Guiding Consumers through Lemons and Peaches: Analyzing the Effects of Search Design Activities

> Pedro Gardete (Nova SBE)

Megan Antill (Stanford University)

NBER IO Program Meeting - Feb 2020

Contribution

- Contribution: Assess the extent to which different information provision strategies affect consumer welfare and seller outcomes
 - Characterize consumer search for multiattribute products
 - Determine the empirical effects of endogenous search frictions in a mature Internet context
 - Determine how strategic consumers are while searching (Gabaix and Laibson 2006, Frazier et. al 2009, Powell 2010, Liang et. al 2017)

Contribution

- Contribution: Assess the extent to which different information provision strategies affect consumer welfare and seller outcomes
 - Characterize consumer search for multiattribute products
 - Determine the empirical effects of endogenous search frictions in a mature Internet context
 - Determine how strategic consumers are while searching (Gabaix and Laibson 2006, Frazier et. al 2009, Powell 2010, Liang et. al 2017)
- Challenge:
 - Assessing the effect of different information scenarios implies incorporating sophisticated consumer behavior
 - While go-to techniques (Weitzman, simultaneous search) are popular because they reduce the burden of estimating structural parameters...
 - ...they impose strict assumptions on consumer behavior, usually easily falsifiable

1. Propose a model of consumer search, which allows for the following innovations:

- Allow for piecemeal search within each alternative
- Allow for arbitrary relationships across observable characteristics
- Allow for flexible search paths (while alleviating the resulting curse of dimensionality)
- Identify and estimate an unobserved utility component (correlated with remaining characteristics)
- Allow for forward-looking consumers

1. Propose a model of consumer search, which allows for the following innovations:

- Allow for piecemeal search within each alternative
- Allow for arbitrary relationships across observable characteristics
- Allow for flexible search paths (while alleviating the resulting curse of dimensionality)
- Identify and estimate an unobserved utility component (correlated with remaining characteristics)
- Allow for forward-looking consumers
- 2. Once the consumer behavior fundamentals are recovered, we:
 - Consider various information provision strategies
 - Measure their welfare effects for buyers and seller
 - Pitch our model against a popular myopic learning analogue

- Parameters
 - Preference; Search costs; Covariance matrix of characteristics
- Counterfactual Analysis:
 - Search frictions hamper conversion rates significantly
 - Information provision policies carry at most modest seller gains
 - > Effects of information design are directionally similar for consumers and seller
 - Myopic model provides a poor approximation to the full dynamic problem

- Online startup with unique business model:
 - Online customers can browse vehicles and schedule test drives online
 - Seller takes vehicle to potential buyer's address
 - Buyer takes it or leaves it; no bargaining

- Online startup with unique business model:
 - > Online customers can browse vehicles and schedule test drives online
 - Seller takes vehicle to potential buyer's address
 - Buyer takes it or leaves it; no bargaining
- Unique Dataset:

- Online startup with unique business model:
 - Online customers can browse vehicles and schedule test drives online
 - Seller takes vehicle to potential buyer's address
 - Buyer takes it or leaves it; no bargaining
- Unique Dataset:
 - Each alternative has multiple search actions associated with it

- Online startup with unique business model:
 - Online customers can browse vehicles and schedule test drives online
 - Seller takes vehicle to potential buyer's address
 - Buyer takes it or leaves it; no bargaining
- Unique Dataset:
 - Each alternative has multiple search actions associated with it
 - Researchers have access to the data viewed by consumers

- Online startup with unique business model:
 - Online customers can browse vehicles and schedule test drives online
 - Seller takes vehicle to potential buyer's address
 - Buyer takes it or leaves it; no bargaining
- Unique Dataset:
 - Each alternative has multiple search actions associated with it
 - Researchers have access to the data viewed by consumers
 - Access to all consumer clickstream data and test-drive requests

