
Macro skewness and conditional second moments:

evidence and theories

Ian Dew-Becker, Alireza Tahbaz-Salehi, and Andrea Vedolin∗

October 14, 2019

Abstract

We establish four facts about skewness and conditional volatility in the economy:

(1) aggregate activity is negatively skewed; (2) sector activity is negatively skewed, but

less than aggregate; (3) the cross-sectional variance of output growth is countercyclical;

(4) when a sector shrinks, it subsequently covaries more with other sectors. Those facts

can all be generated qualitatively and quantitatively by a multisector equilibrium model

with the key feature that production inputs are gross complements. Three alternative

models that have been proposed to generate skewness and stochastic volatility are

unable to simultaneously match all four facts even qualitatively.

1 Introduction

Background and empirical facts
A defining feature of the business cycle is the existence of recessions as distinct episodes.

Rather than simply experiencing symmetric random fluctuations around a trend, output,

unemployment, and other measures of the state of the economy display sharp declines and

relatively smooth expansions: levels and growth in real activity are skewed left.1 At the

same time, many measures of volatility, both in the aggregate and the cross-section, are

countercyclical. As a mathematical matter there is a mechanical link between skewness and

countercyclical volatility —high volatility in bad times leads to a long left tail of outcomes —

but few models capture that feature of the economy.

∗Dew-Becker: Northwestern University and NBER; Tahbaz-Salehi: Northwestern University; Vedolin:
Boston University, NBER, and CEPR.

1See Sichel (1993), McKay and Reis (2008), Morley and Piger (2012), Berger, Dew-Becker, and Giglio
(2019), and Dupraz, Nakamura, and Steinsson (2019) among others.
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It is also not just aggregate output that is skewed left: sector- and firm-level activity dis-

play the same behavior. Similarly, while aggregate output features countercyclical volatility,

the variance of the cross-sectional distribution is also countercyclical.

This paper begins by systematically documenting a set of key facts about aggregate and

cross-sectional variance and skewness. The third moment of some variable x is the same

as the covariance of x with x2, so skewness itself can be thought of as a conditional second

moment. In that sense, our four facts are all about time-variation in second moments:

1. Aggregate economic activity is skewed left (its second moment is countercyclical)

2. Sector activity is skewed left, and skewness decreases at lower levels of aggregation

3. The variance of the cross-sectional distribution of sector activity is countercyclical

4. When activity in a given sector declines, that sector covaries relatively more with

other sectors.

The unifying theme behind the four facts is that they are all about second moments being

high when aggregate or sector activity is low. Negative time-series skewness in some series

is a well known feature of business cycles,2 but the fact that it monotonically grows with the

level of aggregation has not been previously noted. The cyclicality of cross-sectional variance

is also well known and appears in a number of contexts,3 but the dependence of conditional

covariance on sector shocks is also novel, and we will argue directly points to the paper’s

proposed model.

Proposed model
We show that the four facts are naturally generated in a multisector model — where

individual sectors of the economy are explicitly modeled and aggregate to produce total

GDP (e.g. Long and Plosser (1983)) —and in which production at the sector and aggregate

level is complementary in inputs —the elasticity of substitution is less than 1, as advocated

by Baqaee and Farhi (2019). To build intuition, consider an extreme case in which aggregate

output is Leontief in a range of inputs (consistent with the estimates of Barrot and Sauvagnat

(2016), Atalay (2017), and Carvalho et al. (2016),), and that production of the inputs

depends only on sector-specific productivity shocks. Then the distribution of output is the

distribution of the minimum of the technology shocks, which is in general skewed left. With

network effects, that minimum —the productivity of the worst-performing sector —becomes

a common component that affects all sectors.

Formally, the solution to the model yields a simple linear factor model for sector output

2Most relevant to this paper, see Baqaee and Farhi (2019), Berger, Dew-Becker, and Giglio (2019), and
Sichel (1993).

3For recent work, see Bloom et al. (2018) and Guvenen, Ozkan, and Song (2014). Salgado, Guvenen, and
Bloom (2019) go further and show that cross-sectional skewness is also countercyclical. We show that their
result is also consistent with our model.
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with a skewed common factor. When, consistent with the data, the sector-specific shocks

are symmetrical, sector output is naturally less skewed than aggregate output.

Countercyclical cross-sectional variance is generated simply because the minimum of the

sector-level shocks tends to be lower in periods when the sample standard deviation happens

to be higher. That is, the model generates countercyclical volatility —which is sometimes

taken as evidence for countercyclical uncertainty —even though all shocks are homoskedastic,

thus calling into question empirical analyses of uncertainty shocks based on cross-sectional

volatilities (e.g. see the discussion in Bloom (2014)).

We include the fourth fact precisely because it directly addresses the key mechanism in

the model. In a model with complementarities, when the supply of one input shrinks, that

input becomes more important, in the sense that output becomes relatively more sensitive to

it and less sensitive to other inputs. Because the sectors that shrink become more relevant,

they also covary more strongly with any other sector that buys their output (including final

production).

A single simple idea, then, that production features complementarities, explains aggregate

and sector skewness, the time-series patterns of cross-sectional volatility, and the response

of the cross-sector covariance matrix to shocks. Another way to put it is that the model

is overidentified relative to the three empirical facts. One parameter — the elasticity of

substitution across inputs —determines the signs of the time-series skewness of output, the

cyclicality of cross-sectional variance, and the relationship between a sector’s centrality and

its past shocks.

Alternatives
There are other models that have been proposed to match some of the facts that we

study. What we find, though, is that none of the alternative models we examine can match

all of the facts simultaneously. We study three basic specifications:

a. Skewed aggregate shocks (or perhaps skewness in a universal input, such as finance,

as in Brunnermeier and Sannikov (2014));4

b. Stochastic volatility and skewness in aggregate and idiosyncratic shocks (Bloom

(2009));

c. Concave responses to shocks (Ilut, Kehrig, and Schneider (2018)).

Each of the models, under suitable restrictions, is able to generate a subset of the facts

that we document, but they all fail on at least one. The comparison with the alternative

models also helps illustrate precisely why the aggregative model is able to fit the data.

In brief, facts 1 and 2 point to the existence of a skewed common component in output,

4The literature on rare disasters, e.g. Barro (2006), Gourio (2012, 2013), and Wachter (2013)
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while facts 3 and 4 imply that the common component is endogenous to sector-level shocks.

Explicit aggregation is therefore central because it creates that endogeneity. There always

exists some suffi ciently rich purely statistical specification that can match any set of empirical

facts, and the facts could also likely be matched by some combination of the alternative

models we study, but the aggregative model is notable for fitting the facts parsimoniously,

relying essentially just on complementarity.

Implications
The results in this paper have important implications for how to think about volatility

and skewness in the economy.5 A large literature studies stochastic volatility (and, more

recently, stochastic skewness), often implicitly assuming that because the dispersion in ob-

served distributions changes over time, that means that there are “uncertainty shocks”(e.g.

Bloom et al. (2018)). The results here show that time-variation in sample moments —and

their cyclicality —need not have anything to do with uncertainty. Rather, increases in the

dispersion of realized shocks may simply be associated with declines in output because of

strong concavity in the production function.

The model and empirical results also demonstrate that the economy in an important

sense does not have a single fixed network structure —in terms of the covariance of output

across sectors —and in fact that the variation is important in causing asymmetries in out-

comes. Baqaee and Farhi (2019) study this point extensively, and our results provide further

empirical support. They show that complementarity can generate aggregate skewness and

variation in the centrality of sectors. The second, third, and fourth empirical facts —on sec-

tor level output, cross-sectional volatility, and conditional covariances —are all steps beyond

their work, and necessary for distinguishing other models.

Output is skewed left and stochastically volatile in the model precisely because a single

sector —or set of sectors —will occasionally receive a negative shock and become (approxi-

mately) a limiting factor in production. It is exactly that change in the network —that the

negatively shocked industry becomes central —that creates a recession, negative skewness,

and volatility. So while it is common for studies of economic networks to use snapshots

of the inter-sector trade structure from the input-output tables, such an analysis can miss

important variation in linkages, and this paper shows that the variation, which produces the

time-varying second moments —is empirically relevant.

Finally, and perhaps most importantly, the analysis helps understand why recessions

5For work on unconditional skewness, see Sichel (1993), McKay and Reis (2008), Morley and Piger (2012),
and Berger, Dew-Becker, and Giglio (2019). For recent work on time-varying volatility in the real economy,
see Justiniano and Primiceri (2008), Clark and Ravazzolo (2015), and Schorfheide, Song, and Yaron (2018).
work on time-varying cross-sectional moments includes Guvenen, Ozkan, and Song (2014), Salgado et al.
(2018), and Dew-Becker and Giglio (2019).
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exist as discrete events. Hypotheses like skewness in aggregate shocks or concavity in firm

responses to shocks have been proposed to match the steepness and deepness of recessions,

but they turn out to fail on other dimensions. The necessary concavity arises naturally when

there is complementarity in production.

