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1 Introduction.

There is a lot we know about climate change, but there is also a lot we don’t know. Even

if we knew exactly how much carbon dioxide (CO2) and other greenhouse gases (GHGs) the

world will emit over the coming decades, we wouldn’t be able to predict with any reasonable

precision how much the global mean temperature will rise as a result. Nor would we be able

to predict other aspects of climate change, such as rises in sea levels, and increases in the

frequency and intensity of storms, hurricanes and droughts. And even if we were able to

predict the extent of climate change that will occur over the coming decades, we can say very

little about its likely impact — which in the end is what matters. The fact is that we face

considerable uncertainty over climate change, and as we’ll see, that uncertainty has crucial

implications for policy.

Despite the uncertainty, the debate over climate policy is usually framed in deterministic

terms. We start with some scenario regarding GHG emissions, perhaps under “business as

usual” (BAU) or under some emission abatement policy, and then make and discuss projec-

tions of temperature change through the end of the century. Sometimes those projections

include high, medium, and low alternatives, but without much basis for how and why those

alternatives differ as they do. We then talk in broad terms about the likely impacts of those

temperature changes — reductions in agricultural output, reduced productivity generally,

greater damage from more intense storms and droughts, and perhaps displacements of pop-

ulations if rising sea levels inundate low-lying areas. We sometimes try to translate those

impacts into percentage reductions in GDP, which is necessary if we want to come up with

a number for the social cost of carbon (SCC). We know that those impacts are very difficult

— perhaps impossible — to predict because climate change happens slowly, over decades,

and we don’t know the extent of adaptation that will occur in response.

And despite all the uncertainty, we evaluate climate change policies in terms that suggest

a high level of precision is possible. As I have argued elsewhere, this is particularly true

when we use complex integrated assessment models (IAMs) to make outcome and impact

projections, evaluate alternative policies, and estimate the SCC.1 But as I will argue, it is

the uncertainty over climate change and its impact that is critical to policy formulation, and

that should be the focus of analysis and discussion.

1For a discussion of the flaws in IAMs that make them unsuitable for policy analysis, see Pindyck (2013b,a,
2017). The U.S. Government’s Interagency Working Group (IWG) used three IAMs to estimate the SCC; see
Interagency Working Group on Social Cost of Carbon (2013), and for a discussion of the Working Group’s
methodology and the models it used, see Greenstone, Kopits and Wolverton (2013). For a different point of
view on the value of IAMs, see Nordhaus (2014) and Weyant (2017).
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To get a sense of why the uncertainties are so important, consider the irreversibilities

that are an inherent part of climate policy (and environmental policy more generally). It

has been long understood that environmental damage can be irreversible, which can lead to

a more “conservationist” policy than would be optimal otherwise. Thanks to Joni Mitchell,

even non-economists know that if we “pave paradise and put up a parking lot,” paradise may

be gone forever. And because the value of paradise to future generations is uncertain, the

benefit from protecting it today should include an option value, which pushes the cost-benefit

calculation towards protection. But there is a second kind of irreversibility that works in the

opposite direction: Protecting paradise over the years to come imposes sunk costs on society.

If paradise includes clean air and water, protecting it could imply sunk cost investments in

abatement equipment, and an ongoing flow of sunk costs for more expensive production

processes. This kind of irreversibility would lead to policies that are less “conservationist”

than they would be otherwise.

Which of these two irreversibilities applies to climate policy? Both. Given that they work

in opposite directions, which one is more important? We don’t know.2 Because CO2 can

remain in the atmosphere for centuries, and ecosystem destruction from climate change can

be permanent, there is clearly an argument for taking early action. But the costs of reducing

CO2 emissions are largely sunk, which implies an argument for waiting.3 Which type of

irreversibility will dominate depends in part on the nature and extent of the uncertainties

involved, and will be explored in this paper.

There is another reason why the uncertainties over climate change are so important, and

it has to do with “tail risk.” If climate change turns out to be moderate, and its impact turns

out to be moderate, we may not have too much to worry about. But what if climate change

and its impact turn out to be catastrophic — the far right tail of the outcome distribution.

It is that possibility, even if the probability is low, that might drive us to quickly adopt a

stringent emission abatement policy. In effect, by reducing emissions now we would be buying

insurance. But how much of a premium should we be willing to pay for such insurance? The

answer depends in part on society’s degree of risk aversion, which is complex and hard to

evaluate. As I will show, however, the risk premium could be considerable.

This paper has two main parts. First, I lay out what we know, don’t know, and sort of

2A number of studies have explored this question in a theoretical setting; see, e.g., Kolstad (1996), Ulph
and Ulph (1997), and Pindyck (2000). These studies illustrate the fundamental problem, but don’t tell us
how to formulate climate policy.

3There are other arguments for waiting or starting slowly: Technological change may reduce abatement
costs in the future, and the fact that the “unpolluted” atmosphere is an exhaustible resource implies that
the SCC should rise over time (as the atmospheric CO2 concentration rises).
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know about climate change, and discuss why we don’t know certain things, and the nature

of the uncertainties. One of the two more important uncertainties pertains to the extent of

warming (and other aspects of climate change) that will occur given current and expected

future GHG emissions. The second uncertainty pertains to the economic impact of any

climate change that might occur, an impact that depends critically on the possibility of

adaptation. Although various estimates are available, we simply don’t know how much

warmer the world will become by the end of the century under the Paris Agreement, or

under any other agreement. Nor do we know how much worse off we will be if the global

mean temperature increases by 2◦C or even 5◦C.

In fact, we may never be able to resolve these uncertainties (at least over the few decades).

It may be that the extent of warming and its impact are not just unknown, but also un-

knowable — what King (2016) refers to as “radical uncertainty,” or extreme Knightian

uncertainty.4 And as King (2016) puts it (in a very different context), “The fundamental

point about radical uncertainty is that if we don’t know what the future might hold, we

don’t know, and there is no point pretending otherwise.”5 But even though we may never

resolved these uncertainties, we can characterize them and better understand them.

That leads to the second part of this paper, which deals with the implications of uncer-

tainty for climate policy. In a risk-neutral world with no irreversibilities, only the expected

values of outcomes should matter, not the degree of uncertainty over those outcomes. But

macroeconomic and financial market data suggest that society (or at least the people that

make up society) is far from risk-neutral, so that there is likely to be a significant insurance

value to reducing GHG emissions now. Likewise, we know that there are two types of irre-

versibilities at play, which work in opposite directions. In formulating climate policy, what

is the insurance value of GHG emission reductions, and what is the net effect of the relevant

irreversibilities? This paper addresses those questions.

In the next three sections, I lay out the steps through which emissions of CO2 (and other

GHGs) accumulate in the atmosphere, increases in the atmospheric CO2 concentration affect

the global mean temperature (and regional temperatures), how temperature increases affect

sea levels as well as other aspects of climate, and how changes in climate can in turn have

economic and social impacts (i.e., “damages”). I will characterize in general terms the state

of our knowledge with respect to each of these steps, i.e., the extent of our uncertainty. For

4For explanations of why “radical uncertainty” is likely to apply to climate change, see, e.g., Allen and
Frame (2007) and Roe and Baker (2007).

5I would argue that the IAMs and related models used for policy analysis pretend otherwise, insofar as
their projections understate the extent of uncertainty.
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two of these steps — how rising GHG concentrations affect climate, and how climate change

causes damages — the uncertainty is huge.

I will also refine the statement that “the uncertainty is huge.” I will try to characterize

these uncertainties in terms of probability distributions that have come out of recent studies

in climate science and economics. I will address the question of whether those distributions

have “fat tails” (and whether that matters). I will also review the evidence on how these

uncertainties are changing over time. (As I will explain, between the 2007 and 2014 IPCC

reports, uncertainty over how changes in the atmospheric CO2 concentration affect temper-

ature has actually increased.) This is important because it addresses the value of waiting for

new information rather than taking immediate action now.

I will then turn to the implications of uncertainty for policy. First, how does climate

change uncertainty interact with the two opposing irreversibilities outlined above? I will

address this question using a simple two-period example. Second, I will explain how climate

change uncertainty create an insurance value of early action. But readers hoping that I can

tell them exactly how large that insurance value is will be disappointed. The reason is that

there is a Catch-22 at work here: The very uncertainties over climate change that create a

value of insurance prevent us from determining how large that value is with any precision.

On the other hand, we can get a rough sense of how important that insurance value is, and

determine whether it is something we should take into account. As we will see, it is indeed

something we should take into account.

2 Some Climate Change Basics.

To keep things simple, I will ignore methane and other non-CO2 GHGs in this paper, and

focus only on CO2, which is by far the greatest driver of climate change. Yes, the warming

potential of a ton of atmospheric methane is about 25 times the warming potential of a ton

of CO2, but far fewer tons of methane are emitted each year, and methane only stays in the

atmosphere for a decade or so, while CO2 stays there for centuries. As a result, methane

accounts for less than 10% of the total warming effects of GHG emissions.

