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Abstract

We structurally estimate a workhorse open economy model with an occa-
sionally binding borrowing constraint. First, we propose a new specification
of the occasionally binding constraint, where the transition between uncon-
strained and constrained states is a stochastic function of the leverage level
and the constraint multiplier, that maps into an endogenous regime-switching
model. Second, we develop a general perturbation method for the solution of
such a model, showing the importance of approximating at least to second-
order. Third, we estimate the model with Bayesian methods to fit Mexico’s
business cycle and financial crisis history since 1981. The estimated model fits
the data well, identifying three sudden stop episodes of varying duration and
intensity: the Debt, Tequila, and Global Financial Crises. We find that the
crisis episodes generated by our stochastic specification of the borrowing con-
straint, in addition to the economic dislocations associated with the crisis peak,
can display dynamics consistent with the sluggish build-up and recovery phases
that are typically seen in the data. In the model, financial crisis events occur
when certain cocktails of shocks hit an already prone economy. Different sets
of shocks explain Mexico’s business cycle and the three historical episodes of
sudden stops that we identify in the data.

Keywords: Financial Crises, Business Cycles, Endogenous Regime-Switching,
Bayesian Estimation, Occasionally Binding Constraints, Mexico.
JEL Codes: G01, E3, F41, C11.
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1 Introduction

The Global Financial Crisis generated a renewed interest in understanding the causes

and the dynamics associated with financial crises. In this context, dynamic stochastic

general equilibrium (DSGE) models with occasionally binding frictions have proven

successful as laboratories to study the anatomy of both business cycles and crises and

to explore optimal policy responses to these dynamics. This success is because occa-

sionally binding financial frictions are amplification mechanisms of regular business

cycle dynamics. Structural estimation of these models is challenging, yet important

as inference on key parameters governing financial frictions, counterfactual policy

analysis and structural real-time forecasts all rely on estimation of such models.

In this paper, we structurally estimate a model with an occasionally binding bor-

rowing constraint. We make three main contributions. First, we propose a new

specification of the occasionally binding collateral constraint. Second, we device a

perturbation solution approach suitable for solving models like ours in a way that

permits likelihood-based estimation. Third, we focus on one particular type of cri-

sis, the so-called sudden stop in international capital flows, and apply the proposed

approach to the estimation of a medium-scale workhorse DSGE model, investigating

sources and frictions of business cycles and sudden stop crises in Mexico since 1981.

As a first step, we propose a new formulation of occasionally binding constraint

models. As in models with constraints written as inequalities, our set up has two

states or regimes: one in which a given leverage ratio limits borrowing and amplifies

regular shocks to explain financial crises as the economy cannot smooth consump-

tion and expand production, and one in which access to financing is plentiful and

the economy displays regular business cycles. In our specification, however, transi-

tions between the two regimes occur in a stochastic rather than deterministic manner.

Probabilities that depend on the borrowing capacity of the economy and the multiplier

associated with a binding collateral constraint govern the transition between these

regimes. This formulation maps the modeling of an occasionally binding constraint

into an endogenous regime-switching model. The paper focuses on a particular finan-

cial friction, but the proposed specification has broader applicability to other types

of occasionally binding constraints.
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Next, we develop a perturbation-based solution method for solving our model.

The perturbation method is fast enough to permit likelihood-based estimation, is

readily scalable to models larger than the one we estimate in this paper, and displays

typical levels of accuracy. We show that our perturbation approach employing a

second-order approximation to the policy functions characterizing optimal behavior

captures the effects of endogenous transition probabilities on precautionary behavior,

and that these effects would be missed by linear approximations. As in our first

contribution, the method applies beyond the scope of the paper, as it can be used

with a wide range of models that can be cast as endogenous regime-switching models.

Finally, we apply our borrowing constraint specification and solution method to

the Bayesian estimation of a model that characterizes both financial crises and busi-

ness cycles in emerging market economies. Because our application focuses on emerg-

ing markets, we estimate a medium-scale, workhorse model of sudden stops. With

the exception of the borrowing constraint specification, the model structure is the

same as in Mendoza (2010), but we consider a larger set of exogenous shocks as in

Garcia-Cicco et al. (2010). The critical model difference relative to Mendoza (2010)

is the specification of the collateral constraint, which as we said earlier can be easily

adapted to other model settings. For example, the approach that we propose would

be applicable to the formulation and estimation of models with inequality constraints

as in Kiyotaki and Moore (1997), Iacoviello (2005), and Liu et al. (2013), Gertler and

Karadi (2011), and Gertler and Kiyotaki (2015), Jermann and Quadrini (2012), and

Schmitt-Grohe and Uribe (2018), among others.

Figure 1 plots two critical variables in our application to Mexico: the current

account balance as a share of GDP and the quarterly real GDP growth in deviation

from sample mean. The figure illustrates the regular fluctuations in the data as

well as multiple episodes of large current account reversals and persistent output

growth declines. Large current account reversals and output drops of varying size

and persistence are the two main empirical features commonly associated with sudden

stops in capital flows. In this paper, we focus on the challenge of fitting a structural

model to Mexico’s business cycle and sudden stop history; a history that is a shared

experience with many other emerging markets exposed to volatile capital flows.
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Figure 1: Current Account and Output in Mexico, 1981-2016

(a) Current Account to Output Ratio

(b) Quarterly Output Growth Rate

Note: Panel (a) plots Mexico’s current account balance as a share of GDP. Panel (b) shows

Mexico’s quarterly log-change of real GDP. See the Appendix for data sources. Sample

period 1981:Q1-2016:Q4.

Despite the econometric challenges in characterizing data like those displayed in

Figure 1, our estimated model fits Mexico’s business cycles and sudden stop episodes

well, without relying on large shocks to explain crisis periods, but instead letting the

structure of the model explain the events. It produces business cycle statistics that

match the second moments of the data and evidence on the relative importance of dif-

ferent shocks consistent with the extant literature. Most importantly, it can identify

not only acute but short-lived sudden stops periods (which we call peak sudden stop

crisis, or peak crisis for brevity), as previously done in the literature with similar mod-

els, but also longer-lasting spells of time in which the economy is in the constrained

regime (which we call near sudden stop crisis periods, or near crises). Thus, our

stochastic specification of the collateral constraint permits identifying sudden stops

episodes and estimating crisis dynamics of different duration and intensity, consistent

with evidence not only of large economic dislocation during financial crises, but also

sluggish build-up and recovery phases surrounding them, as typically associated with

these events (Reinhart and Rogoff, 2009; Cerra and Saxena, 2008).
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In particular, the estimated model identifies three near sudden stops: the Debt

Crisis from 1981:Q3 to 1983:Q2, the Tequila crisis from 1994:Q1 to 1996:Q1, and the

spillover effect from the GFC from 2008:Q4 to 2009:Q3, with peak crisis events nested

inside them. The identified near sudden stops align well with a purely empirical notion

of financial crisis in Mexico (Reinhart and Rogoff, 2009). The peak crisis events nested

inside the near crises display dynamics of amplitude comparable to what previously

matched in models with occasionally binding constraints, but with more realistic

persistence. Moreover, near crisis episodes are preceded by slowly unfolding booms

and followed by anemic recoveries in line with empirical evidence of slow risk build-

up phases and persistent output losses from sudden stops (Cerra and Saxena, 2008).

Finally, we show that while different shocks explain different variables over business

cycles, specific shocks matter for historical crisis dynamics.

Related Literature A few papers have already attempted estimation of models with

occasionally binding constraints. Bocola (2016), in particular, builds and estimates

a model of occasionally occurring debt and banking crises. Notably, estimation is

accomplished while solving the model with global methods. This, however, is ac-

complished at the cost of simplifying the estimation procedure. In particular, the

estimation procedure used involves first estimating the model outside the crisis pe-

riod and then appending the crisis estimates in a second step. While this does not

matter for the specific application in Bocola (2016), it would be relevant for countries

experiencing serial default or repeated banking crises. Our approach would permit

joint estimation of the model inside and outside the crisis state and is potentially

scalable to larger and more complex models, while maintaining a satisfactory level

of accuracy relative to global solution methods. Our paper relates also to Guerrieri

and Iacoviello (2015), who develop a set of procedures for the solution of models with

occasionally binding constraints, called OccBin. OccBin is a certainty equivalent so-

lution method that captures non-linearities but not precautionary effects, which are

the critical manifestation of the linkages between states of the world in models with

occasionally binding collateral constraints. A key feature of our approach is to pre-

serve precautionary saving effects, as agents in the model adjust their behavior due

to the presence of the constraint, even when the constraint does not bind and vice

versa.

6



The stochastic specification of the constraint that we propose and the accom-

panying perturbation solution method could be applied to models with occasionally

binding zero-lower bound on interest rates such as for instance Adam and Billi (2006),

Adam and Billi (2007), Aruoba et al. (2018), and Atkinson et al. (2018). Existing

methods for the estimation of such models may limit scalability due computational

costs (Gust et al., 2017). Moreover, the occasionally binding ZLB limit is not com-

parable to the kind of constraints with endogenous collateral value that we estimate

in this paper and is used in the normative literature on macroprudential policies (Be-

nigno et al., 2013, 2016). Indeed, as it is well understood in the literature, endogenous

collateral valuation features different amplification mechanisms and entails additional

computational complexities (Bianchi and Mendoza, 2018).

In the literature on Markov-switching DSGE models, our paper expands upon the

method developed by Foerster et al. (2016), who developed perturbation methods

for the solution of exogenous regime-switching models. The perturbation approach

that we propose allows for second- and higher-order approximations that go beyond

the linearized models studied by Davig and Leeper (2007) and Farmer et al. (2011).

In fact, we show that at least a second-order approximation is necessary in order to

capture the effects of the endogenous switching.

The paper is also related to the literature that focuses on solving endogenous

regime-switching models. Davig and Leeper (2008), Davig et al. (2010), and Alpanda

and Ueberfeldt (2016) all consider endogenous regime-switching, but employ com-

putationally costly global solution methods that hinder likelihood-based estimation.

Lind (2014) develops a regime-switching perturbation approach for approximating

non-linear models, but it requires repeatedly refining the points of approximation

and hence it is not suitable for estimation purposes. Maih (2015) and Barthlemy and

Marx (2017) also develop perturbation methods for endogenous switching models,

but employ a technique that approximates around regime-dependent steady states.

In contrast, our generalization of the Foerster et al. (2016) perturbation approach

uses a single point of approximation that is well suited for solving models in which

the regime-dependency of the steady state is not crucial because of the relatively slow

moving nature of state variables such as capital and debt, and the limited frequency

and duration of financial crisis episodes.

We also contribute to the literature on likelihood-based estimation of Markov-

switching DSGE models initiated by Bianchi (2013), and applied in Bianchi and Ilut
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(2017) and Bianchi et al. (2018). Our algorithm differs in two key respects. First, our

regime-switching transition matrix reflects the endogenous nature of the switching.

Second, conditional on the regime, we have a second order solution, so we employ the

Sigma Point Filter (Binning and Maih, 2015) to evaluate the likelihood function in

place the modified Kalman filter in Bianchi (2013).

The application of the methodology that we propose relates to the literature on

emerging market business cycles, including, among others, Mendoza (1991), Neumeyer

and Perri (2005), Aguiar and Gopinath (2007), Mendoza (2010), Garcia-Cicco et al.

(2010), Fernandez-Villaverde et al. (2011), and Fernandez and Gulan (2015). Encom-

passing most shocks previously considered in this literature, we include in our analysis

technology shocks, preference, expenditure, interest rate, and terms of trade shocks.

Relative to Mendoza (2010), we provide a Bayesian estimation of the model and con-

sider a wider set of structural shocks. While the implied model properties are similar,

we find that the estimated values of some of the parameters that are less easily cali-

brated to the stylized facts of the data differ substantially. Relative to Garcia-Cicco

et al. (2010), we evaluate empirically the relative importance of interest rate shocks

in a fully non-linear estimated framework, with a fully articulated specification of

the financial frictions driving amplifications, and finding that they are quantitatively

important for certain features of the data, but not others. Relative to Neumeyer

and Perri (2005), we set up a framework that fits the data well without assuming

any correlation between the productivity and the interest rate process. Nonetheless,

consistent with their main findings, and also with Fernandez and Gulan (2015) and

Ates and Saffie (2016), we find that, while we can fit ergodic second moments of the

data well with uncorrelated shocks, high and averse short-run correlations are asso-

ciated with the simulated crisis dynamics in the model. Remarkably, even though

the model we specify does not include stochastic volatility as in Fernandez-Villaverde

et al. (2011), we do not detect losses of model fit after 1998 when the unconditional

volatility of Mexico business cycles declines as visible from Figure 1 above.

Finally, our paper relates to the now large literature on the Bayesian estimation

of DSGE models (for example, Schorfheide, 2000; Otrok, 2001; Smets and Wouters,

2007). Our paper extends that successful approach to models with occasionally bind-

ing collateral constraints, which have become the benchmark for normative analysis

of macro-prudential optimal policy (Bianchi and Mendoza, 2018; Benigno et al., 2013,

2016; Jeanne and Korinek, 2010). Welfare-base analysis of optimal macroprudential
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policies in model with occasionally binding constraints depends critically on calibra-

tions assumptions and collateral constraint formulations. Structural estimation of

these parameters and likelihood based model validation can disciplines model formu-

lation, which in turn is critical for normative policy recommendations.

The rest of the paper is organized as follows. Section 2 describes the model and

discusses the proposed formulation of the collateral constraint. Section 3 presents

our perturbation solution method for endogenous regime-switching models. Section

4 describes the full information Bayesian procedure we employ. Section 5 reports the

empirical results on estimation, model fit, and business cycle properties. Section 6

presents results on financial crises, and Section 7 concludes. The Appendices include

additional technical details and empirical results.

2 The Model

The model is a medium scale, workhorse framework for the analysis of business cy-

cles and sudden stop crisis in emerging market economies. The core of the model

largely follows Mendoza (2010), although we consider a larger set of shocks as in

Garcia-Cicco et al. (2010). It features a small, open, production economy with an

occasionally binding collateral constraint, that is subject to temporary productiv-

ity, intertemporal preference, expenditure, interest rate, and terms of trade shocks.1

The collateral constraint that we specify depends on the endogenous variables of the

model, including borrowing, capital and its relative price, and hence leverage. Capi-

tal and debt choices respond to exogenous shocks, affecting borrowing, which in turn

affects the probability of a binding collateral constraint.

Due to the occasionally binding nature of the constraint, this framework can ac-

count not only for normal business cycles, but also key aspects of financial crises in

both emerging markets advanced economies (for example, Bianchi and Mendoza,

2018). While our application focuses on one particular type of crisis, the so called

sudden stop in capital flows, our framework is generally applicable to other macroeco-

nomic models with financial frictions and crises (Kiyotaki and Moore, 1997; Iacoviello,

1We omit permanent technology shocks of the type analyzed by Aguiar and Gopinath (2007)
because these long-run components cannot be estimated precisely over samples periods of length
comparable to ours. Garcia-Cicco et al. (2010) also find that the permanent technology shock is not
quantitatively important in a framework with an financial frictions like ours.
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2005; Gertler and Karadi, 2011; Jermann and Quadrini, 2012; Liu et al., 2013; Gertler

and Kiyotaki, 2015; Bocola, 2016; Schmitt-Grohe and Uribe, 2018).

In the rest of this section, we discuss the representative household-firm and the

borrowing constraint. The formal definition of the equilibrium and the full set of

equilibrium conditions is reported in Appendix A.

2.1 Preferences, Constraints, and Shock Processes

There is a representative household-firm that maximizes the following utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (1)

where Ct denotes consumption, Ht the supply of labor, and dt an exogenous and

stochastic preference shock specified below. Households choose consumption, labor,

capital (Kt), imported intermediate inputs (Vt) given an exogenous stochastic relative

price Pt also specified below, and holdings of real one-period international bonds, Bt.

