Training, Offshoring, and the Job Ladder
NBER ITI meetings

Nezih Gunera, Alessandro Ruggierib, James Tyboutc,d

aCEMFI and UAB, bU. Nottingham, cPenn State U. and NBER

December 7, 2019
Post 1980 trends in U.S. Labor markets

- Skill premiums have grown (Acemoglu and Autor, 2011).
Post 1980 trends in U.S. Labor markets

- Skill premiums have grown (Acemoglu and Autor, 2011).
- Jobs in the middle of the skill distribution have become relatively scarce (Acemoglu and Autor, 2011).
Post 1980 trends in U.S. Labor markets

- Skill premiums have grown (Acemoglu and Autor, 2011).
- Jobs in the middle of the skill distribution have become relatively scarce (Acemoglu andAutor, 2011)
- Manufacturing work force has shifted toward services (Lee and Wolpin, 2006, 2010; Eberstein et al., 2014)
Fraction of the population attending college has grown (Acemoglu and Autor, 2011)
Post 1980 trends in U.S. Labor markets

- Fraction of the population attending college has grown (Acemoglu and Autor, 2011)
- Job turnover rates have fallen (Davis and Haltiwanger, 2014; Haltiwanger, et al., 2015)
Post 1980 trends in U.S. Labor markets

- Fraction of the population attending college has grown (Acemoglu and Autor, 2011)
- Job turnover rates have fallen (Davis and Haltiwanger, 2014; Haltiwanger, et al., 2015)
- On-the-job training times have increased (Cairo, 2013)
Post 1980 trends in U.S. Labor markets

- Fraction of the population attending college has grown (Acemoglu and Autor, 2011)

- Job turnover rates have fallen (Davis and Haltiwanger, 2014; Haltiwanger, et al., 2015)

- On-the-job training times have increased (Cairo, 2013)

- Life-cycle career trajectories have evolved very differently for different types of workers
 - job to job transitions
 - unemployment spells
 - education and on-the-job training
The modeling exercise

- Develop an open economy search model that
 - generates predictions on all these variables.
 - links them to globalization and skill-biased technical change
The modeling exercise

- Develop an open economy search model that
 - generates predictions on all these variables.
 - links them to globalization and skill-biased technical change

- Calibrate to worker, trade, and production data.
The modeling exercise

- Develop an open economy search model that
 - generates predictions on all these variables.
 - links them to globalization and skill-biased technical change

- Calibrate to worker, trade, and production data.

- Show its possible to explain aggregate trends and changing life-cycle patterns by shocking returns to different tasks.
The modeling exercise

- Develop an open economy search model that
 - generates predictions on all these variables.
 - links them to globalization and skill-biased technical change
- Calibrate to worker, trade, and production data.
- Show its possible to explain aggregate trends and changing life-cycle patterns by shocking returns to different tasks.
- Link task returns to globalization and technology shocks (in progress).
The modeling exercise

- Develop an open economy search model that
 - generates predictions on all these variables.
 - links them to globalization and skill-biased technical change

- Calibrate to worker, trade, and production data.

- Show it's possible to explain aggregate trends and changing life-cycle patterns by shocking returns to different tasks.

- Link task returns to globalization and technology shocks (in progress).

- Related literature. ▶ references
The basic mechanics

- Heterogeneous high school graduates decide whether to attend college.
- After completing schooling, new workers enter into the labor market and eventually match with differentiated employers.
- Once employed, workers bargain over their wages and may also improve their ability through investments in on-the-job training.
- Over their life cycles, workers' wage growth is driven by improvements in ability, shocks to employer profitability, arrival of job offers from poaching employers ("job ladder"), and unemployment spells.
The basic mechanics

- Heterogeneous high school graduates decide whether to attend college.

- After completing schooling, new workers enter into the labor market and eventually match with differentiated employers.
The basic mechanics

- Heterogeneous high school graduates decide whether to attend college.
- After completing schooling, new workers enter into the labor market and eventually match with differentiated employers.
- Once employed, workers
 - bargain over their wages
 - improve their ability through experience
 - may also improve their ability through investments in on-the-job training.
The basic mechanics

- Heterogeneous high school graduates decide whether to attend college.

- After completing schooling, new workers enter into the labor market and eventually match with differentiated employers.

- Once employed, workers
 - bargain over their wages
 - improve their ability through experience
 - may also improve their ability through investments in on-the-job training.

- Over their life cycles, workers’ wage growth is driven by
 - improvements in ability
 - shocks to employer profitability
 - arrival of job offers from poaching employers ("job ladder")
 - unemployment spells
While improving productive efficiency, globalization reduces relative supply of jobs in the trade-exposed occupations.

- Slows down turnover by limiting outside options of employees.
- Low arrival rate of attractive job offers means
 - slows movement up job ladder
 - more likely to separate into unemployment and lose bargaining power.
Effects of globalization

- While improving productive efficiency, globalization reduces relative supply of jobs in the trade-exposed occupations.
 - Slows down turnover by limiting outside options of employees.
 - Low arrival rate of attractive job offers means
 - slows movement up job ladder
 - more likely to separate into unemployment and lose bargaining power

- Globalization changes the incentives to invest in college degrees.
 - College allows one to leapfrog missing rungs in the job ladder
 - At the margin, people switching to college are less qualified
Effects of globalization

- While improving productive efficiency, globalization reduces relative supply of jobs in the trade-exposed occupations.
 - Slows down turnover by limiting outside options of employees.
 - Low arrival rate of attractive job offers means
 - slows movement up job ladder
 - more likely to separate into unemployment and lose bargaining power

- Globalization changes the incentives to invest in college degrees.
 - College allows one to leapfrog missing rungs in the job ladder
 - At the margin, people switching to college are less qualified

- Similarly, globalization affects training incentives:
 - Those with college degrees see greater returns to on-the-job training.
 - Those without degrees are forced into jobs with little scope for training or on-the-job learning.
Effects of technological change

- Originate with changes in production function parameters.

