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Abstract

We present a new model of asset prices in which investors evaluate risk accord-

ing to prospect theory and examine its ability to explain 22 prominent stock market

anomalies. The model incorporates all the elements of prospect theory, takes account

of investors’ prior gains and losses, and makes quantitative predictions about an as-

set’s average return based on empirical estimates of its beta, volatility, skewness, and

capital gain overhang. We find that the model is helpful for thinking about a majority

of the anomalies we consider. It performs particularly well for the momentum, volatil-

ity, distress, and profitability anomalies, but poorly for the value anomaly. For several

anomalies, the model explains not only the average returns of extreme anomaly deciles,

but also more granular patterns in the average returns of intermediate deciles.
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1 Introduction

Prospect theory, due to Kahneman and Tversky (1979, 1992), is a highly influential theory of

decision-making under risk. In a parsimonious way, it captures a wide range of experimental

evidence on attitudes to risk. As such, it has the potential to shed light on asset prices and

investor behavior. However, despite years of effort, we still do not understand its implications

for basic aspects of asset prices, such as the cross-section of average returns. Under mean-

variance preferences, average returns are described by the CAPM. But what determines

average returns when investors instead evaluate risk according to prospect theory? What

does prospect theory predict about the relative average returns of small-cap stocks and large-

cap stocks, or of value stocks and growth stocks? Full answers to these basic questions are

still not available.

In this paper, we answer these questions. We build a new model of asset prices that

incorporates prospect theory, as well as a related concept known as narrow framing, into

investor preferences. We show how the model can be used to make quantitative predictions

about the cross-section of average returns. In our main application, we take 22 prominent

stock market anomalies and examine whether our model can help explain them. We find

that the model is able to shed light on a majority of these anomalies.

Prospect theory posits that an individual derives utility from gains and losses, where

the utility function is kinked at its origin, so that he is more sensitive to losses than to

gains (“loss aversion”), and also concave over gains and convex over losses, so that he is

risk averse over moderate-probability gains and risk-seeking over moderate-probability losses

(“diminishing sensitivity”). In addition, he weights outcomes not by objective probabilities

but by transformed probabilities that overweight the tails of the distribution he is thinking

about (“probability weighting”). Prospect theory is often implemented in conjunction with

narrow framing, a phenomenon observed in experimental studies whereby, when an individual

is thinking about taking on a new risk, he evaluates it to some extent in isolation, separately

from his other risks. In the stock market context, this means that, when an investor is

thinking about how much money to allocate to a particular stock, he focuses, at least in

part, on the potential gains and losses in his holdings of the stock itself.

Intuition and prior research suggest that, in an economy with prospect theory investors

who engage in narrow framing, the price of an asset will depend in part on three asset

characteristics: the volatility of the asset’s returns; the skewness of the asset’s returns; and

the average prior gain or loss across investors holding the asset, a quantity known as the

asset’s “capital gain overhang” (Grinblatt and Han, 2005). All else equal, investors require
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a higher average return on more volatile assets: since these investors evaluate each asset

to some extent in isolation, and since they are loss averse, they find assets with volatile

returns unappealing. All else equal, investors require a lower average return on assets with

more positively-skewed returns: since these investors focus on an asset’s own distribution of

potential gains and losses, and since they overweight the tails of this distribution, they find

assets with positively-skewed returns attractive. Finally, the utility function’s concavity over

gains and convexity over losses mean that, all else equal, investors require a higher average

return on assets where they have larger prior gains.1

The above intuitions indicate that, to understand prospect theory’s implications for asset

prices, we need a model that incorporates all the elements of prospect theory and accounts

for investors’ prior gains and losses in each risky asset. No existing model fulfills both

conditions; we therefore build a new one that does. In our model, investor preferences have

two components. The first is the traditional mean-variance preference specification; taken

alone, it leads to the CAPM. The second embeds prospect theory and narrow framing.

While our model has a simple structure, solving for equilibrium prices presents a chal-

lenge. In the model, all investors are identical. In an Expected Utility framework, this would

imply that, in equilibrium, all investors hold identical portfolios. Strikingly, such an equi-

librium does not exist once we introduce prospect theory preferences. To break this logjam,

we construct an alternative equilibrium, one in which investors hold different portfolios that

correspond to non-unique optima of their objective function. We then show how the model

can be used to generate quantitative predictions about the expected return on any risky

asset.

In our main application, we examine whether the model can explain 22 prominent stock

market anomalies. To see if our model can explain a particular anomaly – the size anomaly,

say – we compute what it predicts for the average return of the typical small-cap stock. As

explained above, this average return will depend on the return volatility, return skewness,

and capital gain overhang of the typical small-cap stock. We estimate these quantities from

historical U.S. data, plug them into our model, and record the model’s prediction for the

average return of a typical small-cap stock. We repeat this process for the typical stock in

each of the ten market capitalization deciles. The results reveal how much, if any, of the size

anomaly our model can explain. We proceed in the same way for all 22 anomalies.

Our empirical estimates of the volatility, skewness, and capital gain overhang of the

typical stock in each anomaly decile are interesting in their own right. We find that the

1The three intuitions described here are outlined in Barberis and Huang (2001); in Section III.G of

Barberis and Huang (2008); and in Grinblatt and Han (2005) and Li and Yang (2013), respectively.
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three characteristics are strongly correlated across anomaly deciles: if the typical stock in

decile 1 for some anomaly has more volatile returns than the typical stock in decile 10 for

that anomaly, then it almost always also has more positively-skewed returns and a more

negative capital gain. For example, in the case of the size anomaly, the typical small-cap

stock not only has more volatile returns than the typical large-cap stock, but also has more

skewed returns and a more negative capital gain overhang.

This last observation points to the necessity of the quantitative approach we take in

this paper. Consider once again the size anomaly. Empirically, the returns of the typical

small-cap stock are much more volatile than those of the typical large-cap stock. All else

equal, this leads prospect theory investors who engage in narrow framing to charge a higher

average return on small-cap stocks than on large-cap stocks, thereby helping to explain the

size anomaly. However, the typical small-cap stock also has more positively-skewed returns,

and a more negative capital gain overhang, than the typical large-cap stock. All else equal,

these two factors lead prospect theory investors to charge a lower average return on small-

cap stocks, thereby hampering the model’s ability to explain the size anomaly. It is only

through a quantitative, model-based approach like the one we present here that we can find

out what the overall prediction of prospect theory for the size anomaly is, once all of these

factors are properly combined.

We find that our model can help explain 13 of the 22 anomalies we consider, in the sense

that it predicts a higher CAPM alpha for the extreme anomaly decile portfolio that actually

has a higher alpha, empirically. These are the momentum, failure probability, idiosyncratic

volatility, gross profitability, expected idiosyncratic skewness, return on equity, maximum

daily return, O-score, external finance, composite equity issuance, net stock issuance, post-

earnings announcement drift, and difference of opinion anomalies. Our model explains these

anomalies in the same way. For each of these 13 anomalies, the typical stock in the extreme

decile with the lower average return is more highly skewed, more volatile, and has a lower gain

overhang than the typical stock in the other extreme decile. The greater skewness and lower

gain overhang of the former stock leads investors to charge a lower average return on it, while

its higher volatility leads investors to charge a higher average return on it. Quantitatively,

the first effect dominates. As a consequence, our model’s prediction about the anomaly is

in line with the empirical facts. Indeed, for several of the anomalies, the model explains not

only the alphas for the two extreme anomaly deciles, but also more granular variation in

alphas across intermediate deciles.

While our model is helpful for thinking about many anomalies, there are some anomalies

where it performs poorly – most notably, the size and value anomalies. For example, value
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stocks are more highly skewed and have a more negative capital gain than growth stocks.

All else equal, this leads prospect theory investors to charge a lower average return on value

stocks. However, value stocks are also more volatile, which, all else equal, leads investors

to charge a higher average return on them. Quantitatively, the first effect dominates. The

model therefore predicts a lower average return on value stocks, contrary to the empirical

facts.

In making its predictions, our model assumes that investors have sensible beliefs: when

pricing a stock, they are aware of the volatility and skewness of the stock’s future return

distribution, and of its capital gain overhang. One possible explanation for our model’s poor

performance on some anomalies is that investors have incorrect beliefs about stocks’ return

distributions. We present some suggestive evidence from option prices that this is indeed the

case for value stocks: investors appear to think that the returns on these stocks have similar

skewness to the returns on growth stocks, even though, empirically, value stock returns are

more highly skewed than growth stock returns. These incorrect beliefs may help explain our

model’s counterfactual prediction about the average return on value stocks.