It will be useful to go over the basic mechanisms by which CO2 emissions originate and

accumulate in the atmosphere, how increases in the atmospheric CO2 concentration leads

to climate change, how climate change in turn leads to impacts, and how those impacts can

be evaluated in economic terms. We also want to know how emissions can be reduced, and

at what cost. We could think about this in terms of a projection of climate damages over

the coming century under “business as usual” (BAU), in which nothing is done to reduce
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emissions, and under alternative emission reduction policies. The steps would be as follows:

1. GDP Growth: GHG emissions are generated by economic activity. If all economic

activity stopped — no production, no consumption — emissions caused by humans

would likewise stop. So the first step in projecting CO2 emissions is to project GDP

growth over the coming century. Not easy! Projecting GDP growth for different

countries or regions over the next five years is hard enough. (For example, no one

anticipated the deep world-wide recession caused by the COVID-19 pandemic.) And

now think about projecting GDP growth over the next 50 years. Tough job, and clearly

subject to considerable uncertainty.

2. CO2 Emissions: Marching ahead, let’s assume we have a reasonable projection of

GDP growth (by region) through the end of the century. We would use this information

to make projections of future CO2 emissions under “business as usual” (BAU), i.e., no

emission reduction policy, or under one or more abatement scenarios. To do this,

we might relate CO2 emissions to GDP and then use our projections of future GDP.

But this is problematic, in part because the relationship between CO2 emissions and

GDP has been changing, and is likely to continue to change in ways that are not

entirely predictable. (The impact of the COVID-19 pandemic is an example of how the

relationship between CO2 emissions and GDP can change suddenly and unpredictably.)

Note that CO2 emissions are measured in billions of metric tons, called gigatons (Gt)

for short.

3. Atmospheric CO2 Concentration: Suppose we have projections of CO2 emissions

through the end of the century. We could could use those projections to project future

atmospheric CO2 concentrations, accounting for past and current emissions as well as

future emissions. The key fact is that one Gt of CO2 emitted into the atmosphere

increases the CO2 concentration by 0.128 parts per million (ppm).6 There is some

uncertainty here, because the CO2 dissipation rate — in the range of .0025 to .0050

per year on average — depends in part on the total concentrations of CO2 in the

atmosphere and in the oceans. But relative to other uncertainties, translating emissions

to concentrations can be done with reasonable accuracy.

4. Temperature Change: Now we come to the hard part. We would like to make

projections of the average global mean temperature change likely to result from higher

6In 2018, global CO2 emissions were about 36 Gt, so that year’s emissions increased the atmospheric CO2

concentration by about (36)(0.128) = 4.61 ppm.
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CO2 concentrations. That means we need a number for climate sensitivity — the

increase in the global mean temperature that would eventually result from a doubling

of the atmospheric CO2 concentration. OK, so what’s that number? Unfortunately, we

don’t know the true value of climate sensitivity. The “most likely” range (according to

the IPCC) is from 1.5 to 4.5◦C, and if we include what the IPCC considers “less likely”

but possible values, the range would run from 1.0 to 6.0◦C. Even 1.5 to 4.5◦C is a huge

range, and implies a huge range for temperature change. On top of that uncertainty,

what is the time lag between an increase in the CO2 concentration and its impact on

temperature? Something like 10 to 40 years, but again, that is a wide range.

5. Impact of Climate Change: But let’s march ahead and assume we know how much

the temperature will increase during the coming decades (and how much sea levels

will rise, etc.), and try to project the economic impact of such changes in terms of

lost GDP and consumption. Now we are in truly uncharted territory. Most integrated

assessment models (IAMs) make such projections by including a “damage function”

that relates temperature change to lost GDP, but those damage functions are not

based on any economic (or other) theory, or much in the way of empirical evidence.

They are essentially just arbitrary functions, made up to describe how GDP goes down

when temperature goes up. To make matters worse, “economic impact” should include

indirect impacts, such as the social, political, and health impacts of climate change,

which might somehow be monetized and added to lost GDP. Here, too, we are in the

dark. Basically, we know very little about what the true damage function looks like.

The bottom line: Projecting the impact of climate change is the most speculative part

of the analysis.

6. Abatement Costs: To evaluate a candidate climate policy, we must compare the

benefits of the policy to its costs. What are the benefits? A reduction in climate-

induced damages, e.g., a reduction in the loss of GDP that would otherwise result

from climate change. But as I just said, projecting the impact of climate change is

highly speculative. And what about the costs of a candidate climate policy, i.e., the

costs of abating GHG emissions by various amounts, both now and throughout the

future. A small amount of abatement (say, reducing CO2 emissions by 5 or 10 percent)

is fairly easy, but a large amount (say, cutting emissions in half) is likely to be quite

costly. But how costly? We’re not sure, in part because we have had no experience

cutting emissions by half or more. Also, we expect that abatement costs will fall over

the coming decades, but by how much? Answering that question requires projections
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of technological change that might reduce future abatement costs, and technological

change is hard to predict. Once again, we face considerable uncertainty.

7. Valuing Current and Future Losses of GDP: Finally, let’s assume that we could

somehow determine the annual economic losses (measured in terms of lost GDP) re-

sulting from any particular increase in temperature. Let’s also assume that we know

the increases in temperature that would result from “business as usual” (BAU), and

under some abatement policy. And suppose we also know the annual cost (again in

terms of lost GDP) of that abatement policy. How would we compare the benefits

from the policy to its costs? We would need to know the discount rate that would let

us compare current losses of GDP (from the cost of abating emissions) with the future

gains in GDP from the reduction in damages resulting from the abatement policy.7

The discount rate (in this case the social rate of time preference, because it measures

how society values a loss of GDP and hence consumption in the future versus today) is

critical: A low discount rate (say around 1%) makes it easier to justify an immediate

stringent abatement policy; a high rate (say around 5%) does the opposite. So what

is the “correct” discount rate? There is no clear number on which economists agree.

The U.S. Government’s Interagency Working Group used three discount rates to es-

timate the SCC, 2.5, 3.0, and 5.0%, although Stern (2015) argues that the “correct”

discount rate is about 1.1%. The problem is that 1.1% and 5% will give wildly different

estimates of the SCC.

To summarize, there are aspects of climate change — CO2 emissions and concentrations

— where we have a reasonable amount of knowledge and can make reasonable projections.

Yes, there is uncertainty, especially when projecting out 50 or more years. But at least we

can pinpoint the nature of the uncertainty, and to some extent bound it. And then there are

aspects of climate change — changes in temperature, and most notably, the economic impact

of those changes — where we know very little. I turn now to a more detailed discussion of

what we know and don’t know, why we don’t know certain things, and the extent of the

uncertainty.

7We might also want to specify a social welfare function, i.e., the loss of social utility resulting from a
loss of GDP (and hence from a loss of consumption). If GDP and consumption are very high, the loss of
utility resulting from a 5% loss of GDP would be smaller than if GDP and consumption were low.
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3 What We Know (or Sort of Know).

Some parts of the climate change process we understand fairly well. There is uncertainty

over the specific numbers, but at least we can estimate those numbers and come up with

reasonable bounds.

3.1 What Drives CO2 Emissions?

How much carbon will be burned over the coming decades, and how much CO2 will be

emitted? Putting aside efforts at emissions abatement for now, the answer depends in part

on economic activity. As economic activity grows, CO2 emissions will grow as well. But

the answer also depends on the relationship between GDP and CO2 emissions, and that

relationship is neither simple nor fixed. Over the past 50 years or so, the amount of CO2

emitted per dollar of GDP has declined steadily — in the U.S., in Europe, in China, in

almost all countries. This ratio, CO2 emitted per dollar of GDP, is called carbon intensity.

Carbon intensity has been declining for several reasons: (a) The composition of GDP

has been changing. Compared to 50 years ago, services has become more important than

manufacturing, and services use less energy and therefore emit less CO2 than manufacturing.

(b) Technological improvements in the way we produce and utilize goods and services has

resulted in the use of less energy, and thus lower emissions of CO2. For example, cars,

trucks and buses are much more fuel efficient than they were 50 years ago, as are home and

commercial heating and cooling systems. (c) Energy itself is becoming “greener.” Energy

generation from renewables (especially wind and solar) has been growing, and the share of

energy coming from fossil fuels, especially coal, has been falling.

Carbon intensity and its components can be measured and understood as follows:

1. Energy Intensity: The amount of energy consumed per dollar of GDP. We measure

energy consumption in quadrillions of BTUs (1015 BTUs, denoted as quads), and GDP

in billions of U.S. dollars.8 So the unit of measurement for energy intensity is quad

BTUs/$ billion.

2. Energy Efficiency: Sometimes referred to instead as CO2 efficiency, this is the

amount of CO2 emitted from the consumption of 1 quad of energy. If, for exam-

ple, the energy is generated from wind or solar, little or no CO2 will be emitted, but a

8One BTU (British thermal unit) is the amount of heat energy required to raise the temperature of one
pound of water by one degree Fahrenheit. In the metric system, the unit of energy is the calorie, which is the
amount of heat required to raise the temperature of one gram of water by 1◦C. One BTU is approximately
252 calories.
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large amount is emitted if the energy is from coal. For energy efficiency, we measure

CO2 emissions in megatons (Mt, millions of metric tons), so the unit of of measurement

is Mt of CO2/quad BTUs.

3. Carbon Intensity: The amount of CO2 emitted per $ billion of GDP. Carbon inten-

sity is simply the product of energy intensity and energy efficiency:

Carbon Intensity = Mt CO2/$ billion = (quads/$ billion)× (Mt CO2/quad)

Decomposing carbon intensity into its two components is useful because the drivers of

energy intensity and energy efficiency can be quite different.