- Like globalization, technological change affects task prices in equilibrium
 - Affect career paths though same mechanisms as globalization.
 - But changes in relative task prices are distinct.
 - Identification of technology effect comes from changing shares of tasks in production
Some stylized facts: data

- **Data sets:**
 - **Survey of Income and Program Participation (SIPP):** nationally representative U.S. household-based survey; continuous series of national panels, each lasting approximately four years
 - **Occupational Information Network (O*NET):** skill mix (brain, brawn) of 4-digit occupations
 - **World I-O Table (WIOT):** imports, exports and output by sector
 - **Occupational Employment Statistics (OES):** Annual employment and wage estimates for about 800 occupations, broken down by industry.
 - **Panel Study of Income Dynamics (PSID):** Nationally representative household survey. Series of annual waves between 1968 and 1997; biennial thereafter. Annual earnings and tenure by job, occupation, industry.
Some stylized facts: data

- **Variables:**
 - **Job flows** employment-weighted average monthly flows by 4-digit 2002 Standard Occupational Code (SOC)
 - **Employment shares** by sector (SIPP, OES)
 - **Trade exposure indices:** import penetration rates, by sector (WIOT), occupation (SIPP)
 - **Brain, brawn content of occupations:** based on principal components of O*NET job characteristics
 - **Training indicator:** Have you received job training? (SIPP)
 - **Import exposure of occupations** (OES and WIOT) employment weighted average of sectoral import penetration rates.
 - **Earnings-tenure profiles** (PSID) by job, sector, and occupation.
Employment shares have fallen more in sectors with growing trade exposure.

Sectors losing employment shares have tended to be in the middle of the wage distribution. (See also: Acemoglu and Autor, 2011.)
Figure: Changes in Monthly Job-to-Job Transitions

- Turnover has fallen more at the low end of the skill distribution. (See also: Davis and Haltiwanger, 2014; Cairo et al., 2015.)
Change in E-to-U transition rates, 2010 vs. 1990

Figure: Change in Monthly E-to-U Transitions

- Separations into unemployment rose at the low end of the skill distribution.
Figure: Change in the Fraction of Trained Workers

- Training has increased in most occupations, but decreased or remained stable in low-skill occupations.
Figure: Labor Earnings by Age and Tradability of Occupations

- Profile for tradable occupations flattens relative to others.
- Transition or new steady state?
The earnings gap between trained and untrained workers has grown.

- Search and matching frictions, worker poaching in the labor market (Mortensen and Pissarides 1999, Mortensen 2010)

- Ricardian production and trade with sectoral linkages (Caliendo and Parro 2014)

- Three types of agents:
 - worker/consumers
 - goods producers
 - task producers

 - why task producers?
Model structure: goods producers

- Goods producers combine bundles of labor services (tasks) and bundles of product varieties to generate output.
 - Factor intensities (both task and intermediate bundles) vary across sectors
 - Output goes to consumers and to other producers (as intermediate inputs)

- Product markets are as in Caliendo and Parro, 2015).
 - Intermediate goods are sourced globally from their cheapest suppliers.
 - Offshoring occurs when a variety is sourced abroad.
 - Direct offshoring of labor services nested as a sector that uses no intermediates.
The environment: worker-consumers

- Born with an initial ability level a_0 drawn from $F_{a_0}(\cdot)$
- Either invest in a college degree (become an H-type) or enter the labor market immediately as low-skilled (L-type) worker.
- Those who go to college incur a utility cost of κ/a_0
- Stochastically improve their ability level, $a \in \{a^1, \ldots, a^l\}$, through on-the-job experience and (perhaps) training.
- **Hazard of a one-step improvement** for a worker in state (E, a) at a firm producing type-j services ("tasks") with productivity z:

 $$\gamma_E(a,j,z) = \gamma^1_{j,E} + \gamma^2_{j,E} 1_E^t(a,j,z)$$

 where $E \in \{H, L\}$ and $1_E^t(a,j,z) = 1$ if the worker and her employer have agreed to training (Flinn et al., 2017).
The environment: task-producing firms

- Specialize in producing a particular service ("task"), indexed by $j \in \{1, \ldots, J\}$
- One worker or vacancy per firm. Flow vacancy posting cost: c_v
- Employ workers they match with in a frictional labor market.
- May or may not invest in the training of their employees.
- Experience ongoing, idiosyncratic productivity shocks, z.
- Supply output $y_E(a, j, z)$ in competitive national market at price r_j. Task production technology:

$$y_E(a, j, z) = zs_j a^{\zeta_{j,E}} - c^t 1^t_E(a, j, z) - c^o$$

where s_j is a productivity index for task j. and $\zeta_{j,E}$ measures return to ability for type (j, E) workers.
Worker productivity by human capital and occupation

- Darker shades reflect higher productivity.

- Workers increase wages by improving ability (downward movement) or moving across employers, occupations (rightward movement).