Negative values of Bt indicate borrowing from abroad. The household-firm faces the

budget constraint:

Ct + It + Et = Yt − φrt (WtHt + PtVt)−
1

(1 + rt)
Bt +Bt−1, (2)

where Yt is gross domestic product and is given by

Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt. (3)

Here, At denotes an exogenous and stochastic temporary productivity shock. Et is an

exogenous and stochastic expenditure process possibly interpreted as a fiscal or net

export shock as in Garcia-Cicco et al. (2010). The term φrt (WtHt + PtVt) describes a

working capital constraint, stating that a fraction of the wage and intermediate good

bill must be paid in advance of production with borrowed funds. The relative price of

labor and capital are given by Wt and qt, respectively, both of which are endogenous

market prices, but taken as given by the household-firm. Gross investment, It, is
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subject to adjustment costs as a function of net investment:

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
. (4)

Household-firms can borrow in international markets issuing one-period bonds

that pay a market or country net interest rate rt. The country interest rate between

period t and t + 1 rt, has three components: an exogenous persistent component,

an exogenous transitory component, an endogenous component that depends on the

level of debt. The country interest rate is given by

rt = r∗t + σrεr,t + +ψr

(
eB̄−Bt − 1

)
, (5)

where the persistent exogenous component, r∗t , follows the process

r∗t = (1− ρr∗)r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t, (6)

while εr∗,t and εr,t are i.i.d. N(0, 1), with σr∗ and σr denoting parameters that control

the variances of the two components.2 Moreover, as Mendoza (2010) notes, in our

model, the household-firm also faces a second endogenous external financing premium

on debt (EFPD), measured by the difference between the effective real interest rate,

which corresponds to the intertemporal marginal rate of substitution in consumption,

and the market rate rt. Thus, EFPD = Et[rht − rt] = λt/βEt[µt+1], where rht =

µt/Et[µt+1] is the effective real interest rate, µt is the Lagrange multiplier on the

budget constraint, and λt is the multiplier on the collateral constraint. Because of

this, the endogenous interest rate component of rt, ψr
(
eB̄−Bt − 1

)
in equation 5 with

be calibrated to serves the sole purpose of inducing independence of the model steady

state from initial conditions, as in Schmitt-Grohe and Uribe (2003), by setting ψr to

a very small value.3 In addition, unlike what is often assumed in the literature (for

example, Neumeyer and Perri, 2005), we do not impose any correlation between the

innovations to the interest rate process and the productivity process specified below.

2While contemporaneous movements in εr∗,t and εr,t are not identified separately in equations
(5) and (A.19), εr,t will be identified in the data because of differences in persistence. Including
both types of shocks helps fitting the observable counterpart variable in estimation.

3Mendoza (2010) uses an endogenous rate of time preference for the same purpose.
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The remaining exogenous processes, the preference shock dt, the temporary pro-

ductivity shock At, the shock to the relative price of intermediate goods Pt, and the

domestic expenditure shock Et, are specified as follows:

log dt = ρd log dt−1 + σdεd,t, (7)

logAt = (1− ρA)A∗ + ρA logAt−1 + σAεA,t, (8)

logPt = (1− ρP )P ∗ + ρP logPt−1 + σP εP,t, (9)

logEt = (1− ρE)E∗ + ρE logEt−1 + σEεE,t, (10)

where the starred variables and the ρ. coefficients denote the unconditional mean

value and the persistence parameter of the processes, ε.,t are assumed i.i.d. N(0, 1)

innovations, and the σ.,t parameters control the size of the process variances.

2.2 The Occasionally Binding Borrowing Constraint: An En-

dogenous Regime-Switching Specification

The central idea of this paper is to model the occasionally binding nature of a bor-

rowing constraint as an endogenous regime-switching process. In one regime, the

constraint binds strictly, and in the other it does not; these regimes are denoted with

st ∈ {0, 1}, respectively. In the binding regime, total borrowing equals a fraction of

the value of collateral:

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt, (11)

limiting total debt–borrowing plus working capital–to a fraction κ of the market value

of capital qtKt; thus, limiting leverage, consumption smoothing and the purchase of

intermediate imported inputs for production purposes. Limited working capital, as

in Neumeyer and Perri (2005), Mendoza (2010), Fernandez and Gulan (2015), and

Ates and Saffie (2016), amplifies the supply response of the economy to shocks in the

constrained state. In the unconstrained regime, lenders finance all desired borrowing.

Given these two regimes representing the occasionally binding nature of the con-

straint, we assume a stochastic characterization of the transition between them that

eliminates the non-differentiability of the traditional inequality specification that has

appealing empirical properties. The typical inequality specification of the borrowing
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constraint implies that, for given values of the endogenous and exogenous states, there

is one specific level of leverage at which the constraint binds. In contrast, we assume

that endogenously increasing leverage and shocks raise the probability of switching to

the constrained state, but there is no specific level of leverage that coincide exactly

with the constrained state. This assumption has the important implication that the

run up to a crisis episode, coinciding with the state in which the economy is con-

strained, the duration of the the crisis phase, and the post-crisis recovery can have

varying duration and intensity. We will call the periods right before entering, and

right after exiting, the binding regime ”near” crisis; and the periods during which the

economy is in the binding regime ”peak” crisis.

We assume that the probabilities of switching from one regime to the other depend

on the endogenous variables of the model. The probability of switching from the non-

binding regime to the binding regime is a logistic function of the distance between

actual borrowing and the borrowing limit equal to a fraction of the value of collateral.

The probability of switching from the binding state back to the unconstrained one,

instead, is a logistic function of the collateral constraint multiplier. Therefore the

transitions are affected by all endogenous variables in the model and agents have full

information with rational expectations on these transitions probabilities.

This regime switching specification of the occasionally nature of the the collateral

constraint captures the salient macroeconomic empirical finding that the likelihood

of a financial crisis increases with leverage, but high leverage does not necessarily

lead to a financial crisis. For example, Jorda et al. (2013) proxy financial leverage

by the rate of change of private bank credit relative to GDP. In their database of 14

advanced countries from 1870 to 2008 there are 35 recessions associated with financial

crises. Across these episodes, the change in leverage before a crisis is heterogeneous,

with the standard deviation of financial leverage twice the mean. This is compelling

evidence suggesting that while leverage matters, the exact level of leverage at which

a crisis occurs varies considerably across crisis episodes.4

In addition, a growing body of microeconomic evidence indicates that a determin-

istic specification of occasionally binding collateral constraints does not accurately

capture lending and borrowing behaviors at the household and firm or bank level.

For example, Chodorow-Reich and Falato (2017) and Greenwald (2019) among oth-

4The notion of “debt intolerance” discussed by Reinhart and Rogoff (2009) also is also encom-
passed by our stochastic specification.
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ers, show that loan covenants are used to renegotiate credit lines as borrowers ap-

proach their limits, rather than simply being cut off from funding as soon as they

face financial stress. Campello et al. (2010) provide survey information on the be-

havior of financially constrained firms and Ivashina and Scharfstein (2010) examine

loan level data showing that credit origination dropped during the recent financial

crisis because firms drew down from pre-existing credit lines in order to satisfy their

liquidity needs. Bank lending standards fluctuating over the cycle could also be con-

sistent with a stochastic specification of the collateral constraint. Thus, in practice,

collateral constraints do not seem to bind at any particular leverage ratio.5

In the rest of this section, we discuss our stochastic formulation of the slackness

condition associated with an occasionally binding borrowing constraint and how this

permits casting the occasionally binding constraint model in the form of an endoge-

nous regime-switching framework. We then spell out the assumptions that we make

to model the transition between regimes. We conclude the section with some remarks

about the implications of our formulation for model dynamics.

2.2.1 The Regime-Switching Slackness Condition

Denote the Lagrange multiplier associated with equation (11) as λt and define the

“borrowing cushion,” B∗t as the distance of actual borrowing from the debt limit:

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κtqtKt. (12)

. When the borrowing cushion is small, total borrowing is high relative to the value

of collateral, meaning that the leverage ratio is high.

Now, the critical step is to modify the typical slackness condition for models

with deterministic inequality constraints (i.e., B∗t λt = 0), so that the two variables,

B∗t and λt, are zero if the economy is in the relevant regime. So, we are seeking a

representation in which λt = 0 when the economy is in the non-binding regime, and

the borrowing cushion B∗t = 0 when we are in the binding regime then.

To accomplish this, and to be consistent with the literature on regime-switching

DSGE models in which the parameters are the model objects that change state,

5Exploring whether the our specification of the borrowing constraint may result from the solution
of a limited enforcement problem with renegotiation, hidden liquidity, or random monitoring shocks
is beyond the scope of this paper.
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we define two auxiliary regime-dependent parameters, ϕ (st) and ν (st), such that

ϕ (0) = ν (0) = 0, and ϕ (1) = ν (1) = 1.6 Next, we introduce the following regime-

switching slackness condition:

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) , (13)

where B∗ss and λss are the steady state borrowing cushion and collateral constraint

multiplier, respectively, defined more precisely in Section 3 below. It is now easy to

see that equation (13) implies that, as desired, when st = 0 then λt = 0, and when

st = 1 then B∗t = 0. Yet, given a regime st, equation (13) remains continuously

differentiable for any value of B∗t or λt, as no inequality constraint is imposed.7

2.2.2 Modelling Endogenous Regime-Switching

To model the transition from one regime to the other, we rely on logistic functions

of endogenous variables determined in equilibrium that are tractable and parsimo-

niously parameterized.8 Specifically, we assume that the transition from non-binding

to binding regime depend on the borrowing cushion, B∗t :

Pr (st+1 = 1|st = 0, B∗t ) =
exp (−γ0B

∗
t )

1 + exp (−γ0B∗t )
. (14)

Thus, the likelihood that the constraint binds in the following period depends on

the size of the borrowing cushion in the current period. The parameter γ0 controls

the steepness of the logistic function, determining the sensitivity of the probability

6In our model these parameters coincide with the regime-switching indicator variable st, but in
more general settings they may not. The notation provides a general formulation of the slackness
condition that is applicable to setups possibly different than the one associated with our specific
application. See, for example, the discussion of our stochastic specification in the context of other
model settings in Binning and Maih (2017).

7Technically, equation 13 “preserves” information in the perturbation approximation that we
introduce in Section 3, since, at first order, both variables are constant in the respective regimes.
The use of the regime-dependent switching parameters, ϕ (st) and ν (st), follows from the Partition
Principle of Foerster et al. (2016), which separates parameters based upon whether they affect the
steady state or not. Intuitively, ϕ(st) captures the level of the economy changing across regimes
(e.g., capital is lower when the constraint binds), while ν(st) captures the dynamic responses differing
across regimes (e.g., the response of investment to shocks changes when the constraint binds).

8Bocola (2016) and Kumhof et al. (2015) use a logistic function to model the transition to a
default regime, and Davig et al. (2010) and Bi and Traum (2014) use it to study hitting a fiscal
limit.
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of switching regime to the size of the borrowing cushion. For small values of γ0, the

cushion has a small impact on the probability of a switch to the binding regime. For

larger values of this parameter, the probability of a switch to the binding regime

increases more rapidly toward 1. Note here that, for certain draws from the logistic

function, the borrowing cushion could be negative and the economy could temporarily

remain in the non-binding regime.

Similarly, when the constraint binds, the transition probability to the non-binding

regime is a logistic function of the Lagrange multiplier, λt, according to

Pr (st+1 = 0|st = 1, λt) =
exp (−γ1λt)

1 + exp (−γ1λt)
. (15)

The probability of switching back from a constrained to an unconstrained regime,

therefore, depends on the shadow value of the economy’s desired borrowing relative

to the limit set by the collateral constraint. As in the case of a switch from the

constrained to constrained regime, the parameter γ1 affects the sensitivity of this

probability to the value of the multiplier, with larger values implying a greater sen-

sitivity. A large positive multiplier implies that the constraint binds tightly, and the

probability of exiting binding regime is lower. As the multiplier declines, this proba-

bility increases. Note again that in the binding regime, it is possible that the desired

level of borrowing is less than the level forced upon it by a binding regime, which

would manifest itself with a negative collateral constraint multiplier.9

Putting equations (14) and (15) together, the regime-switching model has an

endogenous transition matrix

Pt =

[
1− exp(−γ0B∗t )

1+exp(−γ0B∗t )

exp(−γ0B∗t )

1+exp(−γ0B∗t )
exp(−γ1λt)

1+exp(−γ1λt) 1− exp(−γ1λt)
1+exp(−γ1λt)

]
. (16)

2.2.3 Remarks on the Endogenous Regime-Switching Formulation

A few more remarks are useful on how our stochastic formulation of the borrow-

ing constraint works and differs relative to the typical inequality formulation as for

instance in (for example, Kiyotaki and Moore, 1997).

9By construction, the transition probabilities equal 0.5 when their arguments are zero. In prin-
ciple, one could relax this assumption by introducing a constant into the arguments of equations
(14-15); however, preliminary estimates with this flexibility indicated these parameters were effec-
tively zero, so for simplicity we omit them from the beginning.
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Figure 2: Model Timing
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The regime 𝑠𝑠𝑡𝑡 is 
realized as a function 
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and λt-1. 
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to regime realization 𝑠𝑠𝑡𝑡)  
are realized, and agent 
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The regime 𝑠𝑠𝑡𝑡+1 is 
realized as a function 
of the previous period 
shocks and decisions, 
summarized by 𝐵𝐵𝑡𝑡∗ 
and λt, etc. 

First, whether or not the constraint binds in a given period is determined before

exogenous shocks are realized and economic decisions are made during that period.

Figure 2 summarizes the model timing and shows that, at the start of a given period

t, the regime outcome st is drawn from the logistic distributions as a function of

previous period borrowing cushion or collateral constraint multiplier, B∗t−1 and λt−1.

Next, exogenous shocks, which are orthogonal to the realization of the regime, are

realized, and agents take decisions during period t based on their perfect knowledge

of the regime outcome, st, as well as a probability distribution over the next period

regime realization, st+1, as in equation (14) or (15). Finally, the regime realization

for period t + 1 is drawn based on exogenous shocks and agents’ decisions that pin

down B∗t and λt, and so on.

Second, as we have already noted, an implication of our setup is that entry and

exit of the economy from the binding regime might be smoother than in models with

a traditional inequality specification of the collateral constraint. This is captured by

the fact that the multiplier and the borrowing cushion can take negative values in our

set up, even though they cannot persistently do so. This captures the ideas that crises

approaches more slowly and recoveries are more sluggish than predicted by traditional

specifications. Vice versa, there can be instances in which the crisis dynamics can be

less persistent than with the traditional specification. For instance, negative values

of the borrowing cushion in the non-binding regime are possible if the probability

of a binding regime is elevated but such outcome is not realized. Conversely, in the

non-binding regime, the logistic function can allow the borrowing constraint to bind

in the following period, even if the borrowing cushion in the current period is still
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positive. How likely these outcomes are depend on the parameter of the relevant

logistic function, γ0. The same logic applies to a probabilistic exit from the binding

regime that depends on the multiplier λt and the parameter of the logistic function

γ1. Despite the fact that the economy might be stuck in the constrained regime past

the time when the collateral constrained multiplier turned negative. In fact, in this

case, the economy may be “forced” to borrow the amount set by the constraint, which

might be more than desired, until a non-binding realization of the regime is drawn.

Conversely, positive values of the multiplier, the economy may end up coming out of

the binding regime early.

The third implication of our setup is that by making the transition probability

dependent upon endogenous variables, these probabilities that vary over time. In con-

trast, the exogenous Markov-switching setup (Davig and Leeper, 2007; Farmer et al.,

2011; Bianchi, 2013; Foerster et al., 2016) has a constant probability of transition-

ing between regimes that is independent of the structural shock realizations and the

agent decisions. For this reason, our endogenous-switching framework can in principle

generate long- or short-lived binding regime episodes depending on the realization of

shocks and agents’ decisions.

Last but not least, in our set up, agents in the non-binding regime know that

higher leverage and borrowing levels increase the probability of switching to a binding

regime, and vice-versa. This preserves the interaction in agents’ behavior between

the two states that gives rise to precautionary behavior, distinguishing this class of

models from those in which financial frictions are always binding or are approximated

with solution methods that eliminate the interactions across regimes.