Website organized in two tiers: Main listing page and Vehicle detail page

- Main Listing Page:
 - Search Filters
 - Vehicle Picture; Make/Model; Price; Year; Mileage

Website organized in two tiers: Main listing page and Vehicle detail page

- Main Listing Page:
 - Search Filters
 - Vehicle Picture; Make/Model; Price; Year; Mileage
- Vehicle Detail Page:
 - Additional vehicle pictures
 - Vehicle history (number of previous accidents; number of previous owners)
 - Inspection reports (number of inspection notes)

Dataset

- Click stream data of 24,116 users, browsing 1,573 (sedan) vehicles
- Every event that occurs on the website, February 2016 September 2016
- All vehicle characteristics, histories, and inspection reports
- Conversion variable: Ordered a test drive

	Mean	Std. Dev.	Min	Max
Vehicle Detail Pages Viewed	2.28	3.47	1	129
Number of Sessions	6.03	21.14	1	762
Photo Sets Browsed	1.63	2.65	0	74
Vehicle Histories Browsed	0.69	2.09	0	101
Inspection Reports Browsed	0.30	1.27	0	53
Average Session Duration (min.)	14.2	13.39	0.1	282.04
Activity Range (days)	18.67	38.5	0	232
Number of users: 24,116				

Note: Statistics are per user. The event "Photo Sets Browsed" equals one for each user-vehicle observation whenever a user browsed more 20 or more pictures of a vehicle.

Histograms and Scatter Plots of Vehicle Characteristics

Model - Utility and Beliefs

• Ex-post consumption utility:

$$\mathbf{v}_{ijt} = \sum_{k=1}^{K} \beta_k \mathbf{x}_{jk} + \nu_{ij} + \epsilon_{ijt} \tag{1}$$

$$v_{i0t} = \epsilon_{i0t} \tag{2}$$

- *i*: visitor
- *j*: vehicle
- k: vehicle characteristic
- x_{jk}: level of characteristic k vehicle j
- β_{ik} : consumers preference over characteristics
- ν_{ij} : unobservable utility component
- ϵ_{ijt} : idiosyncratic utility component

(**a**)

• Consumers' beliefs are consistent with the empirical joint distribution of characteristics

 $\mathcal{G}_{\textit{make_model},\textit{price},\textit{mileage},\textit{age},\textit{color},\textit{owners},\textit{accidents},\textit{notes}}$

(3)

• Consumers' beliefs are consistent with the empirical joint distribution of characteristics

 $\mathcal{G}_{make_model,price,mileage,age,color,owners,accidents,notes}$

• Use a statistical copula to model the joint distribution of characteristics flexibly, and provide a first-stage estimate of consumer beliefs:

$$C(F_{X_{1}}(x_{1}),...,F_{X_{K}}(x_{K}))$$

- Challenges (in the paper):
 - Make/model and color are not ordinal variables
 - Some variables are discrete
 - Incorporating unobserved utility component v_{ij}

(3)

Model: Search

Knowledge Level	Characteristic	Utility Component	
Observable ex-ante	Ex-ante Characteristics		
	Make/Model	make_model _i	
	Price	pricej	
	Mileage	mileage _i	
	Age	agej	
	Color	colorj	
Learned upon visiting a			
vehicle's history	Vehicle History		
	# Previous Owners	owners _j	
	# Accidents	accidents	
Learned upon visiting		-	
inspection reports	Vehicle Status		
	# Inspection Notes	notes _i	
Learned after browsing			
one photo set	Perceived Quality/Fit		
	Vehicle Photos	$ u_{ii}$	

- State Variables:
 - Ω_i : What a consumer has learned about vehicle characteristics: x and ν

• At each decision point, consumer *i* solves problem:

$$V\left(\Omega_{i},\epsilon_{i}\right) = \max\left\{\underbrace{\frac{V_{0}\left(\Omega_{i},\epsilon_{1}\right),...,V_{J}\left(\Omega_{i},\epsilon_{J}\right)}_{\text{Terminal Decisions}},\underbrace{V_{1,s}\left(\Omega_{i},\epsilon_{1}\right),...,V_{J,s}\left(\Omega_{i},\epsilon_{J}\right)}_{\text{Search Decisions}}\right|_{s=1..S}\right\}$$