Related work
The paper is related to a number of active literatures. First, as described above, is work on

time-variation in time-series and cross-sectional moments of output. Second is an emerging

literature on production networks with complementarities in production. Atalay (2017) and

Atalay, Drautzburg, and Wang (2018) estimate the elasticity of substitution using data on

sector production and input-output linkages, finding extremely strong complementarities (up

to the point of a Leontief production function). Barrot and Sauvagnat (2016) find similar

results in firm-level responses to natural disasters. Baqaee and Farhi (2019) theoretically

study models with complementarities and show in a calibration that they can generate a

realistic level of skewness at the aggregate level, in addition to studying how covariances

and the network structure change over time in general production frameworks. Carvalho et

al. (2016) study the economy of Japan following the 2011 earthquake in a network model

with non-unitary elasticities of substitution. Our contribution relative to this literature is in

showing that an aggregative model is able to match the four stylized facts on skewness and

to compare its performance to other leading potential explanations.

The remainder of the paper is organized as follows. Section 2 documents the three empir-

ical facts. Section 3 presents a simple and stylized aggregative model with complementarities

and formally shows that it can match the three empirical facts. In section 4 we examine the

predictions of three other models of economic skewness. Section 5 examines a model with

complementarities in a more quantitatively realistic calibration, and section 6 concludes.

2 Empirical facts

This section establishes four facts about variance, covariance, and skewness in the economy:

1. Aggregate economic activity is skewed left.

2. Sector-level activity is skewed left, but less so than aggregate skewness.

3. The variance of the cross-sectional distribution of activity is countercyclical.

4. When activity in sector i declines, sector i becomes more central in the covariance

matrix of activity, in the sense that elements of the covariance matrix in its row and column

rise compared to other elements.
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2.1 Data

We focus on measures of activity that have data at monthly frequency and are measured at a

high level of sectoral detail. The two-main series are industrial production (from the Federal

Reserve), which is measured to the five-digit NAICS level in manufacturing industries, and

employment (from the Current Employment Survey of the BLS), which is measured at up

to the six-digit NAICS level and covers the entire economy. For industrial production, we

follow Foerster, Sarte, and Watson (2011) and study data since 1972. For employment, the

sample with detailed NAICS coverage begins in 1990.

2.2 Time-series skewness

The fact that aggregate output and employment, in both levels and growth rates, are skewed

left has been established in previous work.6 Not surprisingly, sector-level measures of activity

are also generally skewed left. We now show, though, that they are less negatively skewed

than aggregate growth rates, and that the magnitude of the negative skewness increases with

the level of aggregation.7

Table 1 reports the average level of skewness at different levels of aggregation for levels

and growth rates of industrial production and employment growth. For each sector we

calculate the coeffi cient of skewness for the time series of its, say, industrial production

growth. The table then reports the (unweighted) mean of those skewness coeffi cients at each

level of aggregation. Standard errors are reported in brackets.8

The top panel reports results for industrial production. The skewness of total industrial

production growth is -1.18. At the two-digit level — just three sectors: durable and non-

durable manufacturing and mining —average skewness is -0.96. At the three- and four-digit

levels, where there are 43 and 81 total sectors, respectively, skewness falls to -0.55 then

-0.45. Finally, at the five-digit level skewness is only -0.41. Skewness at the aggregate level

is therefore three times higher than at the most disaggregated sector level. A similar pattern

6Berger, Dew-Becker, and Giglio (2019), show that growth rates of employment, capacity utilization,
industrial production, GDP, durable and non-durable consumption, and residential and nonresidential in-
vestment are all skewed left. Furthermore, returns on the S&P 500 are skewed left, as is their option-implied
distribution. Morley and Piger (2012) provide a much more thorough analysis of asymmetry in the output
gap — that is, on skewness in levels, rather than growth rates —and finding similar results —while Sichel
(1993) provides an earlier analysis distinguishing asymmetry in levels from growth rates. See also references
therein for the literature on business cycle asymmetry.

7Ilut, Kehrig, and Schneider (2018) examine employment and find skewness at both the firm and aggregate
levels, but, as discussed below, do not emphasize the difference between the two.

8The standard errors are calculated with a blockwise jackknife that clusters by date. Specifically, each
jackknife replication removes 50 consecutive months of data from the sample —the same 50 months for all
sectors —and we iterate over all possible starting months for the excluded dates.
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holds using quarterly instead of monthly growth rates. In both cases the differences between

the skewness at the various levels of aggregation are themselves statistically significant. In

other words, at every level, as aggregation increases, skewness becomes more negative, and

the differences across levels of aggregation are both statistically and economically significant.

The right-hand panel reports results for levels of IP minus an exponentially weighted

moving average trend. The results are similar, though the increase in skewness is no longer

monotone. Panels B table 1 shows that similar results hold for employment growth, with

highly similar magnitudes for the coeffi cients.

To help identify the source of skewness, we examine the properties of residuals from a

time-series regression of each sector’s growth rate on aggregate growth. Specifically, if xi,t is

growth in sector i in month t and x̄t is growth in the aggregate in month t, we estimate the

regression

xi,t = ai + bix̄t + νi,t, (1)

and table 1 reports skewness for the residuals νi,t in the columns labeled “residuals”.

The results are very different from what is observed for the raw growth rates. The

residuals are still negatively skewed, but by much less than the raw growth rates, and with

surprising stability across levels of aggregation. In other words, most of the negative skewness

—and all of the increase with aggregation —appears to come from each sector’s exposure to

aggregate growth —the sector-specific component contributes little. While that is natural

from the perspective of some models, it will turn out to rule out others.

To summarize, then, we have two basic results regarding time series skewness of raw

growth rates: measures of real activity, both in levels and growth rates, are skewed to the

left, and the magnitude of that skewness increases with the level of aggregation. After

controlling for the aggregate component, though, there is little skewness remaining in the

residual growth rates, νi,t, and it does not increase with aggregation.

2.3 Realized cross-sectional variance

Our second empirical fact is that cross-sectional variance is countercyclical.9 In each month

t, we calculate the standard deviations of monthly growth rates of industrial production

and employment at the four-digit NAICS level. It is important to emphasize that these

9A similar fact is well known from the literature individual earnings (Storesletten, Telmer, and Yaron
(2004); Guvenen, Ozkan, and Song (2014)). Salgado, Guvenen, and Bloom (2018) provide evidence both
within and across countries on the cyclicality of the variance and skewness of cross-sectional outcomes. We
contribute to that literature by providing novel evidence on the cyclicality of skewness in the cross-section of
sectoral industrial production and employment growth, including looking at the sector-specific component,
as above.
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are realized sample moments — they do not measure a conditional distribution. That is,

the conditional probability density from which the sector growth rates are drawn could be

constant over time. We are simply measuring sample moments —which are random variables

—and examining their contemporaneous relationship with the state of the business cycle.10

Table 2 reports results from univariate regressions of the cross-sectional standard devi-

ation on an NBER recession indicator and aggregate employment growth as two different

measures of the state of the business cycle (i.e. in separate regressions). The cross-sectional

standard deviation and aggregate employment growth are normalized to have unit variance

to help in interpreting the coeffi cients.

The results confirm previous findings that cross-sectional volatility is countercyclical, and

the magnitude of the variation is economically significant. It rises by up to a full standard

deviation during NBER-dated recessions, and its correlation with aggregate employment

growth is between -0.25 and -0.35.

As in table 1, we also estimate the regressions using residuals from a regression of sector

growth rates on aggregate growth (the νi,t from equation (1)). Contrary to table 1, in

this case the results are essentially unchanged looking at the cross-sectional distribution

of residuals compared to raw growth rates. Unlike what is observed in table 1, then, the

behavior of the cross-sectional moments is not driven purely by the behavior of a common

component. Even with a common component taken out of the growth rates, the cyclicality

of the cross-sectional moments is unchanged. The sector residuals, vi,t, are, by construction,

uncorrelated with aggregate activity. The regressions in table 2 show, though, that they

are not statistically independent of aggregate activity —their higher moments are correlated

with the state of the business cycle. In other words, the common component of output is

not independent of the sector-specific shocks.

2.4 Conditional covariances

The final fact relates most directly to the key mechanisms in the structural model. When a

sector contracts, it becomes more central in the economy, in the sense that its covariances

with other sectors rise.
10The distinction between the conditional distribution and a realized moment is emphasized by Berger,

Dew-Becker, and Giglio (2019). As an example, consider some mean-zero shock ε with a constant conditional
distribution. One could look at the realization of ε2t —essentially a sample variance —and ask how it correlates
with other variables. For example, one might find that ε2t is negatively correlated with εt. That does not
mean that the conditional variance of εt (i.e. uncertainty) is countercyclical. Rather, it is just an indication
that the distribution of εt is left skewed. So nothing in this subsection should be interpreted as measuring
variation in conditional distributions. In the example in this footnote, doing so would require forecasting ε2t ,
not just looking at contemporaneous correlations.
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2.4.1 Empirical method

Define Σt to be the (unobservable) conditional covariance matrix of sector-level growth rates

on date t. Define Σt,i to be the average of the i’th column of Σt, excluding the i, i element.