3 Solving the Endogenous Switching Model

Having cast our model it in terms of an endogenous regime-switching framework,

this Section describes our solution method and our estimation procedure. The model

developed in the previous section can in principle be solved using global solution

methods, as for example in Davig et al. (2010). However, such an approach would

be time-consuming for our model which has two endogenous and five exogenous state

variables, the regime indicator, plus six exogenous shocks, and would quickly become

prohibitive with larger modes, precluding likelihood-based estimation. Instead, we

solve the model using a perturbation approach, which allows for an accurate approx-
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imation that is fast enough to permit estimation and potentially applicable to even

larger set ups beyond our medium-scale model. We now describe the approximation

point and how to define a steady state in this setup, these Taylor-series expansions,

and discuss the importance of approximating to at least a second-order in our frame-

work. The competitive equilibrium of the endogenous regime-switching version of

the model is defined formally in Appendix A. The derivations of the Taylor-series

expansions and other details of the solution method to Appendix B.

3.1 Defining the Steady State

Given the regime-switching slackness condition (13), defining a non-stochastic steady

state of an endogenous regime-switching framework is challenging. A steady state

in our framework can be defined as a state in which all shocks have ceased and the

regime-switching variables that affect the level of the economy (ϕ(st)) take the ergodic

mean associated with the steady state transition matrix:

Pss =

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
. (17)

Note here that, since this matrix also depends on the steady state level of the borrow-

ing cushion and the multiplier, B∗ss and λss, which in turn depend upon the ergodic

mean of the regime-switching parameters ϕ(st) and ν(st), such steady state is the

solution of a fixed point problem that is described in more detail in Appendix B.

More specifically, consider the model regime-specific parameters defined above

and distinguish between ϕ(st), which can affect the level behavior of the economy,

and ν(st), which can affect only its dynamics with no effects on the steady state.

Then denote with ξ = [ξ0, ξ1] the ergodic vector of Pss. Next, apply the Partition

Principle of Foerster et al. (2016), to focus only on parameters that affect the level

of the economy, and write their ergodic mean as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) , (18)

where ϕ̄ thus denotes the ergodic mean value of the regime-switching variables–or

parameters in a conventional approximation–that affects the steady state.

Defining the steady state as the state in which the auxiliary parameter ϕ (st) is at
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its ergodic mean value implies that the approximation point constructed is a weighted

average of the steady states of two separate models: a model in which only the non-

binding regime occurs, and one in which only the binding regime occurs; the steady

state does not explicitly capture behavior generated by changes in regimes. How close

our approximation point is to each of these two other steady state concepts, therefore,

will depend on the frequency of being in each of the two regimes. We note here that,

since in our application we are modelling binding episodes with limited duration,

the ergodic mean is a natural candidate as perturbation point. Given the nature of

our application with slow-moving capital and debt state variables, the perturbation

point will be in the area of the state space in which the economy operates most

frequently. In fact, since the binding regime tends to be self-limiting–that is, being

in the binding regime causes the economy to reduce leverage and hence switch back

to the non-binding regime–the economy will rarely reach the area around the steady

state of the “binding regime only” version of the model.10

3.2 The Solution and Its Properties

Equipped with the steady state of the endogenous regime-switching economy, we then

construct a second-order approximation to the policy functions by taking derivatives

of the equilibrium conditions. We relegate details of these derivations to the Appendix

B, but here we provide a summary.

For each regime st, the policy functions to our model take the form

xt = hst (xt−1, εt, χ) , yt = gst (xt−1, εt, χ) , (19)

where xt denotes predetermined variables, yt, non-predetermined variables, εt the set

of shocks, and χ a perturbation parameter such that when χ = 1 the fully stochastic

model results and when χ = 0 the model collapses to the non-stochastic steady

state defined above. Using these functional forms, we can express the equilibrium

10Alternative methods for finding solutions to endogenous regime-switching models, such as Maih
(2015) and Barthlemy and Marx (2017), advocate using regime-dependent steady states as multiple
approximation points. Such a strategy would not be suitable for our purposes because the binding
regime steady state is a poor approximation point given that the state is infrequent and usually of
shorter duration than normal cycles of expansions and contractions.
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conditions conditional on regime st as

Fst (xt−1, εt, χ) = 0. (20)

We then stack the regime-dependent conditions for st = 0 and st = 1, denoting the

resulting system of equations with F (xt−1, εt, χ), and successively differentiate with

respect to (xt−1, εt, χ), evaluating at steady state. The systems

Fx (xss,0, 0) = 0, Fε (xss,0, 0) = 0, Fχ (xss,0, 0) = 0 (21)

can then be solved for the unknown coefficients of the first-order Taylor expansion of

the policy functions in equation (19).

A second-order approximation can be found by taking the second derivatives of

F (xt−1, εt, χ). In the end, we have matricesH
(1)
st andG

(1)
st characterizing the first-order

coefficients, and H
(2)
st and G

(2)
st characterizing the second-order coefficients. Therefore,

the approximated policy functions are

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (22)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (23)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

Our perturbation method produces a single approximated set of policy function,

but cannot be used to guarantee that the solution is unique. This limitation is

common to models of occasionally binding constraints that are solved globally with

a numerical algorithm that converges but where additional solutions cannot be ruled

out. With endogenous regime-switching, we also lack conditions for ensuring stability

of the full solution; instead, we check the mean-squared stability of the first-order

approximation (Farmer et al., 2011; Foerster et al., 2016), and additionally check for

explosive simulations.

Our solution method is fast, and can readily be scaled to handle larger models.

In all, we have 23 equations that characterize the equilibrium, and 2 endogenous and

5 exogenous state variables, and a single regime indicator. Our solution method is

similar to that in Fernandez-Villaverde et al. (2015). We use Mathematica to take

symbolic derivatives, and export the symbolic derivatives so that we can use Matlab

21



to solve the model repeatedly for different parameterizations. The model solves in

about a second on a standard laptop.

Lastly, we tested for accuracy of our solution method in our current model as

well the smaller model of Jermann and Quadrini (2012) in which we can more easily

compare our perturbation method to with global solution methods. We find Euler

equation errors for the model we use in this paper on the order of $1 per $1,000 of con-

sumption. This figure is in line with those found for perturbation in fixed probability

regime-switching models (Foerster et al., 2016) as well as standard models without

regime-switching (Aruoba et al., 2006). When we compare the perturbation method

we propose with a standard global method on the endogenous regime-switching model

or the version of the model with the traditional inequality constraint, we find that the

solution methods produce similar second moments, and model dynamics for key vari-

ables of interest. Moreover, the global and perturbation solutions of our endogenous

regime-switching model produce very similar Euler equation errors–See Appendix C

for more details.

3.3 Approximation Order, Endogenous Switching and Pre-

cautionary Saving

Our endogenous regime-switching framework must be solved at least to the second

order to capture the effects of endogenous probabilities, which include state-varying

precautionary effects. If we were to use only a first-order approximation, our estima-

tion would not capture precautionary behavior associated with rational expectations

about the dependency of the probability of a regime change on the borrowing cushion

and the multiplier. The following Proposition states this result formally.

Proposition 1 (Irrelevance of Endogenous Switching in a First-Order Ap-

proximation). The first-order solution to the endogenous regime-switching model is

identical to the first-order solution to an exogenous regime-switching model where the

transition probabilities are given by the steady-state value of the time-varying transi-

tion matrix.

Proof. See Appendix C.

This Proposition illustrates that using a second-order approximation to the solu-

tion is necessary to characterize the model properties associated with the endogenous
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nature of the regime-switching, including particularly precautionary behavior.11 This

result is similar to the one stating that, in models with only one regime, first-order

solutions are invariant to the size of shocks, second-order solutions captures pre-

cautionary behavior, and third-order solutions are needed to capture the effects of

stochastic volatility (Fernandez-Villaverde et al., 2015).

Unfortunately, the need to use a second-order approximation along with regime-

switching creates additional challenges for estimation purposes, and we now turn to

our strategy to address them.

4 Estimating the Endogenous Switching Model

We estimate the model with a full information Bayesian procedure. The posterior dis-

tribution has no analytical solution and we use Markov-Chain Monte Carlo (MCMC)

methods to sample it. Since the Metroplis-Hastings algorithm that we use for sam-

pling is a standard tool used in the literature, we omit a discussion of this step in our

procedure. The details of the construction of the state space representation and the

filtering steps for the evaluation of the likelihood are reported in Appendix D.

A key obstacle in sampling from the posterior is the evaluation of the likelihood

function. We face three difficulties here relative to linear DSGE models. The first is

the nonlinearity due to the presence of multiple regimes. The second is the need to

approximate to the second-order the model solution that governs the decision rules

in each regime. The third is the fact that the transition probabilities are endogenous.

Bianchi (2013) develops an algorithm to address the first difficulty. Here we must use

an alternative filter to deal with the second order solution and endogenous probabil-

ities in a tractable manner. We use the Unscented Kalman Filter (UKF) to compute

approximations to the evaluation of the likelihood function using Sigma Points. This

is because, in our application, a regime switch can lead to discarding a large number

of simulated particles, lowering accuracy for a given number of particles and greatly

increasing the computational cost of obtaining a given level of accuracy. Further,

even with a deterministic filter, the filtering step in estimation is relatively costly at

about 10 seconds per likelihood evaluation using Matlab; incorporating the Particle

11Appendix C provides an illustration of the quantitative importance of using first- versus second-
order approximations, examining the impulse response functions to shocks in the non-binding regime.

23



Filter would increase computing time significantly.12

The model’s posterior distribution is highly nonlinear, with many local modes

due to the complexity of the model. To deal with this issue, we took the following

steps: first, we estimated a version of the model without working capital and the

occasionally binding constraint, this step helped find approximate estimates for the

exogenous processes and non-financial variables; second, conditional on the estimates

from the first step, we performed a grid search over the remaining parameters (κ, φ,

γ0, and γ1) to find high posterior regions; third, from the high posterior regions of

this grid search, we used a mode-finding routine to find the posterior mode, which

forms the basis for our empirical results; lastly, we sampled 500, 000 draws from the

posterior with a random-walk Metropolis-Hastings algorithm to explore the parameter

space around the mode and characterize credible sets for the estimates.13 The entire

MCMC algorithm took 58 days to complete.

4.1 Observables, Data, and Measurement Errors

The model is estimated with quarterly data for GDP growth (gross output less inter-

mediate input payments), consumption growth, investment growth, and intermediate

import price growth, as well as the current account-to-output ratio, and a measure of

the country real interest rate. GDP, consumption, and investment are in quarterly,

demeaned log differences.14

As there are six shocks with six observable series, we do not need measurement er-

rors. However, measurement errors in the observation equation improves performance

of the non-linear filter and accounts for any actual measurement error in the data.

To limit their impact on the inference, we limit their variance to 5% of the variance

of the observable variables. This means that our model will fit the data relatively

closely on average; thus, how it performs across cycles and crises and whether it relies

on large shocks to fit the data will be important for assessing model performance.

12See Binning and Maih (2015) for a comparison between the Sigma Point filter and the Particle
Filter (for example, Fernandez-Villaverde and Rubio-Ramirez, 2007) in a regime-switching context,
which include degeneracy issues.

13For the last MCMC step, we adjusted the scale of the proposal density until we achieved an
acceptance rate of 0.25.

14See Appendix F for details on variable definitions and data sources. The country interest rate is
constructed, following Uribe and Yue (2006), and it is the US 3-Month Treasury Bill minus ex post
US CPI inflation rate plus Mexico’s EMBI Spread.
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Table 1: Calibrated Parameters

Parameter Description Value
β Discount Factor 0.9798
ρ Risk Aversion 2.0000
ω Labor Supply 1.8460
η Capital Share 0.3053
α Labor Share 0.5927
δ Depreciation Rate 0.0228
P ∗ Mean Import Price 1.0280
E∗ Mean Expenditure 0.2002
ψr Interest Rate Debt Elasticity 0.0010
B̄ Neutral Debt Level −6.1170

4.2 Calibrated Parameters and Prior Distributions

Our objective is to estimate critical parameters governing the model’s dynamics in

both the binding and non-binding regime, as well as the parameters that govern the

transitions between regimes on which we do not have prior information. To make

inference on the parameters of interest, we calibrate a subset of parameters on which

we have reliable prior information–we discuss the two set of assumptions, shortly.

Table 1 lists the parameters that we calibrate.15 We set these parameters largely

following Mendoza (2010), who calibrated them based upon stylized facts from Mex-

ico’s National Accounts. One parameter that does not come from Mendoza (2010)

is β, which we set to match the capital-to-output ratio and the debt-to-output ra-

tio, B̄. Another important parameter that we calibrate is ψr, which is estimated in

Garcia-Cicco et al. (2010). We set it to a very small value for the sole purpose of elim-

inating the dependency of the steady state on initial conditions, while not allowing

the parameter to affect the model dynamics (see Schmitt-Grohe and Uribe, 2003).16

Setting ψr very small allows us to evaluate the model’s ability to match the behavior

of the trade balance and the other key stylized facts of the data without introducing

an additional financial friction, in the form of a quantitatively important endogenous

component of the interest rate in equations (5)-(A.19).

15See Appendix E for more details on the calibration and targeted moments.
16Even though we have a borrowing constraint and precautionary savings, the presence of ψr >

0 serves the same purpose as endogenous discounting in Mendoza (2010). Recall here that our
perturbation solution is constructed around a point between the steady state of the “non-binding
only” model, which depends on ψr, and the “binding only” model.
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Table 2 below summarizes our assumptions on the prior distributions. We set two

types of priors on the parameters to be estimated. The first type is priors on the

parameters. They impose sign restrictions and put lower prior probability on param-

eter values that generate implausible moments in model simulations.17 The second

type of prior is on a model-implied object: the steady state transition probability

of switching from the unconstrained to the constrained regime, given by the steady

state value of equation (14), Pr(st+1 = 1|st = 0, B∗ss). We set this prior to be a Beta

distribution with mean 0.25 and variance of 0.25. This prior puts lower probability

mass on combinations of parameters that either generate extremely infrequent tran-

sitions to the constrained regime, or that imply the economy exits the unconstrained

regime almost immediately.18

5 Empirical Results

Our empirical findings comprise four sets of results. First, we present the estimated

parameters, which helps us to characterize the tightness of the working capital and

borrowing constraints, and the endogenous transition probabilities. Second, we exam-

ine the estimated model’s fit to the data. Third, we examine the model’s performance

from a business cycle perspective, comparing moments in the model and the data and

assessing the relative importance of different shocks for regular business cycles. Our

fourth set of results focuses on financial crises. We report and discuss the first three

sets of results in this section, and present the fourth set in the following separate

section.

5.1 Estimated Parameters

For our first set of results focusing on the estimated parameters, Table 2 reports the

mode of the posterior distribution of the estimated parameters, together with the me-

dian, the 5th and the 95th percentile of the parameter distribution. The parameters

17While possible in principle, we do not allow for regime-switching in the shocks processes. This
is because we want the collateral constraint to drive regime-switching, rather than changes in the
stochastic processes. Allowing for regime change in the shock processes might improve overall fit,
but we want the economic features of the model and not changes in the exogenous shock processes
to drive fluctuations

18The use of priors on model-implied objects has been used by, for example, Otrok (2001) and
Del Negro and Schorfheide (2008).
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Table 2: Estimated Parameters

Par. Description Prior Posterior
Mode 5% 50% 95%

ι Capital Adj. N(10,5) 12.703 12.649 12.701 12.724
φ Working Cap. U(0,1) 0.7113 0.7102 0.7153 0.7207
r∗ Mean Int. Rate N(0.0177,0.01) 0.0172 0.0115 0.0165 0.216
κ Leverage U(0,1) 0.1727 0.1592 0.1756 0.1989

ρa Autocor. TFP B(0.6,0.2) 0.9796 0.9653 0.9793 0.9881
ρe Autocor. Exp B(0.6,0.2) 0.9111 0.9066 0.9132 0.9237
ρp Autocor. Imp Price B(0.6,0.2) 0.9711 0.9609 0.9754 0.9549
ρd Autocor. Pref. B(0.6,0.2) 0.9810 0.9753 0.9810 0.9843
ρr∗ Autocor. Persist. Int. Rate B(0.6,0.2) 0.8929 0.8782 0.8896 0.8995

σa SD TFP IG(0.01,0.01) 0.0083 0.0066 0.0081 0.0098
σe SD Exp. IG(0.1,0.1) 0.1806 0.1672 0.1816 0.1892
σp SD Imp. Price IG(0.1,0.1) 0.0471 0.0382 0.0452 0.0524
σd SD Pref. IG(0.1,0.1) 0.1123 0.0998 0.1123 0.1194
σr SD Trans. Int. Rate IG(0.01,0.01) 0.0028 0.0013 0.0025 0.0044
σr∗ SD, Persist Int. Rate IG(0.01,0.01) 0.0047 0.0037 0.0047 0.0059

γ0 Logistic, Enter Binding U(0,150) 13.552 10.903 13.712 18.014
γ1 Logistic, Exit Binding U(0,150) 17.798 15.784 17.800 19.806

Notes: Estimated parameters, with prior distribution and posterior moments. Priors are Normal,

Uniform, Beta, or Inverse Gamma; prior distributions show mean and variance, except for uniform

where lower and upper bounds are shown. Posterior distribution shows mode (used for model

analysis), along with 5-th, 50-th, and 95-th percentiles from MCMC posterior draws.

of the exogenous processes indicate that all shocks have a high degree of persistence,

but none have a positive posterior coverage interval near one. The estimated mean

interest rate, slightly below 1.75% per quarter, is close to the value estimated by

Mendoza (2010). Note that the posterior coverage interval for this variable is fairly

diffuse, indicating some uncertainty in its true value. The remaining parameters have

tightly estimated posteriors, so we will focus the discussion on posterior modes for

the remaining parameters.