What does this decomposition of carbon intensity tell us? It says that if we want to want

to predict CO2 emissions over the coming decades (with or without some abatement policy),

we would have to (1) predict GDP growth; (2) predict changes in energy intensity; and (3)

predict changes in energy efficiency. And we’d have to do this for every major country, or

at least different regions of the world, because GDP growth, energy intensity and energy

efficiency are likely to evolve very differently in different countries and regions.

What has happened to carbon intensity and its components over the past 40 or 50 years,

and what is likely to happen in the future? Briefly:

1. Energy Intensity: Figure 1 shows the evolution of energy intensity since 1980 for the

world, and for the U.S., Europe, India, and China. For the U.S. and Europe, energy

intensity has declined steadily, largely due to gradual changes in the composition of

GDP and the ways in which GDP is produced and consumed. Compared to 1980,

services are now a larger share of GDP, and the production of services uses less energy

than the production of manufactured goods. In addition, we now use less energy to

produce and utilize goods and services; cars and trucks have become more fuel efficient,

as have household appliances and home and commercial heating and cooling systems.

In China, energy intensity has declined sharply, in part because the Chinese GDP was

so low in 1980. But there has been little or no decline in energy intensity in India

and other large developing countries. For the world as a whole, reductions in energy

intensity have been quite limited; a decline from .011 in 1980 to about .0075 quads/$

Billion today.

2. Energy Efficiency: Even if energy intensity remains constant, we would see a re-

duction in carbon intensity if we could achieve a significant improvement in energy

efficiency. Figure 2 shows the evolution of energy efficiency since 1980 for the world,
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Figure 1: Energy Intensity for the world, and for the U.S., Europe, India, and China. Energy
Intensity is measured in quad (1015) BTUs per Billion 2010 U.S. dollars of GDP. Source:
World Bank, U.S. Energy Information Agency

and for the U.S., Europe, India, and China. Both Europe and (to a lesser extent) the

U.S. have had improvements in energy efficiency, in part because energy production

is becoming “greener.” Energy generation from renewables has been growing, and the

share of energy coming from fossil fuels, especially coal, has been falling. But alas,

energy efficiency in China and India is now about where it was in 1980 — around 70

Mt CO2/quad BTU in China and around 80 Mt CO2/quad BTU in India — and well

above the levels in the U.S. and Europe. Energy efficiency has followed a similar pat-

tern in other large developing countries. The net result: On a worldwide basis, energy

efficiency has remained roughly constant (at about 60 Mt CO2/quad BTU).

3. Carbon Intensity: What matters in the end is the product of energy intensity and
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Figure 2: Energy Efficiency for the world, and for the U.S., Europe, India, and China.
Energy Efficiency is measured in Mt of CO2 emissions per quad BTU of energy consumed,
so a reduction in energy efficiency implies an improvement, i.e., a reduction in the amount
of CO2 generated from the use of energy. Source: Energy Information Agency

energy efficiency, namely energy intensity. It has followed a path that is very similar

to energy intensity, because energy efficiency hasn’t changed much. As illustrated in

Figure 3, for the world as a whole there has been a gradual decline in carbon intensity

from about 0.69 Mt CO2/$ Billion in 1980 to 0.50 Mt CO2/$ Billion in 2000, but after

2000 just a minimal decline, to about 0.46 Mt CO2/$ Billion in 2018.

What does a decline in worldwide carbon intensity from 0.69 Mt CO2/$ Billion in 1980

to about 0.46 Mt CO2/$ Billion in 2018 imply for worldwide CO2 emissions? If world GDP

had remained constant over that time period, CO2 emissions would have declined by about

a third. But (fortunately) world GDP has grown substantially. Measured in 2010 constant

U.S. dollars, it nearly tripled, going from about $28 trillion in 1980 to about $80 trillion in

2018. And that’s why global CO2 emissions have increased so much.

What does this tell us about future CO2 emissions? On one level it paints a rather grim
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Figure 3: Carbon Intensity for the world, and for the U.S., Europe, India, and China. Carbon
Intensity is the product of energy intensity and energy efficiency, and is measured in Mt of
CO2 emissions per billion 2010 U.S. dollars of GDP.

picture. Worldwide, carbon intensity has been declining very slowly, only by about 1 percent

per year, but world GDP has been growing at an average rate of about 3 percent per year.

So there are only two ways that CO2 emissions can decline in the future: (1) a decline in

world GDP; or (2) a decline in worldwide carbon intensity. A decline in world GDP is not

a happy thought, and we certainly wouldn’t want to engineer a global recession as a means

of reducing CO2 emissions. So that leaves us with the second option — a decline in carbon

intensity. Do we have any good reasons to expect this to occur? Both energy intensity and

energy efficiency can both be affected by government policy. The adoption of strong CO2

abatement policies seems quite likely in Europe, but less so in the U.S., and much less so

in key countries such as China, India, Indonesia, and Russia. And the free-riding problem

reduces the political feasibility of strong abatement policies in many countries.

12



Where does this leave us with regard to future CO2 emissions: If we could predict the

growth of GDP around the world, and predict the changes in energy intensity and energy

efficiency, and thus the changes in carbon intensity, we could come up with at least a rough

prediction of future CO2 emissions. And we would want to make that rough prediction under

“business as usual,” and under one or more CO2 abatement policies. Yes, lots of uncertainty,

but relatively manageable.

3.2 What Drives the Atmospheric CO2 Concentration?

Remember that CO2 emissions do not directly cause increases in temperature. Instead,

warming is caused by increases in the atmospheric CO2 concentration. Of course increases

in the CO2 concentration are the result of CO2 emissions, so if we want to make predictions

about increases in temperature, we need to determine how any particular path for emissions

affects the future path of the CO2 concentration.

Isn’t the current atmospheric CO2 concentration just the sum of past emissions, minus

any dissipation? Roughly, but not precisely. The problem is that some atmospheric CO2 is

absorbed by the oceans, and some of the CO2 in the oceans can re-enter the atmosphere.

How much goes each way? That depends on a variety of factors, including the amounts of

CO2 both in the atmosphere and in the oceans, and the ocean temperature. So even if we had

precise projections of CO2 emissions over the next several decades, our projection of the at-

mospheric CO2 concentration would be subject to some uncertainty. Nonetheless, compared

to some of the other uncertainties we face, this one is not too bad. Given a predicted path

for CO2 emissions, we can predict the atmospheric CO2 concentration reasonably well, using

the fact that 1 Gt of CO2 emissions adds 0.128 parts per million (ppm) to the atmospheric

CO2 concentration. Adding up past CO2 emissions and subtracting dissipation:

Mt = (1− δ)Mt−1 + Et , (1)

where Et is emissions in year t, Mt is the concentration, δ is the dissipation rate. And what

is the correct value for the dissipation rate? Estimates generally range from .0025 to .0050

per year. Fitting eqn. (1) to data on CO2 emissions and the CO2 concentration yields an

estimate of δ = .0035 per year.9 So once again, while there is some uncertainty, it is relatively

manageable.

9For example, emissions in 1961 were 9 Gt, which added (9)(0.128) = 1.15 ppm of CO2 to the 315 ppm
already in the atmosphere. Dissipation in 1961 was (.0035)(315) = 1.10 ppm, so the net increase was 0.05
ppm, making the 1961 concentration 315 + 0.05 = 315.05.
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4 What We Don’t Know.

Now we come to the hard part. We would like to make projections of the average

global temperature changes likely to result from higher CO2 concentrations. And then given

projections of how much the temperature will increase during the coming decades (and how

much sea levels will rise, etc.), what matters is the impact of those changes. If we had reason

to believe that higher temperatures and higher sea levels will cause little damage, it would

be hard to argue that we should devote resources today on preventative measures. On the

other hand, if the likely damages are extreme, then we certainly should act quickly to reduce

emissions and prevent climate change. Thus it is important to determine the likely economic

impact of warming, rising sea levels, and other measures of climate change in terms of lost

GDP and consumption. Unfortunately, when it comes to the impact of climate change we

are very limited in what we know, and thus for the most part we can only speculate.

Why is it so difficult to pinpoint climate sensitivity, or at least narrow the range of

estimates? Why can’t we predict the likely impact of climate change on the economy? I

turn now to these questions.

4.1 Climate Sensitivity.

Recall that climate sensitivity is defined as the temperature increase that would eventu-

ally result from a doubling of the atmospheric CO2 concentration. The word “eventually”

means after the world’s climate system reaches a new equilibrium. It would take a very

long time, however, for the climate system to completely reach a new equilibrium, around

300 years or more. However, the climate system will get quite close to equilibrium in a few

decades. How many decades depends in part on the size of the increase in the CO2 concen-

tration — the larger the increase, the longer is the time lag — and even for a given increase,

there is some uncertainty over the time lag. But generally 10 to 40 years is a reasonable

range, and 20 years is a commonly used number.10

I said that there is a great deal of uncertainty over the true value of climate sensitivity.

Three questions come up. First, just how much uncertainty is there? Second, has research

in climate science during the past few decades resulted in more precise estimates of climate

sensitivity? In other words, has the uncertainty been reduced, and if so, by how much? And

10Climate scientists often distinguish between “equilibrium climate sensitivity,” which is climate sensitiv-
ity as I have described it above, and “transient climate response,” which is the response of global mean
temperature to a gradual (1-percent per year) increase in the CO2 concentration. See National Academy of
Sciences (2017), pages 88–95, for a discussion. I will simply use the term “climate sensitivity,” and treat the
time lag (10 to 40 years) as the time it takes for the climate system to get close to equilibrium.
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third, why is there so much uncertainty over climate sensitivity? I address each of these

questions in turn.