We noted above that, to fully understand the implications of prospect theory for asset

prices, we need a model that incorporates all the elements of prospect theory and takes

account of investors’ prior gain or loss in each asset. Most of the earlier models incorporate

only a subset of the elements of prospect theory: only loss aversion (Barberis and Huang,

2001), only loss aversion and diminishing sensitivity (Li and Yang, 2013), or only loss aversion

and probability weighting (Baele et al., 2019). Meanwhile, the two prior models of the cross-

section that do incorporate all the elements of prospect theory, Barberis and Huang (2008)

and Barberis, Mukherjee, and Wang (2016), are both one-period models; as such, they cannot

account for investors’ prior gains and losses. A new model is needed, and we develop one in

this paper.

More generally, we advance research on prospect theory applications in finance on three

dimensions: in terms of theory, in terms of empirics, and in terms of scope. First, we present

a new model of the cross-section, one that overcomes the limitations of prior approaches.

Second, to derive quantitative predictions about average returns, we use empirical measures

of return volatility, return skewness, and gain overhang as inputs to the model. And third,

while previous papers on prospect theory and market anomalies have each focused on a

very small set of anomalies, we widen the scope of this research by looking at 22 different

anomalies. To our knowledge, our paper marks the first time a “behavioral” model of either

beliefs or preferences has been used to make quantitative predictions about such a wide range

of anomalies.
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In Section 2, we review prospect theory and narrow framing. In Section 3, we present

a model that incorporates these concepts and discuss the structure of the equilibrium. In

Section 4, we introduce the 22 anomalies that are the focus of our study and compute the

empirical characteristics that serve as inputs to the model – specifically, the return volatility,

return skewness, and capital gain overhang of the typical stock in each anomaly decile. In

Section 5, we present our model’s predictions about stock market anomalies. In Section 6,

we discuss some additional issues raised by our analysis. Section 7 concludes.

2 Prospect Theory and Narrow Framing

Our goal is to study asset prices in an economy where investors have prospect theory pref-

erences and engage in narrow framing. In this section, we review these concepts. Readers

already familiar with them may prefer to go directly to Section 3.

2.1 Prospect theory

The original version of prospect theory is described in Kahneman and Tversky (1979). Tver-

sky and Kahneman (1992) propose a modified version of the theory known as cumulative

prospect theory. This is the version that is typically used in economic analysis and is the

version we adopt in this paper.2

To see how cumulative prospect theory works, consider the gamble

(x−m, p−m; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn, pn), (1)

which should be read as “gain or lose x−m with probability p−m, x−m+1 with probability

p−m+1, and so on,” where xi < xj for i < j and where x0 = 0, so that x−m through x−1

are losses and x1 through xn are gains, and where
∑n

i=−m pi = 1. For example, a 50:50 bet

to win $110 or lose $100 would be written as (−$100, 1
2
; $110, 1

2
). In the Expected Utility

framework, an individual with utility function U(·) evaluates the gamble in (1) by computing
n∑

i=−m

piU(W + xi), (2)

where W is his current wealth. A cumulative prospect theory individual, by contrast, assigns

the gamble the value
n∑

i=−m

πiv(xi), (3)

2While our analysis is based on cumulative prospect theory, we often abbreviate this as “prospect theory.”
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where

πi =

⎧⎨⎩ w(pi + . . .+ pn)− w(pi+1 + . . .+ pn)

w(p−m + . . .+ pi)− w(p−m + . . .+ pi−1)
for

0 ≤ i ≤ n

−m ≤ i < 0
, (4)

and where v(·) and w(·) are known as the value function and probability weighting function,

respectively.3 Tversky and Kahneman (1992) propose the functional forms

v(x) =

⎧⎨⎩ xα

−λ(−x)α
for

x ≥ 0

x < 0
(5)

and

w(P ) =
P δ

(P δ + (1− P )δ)1/δ
, (6)

where α, δ ∈ (0, 1) and λ > 1. The left panel in Figure 1 plots the value function in (5) for

α = 0.5 and λ = 2.5. The right panel in the figure plots the weighting function w(P ) in (6)

for δ = 0.4 (the dashed line), for δ = 0.65 (the solid line), and for δ = 1, which corresponds

to no probability weighting (the dotted line). Note that v(0) = 0, w(0) = 0, and w(1) = 1.

There are four important differences between (2) and (3). First, the carriers of value in

prospect theory are gains and losses, not final wealth levels: the argument of v(·) in (3) is

xi, not W + xi. Second, while U(·) is typically differentiable everywhere, the value function

v(·) is kinked at the origin, as shown in Figure 1, so that the individual is more sensitive to

losses – even small losses – than to gains of the same magnitude. This element of prospect

theory is known as loss aversion and is designed to capture the widespread aversion to bets

such as

(−$100,
1

2
; $110,

1

2
). (7)

The severity of the kink is determined by the parameter λ; a higher value of λ implies a

greater relative sensitivity to losses.

Third, while U(·) in (2) is typically concave everywhere, v(·) in (3) is concave only over

gains; over losses, it is convex. This pattern, which can be seen in Figure 1, captures the

experimental finding that people tend to be risk averse over moderate-probability gains –

they prefer a certain gain of $500 to ($1000, 0.5) – but risk-seeking over moderate-probability

losses, in that they prefer (−$1000, 0.5) to a certain loss of $500.4 The degree of concavity

over gains and convexity over losses are both governed by the parameter α; a lower value of

α means greater concavity over gains and greater convexity over losses.

Finally, under cumulative prospect theory, the individual does not use objective prob-

abilities when evaluating a gamble, but rather, transformed probabilities obtained from

3When i = n or i = −m, equation (4) reduces to πn = w(pn) and π−m = w(p−m), respectively.
4We abbreviate (x, p; 0, q) as (x, p).
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objective probabilities via the weighting function w(·). The main consequence of the proba-

bility weighting in (4) and (6) is that the individual overweights the tails of any distribution

he faces. In equations (3)-(4), the most extreme outcomes, x−m and xn, are assigned the

probability weights w(p−m) and w(pn), respectively. For the functional form in (6) and for

δ ∈ (0, 1), w(P ) > P for low, positive P ; the right panel of Figure 1 illustrates this for

δ = 0.4 and δ = 0.65. If p−m and pn are small, then, we have w(p−m) > p−m and w(pn) > pn,

so that the most extreme outcomes – the outcomes in the tails – are overweighted.

The overweighting of tails in (4) and (6) is designed to capture the simultaneous demand

many people have for both lotteries and insurance. For example, people typically prefer

($5000, 0.001) to a certain $5, but also prefer a certain loss of $5 to (−$5000, 0.001). By

overweighting the tail probability of 0.001 sufficiently, cumulative prospect theory can cap-

ture both of these choices. The degree to which the individual overweights tails is governed

by the parameter δ; a lower value of this parameter implies more overweighting of tails.

2.2 Narrow framing

Traditional models, in which utility functions are defined over wealth or consumption, make

a clear prediction as to how an individual evaluates a new gamble he is offered: he merges the

new gamble with other risks he is already facing to determine its effect on the distribution of

his future wealth or consumption, and then checks if the new distribution is an improvement.

Research on decision-making under risk has uncovered many instances in which people do

not appear to evaluate gambles in this way: instead of merging a new gamble with other risks

they are already facing and checking if the combination is attractive, they often evaluate the

new gamble in isolation, separately from their other risks. This is known as “narrow framing”.

Tversky and Kahneman (1981) present early laboratory evidence of narrow framing. More

recently, Barberis, Huang, and Thaler (2006) argue that the commonly-observed rejection

of the −100/110 gamble in (7) is evidence not only of loss aversion, but of narrow framing

as well.

One interpretation of narrow framing is that it is a short cut people use to simplify an

otherwise complex problem. It may be difficult for an individual to determine how a new

risk he is facing will interact with his pre-existing risks to affect his overall wealth risk. As

a consequence, he evaluates the new risk, at least to some extent, as a stand-alone gamble.
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3 Model and Equilibrium Structure

In the Introduction, we noted that, in an economy with prospect theory investors who engage

in narrow framing, three asset characteristics are particularly important for the pricing of

an asset: the volatility of the asset’s returns; the skewness of the asset’s returns; and the

average paper gain or loss in investors’ holdings of the asset. We now explain in more detail

why these three characteristics are important for pricing.