Importantly, the model provides precise estimates of critical parameters, namely

the investment adjustment cost, working capital, and leverage parameters, and the

parameters of the logistic function that help match the time series of the observable

variables during both business cycles and financial crises. These parameters cannot be

easily measured directly from stylized facts of the data–unlike, for example, capital or

labor shares–but are nonetheless important for explaining the behavior of the economy
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and the amplification of shocks.

The estimate of the investment adjustment cost parameter, ι, which controls in-

vestment volatility, is 12.7. Note that this parameter is model dependent and has no

real interpretation outside of a particular model; for example, considering an annual

frequency, Mendoza (2010) calibrated this parameter to 2.75. The estimate for the

working capital constraint parameter indicates that 71% of the wage and interme-

diate good bill needs to be paid in advance with borrowed funds; this estimate is

substantially higher than the 25.79% value set by Mendoza (2010), but much lower

than the 100% used by Neumeyer and Perri (2005) or the 125% used by Uribe and

Yue (2006). The estimate is close to the 60% calculated by Ates and Saffie (2016)

who use interest payments and production costs from Chilean microeconomic data.

The estimated value of the leverage parameter in the borrowing constraint (κ) is 0.17,

indicating less than a fifth of the value of capital serves as collateral. The estimate is

slightly tighter than the benchmark value of 0.20 chosen by Mendoza (2010), which

is is right inside the confidence set, and on the low end of the 0.15 to 0.30 range of

alternative values considered in that calibration.

The posterior modes of the logistic parameters in equations (14) and (15) are

13.6 and 17.8, respectively, estimated in a tight range relative to the very loose prior.

These estimates are significantly different from zero, thus suggesting that the data

reject a model specification in which the transition probabilities are exogenous, which

is in principle allowed for under the prior distribution.

The logistic parameters matter for transition probabilities through how they in-

teract with the arguments of the logistic distributions. Figure 3 plots the implied

probabilities from equation (14) and (15), evaluated at the posterior mode value of

γ0 and γ1, together with the estimated ergodic distributions of their arguments, the

borrowing cushion, B∗ and the the constraint multiplier, λ. The figure shows that the

ergodic distribution of the borrowing cushion is centered on a positive value, as the

economy spends most of its time in the unconstrained regime, above the borrowing

limit. As the borrowing cushion falls, the probability of switching to the binding

regime increases, and gradually reaches 1 for small negative values, with very little

probability mass on large negative realizations of the borrowing cushion.

On the other hand, once the economy is in the binding regime, the ergodic distri-

bution of the multiplier is centered on small negative values, with more probability

mass on the right tail than the left tail. As λ approaches 0, the probability of switch-
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Figure 3: Logistic Functions and Distributions of Their Arguments

(a) Borrowing Cushion and Transition Probability in Non-Binding
Regime

(b) Multiplier and Transition Probability in Binding Regime

Note: The top panel shows the model-implied distribution of the borrowing cushion B∗

in the non-binding regime, and the logistic transition function to the binding regime as

in equation (14) implied by our estimates. The bottom panel shows the model-implied

distribution of the multiplier, λ, in the binding regime, and the transition function to the

non-binding regime as in equation (15) implied by our estimates.

ing to the non-binding regime increases and quickly reaches 1, with a mode on a small

negative value. Nonetheless, the there is a significant probability mass for larger neg-

ative values. As we explained earlier, negative values of λ reflect instances in which,

had the economy been in the non-binding regime, the borrowing cushion would be

positive (as a result of the shock realizations and agent decisions as illustrated in

Figure 2), but a switch to non-binding regime at has not been yet drawn.19

19Sufficiently negative values of λ, approximately below −0.2, produce a nearly deterministic
switch back to the binding regime. The ergodic distribution of λ in the binding regime (Figure 3b)
implies that the probability of exiting that regime exceeds 99% about 1/4-th of the time.
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Figure 4: Data and Model Estimates

(a) Output Growth

(b) Consumption Growth

(c) Investment Growth

(d) Interest Rate

(e) Current Account to Output Ratio

(f) Import Price Growth

Note: The figure plots observable variables used in estimation (dashed blue lines) and fitted values

(i.e., model implied smoothed estimated series based upon the full sample, solid black lines). Red

bars indicate model-identified periods of crisis, see text for definition.
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5.2 Model Fit

Our second set of results provides evidence on how the estimated model fits the

observable variables. The model fit is summarized by Figure 4, which plots observable

variables used in the estimation together with the fitted values. The Figure also

includes model-identified peak crisis periods (solid red bars); we provide a precise

definition shortly, but in brief the economy in the binding regime, output falls, and the

current account increase. The fitted series largely follow the actual data. Note that

the relatively small role of measurement errors in the estimation procedure implies

the structural shocks are driving model fit. Importantly, the model estimates track

the data consistently throughout the sample, during both regular business cycle and

crisis periods, without loss of fit even in crisis peaks. For example, during the 1995

“Tequila Crisis,” the data show large drops and rebounds in output, consumption,

and investment growth, and a very sharp reversal in the current account to output

ratio. The model tracks crises as well as it tracks regular fluctuations throughout

the sample. If, by contrast, one were to observe a loss of fit during crisis episodes, it

would suggest that our estimated model finds it difficult to match the data dynamics

during these episodes of critical interest in the empirical analysis. In addition, one

of the successes of our estimated model is that it achieves this fit without relying

on large shocks to explain crisis events (see Appendix G). Instead, it explains crisis

dynamics using the model’s internal propagation mechanisms that amplify the effects

of normally sized shocks–i.e., within two-standard deviations bands.

5.3 The Anatomy of Business Cycles

In our third set of results, we discuss second moments to characterize the estimated

model’s dynamics and variance decompositions to identify key drivers of the busi-

ness cycle.20 All statistics reported are unconditional, rather than conditional on a

particular regime.

Table 3 compares data and simulated model second moments, reporting results for

three variables used in estimation (output, consumption, investment and the country

20All business cycle and crisis statistics relying on simulated data are generated based on the
posterior mode estimates. For these simulations, we generate 10,000 samples of 144 quarters long
(the length of our data sample), after a burn-in period of 1,000 quarters. We then compute and
report median values across these 1,000 runs. We use a pruning method (Andreasen et al., 2018) to
avoid explosive simulation paths.
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Table 3: Simulated Second Moments: Data and Model

Relative Std. Dev. Correlations
Data Series Data Model Data Model
Output Growth 1.00 1.00 1.00 1.00
Consumption Growth 1.25 1.92 0.73 0.98
Investment Growth 5.37 5.75 0.53 0.90
Trade Balance to Output Ratio 1.24 0.80 -0.20 -0.21
Country Interest Rate 1.36 0.15 -0.11 -0.03

Notes: The table compares second moments of the data, relative to output growth,

with the same moment simulated from the model.

interest rate), and one critical trade variable, the trade balance ratio, not used in

estimation. The model describes the business cycle moments quite well, matching

the relative volatilities of output, consumption and investment. The volatility rank-

ing is correct, with consumption significantly more volatile than output, which is a

robust stylized fact of emerging market business cycles. The model underestimates

the relative volatility or the trade balance ratio and, particularly, the country interest

rate. The model implied comovements of all variables match the data counterparts

remarkably well, again with the exception of the country interest rate, whose correla-

tion is not estimated precisely in the model. The trade balance, in particular, which

is not an observable variable used in estimation, is counter-cyclical as in the data,

with a model-implied autocorrelation coefficient (not reported) well below one.

Table 4 reports variance decompositions. The table illustrates that all shocks play

a quantitatively sizable role in the model, even though different shocks matter more

for different variables. Output and consumption are mostly driven by productivity,

preference, expenditure, and terms of trade shocks, respectively. Investment is signifi-

cantly affected by expenditure, preference, productivity, terms of trade, and persistent

interest rate shocks. Expenditure and persistent interest rate shocks are the most im-

portant drivers of the trade balance, while the country interest rate is clearly driven

by persistent interest rate shocks, and to a lesser extent by the temporary component

of the cost of borrowing. Demand shocks (expenditure and preference) and interest

rate shocks (permanent and temporary components) play a more important role than

productivity and terms of trade shocks for financial variables and the multiplier.

While the magnitude of these variance shares are not directly comparable with

those estimated by Garcia-Cicco et al. (2010), Fernandez and Gulan (2015), and
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Table 4: Estimated Unconditional Variance Decomposition

Import Temp. Pers.
Variables / Shocks TFP Expend. Prices Pref. Int. Rate Int. Rate
Output 33.2 17.2 15.7 25.4 2.5 6.0
Consumption 30.3 23.4 14.3 20.6 3.8 7.6
Investment 19.2 29.8 10.3 25.6 4.6 10.5
Trade Bal/Output 9.5 35.2 8.8 17.2 9.2 20.1
Interest Rate 0.0 0.0 0.0 0.0 21.1 78.9
Borrowing Cush. 10.6 32.3 9.9 21.3 9.9 16.0
Debt/Output 15.2 25.5 7.6 40.9 1.4 9.5
Multiplier 9.5 40.5 9.5 18.1 9.6 12.8

Note: The variance decomposition is normalized to sums to 100 by row, estimates may not equal

100 exactly due to rounding. Decomposition computed by removing each shock from full model to

compute the marginal impact of the shock; this method ignores nonlinear interactions for ease of

comparison with linear models.

Schmitt-Grohe and Uribe (2018), they suggest that both real and financial shocks

matter for Mexico business cycles. In particular, we find a lower share for productivity

and interest rate shocks than Fernandez and Gulan (2015), although we also consider

terms of trade and demand shocks. We also find a share of variance explained by

terms of trade shocks that is very close to the structural vector autoregression model

estimated by Schmitt-Grohe and Uribe (2018). The estimated share of the variances

explained by interest rates shocks is in general smaller than those estimated by Garcia-

Cicco et al. (2010), who use a different specification of the financial friction with a debt

elastic country premium and a risk premium shock, without amplification mechanism

from the financial accelerator (Fernandez and Gulan, 2015), or working capital as in

Neumeyer and Perri (2005), Mendoza (2010), Fernandez and Gulan (2015), and Ates

and Saffie (2016).

6 The Anatomy of Financial Crises

In this Section, we turn to our fourth and main set of empirical results, which examine

the model’s ability to describe and interpret financial crises. The defining feature of

our model is its ability to characterize dynamics and identify shocks not only over

regular business cycles, but also during periods of a particular type of crisis, the

so-called sudden stop in capital flows. We start by defining financial crises episodes
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in a model consistent manner and discuss the inference that we can draw based on

the estimated model about when Mexico appeared to be experiencing them. Next,

we focus on the model-based dynamics of sudden stop events (henceforth, crisis for

brevity). Finally, we investigate the drivers of the three historical episodes of sudden

stop that the estimated model identifies in the data: the Debt Crisis of the 1980s,

the 1995 ‘Tequila’ Crisis, and the spillover of the Global Financial Crisis (GFC) in

2008-2009.

6.1 Crisis Definition

The estimated model allows us to make inference on whether the economy is in

the binding regime, and hence identify periods of sudden stop crisis in a model-

consistent manner. In the model, the regime is known by the household-firm, but the

estimation procedure does not observe the regime, and it must be inferred based on

the information in the data. The estimation results, therefore, can provide a time-

varying estimate of the smoothed probability (i.e. based upon the full sample) of

being in each regime.21 Figure 5 plots this estimated probability (solid black line).

Using the information in Figure 5, we can define a model-consistent concept of

sudden stop crisis as a period in which the economy is in the binding regime with

probability higher than a certain threshold–say for example at least 90% probability.22

We will call the sudden stop episodes identified by our estimated model in this manner

as ”near sudden stops”, or near crises” for brevity. For comparison to the extant

literature, we also define what we call ”peak sudden stop crises”, or peak crises for

brevity (red bars in Figure 5 and 1, as periods in which (i) the smoothed estimate

of the probability of being in the binding regime is at least 90%, (ii) the model

estimate of output growth (Figure 4, Panel a) is negative by more than one standard

deviation, and (iii) the model estimate of the current account ratio (Figure 4, Panel

e) increases by more than one standard deviation. This second definition is line

with the one employed in the quantitative literature modeling sudden stops with

occasionally binding constraints (for example, Mendoza, 2010; Benigno et al., 2013)

21The estimated model also provides an estimate of the time-varying transition probability based
upon equations (14-15). These are reported in Appendix G and confirm that an exogenous regime
switching specification would be rejected by the data.

22This threshold is intuitive but somewhat arbitrary. The duration of the identified sudden stop
episode identified, however, is very robust to using a wide range of values.
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Figure 5: Smoothed Probability of Binding Regime

(a) Probability of Binding and Reinhart-Rogoff Dates

(b) Probability of Binding and OECD Recession Dates

Notes: Black line shows model implied smoothed probability of being in the binding regime.

Dark gray regions in panel (a) indicates Reinhart and Rogoff (2009) tally index of financial

crisis, normalized so that it takes values between 0 (no crisis) and 6 (most severe). Light

gray regions in panel (b) indicate OECD recession dates. Red bars indicate model-identified

peak crises, vertical blacked dash lines indicate near crisis start and stop dates; see text for

details.

and the empirical literature on sudden stops (for example, Calvo et al., 2006).

Figure 5 shows both the estimated near and peak crisis periods (vertical red bars).

The model identifies three peak crisis episodes, each nested inside longer lasting near

crisis episodes (solid black line close to 1, with start and end quarter marked by

vertical dashed lines). The three peak crisis episodes identified are 1983Q1 during

the Debt Crisis, 1995Q1-Q2 after the onset of the Tequila Crisis, and 2009Q1-Q2

during the GFC. In each of these three episodes, the economy is in the binding

regime before and after the event. In particular, the 1983 peak crisis was preceded

by several quarters of near crisis, the Tequila Crisis had a peak in the middle of a

relatively longer period of near crisis, while the GFC materialized during a short-lived

near crisis period. As Figure 1 shows, the identified peak crises periods corresponds

to the trough in output, consumption, investment growth in the data, and the peaks

in the current account adjustment and interest rate increases.

Figure 5 also reports a purely empirical definition of financial crisis (dark grey

shaded areas in Panel a) and the OECD date of the business cycle of Mexico (light

grey shaded areas in Panel b). The empirical notion of financial crisis reported is
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a normalized version of the crisis tally index of Reinhart and Rogoff (2009) (RR).23

Figure 5 illustrates that our estimated probability of being in a binding regime, which

is our model-consistent definition of sudden stop crisis, align quite well with the RR

index. Figure 5 also illustrates that our definition of near crisis encompasses and

captures the notion of sudden stop typically used in the extant quantitative literature,

adding the two criterion on the magnitude of the current account reversal and output

drop to the criterion on the smoothed probability. The near crises episodes that our

model identifies, i.e., the areas with 90 % probability of being in the constrained

regime, track the RR tally index remarkably well around all three episodes identified,

even though the crisis signals are less persistent than the tally index.24 The peak

crisis episodes identified by our model are close to highest values of the tally index,

even though they don’t coincide exactly, especially in the case of the Debt Crisis.