4.1.1 How Much Uncertainty Is There?

Over the past two decades there have been a large number of studies by climate scientists

on the magnitude of climate sensitivity. Virtually all of those studies conclude by providing

a range of estimates, often in the form of a probability distribution. From the probability

distribution we can determine the probability that the true value of climate sensitivity is

above or below any particular value, or within any interval; for example, above 4.0◦C, or

between 2.0 and 3.0◦C. Thus each study gives us an estimate of the nature and extent of

uncertainty, according to that study. But there is considerable dispersion across studies, and

that dispersion gives us further information regarding the extent of the uncertainty.

To explore this dispersion, I used information from the roughly 130 studies of equilibrium

climate sensitivity assembled by Knutti, Rugenstein and Hegerl (2017). Most of these studies

provide a “best” (most likely) estimate of climate sensitivity, as well as a range of “likely”

(i.e., probability greater than 66%) values. Although Knutti, Rugenstein and Hegerl (2017)

surveyed a few earlier studies, I only included those from 1970 through 2017. I also located

and added 9 additional studies published in 2017 and 2018.11

For each study I used both the low end of the range of likely values (which I refer to

as “minimum estimates”) and the high end (“maximum estimates”), as well as the “best”

(most likely) estimate. To see how views about climate sensitivity might have changed over

time, I divided the studies into two groups based on year of publication: pre-2010 and 2010

onwards. Figure 4 shows a histogram with the “best” estimates from these studies.

From the figure, note that the bulk of the studies (115 of the 131) have “best estimates”

between 1.5 and 4.5◦C, which is the “most likely” range according to the IPCC. But this

is still a wide range, and 16 studies have “best estimates” outside this range (as low as

0.5◦C and as high as 8◦C). We can also get a sense of how views about climate sensitivity

changed by comparing the pre-2010 studies with those published 2010 onwards. Both the

mean and standard deviation are somewhat higher for the more recent studies: 2.77 and

1.03 respectively for the pre-2010 studies, and 2.87 and 1.11 for the later studies.

Figure 5 shows histograms for the low end of the range of likely values reported by these

11All of the studies that Knutti, Rugenstein and Hegerl (2017) examined are listed in their paper. The
9 additional studies that I added are: Brown and Caldeira (2017), Krissansen-Totton and Catling (2017),
Andrews et al. (2018), Cox, Huntingford and Williamson (2018), Dessler and Forster (2018), Lewis and
Curry (2018), Lohmann and Neubauer (2018), Skeie et al. (2018), and Keery, Holden and Edwards (2018).
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Figure 4: Histogram of Best Estimates of Climate Sensitivity, from 131 studies, of which
47 were published prior to 2010 and 84 from 2010 onwards. The studies are from Knutti,
Rugenstein and Hegerl (2017), supplemented by 9 additional studies published in 2017 and
2018, and listed in Footnote 11 on page 15.

studies (“minimum estimates”) and the high end (“maximum estimates”). The bulk of the

“minimum estimates” are in the range of 0.5 to 4.0◦C, with only three estimates above this

range. The bulk of the “maximum estimates” are in the range of 3.0 to 7.0◦C, but there are

13 estimates above this range, with seven estimates at 10 to 15◦C.

Figure 5 tells us that there is a huge amount of uncertainty over climate sensitivity. If

we ignore the outliers and simply consider the bulk of the “minimum” and “maximum”

estimates, we get a range of 0.5 to 7.0◦C. Remember that this is a range of “likely” (i.e.,

probability greater than 66%) values, and excludes more extreme values that are unlikely

but still possible.

Climate scientists have conducted numerous studies that try to estimate climate sensi-
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Figure 5: Histograms of Minimum and Maximum Estimates of Climate Sensitivity from
from 143 studies, of which 54 were published prior to 2010 and 89 from 2010 onwards. The
studies are from Knutti, Rugenstein and Hegerl (2017), supplemented by 9 additional studies
published in 2017 and 2018, and listed in Footnote 11 on page 15..

tivity. The individual studies show large ranges of “likely” values, and that range becomes

much greater once we account for the dispersion across the different studies. The bottom

line: We are quite certain that climate sensitivity is a positive number, at this point we

simply don’t know its actual value. And that’s unfortunate, because climate sensitivity is a

critical determinant of the temperature increases we can expect over the coming decades.

4.1.2 Has the Uncertainty Been Reduced?

Climate scientists have been busy, publishing hundreds of papers that directly or indi-

rectly relate to climate sensitivity. There is little question that our understanding of the

physical mechanisms that underlie climate sensitivity has improved considerably over the

past couple of decades. Doesn’t this mean that we are now better able to pinpoint the mag-

nitude of climate sensitivity, i.e., that our uncertainty over its true value has been reduced?

Unfortunately, the answer is no. In fact, if anything the extent of the uncertainty has

grown. This is suggested by the earlier (pre-2010) and later (2010 onwards) “best estimates”

in the set of studies shown in Figure 4; although the distributions are skewed-right, the
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standard deviation is higher for the more recent studies (1.13 versus 1.03).

The increase in uncertainty has also been demonstrated in a paper by Freeman, Wagner

and Zeckhauser (2015), who compared the survey of climate sensitivity studies in the 2007

IPCC report with the updated survey in the 2014 report. In the 2007 report, the IPCC

surveyed 22 peer-reviewed published studies of climate sensitivity and estimated that the

“most likely” range is from 2.0 to 4.5◦C.12 But then in the 2014 report, that “most likely”

range widened, to 1.5 to 4.5◦C. Furthermore, the implied standard deviation increased. These

results are in part good news, because the bottom of the range became lower (1.5◦C instead of

2.0◦C). But there is also some bad news, because the estimated uncertainty became greater.

This increase in uncertainty does not mean that climate scientists have not been working

diligently, or have otherwise done a bad job. Their work has indeed given us a better

understanding of the physical mechanisms through which increases in the atmospheric CO2

concentration affect temperature. But a better understanding of those physical mechanisms

need not mean reduced uncertainty over the magnitude of climate sensitivity. Instead it can

simply provide clarity over why there is so much uncertainty.

4.1.3 Why Is There So Much Uncertainty Over Climate Sensitivity?

The basic problem is that the magnitude of climate sensitivity is determined by crucial

feedback loops, and the parameter values that determine the strength (and even the sign)

of those feedback loops are largely unknown, and for the foreseeable future may even be

unknowable. This is not a shortcoming of climate science; on the contrary, climate scientists

have made enormous progress in understanding the physical mechanisms involved in climate

change. But part of that progress is a clearer realization that there are limits (at least

currently) to our ability to pin down the strength of the key feedback loops.

The problem is easiest to understand in the context of the simple (but widely cited)

climate model of Roe and Baker (2007). It works as follows. Let S0 represent climate

sensitivity in the absence of any feedback effects (i.e., without feedback effects, a doubling

of the atmospheric CO2 concentration would cause cause an initial temperature increase of

∆T0 = S0
◦C). But as Roe and Baker explain, the initial temperature increase ∆T0 “induces

changes in the underlying processes ... which modify the effective forcing, which, in turn,

12Intergovernmental Panel on Climate Change (2007) also provides a detailed and readable overview of the
physical mechanisms involved in climate change, and the state of our knowledge regarding those mechanisms.
Each of the individual studies included a probability distribution for climate sensitivity, and by putting the
distributions in a standardized form, the IPCC created a graph that showed all of the distributions in a
summary form. This is updated in Intergovernmental Panel on Climate Change (2014).
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modifies ∆T .” Thus the actual climate sensitivity is given by

S =
S0

1− f
,

where f (0 ≤ f ≤ 1) is the total feedback factor.13 So if f = 0.95, then S = 20× S0.

Of course this is an extremely simplified model of the climate system. A more complete

and complex model would incorporate several feedback effects; here they are all being rolled

into one. Nonetheless, this simple model allows us to address the key problem: Climate

sensitivity is very sensitive to the magnitudes of the feedback effects, which in this simplified

model comes down to the value of f . But we don’t know the value of f . Roe and Baker point

out that if we knew the mean and standard deviation of f , denoted by f̄ and σf respectively,

and if σf is small, then the standard deviation of S would be proportional to σf/(1 − f̄)2.

This implies that uncertainty over S is greatly magnified by uncertainty over f , and becomes

very large if f is close to 1.

For example, suppose our best estimate of f is 0.95, but we believe that could be off by

a factor of 0.03, i.e., f could be as low as 0.92 or as high as 0.98. In that case, S could be as

low as (1/.08)× S0 = 12.5× S0 or as high as (1/.02)× S0 = 50× S0. But 50× S0 is 4 times

as large as 12.5 × S0, so this seemingly small uncertainty over f creates a huge amount of

uncertainty over climate sensitivity.

To illustrate the problem further, Roe and Baker assume that f is normally distributed

(with mean f̄ and standard deviation σf ), and derive the resulting distribution for S, climate

sensitivity. Given their choice of f̄ and σf , the resulting median and 95th percentile are close

to the corresponding numbers that come from averaging across the standardized distributions

summarized by the IPCC.14

This Roe-Baker distribution has become well-known and widely used, but it may well

understate our uncertainty over climate sensitivity. The reason is that we don’t know whether

13In the notation of Roe and Baker (2007), λ0 is climate sensitivity without feedback effects, and λ is
climate sensitivity accounting for feedback effects.