- Workers care about market thickness, not just wages.
Random matching

- Total measure of vacant jobs in occupation j: V_j

- Measure of jobs seekers’ visibility to type-j employers:

$$Z_j = \lambda_0^L U_L + \lambda_0^H U_H + \sum_{\tilde{j}} \lambda_{j,\tilde{j}} N_{\tilde{j}}$$

where

- U_H and U_L are masses of low- and high-education unemployed workers, respectively
- $N_{\tilde{j}}$ is the mass of employed workers in occupation \tilde{j}
- $\lambda_{j,\tilde{j}}$ controls the visibility of a worker currently producing task \tilde{j} to a type-j task-producing firm
Random matching

- **Matching function:**

\[
m(V_j, Z_j) = \frac{V_j Z_j}{(V_j^\chi + Z_j^\chi)^{\frac{1}{\chi}}}
\]

- **Visibility function:**

\[
\lambda_{j,\tilde{j}} = \frac{\lambda}{[1 + d(j, \tilde{j})]^\xi}
\]

where

\[
d(j, \tilde{j}) = \sqrt{\left(\nu^j - \nu^{\tilde{j}}\right)' \Sigma^{-1} \left(\nu^j - \nu^{\tilde{j}}\right)},
\]

\(\nu^j\) is vector of brain and brawn indices.
Wage setting

- Wage setting with on-the-job search based on Mortensen (2011). (Alternatives: Bagger et al., 2014; Lise et al., 2016)
 - Negotiation with unemployed workers
 - Renegotiation after outside offers
 - Renegotiation after productivity shocks
 - Renegotiation after human capital shocks
Value of employment reflects:

- flow earnings
- capital loss from death shock
- capital gain/loss from productivity shock, recognizing quit option
- capital gain/loss from ability shock, recognizing quit option.
- size and likelihood of outside offers
Value of a filled vacancy

- Value of an active job reflects:
 - exogenous separation hazards
 - expected capital gains/losses from productivity shocks
 - expected capital gains/losses from worker ability shocks
 - expected capital losses due to poachers

- Let $\Pi^v(j, z)$ be value of unfilled vacancy. Task producer free entry condition.

$$\sum_{z \in Z} \Pi^v(j, z) \Gamma(z) \geq 0 \quad \forall j \in \Omega$$
College decision depends on initial ability, a_0:

$$E(a_0) = \begin{cases}
H & \text{if } \frac{k}{a_0} \leq J_H^u(a_0) - J_L^u(a_0) \\
L & \text{otherwise}
\end{cases}$$

Training decisions maximize the joint surplus of each match:

$$1^t_E(a, j, z) = \begin{cases}
1 & \text{if } S_E(a, j, z; 1^t(a, j, z, E) = 1) \\
\geq S_E(a, j, z; 1^t(a, j, z, E) = 0) & \text{otherwise}
\end{cases}$$
Baseline period: 2005-2008

Countries: 30 + ROW

Industries: 30 ISIC Rev.3.1 (15 tradable)

Occupations: 5 SOC 1-digit

Model numeraire: monthly labor income per employee (USD 3,700)

The economy is assumed to be in steady state

Production function parameters calibrated directly from expenditure shares in production data
Task production

- Initial distribution of human capital assumed to be Beta with shape parameters α_{a_0} and β_{a_0}

- Task-producing technology: $y_E(j, z, i) = zs_j a_i^\zeta j,E - c^o$

- Permanent productivity assumed to be increasing in skill content:
 \[s_j = (1 + \Delta s)^{\text{brain}_j}, \quad \text{brain}_j \in (0, 1) \]

- Productivity shocks assumed following the Poisson jump process with hazard φ and realization equal to:
 \[z' = \begin{cases}
 z + \Delta z & \text{with probability } \frac{1}{2} \left(1 - \frac{z}{n\Delta z}\right) \\
 z - \Delta z & \text{with probability } \frac{1}{2} \left(1 + \frac{z}{n\Delta z}\right) \\
 0 & \text{other}
 \end{cases} \]
 along the support $Z \equiv \{-n\Delta z, -(n - 1)\Delta z, \ldots, 0, \ldots, n\Delta z\}$ and $n = 100$
Parameters taken from the literature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>Discount factor</td>
<td>0.0033</td>
<td>4% yearly</td>
</tr>
<tr>
<td>δ_w</td>
<td>Retirement rate</td>
<td>0.0023</td>
<td>ages 25-60</td>
</tr>
<tr>
<td>δ_f</td>
<td>Firm exit rate</td>
<td>0.0045</td>
<td>BLS 2005</td>
</tr>
<tr>
<td>β</td>
<td>Bargaining power</td>
<td>0.50</td>
<td>Pissarides (2009)</td>
</tr>
<tr>
<td>χ</td>
<td>Matching function</td>
<td>0.45</td>
<td>Den Haan et al (2006)</td>
</tr>
<tr>
<td>(b_L, b_H)</td>
<td>Home production</td>
<td>(0.31, 0.52)</td>
<td>ACS 2005</td>
</tr>
<tr>
<td>c_v</td>
<td>Cost of vacancy</td>
<td>0.29</td>
<td>Abowd and Kramarz (2003)</td>
</tr>
<tr>
<td>c_t</td>
<td>Cost of training</td>
<td>0.16</td>
<td>Abowd and Kramarz (2003)</td>
</tr>
<tr>
<td>$(\alpha_{a_0}, \beta_{a_0})$</td>
<td>Distribution of a_0</td>
<td>(2.11, 2.45)</td>
<td>AFQT test distribution</td>
</tr>
<tr>
<td>$(\varphi, \Delta z)$</td>
<td>Productivity shock</td>
<td>(1.57, 0.24)</td>
<td>Lee and Mukoyama (2015)</td>
</tr>
</tbody>
</table>
Parameters from literature, continued

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Elasticity of substitution between varieties ω</td>
<td>Broda and Weinstein (2006)</td>
</tr>
<tr>
<td>$\tau_{n\tilde{n}}^k$</td>
<td>Bilateral tariffs (countries n-\tilde{n}, sector k)</td>
<td>Caliendo and Parro (2015)</td>
</tr>
<tr>
<td>θ_k</td>
<td>Dispersion Frechet (sector k)</td>
<td>Caliendo and Parro (2015)</td>
</tr>
</tbody>
</table>