Prospect theory investors who engage in narrow framing evaluate a risky asset by thinking

about the potential gains and losses in their holdings of the asset, and then computing the

prospect theory value of this distribution of gains and losses. Since they are loss averse, they

dislike assets with volatile return distributions; all else equal, they require a higher average

return on such assets. Moreover, since, according to probability weighting, they overweight

the tails of the distribution they are thinking about, they like assets with positively-skewed

return distributions; all else equal, they require a lower average return on such assets. Finally,

if an asset is trading at a gain for the typical investor, this investor finds himself in the concave

region to the right of the kink in the utility function in Figure 1. Since he is risk averse at

this point, he demands a high average return to hold the asset. If, on the other hand, the

typical investor has a paper loss in the asset, then he finds himself in the convex region to

the left of the kink, where he is risk-seeking. As a result, he requires a low average return

for holding the asset.

The above intuitions make it clear that, to fully understand prospect theory’s implica-

tions for asset prices, we need a model that incorporates all the elements of prospect theory

and accounts for investors’ prior gains and losses in each risky asset. As noted in the Intro-

duction, no existing model fulfills both conditions. We now present a new model that does.

Constructing and solving such a model presents significant challenges, which may explain

why one does not yet exist in the literature. We will necessarily make some simplifying as-

sumptions; nonetheless, the model we build captures the three essential intuitions described

above in a robust way.

3.1 Model setup

We consider a model with three dates, t = −1, 0, and 1; our focus is on investor decision-

making at time 0. There is a risk-free asset with gross per-period return Rf . There are

also N risky assets. The gross per-period return of risky asset i is R̃i, and the return vector

R̃ = (R̃1, . . . , R̃N) has a cumulative distribution function P (R̃) that we specify below. The
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vector of expected returns on the risky assets is R = (R1, . . . , RN) and the covariance matrix

of returns is Σ = {σij}.

The economy contains a large number of investors who are identical in their preferences;

in their wealth at time −1, W−1; and in their wealth at time 0, W0. The fraction of time 0

wealth that an investor allocates to risky asset i is Θi, so that wealth at time 1 is

W̃1 = W0((1− 1′Θ)Rf +Θ′R̃), (8)

where Θ = (Θ1, . . . ,ΘN). To determine Θ, at date 0, each investor solves:

max
Θ1,...,ΘN

E(W̃1)− γ

2
Var(W̃1) + b0

N∑
i=1

V (G̃i)

= max
Θ1,...,ΘN

W0((1− 1′Θ)Rf +Θ′R)− γ

2
W 2

0Θ
′ΣΘ+ b0

N∑
i=1

V (G̃i), (9)

where

G̃i = W0Θi(R̃i − Rf ) +W−1Θi,−1gi. (10)

The first two terms in (9) are the traditional mean-variance preferences; γ measures

aversion to portfolio risk. The third term in (9) is new, and captures prospect theory

and narrow framing. It is the sum of N components, where the i’th component, V (G̃i),

corresponds to asset i. Specifically, G̃i is the potential gain or loss on asset i, and V (G̃i)

is the cumulative prospect theory value of this gain or loss. The parameter b0 controls the

importance of the prospect theory term relative to the mean-variance terms.

The gain or loss on asset i, G̃i, is defined in (10). It is the sum of two terms. The first

term, W0Θi(R̃i −Rf ), is the potential future gain or loss on asset i between time 0 and time

1: specifically, it is the value of the investor’s holdings of asset i at time 0 multiplied by the

return on the asset in excess of the risk-free rate. For example, if the investor’s holdings of

asset 1 are worth $100 at time 0, and the net return on asset 1 and on the risk-free asset

between time 0 and time 1 are 20% and 2% respectively, then the realized value of this

first term will be $120 − $102 = $18. We use the risk-free rate as a benchmark in part for

tractability, but also because it may be psychologically plausible: the investor may think of

the outcome of his investment in asset i as a gain only if this outcome is better than what

he would have earned by investing in the risk-free asset.

The second term in (10), W−1Θi,−1gi, is the gain or loss the investor experienced in his

holdings of asset i prior to arriving at time 0. Here, W−1 is the investor’s wealth at time

−1, Θi,−1 is the fraction of wealth allocated to asset i at time −1, and gi is the capital gain

10



on asset i between time −1 and time 0: if the investor experienced a capital gain of 30% on

asset i between t = −1 and t = 0, then gi = 0.3, while if he experienced a capital loss of

30%, then gi = −0.3.5

Equation (10) indicates that, at time 0, the investor merges the potential future gain or

loss on asset i between time 0 and time 1 with his prior gain or loss on the asset between time

−1 and time 0, and computes the prospect theory value of this overall gain or loss. This

assumption is consistent with evidence that, when an individual has an ongoing investment

in an asset, he integrates the potential future gain or loss in the asset with his past gain or

loss (Thaler and Johnson, 1990; Imas, 2016; Andrikogiannopoulou and Papakonstantinou,

2019).

To keep the model tractable, we take the second term on the right-hand side of (10) to

be identical across investors. Each investor in the model has the same prior gain or loss gi

in asset i, one that we will empirically estimate as the average capital gain or loss across

all holders of the asset. In addition, for each investor, we will set Θi,−1 to a neutral value,

namely asset i’s weight in the market portfolio. As such, the W−1Θi,−1gi term can be thought

of as exogenous: Θi,−1 is not a control variable that the investor chooses; the only control

variable is Θi, the investor’s allocation to asset i at time 0, which appears in the first term

in (10). Finally, we use the approximation W−1 ≈ W0.
6

By defining utility over asset-level gains and losses, we are incorporating narrow framing.

The narrow framing assumption makes our model more tractable, but it may also be realistic.

It is difficult for an investor to gauge how much a particular allocation to an asset will affect

his overall wealth risk. As a consequence, he may instead focus, in part, on the potential

gains and losses of the asset itself. His evaluation of these narrowly-framed gains and losses

leaves an impression that then affects his final decision.

We noted above that V (G̃i) is the cumulative prospect theory value of the gain or loss

G̃i. For Θi > 0, we can write V (G̃i) as

−λW α
0

∫ Rf−Θi,−1gi/Θi

−∞
(Θi(Rf − Ri)−Θi,−1gi)

αdw(P (Ri))

−W α
0

∫ ∞

Rf−Θi,−1gi/Θi

(Θi(Ri − Rf) + Θi,−1gi)
αdw(1− P (Ri)), (11)

5There are small differences in how the past and the future gains and losses are defined: for simplicity,

the past gain or loss does not account for dividends or correct for the risk-free rate. Adjusting for these has

a very minor impact on our results.
6More accurate approximations, such as W−1 ≈ W0/1.04, where 4% is a measure of the historical average

return on investor wealth, have a very minor impact on our quantitative predictions. We therefore stick with

the simpler approximation W−1 ≈ W0.
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where P (Ri) is the marginal distribution of asset i’s returns and where the full expressions

for dw(P (Ri)) and dw(1 − P (Ri)) are given in Appendix A. The expression in (11) uses a

standard implementation of cumulative prospect theory for gambles with continuous distri-

butions. The top row corresponds to losses, and is therefore multiplied by loss aversion λ.

The bottom row corresponds to gains.

To complete the description of the investors’ decision problem, we need to specify the

probability distribution P (R̃) for asset returns. Since skewness plays an important role in

our analysis, we need a distribution that can capture it as accurately as possible. One

distribution that is increasingly seen as a superior way of modeling skewness and fat tails

in asset returns is the “generalized hyperbolic (GH) skewed t” distribution, and we adopt it

here. The probability density function for the multivariate form of this distribution is

p(R) =
21−

ν+N
2

Γ(ν
2
)(πν)

N
2 |S| 12 .

K ν+N
2
(
√
(ν + (R− μ)′S−1(R− μ))ζ ′S−1ζ) exp((R− μ)′S−1ζ)(√

(ν + (R− μ)′S−1(R− μ))ζ ′S−1ζ
)− ν+N

2
(1 + (R− μ)′S−1(R − μ)/ν)

ν+N
2

,

for ζ �= 0 (12)

p(R) =
Γ(ν+N

2
)

Γ(ν
2
)(πν)

N
2 |S| 12 .(1 + (R− μ)′S−1(R− μ)/ν)−

ν+N
2 , for ζ = 0, (13)

where Γ(·) is the Gamma function and Kl is the modified Bessel function of the second kind

with order l.7

The above distribution has four parameters: μ, S, ζ , and ν. Here, μ = (μ1, . . . , μN), the

vector of location parameters, helps to determine the mean of the distribution; S = {Sij},
the dispersion matrix, controls the dispersion in returns; ζ = (ζ1, . . . , ζN), the vector of

asymmetry parameters, governs the skewness of returns; and ν, a degree of freedom scalar,

affects the heaviness of the tails of the distribution. The mean of the distribution is given

by

μ+
ν

ν − 2
ζ . (14)

When we implement the model in Sections 4 and 5, we will set three of the four parameters

– S, ζ , and ν – to match the empirical volatility and skewness of asset returns. We will then

7See Aas and Haff (2006), Hu and Kercheval (2010), Birge and Chavez-Bedoya (2016), and Kwak and

Pirvu (2018) for more discussion of the GH skewed t distribution. This distribution has one “heavy” tail and

one “semi-heavy” tail, making it particularly suitable for capturing skewness and fat tails in asset returns. It

is also closed under conditioning and linear transformation. Simpler distributions such as the log-normal and

skew-normal are not suitable for our purposes. The log-normal distribution has two parameters; setting these

to match an asset’s volatility and skewness also fixes the asset’s mean, preventing it from being determined in

equilibrium by market clearing. The skew-normal distribution cannot accommodate skewness levels higher

than 0.995; this makes it inadequate for our application.
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search for values of μ = (μ1, . . . , μN) so that the market for each asset clears. The assets’

expected returns – the quantities we want to determine – are then given by (14).