Σt,i is the average of the covariances of sector i with all other sectors (or, equivalently, the

covariance of growth in sector i with average growth in all other sectors). When we say that

sector i covaries more strongly with other sectors, we mean Σt,i rises.

The goal is to estimate a relationship of the form

Σt,i = ai,1 + b1 (L) εi,t−1 + c1,t + η̃1i,t (2)

where εi,t measures the innovation to the level of activity in sector i on date t, b1 is a

polynomial in the lag operator, L (Ljxi,t = xi,t−j), and η̃1i,t is a residual. The problem is that

Σt,i is not observable. We therefore proxy for it with a simple date-t product, similar to the

literature on heteroskedasticity and feasible GLS.

More specifically, define εi,t to be the residual from an AR(p) model for growth in activity

in sector i. We then proxy for Σt,i with
∑

j 6=i εi,tεj,t. That product is a single-observation

sample moment, with the property that E
[∑

j 6=i εi,tεj,t

]
= Σt,i. The regression that we

actually estimate is then∑
j 6=i

εi,tεj,t = ai,1 + b1 (L) εi,t−1 + c1,t + η1i,t (3)

η1i,t captures both the true residual, η̃
1
i,t, and also the measurement error in the dependent

variable, E
[∑

j 6=i εi,tεj,t

]
− Σt,i. The errors are therefore in general non-Gaussian.

Because there may be common components across sectors in the innovations, εi,t, we

include time fixed effects, c1,t, in the estimation and cluster the standard errors by date.

Similarly, some sectors will covary with others more strongly on average, so the constant ai,1
is allowed to vary across sectors (i.e. the estimation includes sector fixed effects).

The inclusion of time fixed effects means that changes in Σt,i must be interpreted as

changes relative to Σt,j for j 6= i. Since the date-t mean of Σt,i is equal to the mean of all

pairwise covariances, a positive value for b1 (L) means that a positive shock to sector i raises

its covariances relative to those between other sectors.

Because εi,t appears on the left-hand side, we include only its lags on the right hand side,

so the regression can be interpreted as a forecasting exercise. Since the εi,t are constructed

to be uncorrelated over time, their estimated coeffi cients trace out a nonparametric impulse

response function, similar to the method of Jordá (2005). In that spirit, we include 36

9



monthly lags, to trace out the full response.

2.4.2 Results

The top panels of figure 1 report the estimated coeffi cients along with 90-percent confidence

bands (instead of 95-percent because of the large number of coeffi cients and hence low power)

for IP and employment. In both cases, the coeffi cients are consistently negative, with an

upward trend as the lag grows. Because the individual coeffi cient estimates are somewhat

noisy, the bottom panels plot the average value of the coeffi cients over five-lag windows. That

pair of plots emphasizes the point more clearly, showing that there is a negative response of

the covariances, Σt,i, to εi at lags of up to 1—2 years.

To get a sense of the magnitude, the mean of the left-hand side variable in the IP

regressions is 7.1×10−5, while the standard deviation of εi,t after controlling for the dummies

is 4.0×10−2. A coeffi cient of -2×10−4 means that a unit standard deviation decline in εi,t
is associated with a relative increase in the covariance of 11 percent of its mean, which the

estimates imply lasts for 1—2 years. The combined effect of a number of past shocks to ε on

the covariance can thus be substantial.

3 Aggregative model with complementarities

This section presents our benchmark multi-sector production model that can match the

four facts presented above. In order to obtain analytic results, the model is highly stylized,

with very strong forms of symmetry that yield simple solutions. It is not the only solvable

specification, though. Furthermore, there are related versions of the model in which the

results can be qualitatively different. The model should be viewed as giving an example

of a specification that can qualitatively match the data —this section does not claim that

all input-output networks with complementarities have the same characteristics as what is

observed in our special case. To confirm that the theoretical results hold in a setting that

is empirically more realistic, section 5 examines results from a numerical solution of a richer

specification.

3.1 Economic structure

Output is produced in sector i according to the function

Yi = exp (εi)N
1−α
i

(∑
j

ajx
γ
i,j

)α/γ

(4)
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where εi is sector i’s productivity and is distributed symmetrically and independently across

sectors, Ni is sector i’s use of labor, xi,j is sector i’s use of input j, 1/ (1− γ) is the elasticity

of substitution (so γ < 1), and aj a coeffi cient that determines the relative importance of

good j in production.

Aggregate consumption is

C =

(∑
j

ajx
γ
C,j

)1/γ
(5)

where xC,j is consumption of good j. The parameters of the final good production function

are the same as for the individual sectors except that no labor is used (α = 1) and pro-

ductivity is constant (in other words, (5) can also be a feature of preferences, rather than a

physical production function). There is no investment and the economy is closed, so gross

domestic product is equal to C.

The resource constraint for each sector is∑
i

xi,j + xC,j = Yj (6)

There are a number of major restrictions in this setup that allow for tractability. First, the

assumption that production takes the constant elasticity form, though standard, is obviously

highly restrictive. Second, and more specific to this model, the coeffi cients determining the

importance of each input, aj, are the same across sectors. While this assumption will yield

tractability, it is obviously counterfactual. Third, the elasticities of substitution are the same

in all sectors.

There are at least three ways labor can be modeled: the aggregate supply can be fixed

and it can adjust endogenously across sectors (e.g. Long and Plosser (1983)); it can be fixed

within each sector (Baqaee and Farhi (2019)); or the real wage can be fixed and the quantity

allowed to vary freely (e.g. Blanchard and Gali (2010)). We focus on the case where Ni is

fixed, as in Baqaee and Farhi (2019), (and we simply normalize it to 1), but we also examine

results in the other two cases.
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3.2 Solution

The appendix shows that the model’s solution for sector and aggregate output is (up to

constant factors)

Yi ∝
(
n−1

∑
j

a
1

1−αγ
j exp (εj)

γ
1−αγ

) 1−γ
γ

α
1−α

a
α

1−αγ
i exp (εi)

1
1−αγ (7)

C ∝
(
n−1

∑
j

a
1

1−αγ
j exp (εj)

γ
1−αγ

) 1−αγ
γ

α
1−α

(8)

Aggregate output is a CES aggregate over the sector productivities, with exponent γ/ (1− αγ).

Since (1− αγ) > 0 for γ < 1, the sign of that exponent depends just on the sign of γ. When

the inputs are gross complements, γ < 0, aggregate output is a complementary function of

the sector productivities.

Sector-level output can be decomposed into two terms. The first is a non-negative power

of aggregate output (positive for γ < 1). The second is a positive power of zi. So each

sector’s output has in essence a common component and a sector-specific component. In

that respect, it is similar to many reduced-form statistical specifications, since in logs it is a

linear single-factor model. Ignoring constants,

log Yi =
1− γ

1− αγ logC +
1

1− αγ εi (9)

Unlike here, though, statistical models almost always specify the common component as

being independent of (or at least orthogonal to) the sector-specific shocks. In what follows,

the centrality of endogeneity of the common component to the sector shocks will become

clear.

3.3 Implications for observables

We now examine the model’s ability to match the three empirical facts developed above.

We focus on the behavior of output since the model assumes labor is fixed. We leave the

more diffi cult task of incorporating a realistic specification for labor markets into the model

to future work.

The empirical analysis is almost entirely in terms of growth rates due to the fact that

measures of real activity are non-stationary (and not even cointegrated across sectors). The

model is in general very diffi cult to analyze in terms of growth rates, however. In linear
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Gaussian models, the distinction between levels and growth rates is nearly immaterial, so

typical theoretical analyses have little trouble with the distinction. Ilut, Kehrig, and Schnei-

der (2018), who also study a nonlinear model, simply specify the entire structure in terms

of growth rates from the beginning, but that does not work in the present setting because

aggregation happens in terms of levels.

We therefore take the following approach. For the first two facts —regarding time-series

skewness and the cyclicality of cross-sectional moments —we analyze the model purely in

terms of levels. Appendix C shows that in the continuous limit, when the innovations to an

AR(1) process are fat-tailed (but not when they are Gaussian) the first differences inherit

the skewness of the levels, implying that the theoretical results derived for levels here also

apply to growth rates.

The assumption that the shocks have fat tails is empirically valid. The average kurtosis

of sector-level growth rates of IP and employment is between 8 and 11, depending on the

level of aggregation.11 Such behavior could arise from shocks drawn from a t distribution

with 5 degrees of freedom, for example.

To evaluate whether the theoretical results derived in terms of levels are revealing for

growth rates in a more quantitatively realistic setting, we examine a calibration in section

5, which confirms that the analytic results that we obtain for the model in levels also apply

in terms of growth rates.