• At each decision point, consumer *i* solves problem:

$$V\left(\Omega_{i},\epsilon_{i}\right) = \max\left\{\underbrace{V_{0}\left(\Omega_{i},\epsilon_{1}\right),...,V_{J}\left(\Omega_{i},\epsilon_{J}\right)}_{\textit{Terminal Decisions}},\underbrace{V_{1,s}\left(\Omega_{i},\epsilon_{1}\right),...,V_{J,s}\left(\Omega_{i},\epsilon_{J}\right)}_{\textit{Search Decisions}}\right|_{s=1..S}\right\}$$

• Upon stopping search, consumer earns utility:

$$V_{j}(\Omega_{i},\epsilon_{i}) = E(v_{ij}|\Omega_{i},\epsilon_{i})$$

$$= E\left(\sum_{k=1}^{K} \beta_{k} x_{jk} + \nu_{ij} \middle| \Omega_{ij} \right) + \epsilon_{ij}$$
(5)

• At each decision point, consumer *i* solves problem:

$$V\left(\Omega_{i},\epsilon_{i}\right) = \max\left\{\underbrace{V_{0}\left(\Omega_{i},\epsilon_{1}\right),...,V_{J}\left(\Omega_{i},\epsilon_{J}\right)}_{\textit{Terminal Decisions}},\underbrace{V_{1,s}\left(\Omega_{i},\epsilon_{1}\right),...,V_{J,s}\left(\Omega_{i},\epsilon_{J}\right)}_{\textit{Search Decisions}}\right|_{s=1..S}\right\}$$

• Upon stopping search, consumer earns utility:

$$V_{j}(\Omega_{i},\epsilon_{i}) = E(v_{ij}|\Omega_{i},\epsilon_{i})$$

$$(4)$$

$$= E\left(\sum_{k=1}^{K} \beta_k x_{jk} + \nu_{ij} \middle| \Omega_{ij}\right) + \epsilon_{ij}$$
(5)

• Utility of searching:

$$V_{j,s}(\Omega_i,\epsilon_i) = -c_s + E_{\epsilon'_i,\omega_{js}}(V(\Omega_i \cup \omega_{js},\epsilon'_i)|\Omega_i) + \epsilon^s_{ij}$$
(6)

Estimation Approach

- Estimator needs to meet a few challenges:
 - Consumers take multiple actions, so likelihood of interest is of the search sequence
 - Each iteration solves as many value functions as consumers
 - State space is large ($\simeq 7.72 \times 10^{317}$ points; action space itself is 2^{3n})

Estimation Approach

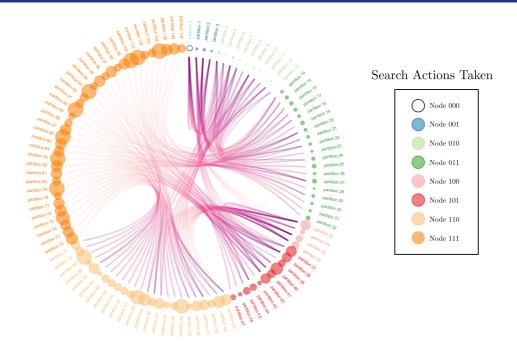
- Estimator needs to meet a few challenges:
 - Consumers take multiple actions, so likelihood of interest is of the search sequence
 - Each iteration solves as many value functions as consumers
 - State space is large ($\simeq 7.72 \times 10^{317}$ points; action space itself is 2^{3n})