14Adding a displacement parameter θ, the Roe-Baker distribution is given by:

g(S; f̄ , σf , θ) =
1

σf
√

2πz2
exp

[
−1

2

(
1− f̄ − 1/z

σf

)2
]
,

where z = S + θ. Fitting to the distributions summarized by the IPCC, the parameter values are
f̄ = 0.797, σf = .0441, and θ = 2.13. This distribution is fat-tailed, i.e., declines to zero more slowly
than exponentially. Weitzman (2009, 2014) has shown that parameter uncertainty can lead to a fat-tailed
distribution for climate sensitivity, and that this implies a relatively high probability of a catastrophic out-
come, which in turn suggests that the value of abatement is high. Pindyck (2011) shows that a fat-tailed
distribution by itself need not imply a high value of abatement.
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the feedback factor f is in fact normally distributed (and even if it is, we don’t know its

true mean and standard deviation). Roe and Baker simply assumed a normal distribution.

In fact, in an accompanying article in the journal Science, Allen and Frame (2007) argued

that climate sensitivity is in the realm of the “unknowable,” and that the uncertainty will

remain for decades to come.

4.2 The Impact of Climate Change

When assessing climate sensitivity, we at least have scientific results to rely on, and can

argue coherently about the probability distributions that are most consistent with those

results. When it comes to the predicting the impact of climate change, however, we have

much less to go on, and the uncertainty is far greater. In fact, we know very little about the

impact that higher temperatures and rising sea levels would have on the economy, and on

society more generally.

Why is it so difficult to estimate how climate change will affect the economy? One

problem is that we have very little data on which to base empirical work. True, we do have

data on temperatures in different locations and different periods of time, and we can try to

relate changes in temperature to changes in GDP and other measures of economic output.

In fact there have been some empirical studies that made use of weather data for a large

panel of countries over fifty or more years. 15 And there have been many more studies that

explore how changes in temperature and rainfall affect agricultural output.16

But all of these studies suffer from a fundamental problem: They relate changes in

weather to changes in GDP or agricultural output, and weather is not the same as climate.

The weather in any location — temperature, rainfall, humidity, etc. — changes from week

to week and month to month, but the climate — which determines the average temperature

and rainfall that we can expect in any particular week or month — changes very slowly (if at

all). An unexpectedly hot summer might indeed reduce that year’s wheat or corn harvest,

but the impact of a gradual change in climate (in which average expected temperatures rise)

might have a very different (and probably lower) impact because farmers will shift what and

where they plant. Finally, the observed changes in temperature used in these studies are

relatively small — not the 4◦C or more of warming that many people worry about.

A second problem is that there is little or nothing in the way of economic theory to help

15For example, Dell, Jones and Olken (2012) found that the impact of higher temperatures is largely on
the growth rate of GDP, as opposed to its level, and is mostly significant in poor countries. See Dell, Jones
and Olken (2014) for an overview of this line of research.

16For overviews, see Auffhammer et al. (2013) and Blanc and Schlenker (2017).
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us understand the potential impact of higher temperatures. We have some sense of how

higher temperatures might affect agriculture, and indeed, most of the empirical work that

has been done is focused on agriculture. But we also know that losses of agricultural output

in some regions of the world (e.g., near the equator) might be offset by increased output

in other regions (e.g., northern Canada and Russia). Furthermore, agriculture is a small

fraction of total economic output: 1 to 2 percent of GDP for industrialized countries, 3 to

20 percent of GDP for developing countries. Beyond agriculture, it is difficult to explain,

even at a heuristic level, how higher temperatures will affect economic activity.

A third problem is that climate change will occur slowly, which allows for adaptation.

This is not to say that adaptation will eliminate the impact of climate change — it will only

reduce the impact. But we don’t know by how much it will reduce the impact. As a result,

adaptation is another complicating factor that makes it very difficult to estimate the extent

of the losses we should expect.

It may be that the relationship between temperature and the economy is not just some-

thing we don’t know, but something that we cannot know, at least for the time horizon rel-

evant to the design and evaluation of climate policy. As discussed earlier, some researchers

have come to the conclusion that climate sensitivity is in this category of the “unknowable,”

and it may be that the impact of climate change is in that same category. On the other

hand, we may start learning more about the impact of climate change, perhaps not in the

next few years, but in the next few decades. With more time, and most important with

more data related to higher temperatures, it is likely that we will be better able to estimate

impacts. For now, however, we need to recognize that our ability to predict the impact of

climate change is extremely limited.

4.3 A Catastrophic Outcome.

It may turn out that over the coming decades climate change and its impact will be mild

to moderate. Given all of the uncertainties, this might happen even if little is done to reduce

GHG emissions. And if we were certain that this will be case, it would imply that we can

relax and stop worrying about climate change.

But we are not certain that the outcome will be so favorable. There is a possibility of

an extremely unfavorable outcome, one that we could call catastrophic. Such an outcome

would entail a major decline in human welfare from whatever climate change occurs. The

Integrated Assessment Models (IAMs) that have been used to make projections have little

or nothing to tell us about such outcomes. This is not surprising; the damage functions in
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these models, which are ad hoc, are calibrated to give small damages for small temperature

increases, and can tell us very much about the kinds of damages we should expect for

temperature increases of 5◦C or more. And that’s unfortunate, because it is the possibility

of a catastrophic outcome that really drives the SCC and matters for climate policy.

For climate scientists, a “catastrophic outcome” usually means a high temperature out-

come. How high? There is no fixed rule here. Almost all would agree that a 5◦C or 6◦C

increase by 2100 would be in the realm of the catastrophic, and might result if the climate

system reaches a “tipping point” as the CO2 concentration keeps increasing. Putting aside

the difficulty of estimating the probability of that outcome, what matters in the end is not

the temperature increase itself, but rather its impact. Would that impact be “catastrophic,”

and might a smaller (and more likely) temperature increase, perhaps 3 or 4◦C, be suffi-

cient to have a catastrophic impact? Again, opinions vary. Some have argued that even a

2◦C temperature increase would be catastrophic. For example, CarbonBrief, an interactive

collection of 70 peer-reviewed climate studies that show how different temperatures are pro-

jected to affect the world, suggests that 2◦C of warming could reduce global GDP by 13%.

(The website is https://interactive.carbonbrief.org/.)

Why does the possibility of a catastrophic outcome matter so much for climate policy?

Because even if it has a low probability of occurring, the possibility of a severe loss of

GDP (broadly interpreted) can justify a large carbon tax (or equivalent emission abatement

policy). A mild to moderate outcome, on the other hand, is something to which society can

respond, in part through adaptation, at a relatively low cost. This means that to a large

extent, climate policy has to be based on the (small) likelihood of an extreme outcome.

So how likely is a catastrophic outcome, and how catastrophic might it turn out to be?

How high can the atmospheric CO2 concentration be before the climate system reaches a

“tipping point,” and temperatures rise rapidly? We don’t know. We don’t know where a

‘tipping point,” if there is one, might lie, and what the impact of a large temperature increase

might be. Furthermore, is difficult to see how answers to these questions will become clear in

the next few years, despite all of the ongoing research on climate change. We may know much

more in the next 20 years, but in the short term, the likelihood and impact of a catastrophic

outcome may simply be in the realm of the “unknowable.”

5 The Policy Implications of Uncertainty.

The uncertainties discussed above make the design and analysis of climate policy very

different from most other problems in environmental economics. Most environmental prob-
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lems are amenable to standard cost-benefit analysis. Determining the limits to be placed on

sulfur dioxide emissions from coal-burning power plants is a good example. These emissions

can harm the health of people living downwind, and also cause acidification of lakes and

rivers, harming fish and other wildlife. We would like to limit these emissions, but doing so

is costly because it would raise the price of the electricity produced by the power plant. On

the other hand, the benefit of reducing emissions is a reduction in the health problems that

they cause, and less damage to lakes and rivers.

So how should we decide the extent to which power plant emissions should be reduced?

We compare the cost of any particular emission reduction to the resulting benefit, and con-

sider reducing emissions further if the cost is less than the benefit. There will be uncertainties

over the costs and benefits of any candidate policy, but the characteristics and extent of those

uncertainties will usually be well-understood, and comparable in nature to the uncertainties

involved in other public and private policy or investment decisions. Economists might argue

about the details of the analysis, but at a basic level, we’re in well-charted territory and we

think we know what we’re doing. If we come to the conclusion that a policy to reduce sulfur

dioxide emissions by some amount is warranted, that conclusion will be seen — at least by

most economists — as defensible and reasonable.

But this is not the case with climate change. Climate policy is controversial, in part

because the uncertainties complicate the policy arguments. There is disagreement among

both climate scientists and economists over the likelihood of alternative climate outcomes,

especially catastrophic outcomes. There is also disagreement over the framework that should

be used to evaluate the potential benefits from an abatement policy, including the discount

rate to be used to put future benefits in present value terms. These disagreements make

climate policy much less amenable to standard cost-benefit analysis.