Estimated

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν^k_n</td>
<td>Consumption elasticity of product k (country n)</td>
<td>WIOD-IOT (2013)</td>
</tr>
<tr>
<td>$\vartheta^n_{k\tilde{k}}$</td>
<td>Output elasticity of product \tilde{k} (country n, sector k)</td>
<td>WIOD-IOT (2013)</td>
</tr>
<tr>
<td>α^n_k</td>
<td>Output elasticity of labor tasks (country n, sector k)</td>
<td>KLEMS (2017)</td>
</tr>
<tr>
<td>μ^n_{kj}</td>
<td>Labor tasks elasticity of task j (country n, industry k)</td>
<td>OES (2017)</td>
</tr>
<tr>
<td>Moments</td>
<td>Data (2005)</td>
<td>Model</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Labor income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College premium</td>
<td>0.557</td>
<td>0.491</td>
</tr>
<tr>
<td>St.Dev., non-college</td>
<td>0.605</td>
<td>0.375</td>
</tr>
<tr>
<td>St.Dev., college</td>
<td>0.735</td>
<td>0.641</td>
</tr>
<tr>
<td>45-25 y.o. premium, non-college</td>
<td>0.191</td>
<td>0.144</td>
</tr>
<tr>
<td>45-25 y.o. premium, college</td>
<td>0.382</td>
<td>0.376</td>
</tr>
<tr>
<td>Training premium</td>
<td>0.356</td>
<td>0.103</td>
</tr>
<tr>
<td>Brain-skill premium</td>
<td>0.337</td>
<td>0.199</td>
</tr>
<tr>
<td>Labor market flows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE-E rate</td>
<td>0.022</td>
<td>0.016</td>
</tr>
<tr>
<td>E-NE rate</td>
<td>0.023</td>
<td>0.025</td>
</tr>
<tr>
<td>J-J rate</td>
<td>0.019</td>
<td>0.022</td>
</tr>
<tr>
<td>Shares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College share</td>
<td>0.281</td>
<td>0.310</td>
</tr>
<tr>
<td>Training share</td>
<td>0.392</td>
<td>0.304</td>
</tr>
</tbody>
</table>

\[
\theta = \{ \kappa, \Delta_s, \zeta^E, c_0, \gamma_E^1, \gamma_E^2, \lambda_0, \lambda_1, \zeta \}. \\
\text{education, production (4), training (4), visibility (3)}
\]
Parameters based on moment vector

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ</td>
<td>Cost of college education</td>
<td>181.02</td>
</tr>
<tr>
<td>c^o</td>
<td>Cost of operating</td>
<td>1.18</td>
</tr>
<tr>
<td>Δ_s</td>
<td>Permanent productivity</td>
<td>0.64</td>
</tr>
<tr>
<td>λ_0</td>
<td>Visibility, unemployed</td>
<td>0.032</td>
</tr>
<tr>
<td>(λ_1, ζ)</td>
<td>Visibility, employed</td>
<td>(0.038, 0.02)</td>
</tr>
<tr>
<td>(ζ^L_0, ζ^H_0)</td>
<td>Return from human capital</td>
<td>(0.09, 0.24)</td>
</tr>
<tr>
<td>(γ^L_0, γ^H_0)</td>
<td>Experience, hazard rate</td>
<td>(0.03, 0.05)</td>
</tr>
<tr>
<td>(γ^L_1, γ^H_1)</td>
<td>Training, hazard rate</td>
<td>(0.06, 0.15)</td>
</tr>
</tbody>
</table>
Suppose something changes task prices—either trade shock or a technology shock—in a way consistent with observed data. What happens to labor market dynamics?

Proxy changes in prices of tasks, Δr_j, using changes in wages by occupations (between 1990 and 2005)

<table>
<thead>
<tr>
<th>tasks j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-digit SOC</td>
<td>51-53</td>
<td>45-49</td>
<td>31-39</td>
<td>41-43</td>
<td>11-29</td>
</tr>
<tr>
<td>Brain-content</td>
<td>0</td>
<td>0.056</td>
<td>0.134</td>
<td>0.236</td>
<td>1</td>
</tr>
</tbody>
</table>

Δr_j, %
0.767 0.845 1.106 0.872 1.592

Δr_j, %
+3.55 -4.14 -1.62 -2.43 +10.12
<table>
<thead>
<tr>
<th>tasks j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-digit SOC</td>
<td>51-53</td>
<td>45-49</td>
<td>31-39</td>
<td>41-43</td>
<td>11-29</td>
</tr>
<tr>
<td>Brain-content</td>
<td>0</td>
<td>0.056</td>
<td>0.134</td>
<td>0.236</td>
<td>1</td>
</tr>
<tr>
<td>Employment share, Δ %</td>
<td>+0.9</td>
<td>-1.5</td>
<td>-0.8</td>
<td>-0.7</td>
<td>+2.1</td>
</tr>
<tr>
<td>J-J rate, Δ %</td>
<td>-1.06</td>
<td>-0.57</td>
<td>-0.43</td>
<td>-0.48</td>
<td>0.02</td>
</tr>
<tr>
<td>E-NE rate, Δ %</td>
<td>+0.01</td>
<td>+0.60</td>
<td>+0.40</td>
<td>+0.07</td>
<td>-0.05</td>
</tr>
<tr>
<td>Training share, Δ %</td>
<td>-1.03</td>
<td>-27.23</td>
<td>-15.39</td>
<td>-11.20</td>
<td>+12.54</td>
</tr>
<tr>
<td>Labor income, avg. %</td>
<td>+2.61</td>
<td>-4.12</td>
<td>-3.12</td>
<td>-1.04</td>
<td>+6.01</td>
</tr>
<tr>
<td>Labor income growth, 45-25 y.o. %</td>
<td>+0.02</td>
<td>-5.32</td>
<td>-3.45</td>
<td>-0.95</td>
<td>+7.32</td>
</tr>
</tbody>
</table>
Next steps

- Use full range of occupations and sectors, and calibrate more seriously

- Using only changes in openness, ask how well the model predicts:
 - job turnover slowdown at each skill level
 - shifts in training and education patterns
 - changes in wages

- Explore added contribution of skill-biased technological change.