In our model, the expected return of asset i is significantly affected by the V (G̃i) term

in (9). As seen in (11), this term depends on the marginal distribution of asset i’s return.

This is a one-dimensional GH skewed t distribution, whose density function is

p(Ri) =
21−

ν+1
2

Γ(ν
2
)(πνSii)

1
2

.
K ν+1

2
(
√
(ν + (Ri − μi)2/Sii)ζ

2
i /Sii) exp((Ri − μi)ζi/Sii)(√

(ν + (Ri − μi)2/Sii)ζ2i /Sii

)− ν+1
2

(1 + (Ri − μi)2ν−1/Sii)
ν+1
2

,

for ζ �= 0 (15)

p(Ri) =
Γ(ν+1

2
)

Γ(ν
2
)(πνSii)

1
2

.(1 + (Ri − μi)
2ν−1/Sii)

− ν+1
2 , for ζ = 0. (16)

The mean, variance, and skewness of this distribution are

E(R̃i) = Ri = μi +
ν

ν − 2
ζi (17)

Var(R̃i) =
ν

v − 2
Sii +

2ν2

(ν − 2)2(ν − 4)
ζ2i (18)

Skew(R̃i) =
2ζi
√
ν(ν − 4)

√
Sii(2νζ2i /Sii + (ν − 2)(ν − 4))

3
2

[
3(ν − 2) +

8νζ2i
Sii(ν − 6)

]
. (19)

The objective function in (9) combines a traditional component, namely mean-variance

preferences, with a non-traditional one that incorporates prospect theory. As such, it is

consistent with the approach advocated by Koszegi and Rabin (2006) among others, namely

that models of gain-loss utility should retain a traditional utility term. Why do we take the

traditional term to be mean-variance preferences, rather than some other Expected Utility

specification? Our main application in this paper is to see if prospect theory can explain stock

market anomalies, in other words, empirical deviations from the CAPM. As such, we want

the traditional part of our preference specification to be one that delivers CAPM pricing;

this will allow us to cleanly identify the deviations from the CAPM that prospect theory

generates. The simplest preferences that lead to the CAPM are mean-variance preferences.8

8This explains why we do not include a preference for portfolio skewness in the Expected Utility compo-

nent of the objective function. If we did, it would be unclear whether deviations from the CAPM predicted

by the model are due to the Expected Utility term – specifically, to coskewness – or to the prospect theory

term. Other papers have examined whether coskewness can shed light on stock market anomalies (Harvey

and Siddique, 2000); here, we examine whether prospect theory can do so.
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3.2 Equilibrium structure

In this section, we discuss the form of the equilibrium in our economy. The equilibrium

structure that is typically used to analyze Expected Utility models does not apply for the

model in (9). This is a roadblock to understanding prospect theory’s implications for the

cross-section, and one of our contributions is to surmount it by way of a new equilibrium

structure. Below, we describe three types of equilibrium and explain why we study the one

that we do.

Full rationality with homogeneous holdings. At time 0, the investors in our econ-

omy are identical in their preferences, their wealth, and their prior gain or loss in each risky

asset. It is therefore natural to think that, in equilibrium, at time 0, they would all choose

the same portfolio holdings {Θi}Ni=1, in other words, that they would each hold the market

supply of each risky asset. Formally, such an equilibrium would consist of a location vector

μ = (μ1, . . . , μN) such that, for this μ, the objective function in (9) has a unique global

maximum Θ∗ = (Θ∗
1, . . . ,Θ

∗
N) with Θ∗

i = ΘM,i for all i, where ΘM,i is the market value of

asset i divided by the total market value of all traded assets. This equilibrium structure,

which we label a “full-rationality equilibrium with homogeneous holdings,” is the one used

in Expected Utility models with identical investors.

Remarkably, however, for the wide range of parameter values we have examined, this type

of equilibrium does not exist for the model in Section 3.1. In Section 4, after parameterizing

the model, we illustrate this non-existence with an example. For now, we explain it in general

terms. Suppose that, for some value of μ1, the location parameter for asset 1, the objective

function in (9) is maximized at Θ1 = Θ∗
1, where Θ∗

1 exceeds the asset’s market supply ΘM,1.

This suggests that, to clear the market, we simply need to lower the value of μ1, as this

will lower the asset’s expected return. However, it turns out that, as we do so, the value of

Θ1 for which the objective function attains its maximum jumps discontinuously from a Θ∗
1

that exceeds ΘM,1 to a Θ∗
1 that lies below it. As such, there is no value of μ1 for which the

objective function is maximized at a Θ∗
1 that equals ΘM,1. An equilibrium where investors

have identical holdings for all assets therefore does not exist.9

Full rationality with heterogeneous holdings. Given that the homogeneous-holdings

9Why does the value of Θ∗
1 at which (9) is maximized jump discontinuously as we lower μ1? When b0 = 0,

the expression in (9), viewed as a function of Θ1, depends only on Θ1 and Θ2
1. It therefore has a single local

maximum that is also its global maximum. When b0 > 0, (9) becomes a function of Θ1, Θ
2
1, and additional

powers of Θ1, including Θα
1 , where α ∈ (0, 1). As such, it can have multiple local maxima. As we lower μ1,

the global maximum switches from one local maximum to another; this, in turn, makes Θ∗
1 a discontinuous

function of μ1.
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equilibrium does not exist, what kind of equilibrium can we consider instead? One alterna-

tive equilibrium structure involves multiple global maxima. In other words, it may be that

there exists a location vector μ = (μ1, . . . , μN) such that, for this μ, the objective function in

(9) has multiple global maxima, and that by allocating the appropriate number of investors

to each maximum, we can clear the market in each asset.

The difficulty with this equilibrium structure is that it is computationally infeasible to

determine if it exists. To see why, suppose that we consider 100 candidate values for each

element of the location vector μ; this implies 100N possible location vectors μ. Since we are

thinking of the risky assets as individual stocks, N is a large number, on the order of 1000.

For each of the 100N location vectors, we need to solve the N -dimensional optimization

problem in (9) and determine if there are multiple global maxima. We then need to see

whether, by allocating investors to the various maxima, we can clear the market. This

procedure is challenging even for N = 2 risky assets; for N = 1000, the more realistic value

we use below, it is completely infeasible.

Bounded rationality with heterogeneous holdings. To overcome the difficulties

described above, we introduce a mild bounded-rationality assumption, one that makes it

feasible to find a heterogeneous-holdings equilibrium. Specifically, we assume that, when

trying to determine the allocation Θi to asset i that maximizes the objective function in (9),

an investor assumes that his holdings of the other N−1 risky assets equal the market supply

of those assets – in other words, that Θj = ΘM,j for all j �= i. This will not be exactly true

– investors’ actual portfolios will be less diversified than the market portfolio – but, as we

explain below, this discrepancy has a negligible impact on our results.