So what should we do? Is there a way to properly account for this uncertainty in our

models of climate change? How should we handle the possibility of a catastrophic out-

come? And how can we account for the insurance value of early action, and the conflicting

irreversibilities inherent in climate policy?

5.1 The Value of Climate Insurance.

Uncertainty over climate change creates insurance value in two ways. First, it occurs

through the “damage function,” i.e., the loss of GDP resulting from any particular temper-

ature increase. Although the impact of any increase in temperature is highly uncertain, we

are quite sure that the damage function is a convex function of temperature, i.e., it becomes
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increasingly steep as the temperature change becomes larger. Put another way, going from

3◦C of warming to 4◦C is likely to cause a much larger reduction in GDP than going from

1◦C to 2◦C. The second way that uncertainty creates insurance value is social risk aversion.

Risk aversion refers to a preference for a sure outcome, rather than a risky outcome, even

if that risky outcome has the same expected value as the sure outcome. We do not know

what the “correct” social welfare function is, but we expect it to exhibit at least some risk

aversion. This means that society as a whole would pay to avoid the risk of a very bad

climate outcome.

5.1.1 The Damage (or Loss) Function.

To understand how uncertainty, combined with a convex damage function, creates a value

of insurance, we’ll use a very simple example. We will consider a single point in the future,

say the year 2050, and we will ignore the issue of discounting future costs and benefits. For

purposes of this illustrative example, I will assume that the percentage loss of GDP resulting

from a temperature increase T is given by

L(T ) = 1 − 1/(1 + .01T 2) . (2)

Eqn. (2) says that L(0) = 0, i.e., with no temperature increase, there would be no loss of

GDP. It also says that L(2) = .04, i.e., a 2◦C temperature increase would result in a loss

of 4% of GDP, L(4) = 14, i.e., a 4◦C temperature increase would result in a loss of 14% of

GDP, L(6) = .26, i.e., a 6◦C temperature increase would result in a 26% loss of GDP, and

so on. Note that each additional 2◦increase in temperature results in a larger and larger

additional loss.

What does this tell us? First, suppose we know for certain that in 2050 the global mean

temperature will have increased by 2◦C. And using eqn. (2), suppose we know that this 2◦C

temperature increase will cause a 4 percent drop in GDP, compared to what GDP would be

without the higher temperature. Ignoring social risk aversion for now, what percentage of

GDP should we be willing to sacrifice to avoid this temperature increase? Up to 4 percent.

Hopefully, we could avoid the temperature increase at a cost that is less than 4 percent of

GDP (perhaps by developing and making use of new energy-saving technologies). But if we

had to, we’d be willing to sacrifice up to 4 percent of GDP.

Now, suppose there is uncertainty over the temperature increase. We think that the

temperature might not increase at all, or that it might increase by 4◦C, with each outcome

having a 50 percent probability. The expected value of the temperature increase is (0.5)(0)+
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(0.5)(4) = 2◦C, i.e., the same as it was in the first case. But now there is uncertainty. How

does this change things?

How bad would a 4◦C temperature increase be in terms of its impact on GDP? Would

it reduce GDP by 8 percent, i.e., twice the 4 percent drop we said would occur with a 2◦C

temperature increase? No, we just saw that the impact would be much larger; the damage

caused by higher temperatures will rise more than proportionally. Why? Because 4◦C of

warming is more likely to cause substantial increases in sea levels (for example by melting

the Antarctic ice sheets), substantial damage to crops, etc. We don’t know what the impact

would be, but using eqn. (2) we will assume it causes a 14 percent drop in GDP. In this case,

what percentage of GDP should we be willing to sacrifice to avoid the possibility of a 4◦C

temperature increase?

To answer this, consider the expected size of the impact on GDP. It is (0.5)(0) +

(0.5)(14) = 7 percent of GDP. That says that we should be willing to sacrifice up to 7

percent of GDP to avoid the 50 percent chance of a 4◦ temperature increase. (Once again,

hopefully we can avoid the temperature increase at a cost that is less than 7 percent of GDP,

but if we had to, we’d be willing to sacrifice up to that amount.)

Let’s take this one more step. Suppose there is a 75 percent probability that there will be

no temperature increase, and just a 25 percent chance of an 8◦ temperature increase. And

suppose that an 8◦ temperature increase would be close to catastrophic, and consistent with

eqn. (2), result in a 40 percent loss of GDP. The expected value of the temperature increase is

still 2◦, but the expected impact of this temperature gamble is now (0.75)(0)+(0.25)(40) = 10

percent of GDP. That says that we should be willing to sacrifice up to 10 percent of GDP

to avoid a 25 percent chance of an 8◦ temperature increase.

These calculations are summarized in Table 1. What’s going on here is fairly simple: In

terms of its impact on GDP, a 4◦ temperature increase is more than twice as harmful as a

2◦ temperature increase. So even though there is only a 50 percent chance of the 4◦ increase

happening, we would sacrifice a lot to avoid the risk. And an 8◦ temperature increase is

much more than than four times as harmful as a 2◦ temperature increase. So we would be

willing to pay a lot to avoid a very bad outcome, even if that outcome has only a small

chance of occuring. For example, how much would we be willing to pay for the first row of

Table 1 instead of the third row, i.e., for a certain temperature increase of 2◦C rather than a

75% chance of no temperature increase and a 25% chance of an 8◦C increase? From the last

column of the table, we would be willing to give up 10%− 4% = 6% of GDP. Quite a lot!

This is the essence of insurance: We are willing to pay, sometimes a lot, to avoid a very

bad outcome, even if that outcome is very unlikely. So we insure our homes against major
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Maximum T Probability Probability % Loss of GDP Expected Loss
Possible Max T Occurs of T = 0 if Max T Occurs of GDP

2◦C 1 0 4% 4%

4◦C 0.5 0.5 14% 7%

8◦C 0.25 0.75 40% 10%

Table 1: Possible Temperature Outcomes and Economic Impacts. Impacts are based on
the (hypothetical) loss function L(T ) = 1 − 1/(1 + .01T 2), which gives the percentage
loss of GDP resuling from a temperature increase T . Note that in each case the expected
temperature change is 2◦C.

damage from fire, storms or floods, we buy medical insurance to cover the cost of a major

hospitalization, and we buy life insurance, even if we are healthy and expect to live many

more years. And that is why we should be willing to pay a considerable amount for insurance

against a very bad (even if unlikely) climate outcome.

5.1.2 The Social Welfare Function.

These simple calculations suggest that we should be willing to sacrifice quite a bit of

GDP (and hence quite a bit of consumption) to insure against the risk of a very bad climate

outcome. But we have understated the value of insurance. We focused on the expected loss

of GDP, but implicitly assumed that a 10% loss of GDP is exactly twice as bad as a 5% loss.

In fact, a 10% loss of GDP might be more than twice as bad as a 5% loss. The reason has

to do with how people value more (or less) income and consumption.

Suppose your annual disposable (after-tax) income is $60,000. Suppose this income is

increased to $70,000, so you now have an additional $10,000 to spend on things. That might

make you very happy. But now suppose your starting income is $160,000, and we add an

extra $10,000, for a total of $170,000. The extra $10,000 will still make you happy, but

probably not as much as it would if your starting income was only $60,000. We call this a

“declining marginal utility of income;” the value (in terms of the satisfaction it provides) of

an additional $10,000 of income is lower the higher is your starting income.

This declining marginal utility of income corresponds to risk aversion. You would prob-

ably refuse a lottery in which you had a 50-50 chance of winning $10,000 or losing $10,000.

The reason is that (for most people) the value of winning $10,000 is less than the lost value of

losing $10,000. How much would you have to be paid to agree to take part in that lottery?

$2,000? $3,000? The higher the amount you’d have to be paid, the greater is your risk
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aversion.17 You can think of this amount you’d have to be paid as an insurance premium.

How risk averse is society as a whole? That’s a complicated question because society is

made up of different people with different attitudes towards risk. Financial market data tell

us that investors in the aggregate seem to have substantial risk aversion, but not everyone is

an investor, and averting climate change is not the same as investing in the stock market.18

So what does this tell us about climate policy? If risk aversion for society as a whole

is substantial, that would push us further towards a stringent emissions abatement policy.

Apart from that, it shows us why the uncertainties over climate change are so important,

and in particular why society should be willing to sacrifice a substantial amount of GDP to

avoid the risk of an extremely bad climate outcome. In effect, by reducing emissions now we

would be buying insurance. And the value of that insurance could be considerable.

You might be thinking “Well, this is nice. But exactly how large is the value of climate

insurance? To what extent does it push us towards early action, and by how much more

should we reduce CO2 emissions if we want to properly account for the insurance value?”

Sorry, but I can’t provide those numbers. You may be disappointed with that answer,

but remember, we don’t know much about the actual loss function (the loss function used

to generate Table 1 is completely hypothetical), nor do we know the extent of social risk

aversion. All we can say at this point is that the value of insurance is likely to be substantial,

and will push policy towards earlier and more stringent emission abatement.

5.2 The Effects of Irreversibilities.

Environmental damage can sometimes be irreversible, which can lead to a more “conser-

vationist” policy than would be optimal otherwise. If the value of environmental amenities

to future generations is uncertain, the benefit from protecting the environment today should

include an option value, which accounts for the possibility that future generations will deeply

17A utility function translates income, or wealth or consumption, into units of well-being (or satisfaction).
For a textbook explanation, see, Pindyck and Rubinfeld (2018). A commonly used utility function is

u(y) =
1

1− η
y1−η ,

where y is income and η is called the coefficient of relative risk aversion. In this case marginal utility, i.e.,
the benefit of an additional dollar of income, is du/dy = y−η. Marginal utility declines with the level of
income, and the larger is η the faster it declines. Thus the larger is η, the greater is the insurance premium
you would require to take part in a lottery for which there is a 50-50 chance of winning or losing $10,000.