Importantly, our model estimates of these sudden stop crises do not mistake or-

dinary recessions not associated with spikes in the tally index for near or peak crisis

periods. Mexico OECD recessions are illustrated by the light dark shaded areas in

Figure 5 Panel (b). The estimated probability of a binding regime is close to 0 during

the OECD recessions before the Tequila crisis, during the US recession in 2001, and

the Argentine crisis in 2000-2001. The estimated probability of a binding regime does

not register stress during the 1998 Russian default and US Long-Term Capital Man-

agement debacle that affected only the currency and stock market, without triggering

a sudden stop in Mexico.

Overall, Figure 5 shows that our model provides an accurate signal of when the

economy is likely to have experienced an actual crisis state (a peak crisis), or a period

of fragility and vulnerability (a near crisis), based on external empirical evidence,

without mistaking regular recessions or large currency and stock market movements

23The RR tally index ranges from 0 to 6, depending on whether a country-year observation is
deemed to be in one or more of the following 6 varieties of crisis, assigning the value of one if a
variety is present: Currency, Inflation, Stock Market, Sovereign Domestic or External Debt, and
Banking Crisis. We follow their methodology to extend the index to cover our full sample. In Figure
5, the index is normalized to range between 0 and 1. See Chapter 1 of Reinhart and Rogoff (2009)
for more details.

24The model has a harder time tracking the very prolonged crisis period signalled by the tally
index after the acute phase of the Debt crisis, and to a lesser extent also the post-Tequila Crisis
period. This is to be expected, however, as our model economy is not designed to capture debt
overhang or financial intermediation disruptions that drive the classification of RR between 1983
and 1989 and in the mid-1990s. Nonetheless, the model does very well at tracking the consequences
of the GFC.
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for financial crisis episodes. In the rest of this section, we will open up the model

black box and look at both simulated model dynamics around crises episodes and

drivers of sudden stop episodes.

Note here, before proceeding, that when we examine the model-simulated crisis

properties, as the household-firm making decisions in the model, we know in which

regime the economy is without sampling uncertainty. Therefore, when we simulate

the model, we do not need to express the binding regime state as a probabilistic

statement, as we did from the econometrician’s perspective in Figure 5. Near and

peak crises in the model simulation, therefore, are going to be redefined as follow: a

near crisis period is a quarter in which the economy is in the binding regime; a peak

crisis period, instead, is defined as a quarter in which (i) the economy is in the binding

regime (ii) output growth is negative by more than one standard deviation, and (iii)

the current account to output ratio reverts by more than one standard deviation.

Note also that, all simulations in this section are based on 10,0000 sample paths of

144 quarters as in our data sample, after a burn in period of 1,000 quarters.

When we simulate the model from the posterior mode, we find that it generates

peak crisis episodes of average duration of one quarter, consistent with the duration of

the episodes identified in Mexico data in Figure 5. In contrast, episodes of consecutive

near crisis periods have a varying length, ranging from 2-3 quarters to sequences

lasting longer than the two-years episodes estimated in the historical cases of Mexico.

So we now look at model dynamics around peak crisis episodes and near crisis episodes

lasting 8 quarters, like in the case of the Tequila crisis in Figure 5.

6.2 Simulated Peak Crisis Dynamics

Next, we look at the the dynamics of peak crises episodes through the lens of the

model. Figure 6 plots the median model-implied dynamics centered around peak

crisis as defined above (t = 0) for selected variables.25

The figure shows that the typical peak crisis episode is precipitated by a sharp

decline in productivity, an increase in the cost of intermediate inputs, combined with

an increase in the autonomous component of expenditure the persistent component

25We do not compare crisis dynamics to Mexican episodes in the data as we have already discussed
model fit, showing that that the estimated model tracks the data well during both cycles and crisis
periods alike–see Figure 4. Moreover, as we discuss below and highlight in Table 5, each of Mexico’s
crisis episodes exhibited distinct dynamics.
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Figure 6: Dynamics of Peak Crisis Episodes
(Log-level. t− 5 = 0)

(a) Technology (b) Import Prices (c) Expenditure

(d) Preference (e) Persist. Int. Rate (f) Temp. Int. Rate

(g) Output (h) Consumption (i) Investment

(j) TB/Y (k) EFPD (l) Pct. in st = 1

Notes: Model-implied peak crisis dynamics. See text for definition of crisis. Crises occur at t = 0.

Plotted dynamics in panels (a)-(k) are medians across all simulated crises episodes, in log-deviations

from value at t = −5; panel (l) shows percent of simulations in the binding regime each period.

of the country interest rate, which also rises abruptly in the quarter preceding the

event. During a peak crisis, output, consumption and investment collapse, and the

trade balance and the current account (not reported) revert, swinging abruptly from

a deficit to a surplus. Wages and the relative price of capital (also not reported)

plummet. The EFPD premium spikes, driven by the positive value of the borrowing

constraint multiplier (not reported).

Looking at the run up to and the recovery from peak crisis episodes, 5 quarter

before and 5 quarters after the event, we can see that the economy is in the biding

regime about 50 percent of the time (panel I). The share of sample draws with the
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economy in a binding regime also before the peak crisis episodes increases sharply

before t = 0, and persists for one quarters after the episode, hovering around 60 per-

cent throughout the recovery phase. In the year before the crisis, exogenous processes

are also moving together in a distinct manner: productivity is on a downward trend

and both components of the country interest rate are increasing. At the same time,

the price of intermediate inputs is falling, expenditure is increasing (arguably consis-

tent with a fiscal expansion), while impatience declines as evidenced by a negative

realization of the preference process. This cocktail of shocks materializes while the

borrowing cushion is already been exhausted (not reported), curtailing consumption

smoothing possibilities constraining supply, and keeping the share of samples with

pre-crisis periods in the binding regime around 50%.

After the peak crisis, the economy initially rebounds quickly, but the economic

environment remains precarious. The sequence of bad economic shocks persists after

the event: productivity remains depressed at a lower level than before the crisis peak;

the price of imports remains elevated; relative impatience continues; the persistent

component of the interest rate increases further; and only expenditure falls gradually

after the crisis peak. In the face these shocks, output, consumption, and investment

overshoots initially, but then settles at a slightly lower level than before the crisis

peak.

An important take-away from Figure 6 is that the typical peak crisis event that

the model generates is characterized by shocks that comove in a distinctively averse

manner, before, during and after the model identified peak sudden stop episode.

This result is in line with the insight from calibrated models of the business cycles

in emerging markets that can match the second moments of the data better when

the productivity shock is assumed to be negatively correlated with the interest rate

shocks.

6.3 Simulated Near Crisis Dynamics

We now turn to the simulated episodes of near crisis as those identified in Figure 5.

Figure 7 shows the model dynamics associated with near sudden stop episodes, as

well as 5 years (20 quarters) before the beginning of the episode, and 10 years (40

quarters) after the end of the event, setting the initial value of all variables to zero at

time -20. Given that that the historical episodes of near crisis identified in Figure 5 in
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the early 1980s and mid-1990s lasted about 8 quarters, we report results for episodes

that meet the near crisis definition, i.e., the economy is in the binding regime, for at

least 8 consecutive quarters.26

As in the case of peak crisis dynamics, Figure 7 shows that distinctive cocktails of

shocks drives the economy before, during and after the event. In the model, near crises

episodes are preceded by a ”boom” phase cauterized by accelerating productivity,

declining import prices and the persistent component of the interest rate, and mildly

declining patience. Only the expenditure shock does not seem to be contributing

significantly to the boom, up to the period immediately before the beginning of the

crisis episode. These external forces gradually stimulate the economy, with increasing

output, consumption, and investment. Notably, as in the case of the peak crises, the

economy is already in the binding regime in about a fifty percent of the episodes

before the beginning of the event.

The economy enters the binding regime at t = 0, after a sudden acceleration, with

the sudden stop episode starting right before the inception of the crisis. The econ-

omy then remains in the near crisis state at least through period t = 7 by definition.

During the near crisis episode, shocks to productivity, import prices, and the persis-

tent component of the interest rate process revert. However, expenditure continues

to increase sharply, despite the changed external environment. The constraint on

borrowing limits consumption smoothing and further curtail output supply through

the working capital constraint, causing output, consumption, and investment to drop

sharply. The trade-balance-to-output ratio, which during the boom phase was close

to zero, improves persistently after a sharp deterioration right before the beginning

of the crisis, and remains in surplus throughout the rest of the episode. The external

finance premium on debt (EFPD) also is elevated throughout the episode.

Even after the economy exits the near crisis event, economic activity continues to

decline relative to the initial value, despite a persistent contraction in the exogenous

component of expenditure, a falling interest rate, and relatively stable intermediate

input prices. Reflecting the persistence of the technology shock, productivity declines

throughout the post-crisis period. Reflecting the downward trend in productivity

and the persistently counteractive expenditure impulse, output, investment, and to a

26As we mentioned earlier near crisis episodes lasting at least 8 quarters are a very small fraction
of all binding episodes of at least 2 quarters. However, about 20 percent of the simulated samples
contain at least one such episode.
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Figure 7: Dynamics of Near Crisis Episodes
(Log-level, t− 5 = 0)

(a) Technology (b) Import Prices (c) Expenditure

(d) Preference (e) Persist. Int. Rate (f) Temp. Int. Rate

(g) Output (h) Consumption (i) Investment

(j) TB/Y (k) EFPD (l) Pct. in st = 1

Notes: Model-implied near crisis dynamics. Binding regime begins at t = 0 until at least t = 7.

Plotted dynamics in panels (a)-(k) are medians across all crises episodes, in log-levels wit t−20 = 0;

panel (l) plots the percent of simulated paths in the binding regime at each period t.

lesser extent consumption decline, and are is still below their initial value at t = −20

10 years after the end of the crisis, even though the economy is no longer in the

binding regime.

One important takeaway from Figure 7, therefore, is that our proposed speci-

fication of the occasionally binding collateral constraint can generate long lasting

boom-bust dynamics. Moreover, several features of these dynamics appear broadly

in line with empirical analyses of the long term consequences of financial crisis in

Mexico and other emerging markets (Cerra and Saxena, 2008).
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6.4 Drivers of Mexico’s Crisis History

As as we argued earlier, our estimated model fits well Mexico data (Figure 1, including

the peak and near crisis episodes identified in Figure 5. In this last section, therefore,

want to examine those historical episodes through the lens of the model, evaluating

the relative importance of different shocks driving the economy before, during and

after the following peak and near crises: the Debt Crisis of the early 1980s, the Tequila

Vrisis of 1994-1995, and the spillover on Mexico from the Global Financial Crisis that

originated in the United States in 2008-09.

To do so, we counterfactually recalculate the model likelihood, evaluated at the

posterior mode, turning one shock off at the time, while leaving all other shocks at

their estimated values, over particular sub-sample periods. We saw earlier that, in the

full sample, all shocks play a role in the model. Here, we compute the loss of model fit

as measured by the percent log-likelihood change when we turn one particular shock

in a given period off compare this statistic across shocks and time periods. We repeat

the analysis for all six structural shocks in the model, the three historical episodes of

peak crisis, the three episodes of near crisis, as well as two years before the beginning

of the near crisis event, and two years after the near crisis event.27

Table 5 reports the results. Consider first the Debt Crisis. As the Debt Crisis

happened right at the beginning of the sample period, we can only look at the two

quarters before the beginning of this near crisis episode. The counterfactual analysis

suggests that in the immediate run up to the Debt Crisis, the most important shocks

were imported intermediate input prices and interest rate shocks (both temporary and

persistent components). The near crisis episode appears driven by the expenditure

shock, and to a lesser extent the technology shock. We saw earlier that our estimated

model identifies the peak of the debt crisis in 1983:Q1, lasting only one quarter. The

counterfactual results in Table 5 suggest that the preference shock and the technology

shock were the most important drivers, but also interest rate shocks had a role.

Technology and expenditure shocks drive the post-crisis period.

Next, consider the Tequila Crisis. Our estimated model identified a peak crisis

lasting for two quarters, in 1995:Q1-Q2. According to our counterfactual results,

during the period before the near crisis episode, the most important drivers were the

27Because the Debt Crisis and the spillover from the GFC are at the beginning and the end of the
sample period, we cannot use the same time-window used in the analysis of the near crisis model
generated dynamics.
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Table 5: Anatomy of Mexico’s Historical Crises

Imp. Trans Persist
Time Period TFP Exp. Prices Pref Int Rt. Int Rt.
1983 Debt Crisis
Two Quarters Prior (81Q1:Q2) 0.4 0.4 0.7 -3.2 0.9 0.8
Near Crisis (81:Q3-83:Q2) 0.4 5.3 -2.0 -2.8 0.0 -0.8
Peak Crisis (83:Q1) 1.1 -2.3 -0.8 1.5 0.4 0.2
Two-years After (83:Q3-85:Q2) 0.8 1.0 -0.6 0.2 -0.7 -0.7

1995 Tequila Crisis
Two-years Prior (92:Q1-93:Q4) -0.1 -1.0 0.4 0.7 0.1 -0.1
Near Crisis (94:Q1-96:Q1). -2.2 -0.7 0.5 1.3 0.2 0.9
Peak Crisis (95:Q1-Q2). -0.7 -0.8 -0.2 1.1 0.1 0.4
Two-years After (96:Q2-98Q1) -0.1 -0.2 0.2 1.1 -0.6 -0.4

2009 Global Fin. Crisis
Two-years Prior (06:Q4-08:Q3) -0.7 2.1 -0.7 -0.2 -0.7 0.2
Near Crisis (08:Q4-09:Q3). 0.2 -1.2 0.3 0.5 0.2 0.0
Peak Crisis (09:Q1-Q2) -0.4 -1.2 1.2 0.3 0.2 -0.1
Two-years After (09:Q4-11:Q3) -0.4 -1.1 0.4 0.8 0.1 0.1

Note: The table shows the relative importance of each shocks during different periods, compared to

their importance over the full sample, in percentage point differences. For example, a value of +1

indicates the shock had 1 percentage point greater relative importance than its importance over the

full sample. Bold fonts highlight the most important shocks in each period according to this metric.

See Appendix H for details. Prior period for 1983 Debt Crisis limited by sample length.

preference shock and the imported input price shock. The importance of these two

shocks increases during the near crisis period, even though the shock to the persistent

component of the interest rate also becomes more important. During the peak of the

crisis, the importance of preference and interest rate shocks declines while the weight

in the likelihood of the technology shocks increases. In the post crisis period, the

preference shock continues to stand out, while the importance of shocks to both

components of the interest rate decline.

Lastly, let us look at the GFC episode which is estimated to peak in 2009:Q1-Q2.

The counterfactual likelihood analysis suggests that, before the crisis, expenditure

and to a lesser extent a shock to the persistent component of the interest rate were

the most important drivers. However, all other shocks become more important during

the near crisis period. At the peak of the crisis, the imported price shock becomes
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more important, the preference shock’s role declines, while the temporary interest

rate shock continues to play role. In the aftermath of the GFC, the importance of

the import price shock and temporary interest rate shock diminishes, while that of

preference and persistent interest shocks increases.

7 Conclusions

In this paper we propose a new flexible and scaleable approach to specifying and

solving Dynamic Stochastic General Equilibrium (DSGE) models with occasionally

binding collateral constraints. We apply this new approach to the analysis of a par-

ticular type of crisis, the so-called sudden stop in capital flows that afflicted many

emerging market economies, by estimating a medium-scale workhorse model with

likelihood based methods.

The critical step in our approach is to specify the occasionally binding nature

of the constraint stochastically so that the transition from the unconstrained to the

constrained state of the world, and vice versa, can be mapped into an endogenous

regime-switching model with transition probabilities depending on the state variables

of the model and the collateral multiplier. The perturbation method that we develop

to solve the endogenous regime-switching model is suitable for the application of

standard non-linear Bayesian estimation procedures. This permits estimating the

model using full information methods, allowing us to obtain estimates of critical model

parameters and conduct likelihood-based inference and counterfactual experiments.