We then define a bounded-rationality equilibrium with heterogeneous holdings as consist-

ing of a location vector μ such that, for this μ, and under the bounded-rationality assumption,

the solution to the problem in (9) involves multiple global maxima, and by allocating each

investor to one of the maxima, we can clear the market. More precisely, for each i in turn,

we take the objective function in (9), view it as a function of Θi, and then – this is where

the bounded-rationality assumption comes in – set Θj = ΘM,j for all j �= i. Up to a linear

transformation, the resulting function can be written:

Θi(μi +
νζi

ν − 2
− Rf )− γ̂

2
(Θ2

iσ
2
i + 2Θi

∑
j �=i

ΘM,jσij)

−λb̂0

∫ Rf−Θi,−1gi/Θi

−∞
(Θi(Rf − Ri)−Θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−Θi,−1gi/Θi

(Θi(Ri − Rf) + Θi,−1gi)
αdw(1− P (Ri)), (20)
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where

γ̂ = γW0 (21)

b̂0 = b0W
α−1
0 . (22)

A bounded-rationality equilibrium with heterogeneous holdings consists of a location vector

(μ1, . . . , μN) such that, for each i, the function in (20), in the range Θi ∈ [0,∞), has either

a unique global maximum at Θi = ΘM,i, or has multiple global maxima, one of which lies

below ΘM,i and one of which lies above it, thereby allowing us to clear the market in asset i

by allocating some investors to the lower optimum and others to the upper optimum. The

restriction Θi ∈ [0,∞) indicates that, for simplicity, we are imposing a short-sale constraint.

The bounded-rationality assumption greatly simplifies the investors’ optimization prob-

lem: by turning the multivariate function in (9) into the univariate function in (20), it

converts the search for the optimal allocation Θi to asset i into a one-dimensional problem,

one where investors trade off a larger allocation to asset i and lower allocation to the risk-free

asset against the opposite strategy. Moreover, because the problem is now one-dimensional,

it is easy to determine whether the function in (20) has multiple global maxima or a unique

global maximum.

We find that a bounded-rationality equilibrium with heterogeneous holdings exists for a

wide range of parameter values, and it is the one we focus on. We note two things about it.

First, in this equilibrium, investors need not have heterogeneous holdings for all the risky

assets. When we implement the equilibrium, we find that, for many risky assets, investors

have identical holdings. However, for at least one risky asset, they have different holdings,

and this is what makes it a heterogeneous-holdings equilibrium. Second, we find that, for

any asset i where investors have heterogeneous holdings, the function in (20) has just two

global maxima in the range Θi ∈ [0,∞), Θ∗
i and Θ∗∗

i . These maxima straddle the market

supply ΘM,i, so that Θ∗
i < ΘM,i < Θ∗∗

i , and this allows us to clear the market in the asset

by assigning some investors to the Θ∗
i allocation and the rest to the Θ∗∗

i allocation. We also

find that Θ∗
i is always much closer to ΘM,i than is Θ∗∗

i . As such, to clear the market, we

assign the vast majority of investors to the Θ∗
i allocation and the remaining few to the Θ∗∗

i

allocation.

To understand the portfolios that the investors in our economy hold, suppose that there

are N = 1000 risky assets, and that for 500 of them, all investors have identical holdings – for

these assets, the function in (20) has a unique global maximum – while for the remaining 500,

the function in (20) has two global maxima, so that investors have heterogeneous holdings;

this equal split between assets with homogeneous holdings and assets with heterogeneous
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holdings approximates what we find when we implement the equilibrium. All investors then

hold the first 500 assets in proportion to their market weights. For the vast majority of the

remaining 500 assets, the fraction of his portfolio that a given investor allocates to each one

is a little lower than its market weight – this is the Θ∗
i optimum – but for a small handful

of these assets, he holds a large position, given by the Θ∗∗
i optimum. Overall, then, each

investor combines a diversified portfolio of many assets with a small number of concentrated

holdings – a portfolio structure that mirrors that of many real-world investors.

An investor’s assumption, when solving for his optimal allocation to asset i, that his

holdings of the remaining assets equal their market weights, is not exactly correct: by the

nature of the heterogeneous-holdings equilibrium, he may have an undiversified position in a

small number of these other risky assets. However, this discrepancy has a negligible impact

on the model’s predictions. The reason is that the investor’s assumption is almost correct:

based on our calculations for 1000-asset economies, the typical investor has an undiversified

position in just six of the 1000 assets; for the remaining 994 assets, he holds either the market

supply or an amount a little below market supply. We confirm that, if, when solving for his

allocation to asset i, the investor instead makes the correct assumption that he has a few

undiversified holdings, the quantitative predictions for expected returns are very similar to

those of the simpler bounded-rationality equilibrium defined through equations (20)-(22).10

To make the model easier to implement, we rescale it. Specifically, let ΘM,R =
∑N

i=1ΘM,i

be the market value of all risky assets relative to the market value of all assets, and define

θi = Θi/ΘM,R

θM,i = ΘM,i/ΘM,R

θi,−1 = Θi,−1/ΘM,R. (23)

From now on, we think of investors as choosing θi rather than Θi. In Appendix B, we show

that, when reformulated with θi as the choice variable, the investor’s decision problem has

exactly the same form as in (20), subject only to a rescaling of γ̂ and b̂0. The rescaled

10We have also studied the following iterative procedure. When solving for his allocation Θi to asset i, the

investor starts with an assumption A1 about his remaining holdings – specifically, that they equal market

weights. He then uses the resulting optimal portfolio P1 as a new assumption A2 about the structure of his

portfolio: he again solves for his allocation Θi, this time under assumption A2 about his remaining holdings.

He then takes the new optimal portfolio P2 as a new assumption about his remaining holdings, and so on.

This iterative procedure converges to a “self-consistent” heterogeneous-holdings equilibrium, one where the

assumption the investor makes about his remaining holdings when solving for his allocation to a particular

asset is consistent with the portfolio he actually ends up choosing to hold. The expected asset returns in

this self-consistent equilibrium are quantitatively very similar to those in the simpler bounded-rationality

equilibrium in equations (20)-(22).
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problem is simpler to implement because it is easier to compute an empirical counterpart

for θM,i than for ΘM,i, and because – see Appendix B for details – the rescaling allows us to

simplify the variance term in the first row of (20) by introducing asset i’s beta, denoted βi.
11

For completeness, we restate the definition of equilibrium in terms of θi. There is nothing

conceptually new in the equations below; they are simply a rescaled version of (20)-(22). A

bounded-rationality equilibrium consists of a location vector μ = (μ1, . . . , μN) such that, for

each i, and over the range θi ∈ [0,∞), the function

θi(μi +
νζi

ν − 2
− Rf )− γ̂

2
(θ2i σ

2
i + 2θi(βiσ

2
M − θM,iσ

2
i ))

−λb̂0

∫ Rf−θi,−1gi/θi

−∞
(θi(Rf − Ri)− θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−θi,−1gi/θi
(θi(Ri − Rf) + θi,−1gi)

αdw(1− P (Ri)), (24)

where

γ̂ = γW0ΘM,R (25)

b̂0 = b0W
α−1
0 Θα−1

M,R, (26)

has either a unique global maximum at θi = θM,i or multiple global maxima that straddle

θM,i.

In Appendix C, we explain in full the procedure we use to determine whether investors

have identical or heterogeneous holdings in an asset, and to then compute the asset’s ex-

pected return. Since it involves numerical integration, this calculation takes a few minutes

of computing time; this is fast enough for the application we consider in this paper.

4 Anomalies and Model Parameter Values

In Section 3, we presented a model that generates quantitative predictions about the cross-

section of average returns when investors evaluate risk according to prospect theory. We

now use our framework to answer a basic but long-standing question: Can prospect theory

shed light on stock market anomalies? To be as comprehensive as possible, subject to the

computational constraints we face, we consider 22 prominent anomalies. They are listed

in Table 1, along with the abbreviations we use in subsequent tables to refer to them;

11Since ΘM,R =
∑N

i=1 ΘM,i, it follows that
∑N

i=1 θM,i = 1. However, due to investors’ heterogeneous

holdings,
∑N

i=1 θi will almost never equal 1 for any given investor.
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Appendix D reports the predictor variable associated with each anomaly. The 22 anomalies

are intended to include those that, to date, have received the most attention from researchers.

To construct the set of anomalies, we start with the 11 anomalies studied by Stambaugh,

Yu, and Yuan (2012) and then add 11 more by choosing, from among the 97 anomalies

studied by McLean and Pontiff (2016), those that appear to us to have received the most

attention. The list is not based on any prior beliefs about whether prospect theory is helpful

for explaining an anomaly – again, it is intended to be nothing more than a representative

set of anomalies.

To see if our model can explain a particular anomaly, we proceed as follows. We consider

an economy with N = 1000 stocks; each anomaly decile therefore contains 100 stocks. We

number the stocks so that, in the case of the value anomaly, say, stocks 1 to 100 belong to

decile 1, which contains stocks with low book-to-market ratios; stocks 101 to 200 belong to

decile 2; and so on. All stocks in a given decile are identical: they have the same charac-

teristics, namely, the empirical characteristics of the typical stock in that anomaly decile.