- Consider counterfactual policy experiments with commercial policy, education subsidies, training subsidies
• **On-the-job search and bargaining with ex ante heterogeneous workers and firms:** Postel-Vinay and Robin (2002); Bagger, Fontaine, Postel-Vinay, and Robin (2014); Lise, Meghir and Robin (2016); and Lise and Robin (2017).

• **Job and worker turnover decisions interdependent with training investments:** Cairo (2013); Cairo and Kajner (forthcoming); Flinn, Gemici, and Laufer (2017); Lentz and Roys (2015)

• **Stylized facts on job turnover, skill premium, relation to tradability of products:** Hyatt and Spletzer (2012); Decker, Haltiwanger, Jarmin, and Miranda (2016); Davis and Haltiwanger (2014); Cairo and Cajner (2015); Haltiwanger, Hyatt, and McEntarfer (2017); Autor and Dorn (2013); Jensen and Kletzer (2006); Kletzer (2007); Autor, Dorn, and Hanson (2013); Autor, Dorn, Hanson, and Song (2014); etc.
• Output producers bundle specific tasks, some of which can be accomplished offshore and embodied in intermediate goods trade: Grossman and Rossi-Hansberg (2008); Eaton, Kortum, and Kramartz (2017).

• Globalization affects the skill distribution by changing the worker-specific returns to human capital investment: Cosar (2013); Davidson and Sly (2014); and Blanchard and Willmann (2016).

• **Quantify barriers to worker mobility across sectors and/or occupations:** Lee and Wolpin (2006, 2010); Cosar (2013); Artuc, Chaudhuri, and McClaren (2014, 2016); Dix-Carneiro (2014); Caliendo, Dvorkin, and Parro (2016); Lee (2016); and Traiberman (2017).

• **Life cycle earnings trajectories:** Cosar (2013), Autor, Dorn and Hanson (2015), Kong, Ravikumar and Vandenbroucke (2018), Lagakos, Moll, Porzio, Qian, and Schoellman (2018)
J2J transitions and import penetration

\[1_{jt}^{j2j} = \beta \cdot \text{imp}_{o(it)} + \delta \cdot \text{brain}_{o(it)} + \zeta \cdot X_{it} + \eta_t + \nu_{s(it)} + \epsilon_{it} \]

<table>
<thead>
<tr>
<th>Time period</th>
<th>89-95</th>
<th>96-03</th>
<th>04-07</th>
<th>08-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{imp}_{o(it)}</td>
<td>-0.004***</td>
<td>-0.009***</td>
<td>-0.0128***</td>
<td>-0.0131***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.004)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Observations</td>
<td>1,577,329</td>
<td>1,215,022</td>
<td>408,378</td>
<td>996,730</td>
</tr>
</tbody>
</table>

\text{imp}_{o(it)} : employment share-weighted import penetration rate, occupation \(o \)

\(X_{it} \): gender, race, married, state, metropolitan city, \# kids, disability, union affiliation, multiple jobs

\(\eta_t, \nu_{s(it)} \) time and sector fixed effects
Occupation-specific changes in training rates
1990-2000 and 2000-2010

\[\Delta \text{train}_{jt} = \beta \cdot \Delta \text{imp}_{jt} + \zeta \cdot X_{jt} + \eta_j + \upsilon_t + \epsilon_{jt} \]

<table>
<thead>
<tr>
<th>(\Delta \text{imp}_{jt})</th>
<th>(1) (-4.96^{**})</th>
<th>(2) (-8.93^{**})</th>
<th>(3) (-4.14^{**})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.78</td>
<td>2.29</td>
<td>1.87</td>
</tr>
<tr>
<td>occupation FE</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>controls</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.19</td>
<td>0.43</td>
<td>0.66</td>
</tr>
<tr>
<td>Observations</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
</tbody>
</table>

\(\text{imp}_{jt} \): employment share-weighted import penetration rate, occup. \(j \)

\(X_{jt} \): share female, share white, share college-educated, brain indicies, brawn indicies
Why have a task producing sector?

- Need poaching and search frictions to help drive wage trajectories.
- If goods producers hired multiple types of workers directly, wage bargaining would become impossibly complex.
- Competitive market for tasks divorces effects of hiring frictions from producers’ factor proportions decisions.

Think of human resource departments as independent task-producing firms

- View the earnings of human resource personnel as reflective of the vacancy posting costs incurred by task-producing firms.
- View profits of the task-producing firms as the operating profits of goods producers in excess of capital costs. (No product market mark-ups.)
- Similar in spirit to literature linking labor’s share to employer’s monopsony power.
The environment: goods producing firms

- Each produces a product variety \(\omega \) specific to sector \(k \): \(\omega \in \Omega_k \), \(k \in \{1, \ldots, K\} \)
- Combines bundles of labor services (\(\tilde{y}_{k, \omega}^k \)) and bundles of product varieties (\(x_{k, \omega}^k \)) to generate output (\(q_{k, \omega} \)).

\[
q_{k, \omega} = e_{k, \omega} \left(\frac{\tilde{y}_{k, \omega}}{\alpha_k} \right)^{\alpha_k} \prod_{\tilde{k}=1}^{K} \left(\frac{x_{\tilde{k}, \omega}^k}{(1 - \alpha_k) \vartheta_{k, \tilde{k}}} \right)^{(1-\alpha_k) \vartheta_{k, \tilde{k}}}
\]

- Bundles of labor services and of varieties \(\tilde{\omega} \in \Omega_{\tilde{k}} \) are CES aggregations.

\[
x_{k, \omega} = \left[\int_{\tilde{\omega} \in \Omega_{\tilde{k}}} \left(x_{k, \omega}^{\tilde{k}} \right)^{\eta_{\tilde{k}}^{-1}} \eta_k \right]^{\eta_k^{-1}} d\tilde{\omega},
\]

\[
\tilde{y}_{k, \omega} = \prod_{j=1}^{J} \left(\frac{y_{k, \omega}^j}{\mu_k^j} \right)^{\mu_k^j}, \quad \mu_k^j \geq 0, \quad \sum_j \mu_k^j = 1
\]
• Wage setting with on-the-job search related to Mortensen (2010), Bagger et al. (2014), Lise et al. (2016)

• Define:

 • \(S_E(a, j, z) \): match surplus when a type-(E, a) worker meets a type-j firm in productivity state \(z \)

 • \(J^e_E(wu, a, j, z) \): value of the job to the worker

 • \(J^u_E(a) \): value of unemployed state.