Finally, for the fourth fact —time-variation in conditional covariances —we are able to

derive results for growth rates in a continuous-time version of the model, which we also show

hold in the calibration.

3.3.1 Unconditional skewness

The log of aggregate output is

logC =
1− αγ
γ

α

1− α log

(
n−1

∑
j

a
1

1−αγ
j exp

(
γ

1− αγ εj
))

(10)

logC is a concave function of the ε when γ < 0 and convex when γ > 0. So when γ < 0 —

when the inputs are gross complements —aggregate output is skewed left. When inputs are

gross substitutes, on the other hand, aggregate output is skewed right. So in order for this

model to generate negative skewness, γ must be negative.

11Under the theoretical model, the sector-level technology shocks can be identified from the residuals from
a regression of sector output on aggregate output. The kurtosis of those residual growth rates is the same
as the kurtosis of the raw growth rates —8 to 11.
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The log of sector output is

log Yi =
1− γ

1− αγ logC +
1

1− αγ εi + constants (11)

Because sector output is equal to aggregate output plus a symmetrically distributed shock,

it inherits the skewness of aggregate output, but with a smaller magnitude. The model

therefore matches the result, when γ < 0, that output is skewed left, with the magnitude

increasing as the level of aggregation increases.

In addition to the results on skewness of overall growth rates, table 1 also reports skewness

for residuals, showing that once the aggregate component is controlled for, sector-level growth

rates are substantially less skewed and that there is no increase in skewness with aggregation.

Here when there are many sectors, the residual component of sector output, after controlling

for aggregate output, converges to 1
1−αγ εi. We have assumed that there is no skewness in the

εi, so there is then no skewness in the residuals. That is more extreme than what we find

empirically, but it is qualitatively consistent in that skewness is greater for total output, Yi,

than the residuals, εi.

While the analysis here applies to levels, as noted above, section C in the appendix

analyzes the link between skewness of levels and growth rates in a continuous limit. It shows

that skewness will also arise in growth rates as long as the technology shocks have fat tails

(but still under the assumption that they are symmetrically distributed).

3.3.2 Realized cross-sectional variance and skewness

The model generates countercyclical volatility and procyclical skewness because aggregate

output is a concave function of the shocks εi. All else equal, an increase in the dispersion

in the εi yields a decline in output. To see why, denote the sample cumulants, weighted by{
a
1/(1−αγ)
j

}
, by κ̂a,m. The first three sample cumulants are equal to the first three central

moments. That is, κ̂a,1 ({εj}) is the sample mean of the {εj}, κ̂a,2 ({εj}) is the sample
variance, and κ̂a,3 ({εj}) is the sample third moment, all weighted by

{
a
1/(1−αγ)
j

}
.12 We then

12Specifically, define the weighted sample mean to be Ea [{xj}] = n−1
∑
j

a
1/(1−αγ)
j∑
k a

1/(1−αγ)
k

xj . Then κ̂a,1 =

Ea [{εj}], κ̂a,2 = Ea

[{
(εj − Ea [{εk}])2

}]
, and κ̂a,2 = Ea

[{
(εj − Ea [{εk}])3

}]
.

More generally, the nth weighted sample cumulant is the nth derivative with respect to t, evaluated at
zero, of the sample cumulant generating function,

Ka (t; {εj}) ≡ log
∑
j

a
1/(1−αγ)
j∑
k a

1/(1−αγ)
k

exp (tεj) (12)
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have the following simple result, which follows directly from the definition of the cumulant

generating function.

Proposition 1 Log output is

logC =
α

1− α

∞∑
m=1

1

m!

(
γ

1− αγ

)m−1
κ̂a,m ({εj}) + constants (13)

That is, output is linear in the sample cumulants of the set of realized productivity shocks,

{εj}, weighted by the importance of each sector in production. When γ < 0, the coeffi cients

on the even cumulants are negative, while the coeffi cients on the odd cumulants are positive.

So an increase in the cross-sectional variance, κ̂a,2 ({εj}), holding all other cumulants fixed,
mechanically reduces output. Similarly, an increase in the third central moment, κ̂a,3 ({εj})
—an increase in skewness, with all other cumulants fixed —increases output.

Conversely, when γ > 0, cross-sectional variance becomes procyclical, while skewness

remains procyclical, since the sign of the coeffi cients on the odd cumulants is always positive,

while the sign of the coeffi cients on the negative cumulants is equal to the sign of γ. So in

this model, the sign of the cyclicality of cross-sectional variance identifies the sign of γ.

As with the empirical results, a key observation is that the cyclicality of cross-sectional

variance and skewness —whether they are positive or negative — has nothing to do with

changes in conditional distributions or “time-varying uncertainty”. The cross-sectional dis-

tribution is a random variable that is correlated with output. All the fundamental shocks

have constant volatility, and there is no sense in which there are uncertainty shocks here.

The proposition simply shows that there is a mechanical relationship between cross-sectional

variance and output. For γ < 0, output is a concave function of the (log) productivity shocks,

so increases in dispersion reduce output.

Finally, recall that table 2 also shows that the cross-sectional moments of the residuals

in sector growth rates, after controlling for the aggregate component, display the same

cyclicality as the cross-sectional moments of overall sector growth. The model generates the

same result. The reason is simple: the cross-sectional distribution of the sector growth rates is

identical to the cross-sectional distribution of the sector residuals, εi, up to a shift in location.

That is, the second and third (and higher) moments of the cross-sectional distribution of

growth rates are identical to those for the cross-sectional distribution of residuals, so they

also have the same cyclicality. The model thus matches the findings in table 2 both for

overall growth rates and for residuals.

There are two notable features of the results in this section. First, they continue to rely

on γ < 0, showing that the model is overidentified. Second, they rely on the fact that the
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common component is a function of the sector shocks. If aggregate output were independent

of the sector-specific shocks —i.e. if the sector shocks in some sense “washed out”—then

proposition 1 would not hold. The explicit aggregation in the model is therefore critical to

its ability to match the data.

3.3.3 Conditional covariances

The model description above does not say anything about the time series dependence of

the levels of productivity, εi. In order to analyze the conditional covariances we examined

empirically, we consider here a version of the model in which the εi follow AR(1) processes

(though the logic extends to much more general processes).

Proposition 2 Sector i’s covariance with other sectors increases relative to covariances
between other sectors when εi falls for γ < 0 (the result is reversed when γ > 0). Specifically,

sign

(
d

dεi,t

[ ∑
k 6=i covt (log Yi,t+1, log Yk,t+1)

−
∑

k 6=j covt (log Yj,t+1, log Yk,t+1)

])
= sign (γ) (14)

Intuitively, proposition 2 follows from the fact that when a sector receives a negative

shock, it becomes relatively more important in determining variation in aggregate output

when γ < 0. The importance of a sector i is quantified by

n−1a
γ/(1−αγ)
i exp (εi)

γ/(1−αγ)

n−1
∑

j a
γ/(1−αγ)
j exp (εj)

γ/(1−αγ) (15)

The sign of the derivative of that ratio with respect to εi is the sign of γ. Since all covariation

between sectors comes through variation in aggregate output, the relative increase in the

importance of the given sector increases its covariances with all other sectors and reduces

the covariances of other sectors with each other.

Proposition 2 formalizes the idea that under complementarity, when a sector receives a

negative shock it becomes more central. That result is not universal —there are production

networks for which it can fail to hold. However, it is natural in the baseline symmetric case,

and it is apparently a reasonable description of the data. As with proposition 1, proposition

2 follows from the fact that the common component of output is endogenous to the sector-

specific shocks, again emphasizing the importance of explicit aggregation.
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3.3.4 Overidentification

All of the results derived in this section depend on the parameter γ. The sign of the skewness

of output growth, the sign of the cyclicality of the cross-sectional variance of output growth

(both total growth and residuals with respect to aggregate output), and the sign of the

response of a sector’s covariances to its past growth rate all depend on the sign of γ. In

that sense, the model is overidentified: all four of the empirical results depend on a single

parameter.

That is the formal sense in which the model is overidentified or parsimonious. γ cannot

be chosen completely freely. As soon as it is selected to match one moment, that predicts

the signs of three others. That parsimony will not be shared by all of the alternatives below.

4 Alternative models of skewness

This section examines alternative models of skewness. We examine relatively stylized forms

of models meant to capture different potential economic mechanisms that could be driving

aggregate or cross-sectional skewness. The analysis shows that none of the alternatives are

able to match the three sets of facts about volatility and skewness presented above, which

the model with complementarity is able to match.

4.1 Skewed aggregate shocks

Consider a simple empirical model for sector output, Yi,t, which could be generated by a

number of different structural models:13

Yi,t = biYt + µi,t (16)

where bi is sector i’s loading on the aggregate shock εt, and µi,t is a sector specific shock.