For each decile in turn, we choose one stock at random and compute our model’s prediction

for its expected return. Since all stocks in a given decile are identical, this immediately

tells us the expected return of all the stocks in that decile. Our model can help explain the

value anomaly if the expected return it predicts for the randomly-chosen stock in decile 10

is higher than the expected return it predicts for the randomly-chosen stock in decile 1.12

What are the empirical inputs we need to compute the expected return of a stock in our

model? Equation (24) shows that, to determine μi, and hence stock i’s expected return, we

need to know σi, ζi, gi, and βi. In words, to compute our model’s prediction for the expected

return of a stock in some anomaly decile, we need to know, for the typical stock in that

decile, its return volatility, its return skewness, its gain overhang, and its beta. We estimate

these inputs from historical data. To explain how we do so, we focus on the example of the

value anomaly; the process is the same for all the anomalies we consider.

Each month from July 1963 to December 2014, we rank all stocks listed on the NYSE,

Amex, or Nasdaq on their book-to-market ratio and then group them into deciles. (For

each of the other anomalies, we instead rank stocks on the relevant anomaly characteristic –

for example, on their idiosyncratic volatility in the case of the volatility anomaly.) Decile 1

12Why do we not simply consider an economy with N = 10 risky assets, where each asset represents the

typical stock in one of the anomaly deciles? The reason is that the expected return our model predicts for an

asset depends on the asset’s weight in the market portfolio. We therefore need to capture the fact that, in

reality, any given stock makes up only a small fraction of the overall market. Setting N = 1000 allows us to

do this. Since all 100 stocks in each decile are identical, the computational burden in the case of N = 1000

is the same as for N = 10.
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corresponds to stocks with the lowest book-to-market ratios, and decile 10 to stocks with the

highest book-to-market ratios. Suppose that, in some particular month, each decile contains

100 stocks. Take decile 4, say. To compute the beta of the typical stock in decile 4 in this

month, we calculate the betas of each of the 100 stocks in the decile and average them. To

compute the capital gain overhang of the typical stock in decile 4, we calculate the gain

overhang for each stock in the decile – the percentage capital gain or loss in the stock for the

average investor in the stock – and average these 100 numbers. To compute the volatility

and skewness of the typical stock in decile 4 over the next year, we record the returns, over

the next year, of the 100 stocks in the decile and compute the cross-sectional volatility and

skewness of these 100 returns. We conduct this exercise for each decile in this month. At the

end of this process, we have four quantities in hand for each anomaly decile in this month:

the volatility, skewness, gain overhang, and beta for the typical stock in that decile.

We repeat the above exercise for each month in our sample. This gives us, for each

book-to-market decile, a time series for each of the four quantities: return volatility, return

skewness, capital gain overhang, and beta. In the final step, we compute the mean of each

time series. For each book-to-market decile, this leaves us with four numbers pertaining to

the typical stock in that decile: the standard deviation of its returns; its return skewness;

its capital gain overhang; and its beta. We feed these four numbers into our model to see

what it predicts for the expected return of the typical stock in that anomaly decile.13

In the calculations described above, we compute the volatility and skewness of annual

stock returns. Why is this? In our model, we focus on decision-making at time 0, which

lies somewhere between time −1, when an investor purchases a stock, and time 1, when

he disposes of it. Over our sample period, stock market turnover is approximately 50% per

year, which implies that an individual stock is held for about two years, on average (Chordia,

Subrahmanyam, and Anshuman, 2001). If the interval between time −1 and time 1 is two

years, it is natural to take the interval between time 0 and time 1 to be one half of this,

namely one year.

As noted above, we compute the volatility and skewness of the typical stock in an anomaly

decile as the cross-sectional volatility and skewness of the subsequent returns of the 100

stocks in the decile. This approach has a number of advantages over alternative methods.

By measuring the likely volatility and skewness of a stock going forward, rather than the

13For four of the anomalies – O-Score, post-earnings announcement drift, failure probability, and difference

of opinion – data availability requires us to begin the computation after July 1963: in January 1972, December

1973, December 1974, and January 1980, respectively. For the size anomaly, we follow standard practice in

using NYSE rather than CRSP breakpoints. For this one anomaly, then, decile 1 contains many more stocks

than decile 10.

20



stock’s past volatility and skewness, it captures what a rational, forward-looking investor

is interested in. The cross-sectional volatility and skewness are fairly stable from month to

month, which means that investors can learn them from even a short sample of data. And

they are relatively easy for us, as researchers, to compute. One limitation of this approach

is that, due to common factors in the returns of stocks in the same decile, it may understate

the volatility and skewness of these returns. However, if this bias is similar across deciles,

its impact on the alphas we compute later will be minor.14

Before presenting the empirical characteristics of the 220 anomaly deciles, we clarify

the definition of one key variable: the capital gain overhang. There are two approaches to

computing this quantity, one due to Grinblatt and Han (2005) and the other to Frazzini

(2006). Grinblatt and Han (2005) use a stock’s past trading volume to estimate how long

each of the investors in the stock has been holding it; this then allows them to calculate the

average investor’s capital gain or loss in the stock. Frazzini (2006) uses data on mutual fund

holdings to compute the average gain or loss in a stock across the mutual fund investors in

that stock. We computed both measures of gain overhang, and find that they lead to similar

quantitative estimates and similar model predictions. We therefore pick one – the Grinblatt

and Han (2005) measure, because it is easier to compute and accounts for both individual

and institutional investors – and stick with it throughout.

Table 2 presents the results of the above empirical exercise. The first column of the

table lists the 22 anomalies we are interested in. The second and third columns report, for

each anomaly, the value-weighted return of decile 1 stocks and decile 10 stocks, respectively;

these are computed month by month, averaged across the 618 months of our sample, and

annualized. By definition of what an anomaly is, these average returns differ in a way

that is not captured by beta. The fourth and fifth columns of the table report the standard

deviation of the annual return of the typical stock in deciles 1 and 10, respectively, computed

as described above. The sixth and seventh columns list the skewness of the annual return

of the typical stock in deciles 1 and 10, respectively. Finally, the eighth and ninth columns

report the capital gain overhang of the typical stock in deciles 1 and 10, respectively.

We make two observations about the results in Table 2. First, for most of the anomalies,

14We have also considered an alternative forward-looking approach. For each of the 100 stocks in a given

anomaly decile in a given month, we compute the volatility and skewness of the stock’s daily returns over

the next year and then average these quantities across the 100 stocks. We can then use the volatility and

skewness of daily returns to make inferences about the volatility and skewness of annual returns. However,

this last step is challenging, in that it relies on additional assumptions about the autocorrelations of stock

returns. Weighing the advantages and disadvantages of the “time-series” and cross-sectional approaches, we

view the latter as superior.
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the typical stock in decile 1 differs substantially from the typical stock in decile 10 in its return

volatility, return skewness, and gain overhang – in other words, in the three characteristics

that, aside from beta, determine expected returns in our model. Consider, for example, the

size anomaly: the typical stock in decile 1 has an annual return standard deviation of 76%,

while the typical stock in decile 10 has an annual return standard deviation of just 25%.

Similarly, while the typical small-cap stock has an annual return skewness of 4.3, the typical

large-cap stock has an annual return skewness of just 0.7. And while the typical small-cap

stock has a negative gain overhang of -15%, the typical large-cap stock has a positive gain

overhang of 17%.

The second, more striking, observation is that the three characteristics we are focused on

– standard deviation, skewness, and gain overhang – are strongly correlated across anomaly

deciles: for 21 of the 22 anomalies, if the typical stock in decile 1 has a higher return skewness

than the typical stock in decile 10, then it also has a higher standard deviation, and vice-

versa; the only exception is for post-earnings announcement drift (PEAD). Furthermore, for

21 of the 22 anomalies – the only exception is the net operating assets (NOA) anomaly – if

the typical stock in decile 1 has a higher return skewness than the typical stock in decile 10,

then it also has a more negative gain overhang, and vice-versa.

Figure 2 illustrates these relationships. Consider the top-left graph in the figure. Each

asterisk in the graph corresponds to an anomaly decile; since there are 22 anomalies, this

makes for a total of 220 asterisks. The horizontal and vertical axes in the graph measure

the standard deviation and skewness, respectively, of the typical stock in an anomaly decile.

The graph clearly shows the positive correlation between these two quantities. In a similar

way, the other two graphs show the negative correlation, across anomaly deciles, between

standard deviation and gain overhang, and between skewness and gain overhang.