18Based on financial market data, and data on consumption and savings, the coefficient of relative risk
aversion for society as a whole seems to be in the range of 2 to 5, which is substantial.
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regret irreversible environmental damage. This option value pushes the cost-benefit calcula-

tion towards protection.19

But environmental protection requires irreversible expenditures, i.e., imposes sunk costs

on society. This could include sunk cost investments in abatement equipment, and an ongoing

flow of sunk costs for alternative and perhaps more expensive production processes. If the

future value of the the environment is uncertain, this would lead to policies that are less

“conservationist” than they would be otherwise. Why? Because future generations might

find it less valuable than we currently expect, in which case they will regret the irreversible

expenditure that we made on preservation.

Given that these two irreversibilities work in opposite directions, which one is more

important? We don’t know. Because CO2 can remain in the atmosphere for centuries, and

ecosystem destruction from climate change can be permanent, there is clearly an argument

for taking early action. But the costs of reducing CO2 emissions are largely sunk, which

implies an argument for waiting.20 Which type of irreversibility will dominate depends in

part on the nature and extent of the uncertainties involved, as will see.

Before proceeding, it is important to be clear about the nature of “learning” and its

connection to climate change uncertainty. Over the next two decades, it is likely that our

understanding of climate change and its impact will improve considerably. Although so

far our uncertainty over climate sensitivity has not decreased (and as discussed above, has

actually increased somewhat), more data combined with advances in climate science are

likely to reduce the uncertainty. And more data will likely improve our understanding and

ability to predict climate change impacts. But at the end of the two decades there will

still be a good deal of uncertainty as we look towards the next two decades. It’s a bit like

forecasting the price of oil. We don’t know what the price will be five years from now, but

we will find out when the five years are up. Then what? As we look out to the next fives

years, there will again be uncertainty. Nonetheless, the ongoing uncertainty creates option

value, in this case pushing as away from investing in the development of new oil reserves or

related projects.21

Now let’s return to climate change policy. The implications of the two conflicting irre-

19One of the earliest studies to analyze this implication of irreversible environmental damage is Arrow and
Fisher (1974).

20There are other arguments for waiting or starting slowly: technological change may reduce abatement
costs in the future, and the fact that the “unpolluted” atmosphere is an exhaustible resource implies that
the SCC should rise over time (as the atmospheric CO2 concentration rises).

21For a textbook treatment of option value, including its application to the development of oil reserves,
see Dixit and Pindyck (1994). For an application to environmental policy, see Pindyck (2000).
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versibilities described above can be understood with a simple numerical example.

5.2.1 A Numerical Example.

Suppose we must decide whether to spend money now to reduce CO2 emissions, and then

we will decide again in the future, say 40 years from now. We’ll assume that at each time

there are only two choices: spend nothing on abatement (A = 0) or spend 6% of GDP on

abatement (A = .06). If today we spend nothing (A1 = 0), there will be 10 units of CO2

emissions that will accumulate in the atmosphere. So, denoting emissions now by E1 and

the atmospheric concentration by M1, we will have E1 = M1 = 10. On the other hand, if we

do spend 6% of GDP to abate emissions (A1 = .06), emissions will be reduced by 80 percent,

so that E1 = M1 = 2. Finally, we will assume that CO2 emissions are partly irreversible: 50

percent of the today’s emissions will dissipate over the next 40 years, so if we emit 10 units

of CO2 today, only 5 units will remain.

To keep this simple, we will also assume that today’s emissions cause no damage to the

economy now; any damage will occur only in the future. Also, right now we don’t know

how much damage atmospheric CO2 will cause in the future: There is a 50% chance that

atmospheric CO2 will cause no damage (the “good” outcome) and a 50% chance it will

cause significant damage (the “bad” outcome). Of course 40 years from now there will still

be uncertainty over climate change impacts another 40 years out — there will always be

uncertainty about future events and impacts. But for purposes of this very simple example,

we will only be be concerned with decisions now and 40 years from now. The abatement

and outcome possibilities are summarized in Table 2, and also illustrated in Figure 6.

Suppose there is no abatement now (A1 = 0), so 10 units of CO2 are emitted. How much

abatement would we want in the future? The answer depends on the economic impact, which

by then we will know. If the impact is zero (the “good” outcome), then there is no reason to

abate, so we will have A2 = 0. (This outcome is not shown in the table.) But if the “bad”

outcome occurs (an 8% loss of GDP), we will want to abate emissions, i.e., set A2 = .06. As

Table 2 shows, with the ‘bad” outcome and A2 = 0, the loss of GDP will be 31%, but with

A2 = .06, the loss of GDP will only be 17%. Abatement will cost 6% of GDP, but we will

save (31− 17) = 14% of GDP, so the investment in abatement is clearly warranted.

Why not set A1 = .06 at the outset, before we learn whether the impact will be “bad”

or “good?” Because spending 6% of GDP on abatement is an irreversible expenditure which

we will regret if it turns out the impact is “good.” But to see whether the potential regret is

large enough, we have to see what happens if we do set A1 = .06 at the outset. As Table 2

shows, with A1 = .06, only 2 units of CO2 will be emitted, and of those 2 units, only 1 will
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% GDP for M1 = E1 % GDP for M2 = “Bad Outcome”
Abatement, A1 Abatement, A2 (1− δ)M1 + E2 Loss of GDP

A1 = 0 10 A2 = 0 5 + 10 = 15 31%

A1 = 0 10 A2 = .06 5 + 2 = 7 17%

Expected Loss if A1 = 0: (0.5)(.17) + (0.5)(.06) = 11.5%

A1 = .06 2 A2 = 0 1 + 10 = 11 25%

A1 = .06 2 A2 = .06 1 + 2 = 3 8%

Expected Loss if A1 = .06: (0.5)(.08) + (0.5)(.06) = 7%

Table 2: Example Illustrating the Tradeoff Between Immediate Emissions Abatement versus
Waiting for Information about Impact of Warming. There are two periods, “now” and,
say, 40 years from now. A1 is expenditure on abatement now, as percentage of GDP, and
A2 is expenditure 40 years from now. We denote emissions by E and the amount in the
atmosphere by M . If A1 = 0, there will be 10 units of emissions (E1), which will accumulate
in the atmosphere (so M1 = 10), but half will dissipate over the next 40 years (δ = .5). If
A1 = .06 (6% of GDP is spent on abatement), emissions will be reduced by 80%, so that
E1 = M1 = 2. Damages occur in 40 years, and depend only on the CO2 in the atmosphere at
that time, M2 = (1−δ)M1+E2. With equal probability the impact could be “good,” in which
case there is no loss of GDP, or “bad,” in which case the loss of GDP is 1− 1/(1 + .03M),
and is shown in the last column. Whatever the value of A1, if the impact turns out to be
“bad,” it is best to abate, i.e., set A2 = .06. Also shown is the expected loss of GDP if
A1 = 0 (11.5%) and if A1 = .06 (7%). Since the difference (11.5 − 7 = 4.5%) is less than
the 6% cost of abatement, it is better not to abate now, but instead wait and abate in the
future only if we learn the impact is “bad.”

remain after 40 years. If we then learn that the impact is “good,” there will be no reasons

to abate, so we will set A2 = 0. But if the impact is “bad,” it will be best to abate, so we

will set A2 = .06.

Now let’s come back to the initial decision regarding A1. What is the expected loss of

GDP if we set A1 = 0? As shown in Table 2, there is a 50% chance that the impact will

turn out to be “bad,” in which case we will set A2 = .06 (which costs 6% of GDP) and lose

17% of GDP. So the expected loss if A1 = 0 is (0.5)(.17) + (0.5)(.06) = 11.5%. Also shown

is the expected loss of GDP if A1 = .06, which turns out to be 7%. Since the difference

(11.5 − 7 = 4.5%) is less than the 6% cost of abatement, it is better not to abate now, but

instead to wait and abate in the future only if we learn the impact is “bad.”

To summarize, we have assumed that CO2 emissions are only partly irreversible, i.e., 50

percent of the today’s emissions will dissipate over the next 40 years. The cost of abatement
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M0 = E0 = 10

M1 = E1 = 10

M2 = 5 +10 =15

M2 = 5+2= 7

M1 = E1 = 2

M2 = 1 +10=11

M2 = 1 + 2 = 3

31%

17%

25%

8%

% GDP for 
Abatement

A1

% GDP for 
Abatement

A2

“Bad” 
Outcome (% Loss of GDP)

Expected Loss if A1 = 0: (0.5)(.17) + (0.5)(.06) = 11.5% 

Expected Loss if A1 = .06: (0.5)(.08) + (0.5)(.06) = 7% 

Figure 6: Tradeoff Between Immediate Emissions Abatement versus Waiting. This figure
provides another way of looking at the information in Table 2.

(6% of GDP), however, is completely irreversible; it is a sunk cost that can never be recovered.