We apply the framework that we propose to the anatomy of Mexico’s business

cycle and crisis episodes since 1981, finding that the model fits the data well, critical

parameter estimates differ from values previously used in the literature, that differ-

ent shocks matter for different variables and phases of financial crisis dynamics. In

particular, in the model simulations, we find that a specific cocktail of shocks typi-

cally drives the economy into the crisis rather than a coincidence of large shocks; this

result helps explain why calibrated models of emerging market cycles perform better

assuming that productivity and interest shocks are negatively correlated. Finally, we

document that our estimated model identifies sudden stops that are longer lasting and

more in line with narratives of Mexico’s history of financial crises than those typically

obtained with traditional inequality specifications of the collateral constraint.

We regard the estimation of larger models–including those with nominal or labor
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frictions and government intervention, those with permanent and temporary produc-

tivity shocks over longer sample periods, and those with financial intermediation or

equilibrium default–as important areas of future research.

References

Adam, K. and R. M. Billi (2006). Optimal Monetary Policy under Commitment
with a Zero Bound on Nominal Interest Rates. Journal of Money, Credit and
Banking 38 (7), 1877–1905.

Adam, K. and R. M. Billi (2007). Discretionary Monetary Policy and the Zero Lower
Bound on Nominal Interest Rates. Journal of Monetary Economics 54 (3), 728–752.

Aguiar, M. and G. Gopinath (2007). Emerging Market Business Cycles: The Cycle
Is the Trend. Journal of Political Economy 115, 69–102.

Alpanda, S. and A. Ueberfeldt (2016). Should Monetary Policy Lean Against Housing
Market Booms? Staff Working Papers 16-19, Bank of Canada.

Andreasen, M. M., J. Fernandez-Villaverde, and J. F. Rubio-Ramirez (2018). The
Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical
Applications. Review of Economic Studies 85 (1), 1–49.

Aportela Rodriguez, F., J. A. A. Ituarte, and Y. C. Aguayo (2001). Comportamiento
Histrico de Las Tasas de Inters Reales en Mxico: 1951-2001. Documento de Inves-
tigacin (Working Paper) No. 2001-0, Direccin General de Investigacin Econmica,
Banco de Mexico.

Aruoba, B., P. Cuba-Borda, and F. Schorfheide (2018). Macroeconomic Dynamics
Near the ZLB: A Tale of Two Countries. Review of Economic Studies 85 (1), 87–
118.

Aruoba, S. B., J. Fernandez-Villaverde, and J. F. Rubio-Ramirez (2006). Compar-
ing Solution Methods for Dynamic Equilibrium Economies. Journal of Economic
Dynamics and Control 30 (12), 2477–2508.

Ates, S. and F. Saffie (2016). Fewer but Better: Sudden Stops, Firm Entry, and Finan-
cial Selection. International Finance Discussion Papers 1187, Board of Governors
of the Federal Reserve System (U.S.).

Atkinson, T., A. W. Richter, and N. Throckmorton (2018). The Zero Lower Bound
and Estimation Accuracy. Working Papers 1804, Federal Reserve Bank of Dallas.

Barthlemy, J. and M. Marx (2017). Solving Endogenous Regime Switching Models.
Journal of Economic Dynamics and Control 77 (C), 1–25.

45



Benigno, G., H. Chen, C. Otrok, A. Rebucci, and E. Young (2013). Financial Crises
and Macro-Prudential Policies. Journal of International Economics 89 (2), 453–
470.

Benigno, G., H. Chen, C. Otrok, A. Rebucci, and E. R. Young (2016). Optimal Capital
Controls and Real Exchange Rate Policies: A Pecuniary Externality Perspective.
Journal of Monetary Economics 84 (C), 147–165.

Bi, H. and N. Traum (2014). Estimating Fiscal Limits: The Case Of Greece. Journal
of Applied Econometrics 29 (7), 1053–1072.

Bianchi, F. (2013). Regime Switches, Agents Beliefs, and Post-World War II U.S.
Macroeconomic Dynamics. Review of Economic Studies 80 (2), 463–490.

Bianchi, F. and C. Ilut (2017). Monetary/Fiscal Policy Mix and Agents’ Beliefs.
Review of Economic Dynamics 26, 113–139.

Bianchi, F., C. Ilut, and M. Schneider (2018). Uncertainty Shocks, Asset Supply and
Pricing over the Business Cycle. Review of Economic Studies 85 (2), 810–854.

Bianchi, J. and E. G. Mendoza (2018). Optimal Time-Consistent Macroprudential
Policy. Journal of Political Economy 126 (2), 588–634.

Binning, A. and J. Maih (2015). Sigma Point Filters for Dynamic Nonlinear Regime
Switching Models. Working Paper 2015/10, Norges Bank.

Binning, A. and J. Maih (2017). Modelling Occasionally Binding Constraints Using
Regime-Switching. Working Paper 2017/23, Norges Bank.

Bocola, L. (2016). The Pass-Through of Sovereign Risk. Journal of Political Econ-
omy 124 (4), 879–926.

Calvo, G. A., A. Izquierdo, and E. Talvi (2006). Sudden Stops and Phoenix Miracles
in Emerging Markets. American Economic Review 96 (2), 405–410.

Campello, M., J. R. Graham, and C. R. Harvey (2010). The Real Effects of Fi-
nancial Constraints: Evidence from a Financial Crisis. Journal of Financial Eco-
nomics 97 (3), 470–487.

Cerra, V. and S. C. Saxena (2008). Growth Dynamics: The Myth of Economic
Recovery. American Economic Review 98 (1), 439457.

Chodorow-Reich, G. and A. Falato (2017). The Loan Covenant Channel: How Bank
Health Transmits to the Real Economy. Working Papers 23879, NBER.

Davig, T. and E. Leeper (2007). Generalizing the Taylor Principle. American Eco-
nomic Review 97 (3), 607–635.

46



Davig, T. and E. M. Leeper (2008). Endogenous Monetary Policy Regime Change.
In NBER International Seminar on Macroeconomics 2006, NBER Chapters, pp.
345–391. National Bureau of Economic Research, Inc.

Davig, T., E. M. Leeper, and T. B. Walker (2010). “Unfunded Liabilities” and
Uncertain Fiscal Financing. Journal of Monetary Economics 57 (5), 600–619.

Del Negro, M. and F. Schorfheide (2008). Forming Priors for DSGE Models (and
how it Affects the Assessment of Nominal Rigidities). Journal of Monetary Eco-
nomics 55 (7), 1191–1208.

Farmer, R., D. Waggoner, and T. Zha (2011). Minimal State Variable Solutions to
Markov-Switching Rational Expectations Models. Journal of Economic Dynamics
and Control 35 (12), 2150–2166.

Fernandez, A. and A. Gulan (2015). Interest Rates, Leverage, and Business Cycles
in Emerging Economies: The Role of Financial Frictions. American Economic
Journal: Macroeconomics 7 (3), 153–188.

Fernandez-Villaverde, J., P. Guerron-Quintana, J. Rubio-Ramirez, and M. Uribe
(2011). Risk Matters: The Real Effects of Volatility Shocks. American Economic
Review 101 (6), 2530–61.

Fernandez-Villaverde, J., P. Guerron-Quintana, and J. F. Rubio-Ramirez (2015). Es-
timating Dynamic Equilibrium Models with Stochastic Volatility. Journal of Econo-
metrics 185 (1), 216–229.

Fernandez-Villaverde, J. and J. F. Rubio-Ramirez (2007). Estimating Macroeconomic
Models: A Likelihood Approach. Review of Economic Studies 74 (4), 1059–1087.

Foerster, A. (2015). Financial Crises, Unconventional Monetary Policy Exit Strate-
gies, and Agents Expectations. Journal of Monetary Economics 76 (C), 191–207.

Foerster, A., J. F. Rubio-Ramirez, D. F. Waggoner, and T. Zha (2016). Perturbation
Methods for Markov-switching Dynamic Stochastic General Equilibrium Models.
Quantitative Economics 7 (2), 637–669.

Gabriel, G. (2008). Hechos estilizados del ciclo economico en mexico. Working Paper
2008-14, Banco de Mexico.

Garcia-Cicco, J., R. Pancrazi, and M. Uribe (2010). Real Business Cycles in Emerging
Countries? American Economic Review 100 (5), 2510–2531.

Gertler, M. and P. Karadi (2011). A Model of Unconventional Monetary Policy.
Journal of Monetary Economics 58 (1), 17–34.

47



Gertler, M. and N. Kiyotaki (2015). Banking, Liquidity, and Bank Runs in an Infinite
Horizon Economy. American Economic Review 105 (7), 2011–2043.

Greenwald, D. (2019). Firm Debt Covenants and the Macroeconomy: The Interest
Coverage Channel. Working Paper 5909-19, MIT Sloan.

Guerrieri, L. and M. Iacoviello (2015). OccBin: A Toolkit for Solving Dynamic
Models with Occasionally Binding Constraints Easily. Journal of Monetary Eco-
nomics 70 (C), 22–38.

Gust, C., E. Herbst, D. Lopez-Salido, and M. Smith (2017). The Empirical Impli-
cations of the Interest-Rate Lower Bound. American Economic Review 107 (7),
1971–2006.

Iacoviello, M. (2005). House Prices, Borrowing Constraints, and Monetary Policy in
the Business Cycle. American Economic Review 95 (3), 739–764.

Ivashina, V. and D. Scharfstein (2010). Bank Lending During the Financial Crisis of
2008. Journal of Financial Economics 97 (3), 319–338.

Jeanne, O. and A. Korinek (2010). Managing Credit Booms and Busts: A Pigouvian
Taxation Approach. Working Papers 16377, NBER.

Jermann, U. and V. Quadrini (2012). Macroeconomic Effects of Financial Shocks.
American Economic Review 102 (1), 238–271.

Jorda, O., M. Schularick, and A. M. Taylor (2013). When Credit Bites Back: Lever-
age, Business Cycles, and Crises. Journal of Money, Credit and Banking 45 (S2),
3–28.

Julier, S. J. and J. K. Uhlmann (1999). A New Extension of the Kalman Filter to
Nonlinear Systems. In Proc. SPIE, Volume 3068, pp. 182–193.

Kim, C.-J. and C. R. Nelson (1999). State-Space Models with Regime Switching:
Classical and Gibbs-Sampling Approaches with Applications, Volume 1. The MIT
Press.

Kiyotaki, N. and J. Moore (1997). Credit Cycles. Journal of Political Econ-
omy 105 (2), 211–248.

Kumhof, M., R. Rancire, and P. Winant (2015). Inequality, Leverage, and Crises.
American Economic Review 105 (3), 1217–1245.

Lind, N. (2014). Regime-Switching Perturbation for Non-Linear Equilibrium Models.
Working Paper.

48



Liu, Z., P. Wang, and T. Zha (2013). Land-Price Dynamics and Macroeconomic
Fluctuations. Econometrica 81 (3), 1147–1184.

Maih, J. (2015). Efficient Perturbation Methods for Solving Regime-Switching DSGE
Models. Working Paper 2015/01, Norges Bank.

Mendoza, E. G. (1991). Real Business Cycles in a Small Open Economy. American
Economic Review 81 (4), 797–818.

Mendoza, E. G. (2010). Sudden Stops, Financial Crises, and Leverage. American
Economic Review 100 (5), 1941–1966.

Neumeyer, P. A. and F. Perri (2005). Business Cycles in Emerging Economies: the
Role of Interest Rates. Journal of Monetary Economics 52 (2), 345–380.

Otrok, C. (2001). On Measuring the Welfare Cost of Business Cycles. Journal of
Monetary Economics 47 (1), 61–92.

Reinhart, C. M. and K. S. Rogoff (2009). This Time is Different: Eight Centuries of
Financial Folly. Princeton University Press.

Schmitt-Grohe, S. and M. Uribe (2003). Closing Small Open Economy Models. Jour-
nal of International Economics 61 (1), 163–185.

Schmitt-Grohe, S. and M. Uribe (2018). How Important are Terms of Trade Shocks?
International Economic Review 59 (1), 85–111.

Schorfheide, F. (2000). Loss Function-based Evaluation of DSGE Models. Journal of
Applied Econometrics 15 (6), 645–670.

Smets, R. and F. Wouters (2007). Shocks and Frictions in US Business Cycles: a
Bayesian DSGE Approach. American Economic Review 97 (3), 586–606.

Uribe, M. and V. Z. Yue (2006). Country Spreads and Emerging Countries: Who
Drives Whom? Journal of International Economics 69 (1), 6–36.

49



Appendix A Model and Competitive Equilibrium

Definition

This Appendix derives the model’s equilibrium conditions and defines a competitive

equilibrium.

A.1 Derivation of Equilibrium Conditions

The household-firm maximizes the utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (A.1)

subject to

Ct+It = AtK
η
t−1H

α
t V

1−α−η
t −PtVt−φrt (WtHt + PtVt)−Et−

1

(1 + rt)
Bt+Bt−1 (A.2)

where gross investment follows

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
(A.3)

When binding, the collateral constraint is given by

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt (A.4)

The first-order conditions of this problem are the following:

dt

(
Ct −

Hω
t

ω

)−ρ
= µt (A.5)

(1− α− η)AtK
η
t−1H

α
t V
−α−η
t = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
(A.6)

αAtK
η
t−1H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+Hω−1

t (A.7)
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µt = λt + β (1 + rt)Etµt+1 (A.8)

Etµt+1β

 1− δ +

(
ι
2

(
Kt+1

Kt

)2

− ι
2

)
+ηAt+1K

η−1
t Hα

t+1V
1−η−α
t+1

 = µt

(
1− ι+ ι

(
Kt

Kt−1

))
− λtκqt (A.9)

Market optimal prices for capital and labor are

qt = 1 + ι

(
Kt −Kt−1

Kt−1

)
(A.10)

Wt = Hω−1
t (A.11)

The borrowing cushion is given by the amount of borrowing over the debt limit

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κqtKt (A.12)

and the regime-switching slackness condition is given by

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) = (1− ϕ (st))λss + (1− ν (st)) (λt − λss) (A.13)

where λt is the multiplier on the international borrowing constraint. The interest rate

has a debt elastic component

rt = r∗t + ψr

(
eB̄−Bt − 1

)
+ σrεr,t (A.14)

The exogenous processes are given by

logAt = ρA logAt−1 + σAεA,t (A.15)

logEt = (1− ρE) logE∗ + ρE logEt−1 + σEεE,t (A.16)

logPt = (1− ρP ) logP ∗ + ρP logPt−1 + σP εP,t (A.17)
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log dt = ρd log dt−1 + σdεd,t (A.18)

r∗t = (1− ρr∗) r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t (A.19)

A.2 Equilibrium Conditions

A competitive equilibrium of our economy is a sequence of quantities {Kt, Bt, Ct,

Ht, Vt, It, At, Et, B
∗
t } and prices {Pt, r∗t , rt, qt, wt, µt, λt} that, given the 5 exoge-

nous processes (A.15)-(A.19), satisfy the first-order conditions for the representative

household-firm (A.5)-(A.9), the market price equations (A.10)-(A.11), the market

clearing conditions (A.2)-(A.3), the debt cushion definition (A.12), regime-switching

slackness condition (A.13), and an equation for the interest rate (A.14).