εt is skewed left, while µi,t has a symmetrical distribution and is independent of εt, and

both shocks have zero mean. This model is a natural simple reduced-form specification

that one might consider to match the result in table 1 that time-series skewness comes from

13One possibility is that there are fundamental shocks to the economy, e.g. technology or policy shocks, that
are skewed left and can be represented by εt (e.g. rare disasters models (Rietz (1988), Barro (2006)) or smaller
business-cycle frequency shocks as in Berger, Dew-Becker, and Giglio (2019)). Another microfoundation
would be that some input to production used by all sectors, e.g. the output of the financial sector (financial
intermediation) is skewed to the left. For example, the financial sector might face occasionally binding
constraints, causing its ability to provide funding to the rest of the economy to face occasional crashes (e.g.
Brunnermeier and Sannikov (2014), Kocherlakota (2000)).
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a common component rather than sector-specific residuals. We now examine the model’s

ability to match the three empirical facts.

4.1.1 Fact 1: Increasing negative skewness with aggregation

In the limit as the number of sectors grows large, if they aggregate linearly then aggregate

output is simply proportional to εt. So both Yt and Yi,t are negatively skewed. Furthermore,

it follows from the fact the symmetry of µi,t and independence from εt that Yt has a more

negative skewness coeffi cient than Yi,t. In addition, since the µi,t are the residuals of sector

output after controlling for the common component, the residuals are unskewed. This model

can thus generate the time series facts, both for overall growth rates and for residuals without

requiring nonlinear aggregation.

4.1.2 Fact 2: Countercyclical cross-sectional variance

On any date, the cross-sectional variance of sector output is

vart (Yi,t) = ε2t var (bi) + vart
(
µi,t
)

(17)

When the number of sectors is large, ε2t var (bi) dominates vart
(
µi,t
)
as long as var (bi) > 0.

Since left skewness means that E [ε3t ] < 0⇒ corr (εt, ε
2
t ) < 0, we immediately have

corr (vart (Yi,t) , Yt) < 0 (18)

So this model can generate countercyclical volatility as long as bi differs across sectors

(and without stochastic volatility or uncertainty shocks). Recall, though, that the empirical

results in table 2 apply not just to sector growth rates, but also to residuals from regressions

of sector growth rates on aggregate growth. In this case, that regression identifies µi,t. If εt
and µi,t are independent, then the cross-sectional moments of the µi,t are acyclical.

In other words, then, a model with skewed aggregate shocks can generate countercyclical

volatility in sector output, Yi,t, but it cannot replicate the empirical result that the cross-

sectional distribution of residuals from regressions of sector output on aggregate output has

the same cyclical properties. So at best the model only get half-way to matching our second

empirical fact.

The failure of this model to match the cyclicality of the cross-sectional distribution of

the residuals is instructive. The basic structure of this model is superficially similar to the

equilibrium of the aggregative model, but it has a critical difference: the common component
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here is exogenous and independent of the sector-specific shocks, whereas in the aggregative

model the common component is endogenous to the sector-specific shocks.

4.1.3 Fact 3: Sector covariances rise following negative shocks

Under this model, the covariance between any pair of sectors is

cov (Yi,t, Yj,t) = bibj var (εt) + cov
(
µi,t, µj,t

)
(19)

Nothing about the model therefore implies that when a sector shrinks its covariance with

other sectors should rise relative to their covariances with each other. Obviously the model

could be augmented so that the covariances of the idiosyncratic shocks, or the loadings b,

change over time, but there is nothing fundamental about the hypothesis that aggregate

shocks are skewed to the right that would require such a scenario.

The failure of the model on this dimension is again a result of the independence of the

aggregate and sector-specific components.

4.2 Sector output is a concave function of symmetric shocks

Ilut, Kehrig, and Schneider (2018) study aggregate and firm-level skewness and argue that

skewness can be generated by a model in which firms have concave responses to economic

shocks, such that firm output or employment takes the form

Yi,t = f
(
εt + µi,t

)
(20)

where εt is again an aggregate shock and µi,t is an idiosyncratic shock. The shocks are

mean-zero and independent with symmetrical distributions. The function f is assumed to

be smooth, strictly increasing, and strictly concave.

Ilut, Kehrig, and Schneider (2018) argue that this is a convenient reduced-form repre-

sentation of a few different possible models of firm behavior that could generate asymmetry,

including irreversible investment (George and Kuhn (2014)), learning (Senga (2016)), or

matching frictions (Ferraro (2018)).

4.2.1 Unconditional skewness

It is straightforward to show that sector (or firm) output, Yi,t, is skewed left, simply due to

the concavity of f . However, skewness in this model decreases with the level of aggregation.

Ilut, Kehrig, and Schneider’s (2018) find this in their simulation (see their table 9). To see
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why, consider a second-order approximation to sector output, and treat aggregate output as

the mean across sectors,

Yi,t ≈ f (0) + f ′ (0)
(
εt + µi,t

)
+

1

2
f ′′ (0)

(
εt + µi,t

)2
(21)

Yt ≈ f (0) + f ′ (0) εt +
1

2
f ′′ (0)

(
ε2t + var

(
µi,t
))

(22)

The quadratic term in Yi,t is 12f
′′ (0)

(
εt + µi,t

)2
, while in Yt it is 12f

′′ (0)
(
ε2t + var

(
µi,t
))
. The

skewness of Yi,t is larger than the skewness of Yt essentially because there is more variability

in what is being squared at the sector than at the aggregate level —εt + µi,t instead of just

εt.

These results would also obtain in a granular model, as in Gabaix (2011), in which sector

shocks are skewed left. That is, suppose there is effectively a small number of sectors, so

that the sector shocks have nontrivial effects on aggregate output. Then even if they are

skewed, after (linear) aggregation, aggregate output will be less skewed than sector output,

due to simple averaging. In other words, the fact that skewness increases with aggregation

is inconsistent with a simple form of micro granularity.

4.2.2 Cyclicality of cross-sectional volatility

This model naturally generates countercyclical volatility. Consider a simple linear approxi-

mation to sector output around different levels of the aggregate shock,

Yi,t ≈ f (εt) + f ′ (εt)µi,t (23)

vart (Yi,t) ≈ f ′ (εt)
2 var

(
µi,t
)

(24)

By assumption, f ′ (εt) strictly increases as εt declines, making cross-sectional variance is

countercyclical.

Finally, the model also generates countercyclicality for the variance of the sector-specific

component of output, as in the data. In the first-order approximation above, the sector-

specific component, after removing aggregate output, is f ′ (εt)µi,t. The cross-sectional vari-

ance of those residuals is then the same as the cross-sectional variance of output itself, and

thus has the same cyclicality.
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4.2.3 Sector covariances following negative shocks

Since all covariance across sectors comes through the εt term, consider the following approx-

imation

Yi,t ≈ f
(
µi,t
)

+ f ′
(
µi,t
)
εt (25)

cov (Yi,t, Yj,t) ≈ f ′
(
µi,t
)
f ′
(
µj,t
)

var (εt) (26)

When a sector receives a negative shock, f ′
(
µi,t
)
rises. That raises the covariance of sector

i’s output with all other sectors, without having any effect on covariances between other

sectors. In that sense, sector i becomes more central. This result is not noted by Ilut,

Kehrig, and Schneider (2018), but it represents an additional empirical fact that the model

matches.

4.2.4 Summary

The model of concave decision rules generates negative skewness, and can match the cross-

sectional facts, but it fails to generate the result that skewness increases with the level of

aggregation. The key difference between this model and the model of complementarity in

production is where skewness arises. With concave decision rules, the skewness arises at the

firm or sector level. Under linear aggregation, that skewness washes out (as in the central

limit theorem) at the aggregate level. In the aggregative model with complementarity, it is

fundamentally created by aggregation, leading to a better fit to the data.

4.3 Idiosyncratic and aggregate shocks with time-varying distri-

butions

A large literature studies models in which shock volatilities change over time. There can be

changes in volatility at the aggregate level (Gourio (2012)), idiosyncratic level (Christiano,

Motto, and Rostagno (2014)), or both (Bloom (2009)). Such a model, suitably enriched, can

potentially also generate skewness. To see why, consider the following specification,

Yt = εt − kσ2t−1 (27)

Yi,t = Yt + µi,t (28)

εt ∼ N
(
0, σ2t−1

)
(29)

µi,t ∼ N
(
0,mσ2t−1

)
(30)
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where Yt, Yi,t, εt, and µi,t continue to represent aggregate and sector output and innovations,

k is a coeffi cient determining how output responds to variation in cross-sectional volatility

relates to the level of output, and m determines the relative volatility of the two shocks.

4.3.1 Unconditional skewness

Aggregate and sectoral output are naturally skewed left because there is a mechanical rela-

tionship between variance and the level of output —the variance is higher when output is low.

The appendix derives this result formally. Furthermore, skewness is greater at the aggregate

than at the sector level because sector output has the additional (symmetric) component

µi,t, which drives its skewness towards zero.