• For workers hired out of unemployment, the negotiated wage solves:

\[
J^e_E(wu, a, j, z) - J^u_E(a) = \beta S_E(a, j, z)
\]
Encounters with potential poachers

Suppose type-(E, a) worker at a type-(j, z) firm discovers a vacandy at a type-(\tilde{j}, \tilde{z}) firm. Possible outcomes:

- **Surplus bigger at potential poaching firm:** $S_E(a, \tilde{j}, \tilde{z}) \geq S_E(a, j, z)$. Worker moves and receives wage that solves

$$J^e_E(w_o, a, \tilde{j}, \tilde{z}) - J^u_E(a) = \beta S_E(a, \tilde{j}, \tilde{z})$$

Poaching firm has no effect on worker's wage: $w_o = w$.
Encounters with potential poachers

Suppose type-(E, a) worker at a type-(j, z) firm discovers a vacandy at a type-(\tilde{j}, \tilde{z}) firm. Possible outcomes:

- **Surplus bigger at potential poaching firm:** $S_E(a, \tilde{j}, \tilde{z}) \geq S_E(a, j, z)$. Worker moves and receives wage that solves

 $$J_E^e(w_o, a, \tilde{j}, \tilde{z}) - J_E^u(a) = \beta S_E(a, \tilde{j}, \tilde{z})$$

- **Surplus less at potential poaching firm:** $S_E(a, \tilde{j}, \tilde{z}) < S_E(a, j, z)$. Poaching firm has no effect on worker’s wage:

 $$w_o = w$$
Productivity shocks

- **Productivity shock destroys match surplus:** $S_E(a, j, z') < 0$
 Worker reverts to unemployed state:

 \[w_\varphi = b_E \]
Productivity shocks

- **Productivity shock destroys match surplus:** \(S_E(a, j, z') < 0 \).
 Worker reverts to unemployed state:
 \[w_\varphi = b_E \]

- **Productivity shock doesn’t destroy match surplus:** \(S_E(a, j, z') \geq 0 \).
 Worker renegotiates wage:
 \[J^e_E(w_\varphi, a, j, z') - J^u_E(a) = \beta S_E(a, j, z') \]
Productivity shocks

- **Productivity shock destroys match surplus:** \(S_E(a, j, z') < 0 \). Worker reverts to unemployed state:
 \[
 w_\varphi = b_E
 \]

- **Productivity shock doesn’t destroy match surplus:** \(S_E(a, j, z') \geq 0 \). Worker renegotiates wage:
 \[
 J^e_E(w_\varphi, a, j, z') - J^u_E(a) = \beta S_E(a, j, z')
 \]

- **Exogenous separation shock:** Worker reverts to unemployed state:
 \[
 w_\varphi = b_E
 \]
• **Shock destroys match surplus:** \(S_E(a', j, z) < 0 \). Worker reverts to unemployed state:

\[
 w_\varphi = b_E
\]
Ability shocks

- **Shock destroys match surplus:** \(S_E(a', j, z) < 0 \). Worker reverts to unemployed state:
 \[
 w_\varphi = b_E
 \]

- **Shock doesn’t destroy match surplus:** \(S_E(a', j, z) \geq 0 \). Worker renegotiates wage:
 \[
 J^e_E(w_\varphi, a', j, \tilde{z}) - J^u_E(a') = \beta S_E(a', j, \tilde{z})
 \]
[\rho + \delta \ell] J^e_E(a, j, z) =

w + \delta_f [J^u_E(i) - J^e_E(a, j, z)]

+ \varphi \sum_{\tilde{z} \in \mathcal{Z}} \max\{J^e_E(a, j, \tilde{z}) - J^e_E(a, j, z),
J^u_E(a) - J^e_E(a, j, z)\} \Lambda(\tilde{z}|z)

+ \gamma_E(a, j, z) \max\{J^e_E(a', j, z) - J^e_E(a, j, z),
J^u_E(a') - J^e_E(a, j, z)\}

+ \sum_{\tilde{j} \in \mathcal{J}} \phi^\ell_{j, \tilde{j}} \sum_{\tilde{z} \in \mathcal{A}_E(j, z, i|\tilde{j})} [J^e_E(a, \tilde{j}, \tilde{z}) - J^e_E(a, j, z)] v_{\tilde{j}}(\tilde{z})
$[\rho + \delta_f] \Pi_E^e(w, a, j, z) =$

$r_j y_E(a, j, z) - c^0 - w + \delta_{ij} [\Pi^v(j, z) - \Pi_E^e(a, j, z)]$

$+ \varphi \sum \max\{\Pi_E^e(a, j, \tilde{z}) - \Pi_E^e(a, j, z), \Pi^v(j, \tilde{z}) - \Pi_E^e(a, j, z)\} \Lambda(\tilde{z}|z)$

$+ \gamma_E(a, j, z) \max\{\Pi_E^e(a', j, z) - \Pi_E^e(a, i, z), \Pi^v(j, z) - \Pi_E^e(a, j, z)\}$