In the paper, we also simulate a number of auxiliary variables as

GDP: Yt = AtK
η
t−1H

α
t V

1−α−η
t − PtVt (A.20)

Debt-to-GDP Ratio: Φb
t =

Bt

Yt
(A.21)

Current Account-to-GDP Ratio: Φca
t =

Bt −Bt−1

Yt
(A.22)

Trade Balance-to-GDP Ratio: Φtb
t =

Yt − Et − Ct − It
Yt

(A.23)

External Fin Premium on Debt: EFPDt =
λt

βEtµt+1

. (A.24)

Appendix B Details of the Perturbation Solution

Method

This Appendix provides details about two aspects of the solution method: (1) the

definition of, and solution for, the steady state of the endogenous regime-switching

economy; and (2) the perturbation method that generates second order Taylor ex-

pansions to the solution of the economy around the steady state.
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B.1 Regime Switching Equilibrium

The 23 equilibrium conditions are written as

Etf (yt+1,yt,xt,xt−1, χεt+1, εt, θt+1, θt) = 0. (B.1)

We have 7 predetermined variables

xt−1 =
[
Kt−1, Bt−1, At−1, Pt−1, Et−1, dt−1, r

∗
t−1

]
(B.2)

and 16 non-predetermined variables

yt =
[
Ct, Ht, Vt, It, kt, rt, qt,Wt, µt, λt, B

∗
t , Yt,Φ

b
t ,Φ

ca
t ,Φ

tb
t , EFPDt

]
(B.3)

with 6 exogenous shocks

εt = [εA,t, εE,t, εP,t, εd,t, εr,t, εr∗,t] (B.4)

and 2 switching variables

θt = [ϕ (st) , ν (st)] . (B.5)

These variables are partitioned into some that affect the steady state, θ1,t, and some

that do not, θ2,t. The partition in this case is

θ1,t = [ϕ (st)] θ2,t = [ν (st)] (B.6)

For solving the model, the functional forms are

θ1,t+1 = θ̄1 + χθ̂1 (st+1) , θ1,t = θ̄1 + χθ̂1 (st) (B.7)

θ2,t+1 = θ2 (st+1) , θ2,t = θ2 (st) (B.8)

xt = hst (xt−1, εt, χ) (B.9)

yt = gst (xt−1, εt, χ) , yt+1 = gst+1 (xt, χεt+1, χ) (B.10)
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and

Pst,st+1,t = πst,st+1 (yt) . (B.11)

Using these in the equilibrium conditions and being more explicit about the expecta-

tion operator, given (xt−1, εt, χ) and st, then

Fst (xt−1, εt, χ) =

∫ 1∑
s′=0

πst,s′ (gst (xt−1, εt, χ)) f


gst+1 (hst (xt−1, εt, χ) , χε′, χ) ,

gst (xt−1, εt, χ) ,

hst (xt−1, εt, χ) ,

xt−1, χε
′, εt,

θ̄ + χθ̂ (s′) , θ̄ + χθ̂ (st)

 dµε′

(B.12)

Stacking these conditions for each regime produces

F (xt−1, εt, χ) =

[
Fst=0 (xt−1, εt, χ)

Fst=1 (xt−1, εt, χ)

]
= 0 (B.13)

B.2 Steady State Definition and Solution

The model has two features that make it challenging to define a steady state. First, as

is common in a regime-switching framework, some auxiliary or structural parameters

may be switching. In the case of our application, there is only one auxiliary switching

parameter that affects the steady state, ϕ (st). Nonetheless, in principle, one could

allow for regime switching also for the parameters of the exogenous processes, a∗ (st)

and p∗ (st), or the structural parameter κ∗ (st), which affect the level of the economy

directly, and will thus matter for steady state calculations.28 Solution methods such

as those proposed by Foerster et al. (2016) define the steady state by using the ergodic

means of these parameters across regimes. We set εt = 0 and χ = 0, which implies a

steady state given by

f
(
yss,yss,xss,xss, 0, 0, θ̄1, θ2(s′), θ̄1, θ2(s)

)
= 0 (B.14)

for all s′, s.

28As is well known, over finite periods of time, it is statistically difficult to distinguish between
unit root processes and processes with structural break or regime changes. Allowing for regime
changes in the process for At, therefore, would be a way to accommodate permanent productivity
shocks as in Aguiar and Gopinath (2007).
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In our case, the transition matrix P is endogenous, making the use of the ergodic

distribution problematic, since it depends on economic variables that in turn depend

on the ergodic means. The steady state solution method that we propose proceeds in

two steps. In the first step, we assume the steady state transition matrix is known and

solve for the steady state prices and quantities. In the second step, we use the steady

state values of the borrowing cushion B∗ss and multiplier λss from Step 1 to update

the steady state transition matrix. We iterate these two steps until convergence.

Step 1: Solve by Using a Steady State Transition Matrix. First, assume that

the steady state transition matrix at iteration i, P
(i)
ss , is known. Next, let ξ = [ξ0, ξ1]

denote the ergodic vector of P
(i)
ss . Then, as explained in the paper, define the ergodic

means of the switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) .

The steady state of the economy depends on these ergodic means, we can partially

solve for some of the steady state directly

Ass = 1, dss = 1, Ess = E∗, Pss = P ∗, qss = 1, r∗ss = r̄∗ (B.15)

Suppose we know rss. Then

Ωv ≡
AssK

η
ssH

α
ssV

1−α−η
ss

PssVss
=

1 + φrss + φ (1 + rss) (1− β (1 + rss))

1− α− η
(B.16)

Ωh ≡
AssK

η
ssH

α
ssV

1−α−η
ss

WssHss

=
1 + φ (rss + (1 + rss) (1− β (1 + rss)))

α
(B.17)

Ωk ≡
AssK

η
ssH

α
ssV

1−α−η
ss

Kss

=
1

η

(
1− κ (1− β (1 + rss))

β
− 1 + δ

)
(B.18)

Hss =

(
Ass

Ωη
kΩ

α
h (PssΩv)

1−α−η

) 1
α(ω−1)

(B.19)

Vss ≡
Ωh

PssΩv

Hω
ss (B.20)
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Kss =
Ωh

Ωk

Hω
ss (B.21)

Yss = ΩhH
ω
ss − PssVss (B.22)

Wss = Hω−1
ss (B.23)

Iss = δKss (B.24)

kss = Kss (B.25)

Bss = B̄ − log

(
1 +

rss − r∗

ψr

)
(B.26)

Css = Yss − φrss (WssHss + PssVss)− Ess +Bss

(
1− 1

(1 + rss)

)
− Iss (B.27)

µss =

(
Css −

Hω
ss

ω

)−ρ
(B.28)

λss = (1− β (1 + rss))µss (B.29)

B∗ss =
1

(1 + rss)
Bss − φ (1 + rss) (WssHss + PssVss) + κKss (B.30)

Φb
ss =

Bss

Yss
(B.31)

Φca
ss = 0 (B.32)

Φtb
ss =

Yss − Ess − Css − Iss
Yss

(B.33)

56



EFPDss =
λss
βµss

(B.34)

and then rss solves

ϕ̄B∗ss = (1− ϕ̄)λss (B.35)

Step 2: Update the Transition Matrix. Step 1 yields the variables B∗ss and λss,

and hence have a new value of the transition matrix for iteration i+ 1:

P (i+1)
ss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

[
1− exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ0B∗ss)

1+exp(−γ0B∗ss)
exp(−γ1λss)

1+exp(−γ1λss) 1− exp(−γ1λss)
1+exp(−γ1λss)

]
, (B.36)

which can be checked against the guess in Step 1. Continue this iterative procedure

until ∥∥P (i+1)
ss − P (i)

ss

∥∥ < tolerance,

where we pick a tolerance of 10−10.

B.3 Generating Approximations

To compute a second order approximation to the endogenous regime-switching model

solution, we largely follow Foerster et al. (2016), but adapted to the case with en-

dogenous probabilities.

We take the stacked equilibrium conditions F (xt−1, εt, χ), and differentiate with

respect to (xt−1, εt, χ). In general regime-switching models, the first-order derivative

with respect to xt−1 produces a complicated polynomial system denoted

Fx (xss,0, 0) = 0. (B.37)

Often this system needs to be solved via Gröbner bases, which finds all possible

solutions in order to check them for stability. In our case, with endogenous probabil-

ities, the standard stability checks fail, so we will focus on finding a single solution

and ignore the possibility of indeterminacy, a common simplification in the regime-

switching literature with and without endogenous switching (e.g. Farmer et al., 2011;

Foerster, 2015; Maih, 2015; Lind, 2014). In the literature that computes global solu-

tions to non-regime switching occasionally binding constraint models (e.g. Benigno
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et al. (2013), Mendoza (2010)) there are no proofs of uniqueness, and the focus typi-

cally is also on computing a solution checking robustness to initial conditions. To find

a solution to our model, we guess at a set of policy functions for regime st = 1, which

collapses the equilibrium conditions Fx (xss,0, 0; st = 0) into a fixed-regime eigenvalue

problem, and solve for the policy functions for st = 0. Then, using this initial solu-

tion as guess, we solve for regime st = 0 under the fixed-regime eigenvalue problem,

and iterate on this procedure to convergence. After solving the iterative eigenvalue

problems, the other systems to solve are

Fε (xss,0, 0) = 0 (B.38)

Fχ (xss,0, 0) = 0 (B.39)

and second order systems of the form (can apply equality of cross-partials)

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} . (B.40)

Recall the decision rules have the form

xt = hst (xt−1, εt, χ) (B.41)

yt = gst (xt−1, εt, χ) (B.42)

and so the second-order approximation takes the form

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (B.43)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (B.44)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.
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B.4 Proposition 1: Irrelevance of Endogenous Switching in

First-Order Solution

To show Proposition 1, we can take the first-order derivatives of (B.13) with respect

to its arguments, evaluated at steady state. This differentiation produces

Fx,st (xss,0, 0) =

∑
s′ πst,s′,y (yss) gx,stfss (s′, st)

+
∑

s′ πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hx,st + fyt (s′, st) gx,st

+fxt (s′, st)hx,st + fxt−1 (s′, st)

]
(B.45)

Fε,st (xss,0, 0) =

∑
s′ πst,s′,y (yss) gε,stfss (s′, st)

+
∑

s′ πst,s′ (yss)

[
fyt+1 (s′, st) gx,s′hε,st + fyt (s′, st) gε,st

+fxt (s′, st)hε,st + fεt (s′, st)

]
(B.46)

and

Fχ,st (xss,0, 0) =

∑
s′ πst,s′,y (yss) gχ,stfss (s′, st)

+
∑

s′ πst,s′ (yss)

 fyt+1 (s′, st) gx,s′hχ,st + fyt (s′, st) gχ,st

+fxt (s′, st)hχ,st

+fθt+1 (s′, st) θ̂ (st+1) + fθt (s′, st) θ̂ (st)

 .

(B.47)

Note, by the definition of a steady state, fss (s′, st) = 0, and so the first term of

each of these expressions equals zero. Hence, we are left with the formulas for a

constant probability model from Foerster et al. (2016), with the probabilities given

by Pss = πst,s′ (yss) as stated in the Proposition.

Figure B.1 highlights the implications of the Proposition by showing how the or-

der of approximation matters for the response of one variable, the debt-to-output

ratio, to different shocks. The figure shows each of the six shocks we consider, and

conditions on remaining in the non-binding regime. While all the shocks have differ-

ences between the first- and second-order impulse responses, the magnitude of that

difference depends on the shock.
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Figure B.1: Comparison of Impulse Responses of Debt-to-Output Ratio
in the Non-Binding Regime

Note: Shows impulse responses to a one-standard deviation shock for first- and second-order

approximations, conditional on starting and staying in the non-binding regime. Units are

log-deviations from the pre-shock period, defined as the regime-specific ergodic mean.

Appendix C Accuracy of the Solution

We assess accuracy by checking the Euler equation error, where

EEEt = 1− λt
µt
− β (1 + rt)Et

µt+1

µt
(C.1)

and the policy functions can be denoted by

λt = λst (xt−1, εt) , µt = µst (xt−1, εt) , rt = rst (xt−1, εt) , B∗t = B∗st (xt−1, εt)

(C.2)
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Table C.1: Comparing Solution Accuracy: Global vs. Perturbation Meth-
ods

Inequality Endo Switch
Comparison Constraint Global Perturb.
Standard Deviations

GDP 2.38 2.46 2.28
Hours 1.36 1.46 1.33

Autocorrelations
GDP 0.94 0.94 0.94
Hours 0.77 0.76 0.77

Euler Eqn Errors (log10) -10.47 -3.59 -3.41

and so, given (xt−1, εt)

EEEst (xt−1, εt) = 1− λst (xt−1, εt)

µst (xt−1, εt)
− β (1 + rst (xt−1, εt))

µst (xt−1, εt)
(C.3)

×
1∑

st+1=0

pst,t+1 (xt−1, εt)

∫
Rε
µst+1 (xt, εt+1)µ (εt+1) dεt+1.(C.4)

We simulate the model for 10,000 periods, after a 1,000 period burn-in to get sequences

of st and (xt−1, εt). For each period in the simulation, we draw 10,000 values of εt+1 to

compute the integral. We then average the absolute values across the 10,000 periods,

and report the log base-10 of this average.

To compare the our solution method with alternatives such as global projec-

tions we solved a smaller-scale occasionally bonding constraint model, (Jermann and

Quadrini, 2012) using three different methods. First, we replicate the results in that

paper solving the original inequality constraint version of the model with a global

projection method. Second, we solve the endogenous regime switching formulation

of that model via global projection methods. Third, we solve the endogenous regime

switching formulation with our proposed perturbation method.

Table C.1 reports some results and highlights that these three approaches have

nearly identical implications for the standard deviations and autocorrelations of GDP

and hours, which are two key variables in that model. Further, the Euler equation

errors all achieve reasonable levels of accuracy. The traditional inequality constraint

had the smallest Euler equation errors. However, the endogenous switching model

solved globally and the perturbation solution returned accuracy values of -3.6 and -
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3.4 in log-10 points, respectively.29 The latter two numbers suggest an approximation

error of $2.60 and $3.90 per $10,000 of consumption. The higher accuracy comes at

a significant computational cost, as the global methods solve in minutes, while the

perturbation solution takes less than a second. Moreover, we note here that when

Binning and Maih (2017) investigated the properties of our framework with simulated

data from other structural model formulations, they found a high degree of accuracy.

Appendix D Estimation Procedure

D.1 State Space

For likelihood estimation, the state space representation is given as follows

Xt = Hst (Xt−1, εt) (D.1)

Yt = Gst (Xt,Ut) (D.2)

Recall the second-order approximation takes the form

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (D.3)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (D.4)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

Therefore, we can define the state variable as

Xt =
[

x′t x′t−1 y′t y′t−1 εt

]′
. (D.5)

The nonlinear transition equations

Xt = Hst (Xt−1, εt) (D.6)

29Note that this value can be driven lower by optimizing the number of gridpoints in our global
solution algorithm.
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are given by 
xt

xt−1

yt

yt−1

εt

 =


xss +H

(1)
st St + 1

2
H

(2)
st (St ⊗ St)

xt−1

yss +G
(1)
st St + 1

2
G

(2)
st (St ⊗ St)

yt−1

εt

 (D.7)

The observation equation

Yt = Gst (Xt,Ut) (D.8)

is given by 

∆yt

∆ct

∆it

rt

∆Bt/Yt

∆Pt


= D


xt

xt−1

yt

yt−1

εt

+ Ut (D.9)

where D denotes a selection matrix of the form

∆yt

∆ct

∆it

rt

∆Bt/Yt

∆Pt


=



0 0 1[yt] −1[yt] 0

0 0 1[ct] −1[ct] 0

0 0 1[it] −1[it] 0

0 0 1[rt] 0 0

0 0 1[Φcat ] 0 0

1[Pt] −1[Pt] 0 0 0




xt

xt−1

yt

yt−1

εt

+ Ut. (D.10)

D.2 Filtering

The Unscented Kalman Filter (UKF) uses the unscented transformation to calculate

the state mean and covariance matrix. It propagates the deterministically chosen

sigma-points through nonlinear functions. The transformed points are used to calcu-

late the mean and covariance matrix. As Julier and Uhlmann (1999) note, the key

approximation taken to develop the UKF is that the prediction density and the fil-

tering density are both Gaussian. The filtering and smoothing largely follow Binning

and Maih (2015).

The filter starts by combining the state vector and exogenous disturbances into
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a single vector Xa
t−1 = [Xt−1, εt]

′ with the following mean and covariance matrix

conditional on Y1:t−1 and regime st−1:

Xa
t−1(st−1) =

[
Xt−1|t−1(st−1)

0ε

]
(D.11)

P a
t−1(st−1) =

[
P x
t−1|t−1(st−1) 0

0 I

]
. (D.12)

The sigma-points Xa
i,t−1(st−1) that consist of the sigma-points for state variables

Xx
i,t−1(st−1) and the sigma-points for exogenous shocks Xε

i,t−1(st−1) are chosen as fol-

lows:

Xa
0,t−1(st−1) = Xa

t−1(st−1) (D.13)

Xa
0,t−1(st−1) = Xa

t−1(st−1) (D.14)

Xa
i,t−1(st−1) = Xa

t−1(st−1) + (h
√
P a
t−1(st−1))i for i = 1 . . . L (D.15)

Xa
i,t−1(st−1) = Xa

t−1(st−1)− (h
√
P a
t−1(st−1))i−L for i = L+ 1 . . . 2L (D.16)

where h =
√

3 and L denotes the number of state variables and exogenous shocks.