The residual component of sector output is µi,t, which is, by assumption, unskewed,

roughly consistent with the data.

4.3.2 Time-varying cross-sectional moments

Cross-sectional variance is time-varying by assumption, since the distribution of µi,t has

variance σ2t−1. Cross-sectional variance is also countercyclical for k > 0. This result holds

both for total sector output and for the sector specific component, µi,t. This again emphasizes

that the key feature of the model to match the cyclicality of cross-sectional moments is that

the common component of output cannot be independent of the sector-level residuals.

It is worth noting here, though, that for both of the facts, there is a different parameter

in the model. Aggregate skewness is determined by the parameter k, and cyclicality of cross-

sectional volatility depends on k and m, whereas the aggregative model depends on a single

microfounded parameter.

4.3.3 Sector covariances following negative shocks

The covariance of output between sectors is

cov (Yi,t, Yj,t) = var (εt) = σ2t−1 (31)

In other words, the covariances are all identical. They change over time due to σ2t , and they

are all countercyclical, but there is no variation across sectors. Certainly nothing in the

model requires that when a firm receives a negative shock it will covary more strongly with

other sectors, unlike the aggregative model or the one with concave decision rules. In both

of those cases, the source of the increased covariance is that a sector loads more heavily on

the common component following a negative sector-specific shock. This again illustrates the
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value of the common component being endogenous to the sector shocks, unlike here, where

it is purely exogenous.

4.3.4 Summary

In a model where aggregate output responds negatively to uncertainty, skewness arises nat-

urally and increases with aggregation, as in the data. The model also, by assumption,

generates countercyclical cross-sectional volatility. However, it has no prediction for differ-

ences in covariances across sectors. The analysis in this section is based on a reduced-form

representation, but it is possible that fully nonlinear solutions of structural models, like that

of Bloom et al. (2018), might yield different results. We examined simulations of that model,

however (helpfully provided by the authors), and find that output and employment, in both

levels and growth rates, are strongly positively skewed, implying that the at least the baseline

calibration of Bloom et al. (2018) does not generate the simplest of our empirical results,

that levels and growth rates of output and employment are skewed left.

4.4 Implications

The table below summarizes the facts and the ability of the models to qualitatively match

them.
Model:

Aggregative Skewed Concave Uncertainty

Fact: shocks responses shocks

Increasing skewness with aggregation X X × X
No skewness for residuals X X × X
Cyclicality of cross-sectional variance X X X X
Cyclicality of cross-sectional resid. var. X × X X
Centrality rises after negative shocks X × X ×
The equilibrium of the aggregative model has two key features that allow it to match the

empirical facts: there is skewness in the common but not sector-specific components, and

the common component is endogenous to the sector shocks.

5 Quantitative illustration

The analysis of the models so far has been purely qualitative. This section briefly asks

whether a quantitative version of the aggregative model can match the actual numbers

reported in section 2. It is not a full estimation, but rather a simple calibration, showing
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that the quantitative results are plausibly produced by the model. We leave the formidable

task of full estimation of a large-scale multisector model to future work.

5.1 Model and calibration

The specification follows that of Baqaee and Farhi (2019) closely (drawing on their posted

replication files). The structure of the economy is a general CES setup, where production at

the sector level, Yi, relative to its steady-state, Ȳi, is

Yi
Ȳi

= Ai

ωiL + (1− ωiL)

(
X̂i

X̄i

) θ−1
θ


θ
θ−1

(32)

where Ai is a technology shock, ωiL determines the importance of labor in production (where

labor input is assumed to be fixed and normalized to 1) and X̂i measures the use of inter-

mediates, with

X̂i

X̄i

=

(
N∑
j=1

ωij

(
xij
x̄ij

) ε−1
ε

) ε
ε−1

(33)

where variables with bars again represent steady-state values. Finally, aggregate output

(consumption) is

C

C̄
=

(
N∑
i=1

ω0i

(ci
c̄

)σ−1
σ

) σ
σ−1

(34)

The model is both more general than that studied above and at the same time still

highly restricted. The specification here allows for different elasticities of substitution at

the aggregate and sector levels, for an arbitrary elasticity of substitution between inputs

and labor, and for arbitrary weights on the inputs in each sector. At the same time, all

sectors have the same elasticity parameters, θ and ε, labor cannot be adjusted (which can be

thought of as essentially a short-run restriction), and the production weights, ωi,j, are fixed

over time. In reality, all of those assumptions are likely violated.

Our calibration follows that of Baqaee and Farhi (2019) for the most part. The production

weights are chosen to match the 1982 input-output table (results are similar for other years).

TFP shocks are calibrated to match the relative variance of TFP by industry along with

the observed correlations. Their overall scale is chosen to match the volatility of industrial

production growth (and the moments we will examine will be matched to the IP data).

We draw the shocks from a t distribution with four degrees of freedom, which generates

fat tails consistent with observed sector-specific IP growth. The autocorrelation of sector
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productivity is set to 0.85 (at the monthly frequency) to match the dynamics of sector-level

IP growth.

The elasticities of substitution are set to (σ, θ, ε) = (0.9, 0.5, 0.1). Aggregate output is

thus relatively substitutable across sectors —close to a log-linear production function. The

strong complementarity arises in production at the sector level, where the assumption is that

the mix of material inputs is not amenable to adjustment. These values are similar to those

estimated empirically by Atalay (2017).

5.2 Results

Table 3 reports moments of the model corresponding to the results from tables 1 and 2

along with the associated empirical results for industrial production. The top section shows

that, as in the data, skewness is higher at the aggregate than the sector level, though the

magnitudes are somewhat larger.

The bottom section examines the cyclicality of cross-sectional variance and skewness.

NBER recessions in the model are defined as periods when aggregate output growth is in

the bottom 15 percent of the unconditional distribution, to replicate the empirical frequency

of recessions. The signs and magnitudes of the coeffi cients are highly similar between the

model and the data.

Finally, the lines with squares in figure 1 plot the coeffi cients from the covariance forecast-

ing regression. They show that the model generates regression coeffi cients that are negative,

as in the data, and revert to zero at same general rate, but are larger by a factor of 5 on

average.

Overall, the quantitative model performs reasonably well in matching the time-series,

cross-sectional, and conditional moments, given that we made few choices in the calibration.

Table 3 and figure 1 therefore show that a richer version of the model, which is designed

to be closer to quantitative realism than the highly restricted setup analyzed theoretically

above, is able to broadly match the empirical behavior of the economy documented in tables

1—2 and figure 1.

6 Conclusion

This paper develops a set of facts regarding aggregate and sectoral variances, covariances,

and skewness. We then examine a model in which production displays complementarity

across inputs and show that it can match all four facts: skewness is negative and increases

in magnitude with the level of aggregation, cross-sectional variance is countercyclical, and a
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decline in output in a sector is associated with an increase in the sector’s relative covariance

with other sectors. The idea of complementarity, advanced most recently by Baqaee and

Farhi (2019), is powerful in understanding both the aggregate and cross-sectional behavior

of the economy.

That idea has important implications for how to think about skewness and time-varying

volatility. The model implies that second and third moments change over time and are

cyclical. In the past, it has sometimes been argued that the observed cyclicality of those

moments implies that there are exogenous shocks to uncertainty, and that uncertainty then

has negative effects on the economy. The model advanced here, though, is one in which

changes in volatility are a result of fundamental productivity shocks and have no independent

effect on the level of output.

A second important implication, which is supported by our empirical contributions, is

that the centrality of sectors changes over time. In some models, recessions have common

causes, e.g. technology shocks. Here, though, every episode is different. When a sector

receives a negative shock, it becomes relatively more important. So in a period where oil

stocks are low, shocks to the oil sector become a major driving force (e.g. Hamilton (2003),

Kilian (2008)), whereas in periods when the financial sector is highly constrained, financial

shocks become most relevant (e.g. Brunnermeier and Sannikov (2014). A key insight of

this paper is that complementarity means that the aggregate effects of shocks change in

important ways over time, those changes can be measured from the covariances of sector

growth rates, and many models fail to match them.
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A Solution of network model

The structure is

C =

(
n−1

∑
i

aix
γ
C,i

)1/γ
(35)

Yi = zi

(
n−1

∑
j

ajx
γ
i,j

)α/γ

(36)

Yi = xC,i + n−1
∑
j

xj,i (37)

The first equation is the production function for the consumption sector, the second for the

intermediate sectors, and the third the resource constraint.
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Now we guess that every sector uses the same mix of inputs, which means that xi,j =

x̄ixC,j for some x̄i (this is simple to prove). The resource constraint and sector production

functions become

Yi = xC,i

(
1 + n−1

∑
j

x̄j

)
(38)

Yi = zix̄
α
i

(
n−1

∑
j

ajx
γ
C,j

)α/γ

= zix̄
α
i C

α (39)

The aggregate optimization problem and FOC are

max

(
n−1

∑
i

aix
γ
C,i

)1/γ
−
∑
i

xC,ipi (40)

pi = C1−γn−1aix
γ−1
C,i (41)