- State-Partitioning Estimator:
 - Take draws of characteristics from empirical distribution
 - Then, we assume the agent behaves as if she knew the drawn characteristics; she uses them to form beliefs
 - As agents search, they learn which drawn vehicles remain admissible, given what they have learned so far
 - The resulting tree is sparse and can be solved through backward induction
- Estimator provides a feasible approximation to the complete problem

Example of Decision Tree (1 vehicle; 2 actions; 4 simulations)

Simulations			ns					
#	x_1	x_2	freq.					
1)	1	2	1					
2)	1	3	2					
3)	2	2	1					
				(1/2)	(1/2)	Action 02	l
	Node	: 01		$P_1: \{1, 3\}$	3} P	$v_2:\{2\}$		
			Action	10: $(^{1/2})$	(1/2)	(1)	···· \	Node: 00
	Node	e: 11		$P_1: \{1\}$	$P_2:\{2\}$	$P_3: \{3\}$	P_1 :	$\{1, 2, 3\}$
1			Action	01: $(^{1/3})$	(2/3)	(1)		'
Ī	Node	: 10		\sim	/		/	
				$P_1: \{1, \\ k\}$	2} P	$P_2: \{3\}$		
				(3/4)		/4)	Action 10)

Example of Decision Tree from Data (1 vehicle; 50 simulations)



- Advantages
 - Decision tree admits sparse representation when taking action A followed by B leads consumer to same state as taking action B followed by A
 - Can handle arbitrarily correlated unobserved characteristic (support is based on a sparse grid, as in Heiss and Winschel, 2008)

Advantages

- Decision tree admits sparse representation when taking action A followed by B leads consumer to same state as taking action B followed by A
- Can handle arbitrarily correlated unobserved characteristic (support is based on a sparse grid, as in Heiss and Winschel, 2008)
- Limitations
 - The dimensionality curse is alleviated, but not completely mitigated (in our case, $n \leq 8$)

Advantages

- Decision tree admits sparse representation when taking action A followed by B leads consumer to same state as taking action B followed by A
- Can handle arbitrarily correlated unobserved characteristic (support is based on a sparse grid, as in Heiss and Winschel, 2008)
- Limitations
 - The dimensionality curse is alleviated, but not completely mitigated (in our case, $n \leq 8$)
- Implementation aspects (aka, "nerd corner")

Advantages

- Decision tree admits sparse representation when taking action A followed by B leads consumer to same state as taking action B followed by A
- Can handle arbitrarily correlated unobserved characteristic (support is based on a sparse grid, as in Heiss and Winschel, 2008)
- Limitations
 - The dimensionality curse is alleviated, but not completely mitigated (in our case, $n \leq 8$)
- Implementation aspects (aka, "nerd corner")
 - Non-vectorizable and not GPU-friendly; tree is represented by pointers to objects
 - ► Core decision-tree code: ~3,000 lines in C++ code (~7,000 total)
 - Code is parallelizable

- Preference parameters
 - Relationship between characteristics and purchase rates

- Preference parameters
 - Relationship between characteristics and purchase rates
- Search costs
 - Average search intensity of each search option

- Preference parameters
 - Relationship between characteristics and purchase rates
- Search costs
 - Average search intensity of each search option
- Covariance parameters
 - Variance of unobservable utility component is normalized to one
 - Covariance parameters are identified by search rates conditional on known characteristic levels

Results

Results: Preference Parameters

Table: Model Estimates: Preference Parameters

	Parameter Estimates
Vehicle Characteristics	
price	-0.372**
	(0.000)
mileage	-0.19**
	(0.000)
notes	-0.36**
	(0.000)
age	-0.01
	(0.348)
accidents	0.032
	(0.434)
owners	-1.611**
	(0.000)
Log-Likelihood: -38,937.35	
Make-Model and Color Dummies √	
N= 12,887	
Note: Standard errors in parentheses.	Significance levels: † p \leq 0.10, *
p≤0.05, ** p≤0.01.	