The weights for the sigma-points are given by:

w0 =
h− L

2h
(D.17)

wi =
1

2h
for i = 1 . . . 2L (D.18)

The sigma-points and the assigned weights are used to calculate the expected

mean and covariance by propagating sigma-points through transition equations and

taking weighted average:

Xi,t|t−1(st−1, st) = Hst(X
x
i,t−1(st−1),Xε

i,t−1(st−1)) (D.19)

Xt|t−1(st−1, st) =
2L∑
i=0

wiXi,t|t−1(st−1, st) (D.20)
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P x
t|t−1(st−1, st) =

2L∑
i=0

wiX̃iX̃
T
i (D.21)

Yt|t−1(st−1, st) = DXt|t−1(st−1, st) (D.22)

where X̃i = Xi,t|t−1(st−1, st) − Xt|t−1(st−1, st). By the above conditions, we get the

Gaussian approximation predictive density

p(Xt|Y1:t−1, st−1, st) = N(Xt|t−1(st−1, st), P
x
t|t−1(st−1, st)). The predictions are then

updated using the standard Kalman filter updating rule:

P y
t|t−1(st−1, st) = DP x

t|t−1(st−1, st)D
T +R (D.23)

P xy
t|t−1(st−1, st) = P x

t|t−1(st−1, st)D
T (D.24)

Kt(st−1, st) = P xy
t|t−1(st−1, st)(P

y
t|t−1(st−1, st))

−1 (D.25)

Xt|t(st−1, st) = Xt|t−1(st−1, st) +Kt(st−1, st)(Yt − Yt|t−1(st−1, st)) (D.26)

P x
t|t(st−1, st) = P x

t|t−1(st−1, st)−Kt(st−1, st)P
y
t|t−1(st−1, st)K

T
t (st−1, st) (D.27)

The updating step gives p(Xt|Y1:t, st−1, st) = N(Xt|t(st−1, st), P
x
t|t(st−1, st)). As a

by-product of the filter, we can get the density of Yt conditional on Y1:t−1, st, and

st−1

p(Yt|Y1:t−1, st−1, st; θ) = N(Yt|t−1(st−1, st), P
y
t|t−1(st−1, st)) (D.28)

Since the Unscented Kalman filter with regime switches creates a large number of

nodes over each iteration where the filtered mean and covariance matrix need to be

evaluated, we implement the following collapsing procedure suggested by Kim and

Nelson (1999)

Xt|t(st = j) =
1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)Xt|t(st−1 = i, st = j)
}

(D.29)
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P x
t|t(st = j) =

1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)[P
x
t|t(st−1 = i, st = j)(D.30)

+(Xt|t(st = j)− Xt|t(st−1 = i, st = j))(Xt|t(st = j)− Xt|t(st−1 = i, st = j))T ]
}
(D.31)

where Pr(st, st−1|Y1:t) and Pr(st|Y1:t) are obtained from the following standard Hamil-

ton filter

Pr(st, st−1|Y1:t−1) = Pr(st|st−1) Pr(st−1|Y1:t−1) (D.32)

Pr(st, st−1|Y1:t) =
p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1)∑

st

∑
st−1

p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1)
(D.33)

Pr(st|Y1:t) =
∑
st−1

Pr(st, st−1|Y1:t) (D.34)

Finally, we can get the conditional marginal likelihood,

p(Yt|Y1:t−1; θ) =
∑
st

∑
st−1

p(Yt|st, st−1,Y1:t−1) Pr(st, st−1|Y1:t−1) (D.35)

D.3 Smoothing

Once we run through the UKF for t = 1, . . . , T , we can also get Pr(st, st+1|Y1:T ),

Pr(st|Y1:T ), xt|T (st, sT ), and P x
t|T (st, sT ):

Pr(st, st+1|Y1:T ) =
Pr(st+1|Y1:T ) Pr(st|Y1:t) Pr(st+1|st)

Pr(st+1|Y1:t)
(D.36)

Pr(st|Y1:T ) =
∑
st+1

Pr(st, st+1|Y1:T ) (D.37)

Xt|T (st, st+1) = Xt|t(st) + K̃t(st, st+1)(Xt+1|T (st+1)− Xt+1|t(st, st+1)) (D.38)

P x
t|T (st, st+1) = P x

t|t(st)− K̃t(st, st+1)(P x
t+1|T (st+1)− P x

t+1|T (st, st+1))K̃t(st, st+1)T(D.39)

Given the above smoothing algorithm, we implement the collapsing procedures
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similar to those in the filtering steps:

Xt|T (st = j) =
1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )Xt|T (st = i, st+1 = j)
}

(D.40)

P x
t|T (st = j) =

1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )[P x
t|T (st = i, st+1 = j)(D.41)

+(Xt|T (st = j)− Xt|T (st = i, st+1 = j))(Xt|T (st = j)− Xt|T (st = i, st+1 = j))T ]
}

(D.42)

Appendix E Calibrated Parameters

We largely follow Mendoza (2010) in that the calibrated targets are the same, but

adapted to our specification of the model. First, we start by calibrating certain

parameters, using the steady state of the model in which there is no working capital

constraint and the borrowing constraint does not bind. That is, φ = 0 and ϕ̄ = 0,

the latter implies λss = 0. In addition, we get

β (1 + rss) = 1 (E.1)

and ratios of

Ωv =
1

1− α− η
, Ωh =

1

α
, Ωk =

1

η

(
1

β
− 1 + δ

)
(E.2)

These imply factor payment ratios are

PssVss
Yss + PssVss

=
1

Ωv

= 1− α− η (E.3)

WssHss

Yss
=

1

Ωh

(
1− 1

Ωv

) =
α

α + η
(E.4)

(
1
β
− 1 + δ

)
Kss

Yss
=

1
β
− 1 + δ

Ωk

(
1− 1

Ωv

) =
η

α + η
(E.5)
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Using the National Accounts,[
1− α− η = 0.102

α
α+η

= 0.66

]
=⇒

[
α = 0.59268

η = 0.30532

]
(E.6)

We set the depreciation rate to an annual value of 8.8 percent, so

(1− δ)4 = 1− 0.088 =⇒ δ = 0.022766 (E.7)

The capital-to-(annual) gross output ratio is 1.758, so in our case the capital-to-

(quarterly) gross output ratio Ω−1
k is set to be

Ω−1
k =

(
1

η

(
1

β
− 1 + δ

))−1

= 4 ∗ 1.758 =⇒ β = 0.97977 (E.8)

Note that this implies an annualized real interest rate of

(1 + rss)
4 =

(
1

β

)4

= 1.0852, (E.9)

which nearly replicates the number in Mendoza (2010) but using different discounting.

From the resource constraint

Css
Yss

+
Iss
Yss

+
Ess
Yss

= 1 +

(
1− 1

1 + rss

)
Bss

Yss
(E.10)

and interpreting Ess as government spending

0.65 + 0.172 + 0.11 = 1 + (1− β)
Bss

Yss
=⇒ Bss

Yss
= −3.3605 (E.11)

Note that this implies
Bss

4Yss
= −0.840127 (E.12)

and we can get

Yss =
α + η

α

 1

P 1−α−η
ss

(
1
η

(
1
β
− 1 + δ

))η (
1
α

)α ( 1
1−α−η

)1−α−η


ω

α(ω−1)

= 1.8202(E.13)
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Which gives

E∗ =
Ess
Yss

Yss = 0.11 ∗ 1.8202 = 0.20022 (E.14)

as well as

Bss = −0.840127 ∗ 4 ∗ 1.8202 = −6.11685 (E.15)

then, conditional on r∗ and ψr, B̄ is pinned down via

B̄ = log

(
1 +

rss − r∗

ψr

)
+Bss. (E.16)

Appendix F Data Appendix

National accounts are from the National Statistic Office. The data series used in

the analysis merge two set of official statistics by updating the level of the accounts

based on 1993 constant prices with the quarterly rate of growth of the accounts based

on 2008 at constant prices. This merging is necessary as the deflators to splice the

accounts in levels were not available at the time of last download of the data (May

2017). The two sets of accounts overlap from 1993:Q1 to 2006:Q4. Over this period,

the difference in annual rate of growth is less than 0.01 percent in absolute value

for GDP, less than 0.05 percent for consumption, less than 2 percent for investment,

and less than 1 and 3 percent for imports and exports, respectively. The correlations

between the series are more than 0.9 for all series except investment that is 0.84,

pointing to possibly larger measurement errors in this variable. The differences are

smaller closer to the end of the sample. For this reason, we choose to update the 1993

accounts rather than backdate the 2008 ones.

The specific sources of the data are as follows:

2006:Q1-2016:Q4 (Labeled 2008 accounts)–Supply and demand of goods and

services. Original series (not seasonally adjusted). Constant prices, annual 2008 =

100 (Oferta y demanda de bienes y servicios. Series originales. A precios constantes

2008). Available from http://www3.inegi.org.mx/sistemas/tabuladosbasicos/

tabdirecto.aspx.

1980:Q1-2006:Q4 (Labeled 1993 accounts)–Supply and demand of goods and

services. Original Series (not seasonally adjusted). Constant prices, annual 1993 =

100. We obtained these from Gabriel (2008).

The data are not seasonally adjusted and show a strong seasonal pattern. To
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seasonally adjust all series (assumed to be I(1) processes), we adjust the log-difference

using the X-12 procedure with the additive option in Eviews. We then use the log

of the first observation of the raw series (not seasonally adjusted) and cumulate the

seasonally adjusted log-difference.

The net exports to GDP series, used to validate the model externally but not as

an observable variable in estimation, is calculated as real exports minus real imports

divided by real GDP. The current account as a percentage of GDP is from the balance

of payment statistics, obtained from the OECD Economic Outlook Database (Series

MEX.CBGDPR.Q, OECD-EO-MEX-CBGDPR-Q). As a proxy for the relative price

of intermediate goods, entered as observable in estimation, we use a measure of Mex-

ico’s terms of trade obtained from Banco de Mxico (PPI Producer and International

Trade Price Indexes, series SP12753).

Mexico’s country interest rate is calculated following Uribe and Yue (2006) as

rt = r∗t + spreadt (F.1)

where r∗ is the US real interest rate, and spread is a proxy for Mexico’s country risk

or sovereign spread. We compute r∗ as 3-month Treasury Constant Maturity Rate

adjusted for ex post CPI (annualized) quarterly inflation, using period average data.

The source of these data is FRED. For the country spread, as customary, we use the

Mexico’s component of the JP Morgan EMBI.

Unfortunately, the EMBI spread is available only starting from 1993. In order to

estimate the risk premium before 1993, we rely on empirical modeling at the Banco

de Mexico ussing the relation between domestic real interest rates and country risk

(Aportela Rodriguez et al., 2001) that estimates a close and stable relation between a

measure of the domestic real interest rate and the EMBI spread over the period over

which both these two variables overlaps. The only interest series available going back

to 1980 is a three-month nominal short-term rate obtained from Banco de Mexico

(Average monthly yield on 90-days Cetes, series SF3338).30 To obtain an estimate

of Mexico’s country risk before the EMBI was published, we estimate a relationship

between this nominal interest rate, it, and the EMBI during the period over which

the EMBI is observable, adjusting for inflation, πt, which was an important source of

30There are three missing monthly observations for this series: August and September 1986 and
November 1988. We fill these gaps using July 1986 for 1986Q3 and the average of October and
December 1988 for 1988:Q4.
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nominal interest rate variation in the 1980s, and then invert it.

Specifically, we posit the following simplified version of the model that (Aportela Ro-

driguez et al., 2001) estimate:

it = α0 + α1πt + α2EMBIt. (F.2)

We then invert this relation to obtain an estimate of the country risk component

of the domestic real interest rate, which we denote as ˆEMBIt. The results of the

regression above are (t-statistics in parentheses and R2 = 0.883):

it = −0.00346
(−0.42)

+ 0.397
(4.46)

πt + 2.770
(7.37)

EMBIt. (F.3)

Appendix G Additional Results

Figure G.1 plots the estimated model implied shocks in standard deviation units,

together with a two-standard deviations band. The figure shows that model fit is

largely achieved without relying on unusually large shocks, especially during crisis

times. Large shocks are needed to fit the import price process, including right before

GFC, possibly due the large swings in oil prices during that period. Shocks slightly

outside the two-standard divisions band also are estimated right before the 1982 debt

crisis. However TFP, expenditure, and preference shocks are all well within the band

during the that period.

Figure G.2 plots the pseudo-real-time (i.e. filtered) estimated transition prob-

abilities; panel (a) shows the probability of switching from the non-binding to the

binding regime, while panel (b) shows the probability of switching from the binding

to the non-binding regime. In other words, they plot the estimated counterpart of the

transition probabilities and the identified peak crisis periods defined above. These

probabilities provide the odds of switching from one regime to the other as the model

travels through the sample. Their behavior is driven by the estimated parameters γ0

and γ1 and the estimated values of B∗ and λ. Both probabilities are time-varying

and hence suggest that a model with exogenous and constant switching probabilities

would be misspecified.

To look at the same important issue from a different model’s perspective, we also

repeat a similar exercise for the mean estimated crisis probability. Table G.1 provides
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Figure G.1: Model Estimated Shocks

(a) TFP Shock

(b) Expenditure Shock

(c) Import Price Shock

(d) Preference Shock

(e) Transitory Interest Rate Shock

(f) Persistent Interest Rate Shock

Notes: The figure plots the estimated model implied shocks, in standard deviation units, together

with a two-standard deviations band (black dashed lines). Red bars indicate model-identified periods

of crisis, see text for definition.
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Figure G.2: Transition Probabilities

(a) Transition Probability of Binding Given Non-Binding

(b) Transition Probability of Non-Binding Given Binding

Notes: Top panel shows model-implied filtered probability of transitioning to binding regime, con-

ditional on being in the non-binding regime, in subsequent period. Bottom panel shows filtered

probability of transitioning to non-binding regime, conditional on being in the binding regime, in

subsequent period. Red bars indicate model-identified crises, see text for details.

a variance decomposition of the relative frequency with which crisis episodes realize

across sample draws, by shutting down one shock at a time. The results are fully

consistent with the likelihood based counterfactuals in the main text. In fact, as

we can see, turning off the TFP shock, the terms of trade shock, and the transitory

interest rate shock has almost no impact on the frequency of crises. Persistent interest

rate shocks and preference shocks, and especially expenditure shocks, however, have

a much larger impact on the crisis probability. This confirms that the latter shocks

may play a relatively larger role in the theoretical model in driving the occurrence of

crises.

Appendix H Details on Shock Importance During

Crises

To study the importance of shocks around financial crises periods, we compute the

marginal impact of each shock. Let LL denote the maximized log-likelihood over the

full sample, and let CLLi,t denote the counterfactual full-sample log likelihood when
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Table G.1: Decomposition of the Crisis Frequency

Number of Quarters Probability
Variable Mean StdDev Skew Mean StdDev Skew
All Shocks 3.51 2.19 0.92 2.44 1.52 0.92
No TFP Shock 3.55 2.72 1.06 2.47 1.89 1.06
No Expenditure Shock 0.54 1 2.89 0.38 0.69 2.89
No Import Price Shock 3.67 2.77 1.03 2.55 1.93 1.03
No Preference Shock 2.67 2.19 1.08 1.85 1.52 1.08
No Trans. Int. Rate Shock 3.7 2.71 0.95 2.57 1.88 0.95
No Pers. Int. Rate Shock 3.35 2.64 1.14 2.32 1.83 1.14

Note: Model-implied crisis frequencies and its decomposition based upon crisis events in 10, 000

simulated datasets of 144 quarters in length. See text for definition of crisis. ’Number of quarters’

refers to counting number of crisis episodes out of 144, ’probability’ puts the absolute number as a

percentage of 144.

shock i is set to zero in quarter t (i.e. εi,t = 0). Then the loss in likelihood points,

∆i,t = LL− CLLi,t, (H.1)

is a measure of the importance of εi,t. The importance of εi,t relative to other shocks

at time t is given by

Λi,t =
∆i,t∑
j ∆j,t

. (H.2)

Note that, similar to our variance decomposition results, this marginalizing method

ignores possible non-linearities from the second-order solution. Lastly, we report the

relative importances when compared to their full sample averages, Λi,t − Λ̄i.
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