The sector optimization problem and FOC are

max pizix̄
α
i

(
n−1

∑
j

ajx
γ
C,j

)α/γ

− x̄i
∑
j

pjxC,j (42)∑
i

pjxC,j = αpizix̄
α−1
i C (43)

A.1 Proportionality results and solution

Equations (41) and (43), respectively, imply

xC,i ∝ (pi/ai)
1

γ−1 (44)

x̄i ∝ (pizi)
1

1−α (45)

where the factors of proportionality do not depend on any i-indexed variables. The resource

constraint combined with the production function implies

xC,i ∝ zix̄
α
i (46)

which, combined with the above, yields

a
1−α
1−αγ
i z

γ−1
1−αγ
i ∝ pi (47)
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So there exist X̄ and X̄C such that

x̄i = X̄a
1

1−αγ
i z

γ 1
1−αγ

i (48)

xC,i = X̄Ca
α 1
1−αγ

i z
1

1−αγ
i (49)

Inserting those into the resource constraint, we have

X̄Ca
α 1
1−αγ

i z
1

1−αγ
i

(
1 + X̄n−1

∑
j

a
1

1−αγ
j z

γ 1
1−αγ

j

)
= ziX̄

αa
α

1−αγ
i z

γ α
1−αγ

i X̄α
C

(
n−1

∑
j

aja
α 1
1−αγ

j z
1

1−αγ γ

j

)α/γ

(50)

X̄1−α
C + X̄1−α

C X̄

(
n−1

∑
j

a
1

1−αγ
j z

γ
1−αγ
j

)
= X̄α

(
n−1

∑
j

a
1

1−αγ
j z

γ
1−αγ
j

)α/γ

(51)

The FOC for x̄i becomes

X̄CX̄ =
(
n−1α

) 1
1−α

(
n−1

∑
i

a
1

1−αγ
i z

γ
1−αγ
i

) (α−γ)
1−α /γ

(52)

Inserting that into (51) yields

(n−1α)

(1− n−1α)

(
n−1

∑
i

a
1

1−αγ
i z

γ
1−αγ
i

)−1
= X̄ (53)

which then implies

X̄C =
(
1− n−1α

) (
n−1α

) α
1−α

(
n−1

∑
i

a
1

1−αγ
i z

γ
1−αγ
i

) α
1−α

1−γ
γ

(54)

Finally, then, aggregate output is

C =
(
1− n−1α

) (
n−1α

) α
1−α

(
n−1

∑
i

a
1

1−αγ
i z

γ
1−αγ
i

) 1−αγ
γ

1
1−α

(55)
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A.2 Results

Aggregate output is (up to a factor of proportionality)

C ∝
(
n−1

∑
j

a
1

1−αγ
j z

γ
1−αγ
j

) 1−αγ
γ

1
1−α

(56)

Sector output is

Yi ∝
(
n−1

∑
j

a
1

1−αγ
j z

γ
1−αγ
j

) 1−γ
1−α

α
γ

a
α

1−αγ
i z

1
1−αγ
i (57)

B Proposition 2

Yi =
1− γ
γ

α

1− α log

(
n−1

∑
j

a
1

1−αγ
j z

γ
1−αγ
j

)
+

1

1− αγ εi (58)

=
1− γ

1− αγ logC +
1

1− αγ εi (59)

where logC =
1− αγ
γ

α

1− α log

(
n−1

∑
j

a
1

1−αγ
j z

γ
1−αγ
j

)
(60)

This section considers a specification in which the ε follow AR(1) processes, but the logic

applies in much more general settings. Formally, for all i, εi,t = φεi,t−1 + µi,t.

We want to know the conditional covariance,

covt (log Yi,t+1, log Yj,t+1) = covt

(
1− γ

1− αγ logCt+1 +
1

1− αγ εi,t+1,
1− γ

1− αγ logCt+1 +
1

1− αγ εj,t+1
)

(61)

=

(
1− γ

1− αγ

)2
vart (logCt+1) +

1− γ
(1− αγ)2

covt (logCt+1, εi,t+1) (62)

+
1− γ

(1− αγ)2
covt (logCt+1, εj,t+1) (63)
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We then consider the sum across all other sectors,

∑
j 6=i

covt (log Yi,t+1, log Yj,t+1) = (n− 1)

(
1− γ

1− αγ

)2
vart (logCt+1) +

1− γ
(1− αγ)2

(n− 1) covt (logCt+1, εi,t+1)(64)

+
1− γ

(1− αγ)2
covt

(
logCt+1,

∑
j 6=i

εj,t+1

)
(65)

= (n− 1)

(
1− γ

1− αγ

)2
vart (logCt+1) +

1− γ
(1− αγ)2

(n− 2) covt (logCt+1, εi,t+1)(66)

+
1− γ

(1− αγ)2
covt

(
logCt+1,

∑
j

εj,t+1

)
(67)

Since the empirical regressions include time fixed effects, all that matters is how this sum of

covariances differs across i, so we can drop the first and third terms, since they are identical

for all i. We are then left with∑
j 6=i

covt (log Yi,t+1, log Yj,t+1) =
1− γ

(1− αγ)2
(n− 2) covt (logCt+1, εi,t+1)+terms independent of i

(68)

Now consider the derivative with respect to εi,t,

d

dεi,t

∑
j 6=i

covt (log Yi,t+1, log Yj,t+1) =
1− γ

(1− αγ)2
(n− 2)

d

dεi,t
covt (logCt+1, εi,t+1) (69)

=
1− γ

(1− αγ)2
(n− 2) covt

(
d

dεi,t
logCt+1, εi,t+1

)
(70)

We have

logCt+1 =
1− αγ
γ

α

1− α log

(
n−1

∑
j

a
1

1−αγ
j exp

(
γ

1− αγ
(
φεj,t + µj,t+1

)))
(71)

d

dεi,t
logCt+1 = φ

α

1− α
a

1
1−αγ
j exp

(
γ

1−αγ
(
φεj,t + µj,t+1

))
n−1

∑
j a

1
1−αγ
j exp

(
γ

1−αγ
(
φεj,t + µj,t+1

)) (72)

It is then straightforward to show that the derivative of d
dεi,t

logCt+1 with respect to µi,t+1
has the same sign as γ globally. So when γ < 0, the covariance is negative. Furthermore,
1−γ

(1−αγ)2 > 0 for γ < 1, so the sign of the sum of covariances is the sign of γ.
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C Results in levels and growth rates

We analyze in this section a continuous limit of an AR(1) process. We show that changes

in a concave function of a set of those processes, dft ≡ f (..., εi,t, ...) − f (..., εi,t−dt, ...), are

skewed left when the innovations to the underlying ε have fat tails, but not when they are

Gaussian (purely diffusive).

We consider an underlying process, which can be thought of as the productivity pro-

cess analyzed in the paper, that follows an Ornstein—Uhlenbeck process augmented with

compound Poisson jumps. Specifically, consider an εi,t that follows

dεi,t = −φεi,t + σdWt + ktdNt (73)

where Wt is a standard Wiener process, Nt a Poisson counting process with intensity λ, and

kt a random variable with a symmetrical distribution.

The solution of the model is such that aggregate output is a function of the sector

productivities with the characteristics that fi > 0 and fii < 0 ∀i and fij > 0 ∀i 6= j . The

question here is under what circumstances dft is skewed left. That is, when do our results

on skewness in levels also apply to first differences?

Now first suppose there are no jumps. Then we can write, somewhat informally,

dft ≡ f (..., εi,t, ...)− f (..., εi,t−dt, ...) (74)

εi,t = (1− φdt) εi,t−dt + σdt1/2µi,t (75)

where µi,t is a standard Normal random variable.

dft = f
(
..., (1− φdt) εi,t−dt + σdt1/2µi,t, ...

)
− f (xt−dt) (76)

=
∑
i

fi,t−dtσdt
1/2µi,t + o

(
σdt1/2εt

)
(77)

where fi,t = dft
dεi,t
. In the limit as dt→ 0, we than have

E
[
(f (xt)− f (xt−dt))

3] = 0 (78)

so that the skewness of the changes in f (x) is zero. This follows simply from the smoothness,

or local linearity, of f .
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Now suppose there are jumps. We have

dft = f
(
..., (1− φdt) εi,t−dt + σdt1/2µi,t + ki,tdNi,t, ...

)
− f (xt−dt) (79)

=
∑
i

fi,t−dt
(
σdt1/2µi,t + ki,tdNi,t

)
(80)

+
1

2

∑
i

∑
j

fi,j,t−dt
(
σdt1/2µi,t + ki,tdNi,t

) (
σdt1/2µj,t + kj,tdNj,t

)
+ o

(
k2t
)
(81)

∑
i

fi,t−dt
(
σdt1/2µi,t + ki,tdNi,t

)
+

1

2
fii
(
σ2dtµ2i,t + k2i,tdN

2
i,t

)
(82)

The third moment of dft is the expectation of its cube. That involves taking all third-

order combinations of the various terms, such that the expectations are of order dt. It is

straightforward to show that all terms involving interactions either between dN or µ terms,

µj for j > 2, or between different i indexes, are of smaller order than dt.