$+ \sum_{\tilde{j} \in S} \phi_{j, \tilde{j}} \sum_{\tilde{z} \in A_E(j, z, i|\tilde{j})} [\Pi^v(j, z) - \Pi_E^e(a, j, z)] v_{j}(\tilde{z})
value of being unemployed:

\[
[\rho + \delta_{\ell}] J_E^u(a) = b_E + \beta \sum_{j \in S} \sum_{z \in Z} \max\{S_E(a, j, z), 0\} v_j(z).
\]

value of vacancy:

\[
(\rho + \delta_f) \Pi^v(j, z)
= -c^v + (1 - \beta) \phi^f_{j,0} \sum_{E \in \{L,H\}} \sum_{a \in A} \max\{S_E(a, j, z), 0\} g_E(a)
+ (1 - \beta) \sum_{E \in \{L,H\}} \sum_{a \in A} \sum_{j \in S} \sum_{\tilde{z} \in A_E(j,z,i|\tilde{j})} S_E(a, j, z) n_E^j(a, \tilde{z})
\]
J-to-J by brain skill (Data)

Slope: -0.451 (0.086) - Corr: -0.708

"Brain" Skill Content

job to job transition rate, %

-1.5 -0.75 0 0.75 1.5

1 1.5 2 2.5 3 3.5 4

1.5 2 2.5 3 3.5 4
E-to-U by brain skill (Data)

Slope: -0.744 (0.103) - Corr: -0.804
Market clearing conditions

- Clearing in product markets:

\[X^n_k = \sum_{k=1}^{K} (1 - \alpha^n_k) \theta^n_{kk} \sum_{\tilde{n}=1}^{N} \frac{\pi^n_{\tilde{n}, n} X^n_{\tilde{n}}}{1 + \tau^n_{\tilde{n}, n}} + \nu_k I^n \]

\[I^n = Y^n + T^n + D^n \]

\[T^n = \sum_{k=1}^{K} \sum_{\tilde{n}=1}^{N} \frac{\pi^n_{k, \tilde{n}} X^n_{k}}{1 + \tau^n_{k, \tilde{n}}} \tau^n_{\tilde{n}, n} X^n_k \]

\[D^n = \sum_{k=1}^{K} \sum_{\tilde{n}=1}^{N} \frac{\pi^n_{k, \tilde{n}} X^n_{k}}{1 + \tau^n_{k, \tilde{n}}} X^n_{\tilde{n}} \]

- Clearing in task markets:

\[Y^n_j = \sum_{k=1}^{K} \mu^n_{jk} \frac{\tilde{r}_k}{r_j} \frac{\alpha^n_k}{\tilde{r}_k} X^n_k = N_j \sum_{E \in \{L, H\}} \sum_{i \in I} \sum_{z \in Z} y_E(j, z, i) f_E(j, z, i) \]

\{demand\} \hspace{2cm} \{supply\}
• Free entry condition for task-producing firms

\[\sum_{z \in Z} \Pi^v(j, z) \Lambda^e(z) \leq 0, \quad F_j \geq 0, \quad \forall j \in J \]

• Flow balance of task-producing firms across states

\[F_{jz} \left[\delta_f + \varphi \sum_{\tilde{z} \in \mathcal{Z}/z} \Lambda(\tilde{z}|z) \right] = \varphi \sum_{\tilde{z} \in \mathcal{Z}} \Lambda(z|\tilde{z}) F_{j\tilde{z}} + \Lambda^e(z) F^e_j \quad \forall z \in \mathcal{Z}, \forall j \in J \]

\begin{itemize}
 \item outflows + exit
 \item inflows
 \item new entrants
\end{itemize}
Flows of task-producing firms-workers matches

\[
\gamma_E(j, z, i - 1) N_{Ej} f_E(j, z, i - 1) + \varphi \sum_{\bar{z} \in \mathcal{Z}} \Lambda(z | \bar{z}) N_{Ej} f_E(j, \bar{z}, i)
\]

inflows due to training updates

\[
\sum_{\tilde{j} \in S} \tilde{\phi}_{\tilde{j}j} N_{E\tilde{j}} \sum_{\bar{z} \in \mathcal{C}_1(\tilde{j}, z, i|j)} n_E(\tilde{j}, \bar{z}, i)
\]

inflows due to productivity change

\[
\delta_w + \delta_f + \varphi \sum_{\bar{z} \in \mathcal{Z}/z} \Lambda(\bar{z} | z) + \gamma_E(j, z, i) + \sum_{\tilde{j} \in S} \tilde{\phi}_{j\tilde{j}} \sum_{\bar{z} \in \mathcal{C}_2(j, z, i|\tilde{j})} v_{E\tilde{j}}(\bar{z})
\]

inflows due to new hirings

\[
N_{Ej} f_E(j, z, i)
\]