The empirical relationships in Figure 2 point to the necessity of the quantitative approach

we are taking in this paper. Suppose that, for one of the extreme decile portfolios – decile 1,

say – the typical stock in that decile has a higher return skewness, higher return volatility,

and lower capital gain overhang than the typical stock in the other extreme decile, decile

10; again, 20 of the 22 anomalies follow this pattern. It is then impossible to tell, without

a quantitative model, whether prospect theory can explain the anomaly. The reason is that

there are counteracting forces. Decile 1 stocks have more volatile returns than decile 10

stocks. Since prospect theory investors are loss averse, this will lead them, all else equal, to

require a higher average return on decile 1 stocks than on decile 10 stocks. However, decile 1

stocks also have more skewed returns than decile 10 stocks. Since prospect theory investors

exhibit probability weighting, this will lead them, all else equal, to charge a lower average
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return on decile 1 stocks. Finally, decile 1 stocks trade at a loss, while decile 10 stocks trade

at a gain. Due to diminishing sensitivity, this will lead prospect theory investors, all else

equal, to require a lower average return on decile 1 stocks. Since two of these forces go in

one direction, and the other goes in the opposite direction, we need a quantitative model to

determine whether prospect theory can explain the anomaly.

The empirical results in Table 2 and Figure 2 are incorporated into the model through

the values we assign the model parameters. We now explain how we set these parameter

values.

4.1 Parameter values

To see if our model can capture a particular anomaly, we proceed as follows. We consider

an economy with N = 1000 stocks, and assign 100 of these stocks to each anomaly decile:

stocks 1 to 100 belong to anomaly decile 1, stocks 101 to 200 to anomaly decile 2, and so

on. For any given decile, we take all the stocks in that decile to be identical: they have the

same standard deviation, skewness, capital gain overhang, and beta, namely the empirical

standard deviation, skewness, capital gain overhang, and beta of the typical stock in that

anomaly decile, computed as described above. We set the parameters S, ζ , and g = {gi} to

capture these empirical values. We then search for a location vector μ so that the conditions

for equilibrium described in Section 3.2 around equation (24) are satisfied. Our model’s

prediction for assets’ expected returns is then given by (14). Note that all stocks in a given

decile will have the same μi and hence the same expected return.

We now explain in more detail how we parameterize the model. While the model features

several parameters, all of them are disciplined by either field data or experimental data.

The asset-level parameters are Rf , the gross risk-free rate; N , the number of stocks; S,

the dispersion matrix for stock returns; ζ , the vector of asymmetry parameters for stock

returns; ν, the degree of freedom parameter; g, the vector of capital gains; σM , the standard

deviation of stock market returns; and θM , the vector of market weights for the N stocks. The

investor-level parameters are γ̂, portfolio risk aversion; b̂0, the importance of the prospect

theory term in investor preferences; (α, δ, λ), the prospect theory preference parameters; and

θ−1, the vector of investors’ prior allocations to the N stocks.

We start with the asset-level parameters, and in particular, the parameters of the GH

skewed t distribution. We set ν = 7.5 , which represents a substantial degree of fat-tailedness

in stock returns. We then set the diagonal elements of the dispersion matrix, {Sii}Ni=1, and
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the elements of the asymmetry vector ζ = (ζ1, . . . , ζN). To do this, recall from equations

(18) and (19) that, for the GH skewed t distribution,

Std(R̃i) =

[
ν

v − 2
Sii +

2ν2

(ν − 2)2(ν − 4)
ζ2i

]0.5
(27)

Skew(R̃i) =
2ζi
√
ν(ν − 4)

√
Sii(2νζ

2
i /Sii + (ν − 2)(ν − 4))

3
2

[
3(ν − 2) +

8νζ2i
Sii(ν − 6)

]
. (28)

To set Sii and ζi for a stock i that belongs to a particular anomaly decile, we take the

empirical standard deviation and skewness of the typical stock in that anomaly decile, and

plug them into the left-hand side of equations (27) and (28). These equations then allow

us to solve for the two unknowns, Sii and ζi. For example, in the case of the size anomaly,

stocks 1 to 100 belong to the lowest market capitalization decile. From Table 2, we see

that the empirical standard deviation and skewness for the typical stock in this decile are

0.76 and 4.27, respectively. Accordingly, for this anomaly, to set the values of Sii and ζi for

i ∈ {1, . . . , 100}, we solve

0.76 =

(
7.5

7.5− 2
Sii +

2(7.5)2

(7.5− 2)2(7.5− 4)
ζ2i

)0.5

(29)

4.27 =
2ζi
√
7.5(7.5− 4)

√
Sii(2(7.5)ζ

2
i /Sii + (7.5− 2)(7.5− 4))

3
2

[
3(7.5− 2) +

8(7.5)ζ2i
Sii(7.5− 6)

]
. (30)

We do not need to set the off-diagonal elements of S. As a consequence of our bounded-

rationality assumption, all the information investors need about asset i’s covariance with

other assets is contained in its beta. For a given stock i that belongs to some anomaly

decile, we set its beta equal to the empirical beta of the typical stock in that decile.

In terms of asset-level parameters, this leaves g, the vector of capital gains; σM , the

standard deviation of annual stock market returns; θM , the vector of market weights; and

the gross risk-free rate Rf . For a stock i in some anomaly decile, we set gi to the empirical

capital gain overhang of the typical stock in that anomaly decile, computed as described

earlier in this section and displayed in Table 2 for the two extreme deciles of each anomaly.

We set σM to the empirically reasonable level of 0.25, and the gross risk-free rate Rf to 1.

We set θM , the vector of market weights, to match empirical market weights. Take, for

example, the volatility anomaly. In each month of our sample, we compute the fraction

of the total market value of all stocks in our sample in that month that is made up by

the stocks in each volatility anomaly decile. We then compute the time-series averages of

these proportions. We find that, on average, volatility decile 1 makes up 29.6% of total
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stock market value. Since, in our model, there are 100 identical stocks in decile 1, we set

θM,i = 0.296/100 for all stocks in decile 1, in other words, for i = 1, . . . , 100. We proceed

similarly for the other deciles.

We now turn to the investor-level parameters. We set γ̂, the scaled portfolio risk aversion

in (25), and b̂0, the scaled weight on the prospect theory term in (26), to generate an aggregate

equity premium of around 6%. There are many pairs (γ̂, b̂0) that produce an equity premium

of 6%. How do we choose one? As we increase b0, we not only increase the equity premium,

but also the size of the predicted deviations from the CAPM, as well as investors’ degree of

under-diversification. To put an approximate upper bound on the level of mispricing that

prospect theory investors can generate, we therefore choose, from among the (γ̂, b̂0) pairs

that generate a 6% equity premium, the one with the highest level of b̂0 that still produces

plausible levels of under-diversification. This is the pair (γ̂, b̂0) = (0.6, 0.6). We set θi,−1,

investors’ allocation to stock i at time −1, to a neutral value, namely θM,i, the weight of

stock i in the market portfolio of risky assets, which, as noted above, is based on empirical

values.

Finally, we set the preference parameters α, δ, and λ. A well-known set of values

for these parameters comes from Tversky and Kahneman (1992), who estimate (α, δ, λ) =

(0.88, 0.65, 2.25) for the median participant in their experiment. However, these estimates

are almost 30 years old and are based on a small number of participants. Given that the

values we assign to these parameters will play an important role in our results, it seems

prudent to base these values on a wide range of studies, not just one.

Tversky and Kahneman’s (1992) results have led to the widespread view that the degree of

loss aversion λ is approximately 2. However, recent studies indicate that the true level of loss

aversion in the population is significantly lower. In a meta-analysis of experimental estimates

of loss aversion, Walasek, Mullett, and Stewart (2018) find that the median estimate of λ is

just 1.31. Chapman et al. (2018) further argue that these experimental estimates may be

based on non-representative samples of participants. Using a large, representative sample,

they obtain estimates of λ that are lower still – as low as λ = 0.98 for their median participant,

albeit somewhat higher for those with greater cognitive ability. To reflect these findings, in

a conservative way, we set λ = 1.5.

Booij, van Praag, and van de Kuilen (2010) compile a list of experimental estimates of

α and δ. The median estimate of δ is close to Tversky and Kahneman’s (1992) estimate;

we therefore maintain δ = 0.65. Experimental estimates of α span a fairly wide range; most

lie between 0.5 and 0.95. We set α near the midpoint of this range, at 0.7. Our preference
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parameter values are therefore15

(α, δ, λ) = (0.7, 0.65, 1.5). (31)

By setting the stock-level parameters – specifically, S, ζ , and g – in the way described

above, we are assuming that investors have sensible beliefs: they are aware of the return

volatility and return skewness of the typical stock in each anomaly decile, and of its gain

overhang. This is a natural case to study. However, it is possible that, for certain types of

stocks – for value stocks, say, or for small-cap stocks – investors do not have accurate beliefs.

