S}_{{\mathcal X}_{{\mathcal F},t-1}}$	employment share of exiting plants
$S_{C_{\mathcal{F}t}}/S_{C_{\mathcal{F}t-1}}$	growth in employment share of continuing plants
$S^{\{2\}}_{\mathcal{E}_{\mathcal{F}^t}}$	2nd moment of employment share of new plants
$S_{\mathcal{E}_{\mathcal{F}t}}^{\{3\}}$	3rd moment of employment share of new plants

Aggregate moments

	88 8						
$S_{\mathcal{N}_{t-1}}^{\{k\}}$	$\it k$ th moment of employment share of all plants, $\it k=1,2,3$						
8	TFP growth rate						

Notes: $S_{\mathcal{P}t}^{\{k\}} := \int_{\mathcal{P}} s_t^k(i) di$, where s denotes employment share.

Growth by innovation type, 1982-2013

g	CD	NV	OI
1.64	0.21	0.38	1.06
Baseline	13.0%	27.2%	59.8%
(Entrants age 0)			
Alternative (Entrants age 0-5)	17.1%	40.2%	42.7%

Growth speedup and slowdown by innovation type

Own innovation drove the speedup and slowdown

Period	Δg	CD	NV	OI
1982–1995 vs 1996–2005	1.67	9.8%	-0.5%	90.8%
1996–2005	-1.79	11.0%	7.1%	81.9%
vs 2006–2013				

Growth by age group, 1982-2013

New firms' contribution to growth exceeded their employment share

	Age 0	Age 1–5	Age 6–10	Age 11+
% of growth	30.3%	18.9%	9.7%	41.1%
% of employment	3.3%	13.4%	11.2%	72.1%
% of firms	10.7%	31.1%	18.5%	39.6%

Growth speedup and slowdown by age group

Older firms were most important for the speedup and slowdown

Period	Δg	Age 0	Age 1–5	Age 6–10	Age 11+
1982–1995 vs 1996–2005	1.67	4.4%	13.4%	12.6%	69.6%
1996–2005 vs 2006–2013	-1.79	11.8%	17.0%	12.3%	58.9%

Growth by size group, 1982-2013

Small firms' contribution to growth exceeded their employment share

	Small (0-19)	Medium (20–249)	Large (250–4999)	Mega (5000+)
% of growth	62.2%	15.0%	12.2%	10.7%
% of employment	21.4%	26.3%	26.9%	25.4%
% of firms	88.0%	11.2%	0.8%	0.03%

Growth speedup and slowdown by size group

All size groups were important for the speedup and slowdown

Period	Δg	Small (0–19)	Medium (20– 249)	Large (250– 4999)	Mega (5000+)
1982–1995	1.67	27.0%	24.7%	25.5%	22.7%
vs 1996–2005					
1996–2005	-1.79	37.5%	22.2%	20.2%	20.1%
vs 2006–2013					

Contribution of superstar firms not so super?

- U.S. Census Bureau forbids us from disclosing identity of firms
- Apply our method to NETS data to estimate the contribution of Walmart and Amazon to fast growth from 1996–2005

	Walmart	Amazon
% of growth	0.80%	0.0041%
% of employment	0.41%	0.0013%

Growth by age-size group, 1982-2013

New firms are particularly important

	New	Young	All
	small	small	small
% of growth	29.9	14.1	62.2
% of employment	3.3	6.1	21.4
% of firms	10.7	28.8	88.0

Conclusion and future research

We provide a method to decompose aggregate productivity growth into contributions from firms and innovation types.

Many caveats that we hope future studies can address:

- CD and NV through new plants
- Plant employment shares instead of sales shares
- Stable CES demand
- Untargeted creative destruction
- No misallocation