In this case, given that the impact of CO2 is uncertain and will only be known in the future,

it is better to wait, rather than spend 6% of GDP now on abatement. In this case the

abatement cost irreversibility outweighs the environmental irreversibility.

5.2.2 Revising the Example.

But now let’s change one of the key assumptions. This time we will assume that there

is no dissipation of CO2 once it enters the atmosphere. This means setting δ = 0 so that

M2 = M1 + E2. The results are shown in Table 3, and also illustrated in Figure 7.

Because we have now assumed that any CO2 emitted into the atmosphere stays there

forever, the loss of GDP under the “bad” outcome will be greater, whatever the abatement

policy happens to be. (Compare the last column of Table 3 with the last column of Table 2.)

As in the previous example, whatever the value of A1, if in the future the impact turns out

to be “bad,” it is best to abate, i.e., set A2 = .06.

What is the optimal abatement policy today? As before, we find out by calculating

the expected loss of GDP if we set A1 = 0, and the expected loss if we set A1 = .06. If

A1 = 0 the expected loss of GDP is 16%, and if A1 = .06 the expected loss is 8.5%. Now
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% GDP for M1 = E1 % GDP for M2 = “Bad Outcome”
Abatement, A1 Abatement, A2 (1− δ)M1 + E2 Loss of GDP

A1 = 0 10 A2 = 0 10 + 10 = 20 37.5%

A1 = 0 10 A2 = .06 10 + 2 = 12 26.5%

Expected Loss if A1 = 0: (0.5)(.265) + (0.5)(.06) = 16%

A1 = .06 2 A2 = 0 2 + 10 = 12 26.5%

A1 = .06 2 A2 = .06 2 + 2 = 4 11%

Expected Loss if A1 = .06: (0.5)(.11) + (0.5)(.06) = 8.5%

Table 3: Modified Example Illustrating the Tradeoff Between Immediate Emissions Abate-
ment versus Waiting for Information. Everything here is the same as in Table 2, except the
dissipation rate, δ, is zero. Whatever the value of A1, if in the future the impact turns out
to be “bad,” it is best to abate, i.e., set A2 = .06. Also shown is the expected loss of GDP if
A1 = 0 (16%) and if A1 = .06 (8.5%). Now the difference (16− 8.5 = 7.5%) is greater than
the 6% cost of abatement, so it optimal to abate immediately. Because emissions are now
completely irreversible, we are pushed towards early action. The sunk (irreversible) cost of
abatement remains, pushing us towards waiting, but now the environmental irreversibility
dominates.

the difference (16 − 8.5 = 7.5%) is greater than the 6% cost of abatement, so it optimal to

abate immediately. The uncertainty is the same as before, but because emissions are now

completely irreversible (there is no dissipation), we are pushed towards early action. The

sunk (irreversible) cost of abatement remains, pushing us towards waiting, but now the effect

of the environmental irreversibility dominates.

To further illustrate these effects of irreversibility, let’s make another modification to

the numbers in Table 3. As in the table, we will assume that there is no dissipation, i.e.,

whatever CO2 is emitted in the beginning will remain in the atmosphere over the 40 years.

However, we will make one simple change: We now assume that positive abatement requires

an expenditure of 8% of GDP rather than 6%. In other words, in Table 3 and Figure 7,

replace A1 = .06 with A1 = .08 and A2 = .06 with A2 = .08. Now we can once again

calculate the expected loss if A1 = 0 and the expected loss if A1 = .08. Doing so, we will

find that the expected loss is 17% if A1 = 0 and 9% if A1 = .08. The difference, 17− 9 = 8%

is just equal to the 8% cost of abatement. In this case the effects of the two irreversibilities

just balance out, so we would be indifferent between abating now and not abating now.
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M0 = E0 = 10

M1 = E1 = 10

M2 = 10 +10 =20

M2 = 10+2= 12

M1 = E1 = 2

M2 = 2 +10=12

M2 = 2 + 2 = 4

37.5%

26.5%

26.5%

11%

% GDP for 
Abatement

A1

% GDP for 
Abatement

A2

“Bad” 
Outcome (% Loss of GDP)

Expected Loss if A1 = 0: (0.5)(.265) + (0.5)(.06) = 16% 

Expected Loss if A1 = .06: (0.5)(.11) + (0.5)(.06) = 8.5% 

Figure 7: Modified Example of Tradeoff Between Immediate Emissions Abatement versus
Waiting. This figure provides another way of looking at the information in Table 3.

5.2.3 Emissions Abatement: Hold Back or Accelerate?

These numerical examples were simply designed to illustrate the opposing effects of the

two irreversibilities that are an inherent aspect of climate policy. But now you might be

thinking that the examples are interesting, but what do they tell us about the real world?

Which of these two irreversibilities is more important when it comes to actual climate policy?

Should we hold back on emissions abatement because of the sunk cost, or should we accelerate

abatement because of the irreversible environmental damage caused by emissions? And by

how much should we hold back or accelerate? Sorry, but I can’t answer these questions.

Why not? Because we simply don’t know enough about the climate system and about the

impact of varying amounts of climate change.

In the numerical examples I assumed that CO2 emissions could be reduced by 80% at a

cost of 6% (or 8%) of GDP. But we don’t actually know how much it would cost (in terms

of a percentage of GDP) to reduce emissions by 80%. What we do know is that the cost

would be sunk, i.e., irreversible, which would lead us to hold back, and the greater the cost

the more we would want to hold back. And while we know that CO2 can remain in the

atmosphere for centuries, we don’t know what effect it would have on temperature, or what
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the impact of a higher temperature would be on GDP and other measures of social welfare.

(I simply assumed a relationship between the amount of CO2 in the atmosphere and the

percentage reduction in GDP.) These uncertainties, combined with the near-permanence of

atmospheric CO2 would lead us to accelerate abatement.

The balance between these two irreversibilities is also affected by the degree of social risk

aversion for the economy as a whole. The sunk cost of abatement can be estimated, at least

roughly. But the effect of CO2 emissions on temperature and the impact of temperature

on GDP are highly uncertain. Coming back to our discussion of climate change insurance,

these uncertainties would amplify the effect of the environmental irreversibility, and thereby

push us towards accelerated abatement.

6 Conclusions.

Unfortunately, many of the books, articles, and press reports that we read make it seem

that we know a lot more about climate change and its impact than is actually the case.

Likewise, commentators and politicians often make statements of the sort that if we don’t

take immediate action and sharply reduce CO2 emissions, the following things will happen,

as though we actually know what will happen. Rarely do we read or hear that those things

might happen; instead we’re told they will happen.

This shouldn’t come as a surprise. We humans prefer certainty to uncertainty, feel uncom-

fortable when we don’t know what lies ahead, and many people have trouble understanding

concepts involving probabilities. Most people prefer to hear or read statements of the sort

“By 2050 the temperature will rise by X◦C, sea levels will rise by Y meters, and as a result

GDP will fall by Z percent,” as opposed to “there is a 10-percent chance that temperature

will rise by X◦C.” Many people ignore the fact, or find it hard to accept, that even if we

could accurately predict future GHG emissions, we don’t know — and at this point can’t

know — by how much the temperature or sea levels will rise. And even if we could accurately

predict how much the temperature and sea levels will rise, we don’t know what the impact

would be on GDP or other measures of economic and social welfare. The simple fact is that

the “climate outcome,” by which I mean the extent of climate change and its impact on the

economy and society more generally, is far more uncertain than most people think. This

is reflected in the wide variation in expert opinion, as I have shown here in the context of

climate sensitivity, and I have shown in Pindyck (2019) in the broader context of the social

cost of carbon.

Our uncertainty over climate change and its impact has important implications for policy.
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Some would argue that with so much uncertainty, we should wait and see what happens,

rather than try to sharply reduce emissions right away. After all, if we don’t know how

much the climate will change, and we don’t know what the impact of climate change will

be, why take costly actions now? There is something to that argument, because those

costly actions are largely irreversible. But there is another irreversibility that works in the

opposite direction, and that is the environmental damage itself; CO2 emissions remain in

the atmosphere for centuries. Which of these two irreversibilities dominates? Unfortunately,

we just don’t know enough about the climate system to say. (I provided some illustrative

numerical examples, but they are just examples.)

There is another reason why uncertainty need not lead us to delay action: With uncer-

tainty, especially the kind of uncertainty we face in the climate sphere, we need insurance.

The kind of uncertainty I am talking about is the possibility of a catastrophic outcome,

i.e., tail risk. I have explained that “climate insurance” is valuable for two reasons. First,

although we can’t specify the damage function in any detail, we do know that the incremen-

tal damage (in terms of lost GDP) from an extra 1◦ of warming increases sharply with the

total amount of warming. That was the basis for the simple examples in Tables 2 and 3 .

Second, most people exhibit substantial risk aversion, so it is reasonable to think that the

social welfare function (representing society as a whole) should also exhibit risk aversion.

So what, exactly, is the value of “climate insurance?” I can’t say, because there is a

Catch-22 at work here: The very uncertainties over climate change that create a value of

insurance prevent us from determining exactly how large that value is. This may disappoint

some readers, who perhaps were hoping that I would state just how much CO2 emissions

should be reduced. On the other hand, the simple numerical examples we explored suggest

that the insurance value is likely to be large. And what is most important, the very fact

that there is an insurance value is a reason why the correct policy response to uncertainty

is not to sit back and wait to see what happens.
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