Results: Search Costs

Table: Model Estimates: Search Cost Parameters

	Parameter Estimates				
Segment 1					
C _{photos}	2.306**				
	(0.031)				
Cvehicle history	0.248**				
	(0.048)				
Cinsp.report	5.255**				
	(0.094)				
Segment 2					
Cphotos	0.034*				
	(0.02)				
Cvehicle history	4.382**				
	(0.05)				
Cinsp.report	3.309**				
	(0.022)				
Other Parameters					
α	-0.732**				
	(0.01)				
Make-Model and Color Dummies	\checkmark				
N= 12,887					
Note: Significance levels: \dagger p \leq 0.10, * p \leq	$(0.05, ** p \le 0.01)$. Size of segment 1,				
implied by $\hat{\alpha}$, is 67.5%.					

Guiding Consumers through Lemons and Peaches: Analyzing the Effects of Search Design Activities

Table: Estimated Variance-Covariance Matrix

	/ 1	-0.66	-0.31	-0.73	-0.07	-0.21	- 0.44 \	/ Price \
	-0.66	1	0.37	0.71	0.08	0.27	0.76	Mileage
	-0.31	0.37	1	0.41	0.07	0.14	0.67	Insp.notes
$\widehat{\Sigma_0} =$	-0.73	0.71	0.41	1	0.09	0.24	0.61	Vehicle age
	-0.07	0.08	0.07	0.09	1	0.021	0.1	No.accidents
	-0.21	0.27	0.14	0.24	0.021	1	0.55	No.owners
	\ -0.44	0.76	0.67	0.61	0.1	0.55	1 /	$\langle \nu \rangle$

Note: In bold, cross-correlation elements induced by estimated parameters $s_1..s_6$. Rightmost vector shows the corresponding characteristics. Non-bold estimates all significant at 1% level. Coefficients in bold: [†] p \leq 0.10, * p \leq 0.05, ** p \leq 0.01.

% Utility Variance Explained by each Characteristic

Figure: Utility Variance Decomposition



Note: Above, values obtained by simulating $Var_{x_i}[E(u|x_i)] \div Var(u)$.

Table: Search Moments from Dataset and Model

	Data				Model Prediction			
	Mean	Mean Std. Dev. Min Max				Std. Dev.	Min	Max
Conversion Rate	0.047	0.213	0	1	0.055	0.228	0	1
N. Searches	1.639	3.22	1.082	9	1.433	1.153	0.5	6.054
Vehicle Histories	0.441	0.743	0	4	0.397	0.316	0.108	1.844
Inspection Reports	0.175	0.496	0	4	0.161	0.184	0	1.157
Photo Sets	1.023	0.873	0	4	0.875	0.664	0.268	3.376

N: 12,887 consumers

Counterfactual Analyses

- Effects of different information design policies
- Omparison with myopic search policy

Table: Conversion Effects of Exchanges of Attribute Visibilities

	Vehicle Detail Page Attribute				
Front Page Attribute	Vehicle History	Inspection Report			
Mileage	+0.36% (+6.58%)**	-0.11% (-1.91%)			
Age	+0.36% (+6.55%)**	-0.02% (-0.33%)			
Price	+0.63% (+11.34%)**	-0.00% (-0.03%)			

N: 12,887 consumers

Note: Above, impact of exchanging attributes in the front page with the ones in the vehicle detail page on mean conversions. Relative changes in parentheses. Significance levels: † p \leq 0.10, * p \leq 0.05, ** p \leq 0.01.

Table: Welfare Effects of Exchanges of Attribute Visibilities

	il Page Attribute	
Front Page Attribute	Vehicle History	Inspection Report
Mileage	+1.65% (+1.73%)**	-0.39% (-0.41%)**
Age	+1.76% (+1.85%)**	-0.11% (-0.12%)
Price	+2.35% (+2.48%)**	+0.02% (+0.01%)*
N 10.007		

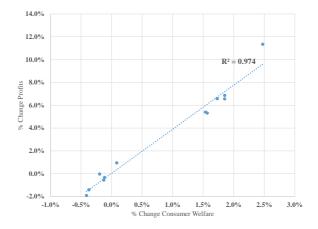
N: 12,887 consumers

Note: Above, impact of exchanging attributes in the front page with the ones in the vehicle detail page on the number of searches. Relative changes in parentheses. Significance levels: † p \leq 0.10, * p \leq 0.05, ** p \leq 0.01.