outflows
Flows of workers across states

\[U_{EI}[\delta w + \sum_{j \in J} \sum_{z \in Z} \tilde{\phi}_{0,j} \sum_{z \in Z} 1\{S_E(j,z,i) \geq 0\} V_{Ej}(z)] = \delta_f \sum_{j \in J} \sum_{z \in Z} N_{Ejzi} + \varphi \sum_{j \in S} \sum_{z \in Z} N_{Ejzi} \sum_{\tilde{z} \in Z} 1\{S_E(j,\tilde{z},i) < 0\} \Lambda(\tilde{z}|z) + \left. L^e_{EI} \right|_{\text{new entrants}}. \]
Australia, Austria, Brazil, Canada, Chile, China, Denmark, Finland, France, Germany, Greece, Hungary, India, Indonesia, Ireland, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Portugal, South Africa, Spain, Sweden, Turkey, UK, USA, ROW.
<table>
<thead>
<tr>
<th>Code</th>
<th>ISIC Rev.3.1</th>
<th>Description</th>
<th>Import Penetration</th>
<th>Tradable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AtB</td>
<td>Agriculture, forestry and fishing</td>
<td>11.421</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Mining and Quarrying</td>
<td>51.757</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>15t16</td>
<td>Food, Beverages and Tobacco</td>
<td>7.366</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>17t19</td>
<td>Textiles, Textile Products, Leather and Footwear</td>
<td>138.992</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>Wood and Product of Wood and Cork</td>
<td>18.645</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>21t22</td>
<td>Pulp, Paper, Printing and Publishing</td>
<td>7.814</td>
<td>yes</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>Coke, Refined Petroleum and Nuclear Fuel</td>
<td>12.067</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>Chemicals and Chemical Products</td>
<td>27.391</td>
<td>yes</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>Rubber and Plastics</td>
<td>17.987</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>26</td>
<td>Other Non-Metallic Minerals</td>
<td>18.199</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>27t28</td>
<td>Basic Metals and Fabricated Metals</td>
<td>22.139</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>29</td>
<td>Machinery, Nec</td>
<td>44.211</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>30t33</td>
<td>Electrical and Optical Equipment</td>
<td>81.201</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>34t35</td>
<td>Transport Equipment</td>
<td>41.497</td>
<td>yes</td>
</tr>
<tr>
<td>15</td>
<td>36t37</td>
<td>Manufacturing, Nec; Recycling</td>
<td>59.991</td>
<td>yes</td>
</tr>
<tr>
<td>16</td>
<td>E</td>
<td>Electricity, Gas and Water Supply</td>
<td>0.942</td>
<td>no</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>Construction</td>
<td>0.102</td>
<td>no</td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td>Sale, Maintenance and Repair of Motor Vehicles</td>
<td>0.189</td>
<td>no</td>
</tr>
<tr>
<td>19</td>
<td>51</td>
<td>Wholesale Trade, Except of Motor Vehicles</td>
<td>1.092</td>
<td>no</td>
</tr>
<tr>
<td>20</td>
<td>52</td>
<td>Retail Trade, Except of Motor Vehicles</td>
<td>0.458</td>
<td>no</td>
</tr>
<tr>
<td>21</td>
<td>H</td>
<td>Hotels and Restaurants</td>
<td>0.182</td>
<td>no</td>
</tr>
<tr>
<td>22</td>
<td>60t63</td>
<td>Transportation</td>
<td>5.907</td>
<td>no</td>
</tr>
<tr>
<td>23</td>
<td>64</td>
<td>Post and Telecommunications</td>
<td>0.208</td>
<td>no</td>
</tr>
<tr>
<td>24</td>
<td>J</td>
<td>Financial Intermediation</td>
<td>1.501</td>
<td>no</td>
</tr>
<tr>
<td>25</td>
<td>70</td>
<td>Real Estate Activities</td>
<td>0.077</td>
<td>no</td>
</tr>
<tr>
<td>26</td>
<td>71t74</td>
<td>Renting and Other Business Activities</td>
<td>5.472</td>
<td>no</td>
</tr>
<tr>
<td>27</td>
<td>L</td>
<td>Public Admin and Defence; Compulsory Social Security</td>
<td>0.065</td>
<td>no</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>Education</td>
<td>0.601</td>
<td>no</td>
</tr>
<tr>
<td>29</td>
<td>N</td>
<td>Health and Social Work</td>
<td>0.048</td>
<td>no</td>
</tr>
<tr>
<td>30</td>
<td>OtP</td>
<td>Other Community, Social, Personal Services</td>
<td>0.907</td>
<td>no</td>
</tr>
</tbody>
</table>
Table: **List of 1-digit SOC occupations**

<table>
<thead>
<tr>
<th>Code</th>
<th>1-digit SOC</th>
<th>Description</th>
<th>Brain-content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51-53</td>
<td>Production, Transportation, and Material Moving Occupations</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>45-49</td>
<td>Natural Resources, Construction, and Maintenance Occupations</td>
<td>0.056</td>
</tr>
<tr>
<td>3</td>
<td>31-39</td>
<td>Service Occupations</td>
<td>0.134</td>
</tr>
<tr>
<td>4</td>
<td>41-43</td>
<td>Sales and Office Occupations</td>
<td>0.236</td>
</tr>
<tr>
<td>5</td>
<td>11-29</td>
<td>Management, Business, Science, and Arts Occupations</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: **Distance matrix between 1-digit 2002 SOC occupations**

<table>
<thead>
<tr>
<th></th>
<th>11-29</th>
<th>31-39</th>
<th>41-43</th>
<th>45-49</th>
<th>51-53</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-29</td>
<td>0</td>
<td>10.18</td>
<td>8.25</td>
<td>12.43</td>
<td>12.90</td>
</tr>
<tr>
<td>31-39</td>
<td>10.18</td>
<td>0</td>
<td>2.84</td>
<td>3.12</td>
<td>3.26</td>
</tr>
<tr>
<td>41-43</td>
<td>8.25</td>
<td>2.84</td>
<td>0</td>
<td>5.84</td>
<td>5.96</td>
</tr>
<tr>
<td>45-49</td>
<td>12.43</td>
<td>3.12</td>
<td>5.84</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>51-53</td>
<td>12.90</td>
<td>3.26</td>
<td>5.96</td>
<td>0.75</td>
<td>0</td>
</tr>
</tbody>
</table>
Distance measures

Visibility: \(\lambda_{j,\tilde{j}} = \frac{\lambda}{[1 + d(j,\tilde{j})]^\xi} \), where

\[
d(j,\tilde{j}) = \sqrt{\left(\mathbf{v}_j - \mathbf{v}_{\tilde{j}} \right)' \Sigma^{-1} \left(\mathbf{v}_j - \mathbf{v}_{\tilde{j}} \right)}
\]