We then have

E
[
df 2t
]

=
∑
i

f 2i
(
σ2dt+ var (k)λdt

)
+

1

4
f 2iiκ4λdt (83)

E
[
df 3t
]

=
∑
i

(
3

2
f 2i fiiκ4 +

1

8
f 3iiκ6

)
λdt (84)

where κj = E
[
kjt
]
.

The skewness is then

E [df 3t ]

E [df 2t ]
3/2

=

∑
i

(
3
2
f 2i fiiκ4 + 1

8
f 3iiκ6

)
λdt(∑

i f
2
i (σ2dt+ var (k)λdt) + 1

4
f 2iiκ4λdt

)3/2 < 0 (85)

where the inequality follows from the concavity of f .

We thus have the claimed result that skewness in output growth is zero when the inno-

vations are purely Gaussian but negative when they have fat tails due to jumps.

D Results on model of concave responses

Suppose sector and aggregate output are

Yi,t = f
(
εt + µi,t

)
(86)

Yt =

∫
i

Yi,t (87)
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We can approximate these, assuming symmetric fundamental shocks, as

Yi,t ≈ f (0) + f ′ (0)
(
εt + µi,t

)
+

1

2
f ′′ (0)

(
εt + µi,t

)2
(88)

Yt ≈ f (0) + f ′ (0) εt +
1

2
f ′′ (0) ε2t + f ′ (0)

∫
i

µi,t +
1

2
f ′′ (0) 2εt

∫
i

µi,t +
1

2
f ′′ (0)

∫
i

µ2i,t(89)

= f (0) + f ′ (0) εt +
1

2
f ′′ (0)

(
ε2t + σ2µ

)
(90)

D.0.1 Lemma for skewness

First, a lemma. We are going to examine random variables of the form

x =
aσ2

2

( ε
σ

)2
+ bσ

ε

σ
+ c (91)

This has the form of a non-central χ2. Specifically,

x =
a

2
σ2
(
ε

σε
+

b

aσ

)2
− 1

2

b2

a
+ c (92)

∼ −1

2

b2

a
+ c+

a

2
σ2χ2 (1, λ) (93)

where χ2 (1, λ) is a non-central χ2 with one degree of freedom and noncentrality parameter

λ, where in this case λ =
(
b
aσ

)2
. The skewness of x is then

skew (x) = sign
(a

2
σ2
)

23/2
k + 3λ2(
k + 2λ2

)3/2 (94)

dskew (x)

dλ
= −sign

(a
2
σ2
) 3λ

(1 + 2λ)5/2
(95)

Finally,

dskew (x)

dσ
=

dskew (x)

dλ

dλ

dσ
(96)

= −2
dskew (x)

dλ

(
b

a

)2
σ−3 (97)
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which implies

sign

(
dskew (x)

dσ

)
= −sign

(
dskew (x)

dλ

)
(98)

sign

(
dskew (x)

dσ

)
= sign (a) (99)

D.1 Aggregate and sector skewness

Both aggregate and sector output take the form

x =
aσ2

2

( ε
σ

)2
+ bσε

ε

σ
(100)

from above. Specifically, for aggregate output

Yt =
1

2
σ2εf

′′ (0)
ε2t
σ2ε

+ f ′ (0)σε
εt
σε

+ f (0) +
1

2
f ′′ (0)σ2µ (101)

a = f ′′ (0) , b = f ′ (0) , and σ2 = σ2ε (102)

and for sector output

Yi,t =
1

2
f ′′ (0)

(
σ2ε + σ2µ

) (εt + µi,t
)2(

σ2ε + σ2µ
) + f ′ (0)

√
σ2ε + σ2µ

(
εt + µi,t

)√
σ2ε + σ2µ

+ f (0) (103)

a = f ′′ (0) , b = f ′ (0) , and σ2 = σ2ε + σ2µ (104)

so they have the same form except for differences in the variance —σ2ε versus σ
2
ε + σ2µ. We

can therefore apply the result from above, Since the σ2 for sector output is greater than the

σ2 for aggregate output, and since sign (a) < 0, skew (Yi,t) < skew (Yt). That is, sector

skewness is more negative than aggregate skewness. Intuitively, the curvature in f has

greater relevance when the shocks are larger —for very small shocks, f is effectively linear

and induces no asymmetry in the distribution. So in general this model predicts aggregate

skewness is smaller than sector skewness.
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Table 1. Means and medians of skewness of sector-level growth rates

Panel A: Industrial production

Monthly growth rates Quarterly growth rates Levels # of

Aggregation level Raw Residuals Raw Residuals sectors

Aggregate -1.183 N/A -1.868 N/A -1.078 1

[.135] [.129] [.229]

2-digit -0.961 -0.224 -1.007 0.131 -0.412 3

[.142] [.059] [.103] [.048] [.147]

3-digit -0.545 -0.207 -0.792 -0.054 -0.98 43

[.057] [.033] [.07] [.036] [.095]

4-digit -0.454 -0.24 -0.589 -0.111 -0.835 81

[.057] [.033] [.07] [.036] [.076]

5-digit -0.409 -0.21 -0.515 -0.125 -0.877 62

[.037] [.024] [.044] [.017] [.06]

Panel B: Employment

Monthly growth rates Quarterly growth rates Levels # of

Aggregation level Raw Residuals Raw Residuals sectors

Aggregate -1.488 N/A -1.894 N/A -0.788 1

[.311] [.339] [.172]

1-digit -0.905 -0.133 -1.179 0.118 -0.751 7

[.192] [.032] [.224] [.046] [.1]

2-digit -0.64 -0.119 -0.987 -0.138 -0.534 18

[.149] [.054] [.16] [.057] [.091]

3-digit -0.559 -0.143 -0.771 -0.106 -0.367 78

[.097] [.033] [.125] [.025] [.07]

4-digit -0.362 -0.085 -0.579 -0.081 -0.444 237

[.097] [.033] [.125] [.025] [.07]

5-digit -0.291 -0.093 -0.467 -0.083 -0.394 344

[.054] [.017] [.081] [.011] [.06]

Notes: Average time series skewness across sectors at various levels of aggregation. Jackknife standard 
errors (with a block length of 50 months) are reported in brackets. The ‘‘raw” columns are for the raw 
data, while the columns labeled ‘‘residuals” report skewness for residuals from regressions of sector on 
aggregate growth rates. In levels, we report skewness for IP and employment minus an exponentially 
weighted moving average with a decay of 5 percent per month. 



Table 2. Correlation of cross-sectional variance with the business cycle

NBER rec. ind. 0.69 *** 0.66 *** 0.218 ** 0.510 **

[0.19] [0.18] [0.091] [0.24]

Agg. empl. growth -0.24 ** -0.21 ** -0.311 *** -0.250 ***

[0.10] [0.09] [0.083] [0.065]

# of obs. 566 566 351 351

Employment

Notes: Employment growth and cross-sectional variance are standardized to have unit over 
time. Each cell is the coefficient from a univariate regression. Standard errors, reported in 
brackets, are calculated by Newey–West with 12 monthly lags. The columns labeled residuals 
use the cross-sectional variance of residuals from regressions of sector growth rates on 
aggregate growth. * indicates significance at the 10-percent level, ** 5 percent, and *** 1 
percent.

Employment growthIP growth IP growth

residuals residualsgrowth



Table 3. Model simulation results

Skewness

Model Data Data std. err.

Aggregate -1.72 -1.18 [0.135]

Sector -0.94 -0.45 [0.057]

Residual -0.17 -0.24 [0.033]

Cyclicality of cross-sectional moments

Growth rates: Residuals:

Model Data Data std. err. Model Data Data std. err.

Variance:

Rec. ind. 0.61 0.32 [0.09] 0.40 0.31 [0.09]

ΔIP -0.24 -0.35 [0.12] -0.17 -0.33 [0.11]

Notes: The left-hand column reports moments from a simulation of 10,000 periods from the numerical 
solution to the model. The middle column reports corresponding empirical estimates and the right-
hand column has standard errors. The sector-level estimate in the top-section is for IP for 4-digit 
industries. The cyclicality results are different from table 2 in two respects: they report pairwise 
correlations instead of regression coefficients, and they use IP as the measure of aggregate activity 
instead of employment.



Figure 1. Response of sector covariances to sector shocks

Notes: the top two panels report coefficients from regressions of the sum of sector I’s covariances with all other sectors 
on lagged innovations to activity in sector i. The regressions include time and sector fixed effects and standard errors 
are clustered by date. Dotted lines represent 90-percent confidence intervls. The bottom panels report moving averages 
of the coefficients.
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