- Conversions can increase moderately through information design
- Consumer welfare effects are low, but are often in line with the seller's own welfare
- Contrasts with ideas related to price obfuscation activities:
 - ...Internet tools will help consumers to find and to process information, but retailers may simultaneously harness the power of the Internet to make information processing problems more formidable... - Ellison and Ellison, 2012
- We may be at a point where prices are nonetheless competitive, and so there is little incentive to not provide better matches, from the seller's point of view

Alignment between Consumer and Firm preferences

Figure: Information Design Effects: Consumer Welfare and Profits



Note: High correlation found between consumer and seller welfares

Myopic Policy

- Knowledge gradient approach (Frazier et. al 2009, Powell 2010); Myopic policy (Liang et. al 2017)
 - Decision makers are assumed to look 'one period' ahead
 - They search only if the immediate option value is high enough
 - Otherwise, pick a terminal action

Myopic Policy

- Knowledge gradient approach (Frazier et. al 2009, Powell 2010); Myopic policy (Liang et. al 2017)
 - Decision makers are assumed to look 'one period' ahead
 - They search only if the immediate option value is high enough
 - Otherwise, pick a terminal action
- Model:

$$V_{j}(\Omega_{i},\epsilon_{i}) = E(v_{ij}|\Omega_{i},\epsilon_{i})$$
(7)

$$V_{j,s}\left(\Omega_{i},\epsilon_{i}\right) = -c_{s} + E_{\epsilon_{i}^{'},\omega_{js}}\left[\max\left\{v_{i0},V_{1}\left(\Omega_{i},\epsilon_{i}^{'}\right),...,V_{j}\left(\Omega_{i}\cup\omega_{js},\epsilon_{i}^{'}\right),...,V_{J}\left(\Omega_{i},\epsilon_{i}^{'}\right)\right\}\middle|\Omega_{i}\right] + \epsilon_{ij}^{s} \qquad (8)$$

	Data				Knowledge Gradient			
	Mean Std. Dev. Min Max				Mean	Std. Dev.	Min	Max
Conversion Rate	0.047	0.213	0	1	0.057	0.233	0	1
N. Searches	1.639	3.22	1.082	9	1.16	0.65	0.46	4.319
Vehicle Histories	0.441	0.743	0	4	0.279	0.163	0.057	1.143
Inspection Reports	0.175	0.496	0	4	0.119	0.084	0	0.694
Photo Sets	1.023	0.873	0	4	0.762	0.428	0.257	2.699

Table: Consumer Behavior Statistics Compared with Myopic Model

N: 12,887 consumers

 Vuong (1989) non-nested test rejects that both models are "at the same distance" from true model, p < 0.01

- Propose a flexible model of search, which allows for the following distinctive features:
 - Incremental search over multiple characteristics
 - Rich joint distribution of characteristics
 - Flexible search paths
 - Unobserved utility component
 - Forward-looking consumers

- Propose a flexible model of search, which allows for the following distinctive features:
 - Incremental search over multiple characteristics
 - Rich joint distribution of characteristics
 - Flexible search paths
 - Unobserved utility component
 - Forward-looking consumers
- Assessed implications of search frictions and search design
 - ► Search design has moderate conversion effects (≃6%)
 - Search design tends to make sellers more better off, when compared to buyers (influence takes place on the margin)
 - In our setting, search design has similar directional effects for seller and consumers, in contrast with early predictions (e.g., Ellison and Ellison 2012)

Thank you