In Section 6, we use evidence on investor beliefs derived from option prices to suggest that,

while investors often do have accurate beliefs, they occasionally do not, and that this may

explain some of the model’s failures.

4.2 Illustration of the equilibrium structure

At date 0, the investors in our model are identical in their preferences and in the past gains

and losses they have experienced in each of the N stocks. Nonetheless, as noted in Section

3.2, they do not hold identical portfolios in equilibrium. Instead, the equilibrium we study

involves heterogeneous holdings.

Now that we have parameterized the model, we can illustrate these heterogeneous hold-

ings, using the momentum anomaly as our example. We note that it is only for some of the

stocks that the investors have heterogenous holdings. For other stocks, they have identical

holdings, each holding the market supply of each stock, θM,i. This is the case for all stocks

in momentum decile 1, namely stocks 1 to 100. For example, for stock 1, there is a value

of μ1, the location parameter for stock 1, such that the function in (24), for i = 1, has a

unique global maximum at θ1 = θM,1 = 1.85× 10−4. Figure 3 plots the function in (24) for

this value of μ1, namely μ1 = 0.0124. The global maximum at θ∗1 = θM,1 is clearly visible.

For the stocks in momentum decile 10, namely stocks 901 to 1000, investors do not have

identical holdings. For example, for stock 901, there is no value of μ901 such that the function

in (24), for i = 901, has a global maximum at θ901 = θM,901 = 7.5× 10−4. We can see this in

Figure 4. The dashed line plots the function in (24) for μ901 = 0.5793. For this value of μ901,

15The values of α, δ, and λ in (31) are also in line with prior research on financial applications of prospect

theory. Barberis and Xiong (2009) find that prospect theory is more consistent with investor trading behavior

for values of α and λ that are lower than those estimated by Tversky and Kahneman (1992). Meanwhile,

even the lower level of loss aversion in (31) is strong enough to generate a high equity premium and non-

participation in the stock market – two prominent applications of loss aversion in finance.
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the function has a unique global maximum at θ901 = 0.14 > θM,901. Since demand for asset

901 exceeds supply at this value of μ901, it appears that, to clear the market, we need to

lower the value of μ901. However, as we do so, the value of θ901 at which the function attains

its maximum jumps discontinuously downward: the dash-dot line, which plots the objective

function for a slightly lower value of μ901, namely 0.5743, shows that the unique maximum

is now at θ901 = 0 < θM,901.

The figure also shows, however, that there is a heterogeneous-holdings equilibrium. The

solid line plots the function for an intermediate value of μ901, namely 0.5768. For this

value of μ901, there are two global optima, one at θ∗901 = 9.5 × 10−5 < θM,901 and one at

θ∗∗901 = 0.119 > θM,901. Since these optima straddle the market supply, we can clear the

market by allocating most investors to the first optimum and the rest to the other optimum.

There is a simple intuition for the shape of the solid line and for the two global optima.

The heterogeneous holdings typically arise for assets that are trading at a gain and that, in

part because of this, have a high expected return. As the investor increases his allocation

to the asset, utility initially falls; this is because he is in the gain region of the prospect

theory value function, where he is risk averse. As he further increases his allocation, utility

starts to rise; this is due to the asset’s high average return. Finally, as the investor increases

his allocation even more, utility falls again; the large holdings of the risky asset create high

portfolio volatility, which lowers utility. This logic also explains the two global optima: for

an asset trading at a gain, the investor either sells most of his holdings to preserve the gain

(allocation θ∗), or increases his holdings to take advantage of the asset’s high expected return

(allocation θ∗∗). The two strategies deliver the same utility.16

5 Application

We now use the model developed in Section 3 and parameterized in Section 4 to answer a

basic but long-standing question: Can the risk attitudes captured by prospect theory shed

light on the prominent anomalies in Table 1?

To determine whether our model can help explain an anomaly, we focus on anomaly

alphas. For any given anomaly, we compute the empirical alphas for the ten anomaly

deciles over our 1963-2015 sample – these are value-weighted CAPM alphas computed from

16Heterogeneous holdings due to non-unique optima of the objective function also arise in other settings,

such as those studied by Brunnermeier, Gollier, and Parker (2007) and Barberis and Huang (2008). However,

the forces driving the non-unique optima are different in each case.
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a monthly regression and annualized – and denote them as αd(1), . . . , αd(10), where the “d”

superscript stands for “data.” We then compute the alphas predicted by our model for each

of the ten deciles, namely αm(1), . . . , αm(10), where “m” stands for “model.” Since, within

each decile, all stocks are identical and, in particular, have the same expected return and

alpha, we can compute the alpha of decile l as the alpha of any stock in that decile – for

example, as the alpha of stock 100l:

αm(l) = R100l − (Rf + β100l(RM − Rf )),

where RM =
∑N

i=1 θM,iRi.

We say that our model can help explain an anomaly if

sign(αd(10)− αd(1)) = sign(αm(10)− αm(1)) and |αm(10)− αm(1)| > 0.015. (32)

The first condition in (32) is that the model correctly predicts the sign of the difference

between αd(10) and αd(1), in other words, predicts that α(10) > α(1) if this is empirically

the case and that α(10) < α(1) if that is empirically the case. The second condition in

(32) is that the model makes a “strong” prediction, in other words, predicts a substantial

difference between the two alphas; while the 1.5% cutoff is somewhat arbitrary, it allows for

a simple way of organizing our results. Similarly, we say that the model fails to explain an

anomaly if

sign(αd(10)− αd(1)) = −sign(αm(10)− αm(1)) and |αm(10)− αm(1)| > 0.015, (33)

in other words, if the model makes a strong prediction but this prediction is incorrect, for

example predicting that α(10) > α(1) when the opposite is true in the data. Finally, we say

that the model does not make a strong prediction about an anomaly if

|αm(10)− αm(1)| < 0.015. (34)

We find that our model is helpful for thinking about a strikingly large number – a

majority, in fact – of the anomalies we consider; we review these anomalies in Section 5.1.

In Section 5.2, we discuss the anomalies where our model performs poorly. And in Section

5.3, we note the anomalies where our model does not make a strong prediction.

5.1 Anomalies where prospect theory performs well

Our model is helpful for thinking about 13 of the 22 anomalies: for these 13 anomalies, the

conditions in (32) are satisfied. Specifically, these are the momentum, failure probability,
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idiosyncratic volatility, gross profitability, idiosyncratic skewness, return on equity, maximum

daily return, O-Score, external finance, composite equity issuance, net stock issuance, post-

earnings announcement drift, and difference of opinion anomalies. We present our model’s

predictions about these anomalies in Figures 5 through 11. Figures 5 to 9 showcase five

anomalies that the model makes particularly strong predictions about. Figures 10 and 11

present the results for eight other anomalies where the model is helpful.

Figure 5 shows the results for the momentum anomaly. The horizontal axis corresponds

to the ten decile portfolios, 1 through 10, while the vertical axis measures their alphas. The

graph has two lines in it. The dashed line plots the empirical alpha of each decile; the

fact that it is upward sloping indicates that, historically, and controlling for beta, stocks

with high medium-term past returns earned a higher average return than stocks with low

medium-term past returns. The solid line plots the alphas predicted by our model for the

ten anomaly deciles.

Figures 6 through 9 present results for the failure probability, idiosyncratic volatility, gross

profitability, and idiosyncratic skewness anomalies. These graphs have the same structure

as Figure 5: the dashed lines plot the empirical alphas, while the solid lines plot the model-

predicted alphas. Figures 10 and 11 present results for eight more anomalies, again using

the same format.

Figures 5 through 11 show that, for all 13 anomalies in these graphs, our model predicts

a lower alpha for the extreme decile that, empirically, has a lower alpha. Moreover, for most

of these 13 anomalies, our model is able to explain a large fraction of the spread in empirical

alphas. The intuition for why our model helps to explain these anomalies is the following.

For these anomalies, the extreme decile with the lower empirical alpha – for example, decile

1 in the case of the momentum anomaly and decile 10 in the case of the volatility anomaly –

contains stocks with more volatile returns, more skewed returns, and a more negative capital

gain overhang. On the one hand, the higher volatility of these stocks leads the investors in

our economy to charge a higher average return on them. On the other hand, their higher

skewness and more negative gain overhang leads investors to charge a lower average return

on them. The latter force dominates, so that the model predicts a low average return on

these stocks, consistent with the data.17

17Wang, Yan, and Yu (2017) propose and document empirically that, in a prospect theory framework,

greater volatility can lead to lower average returns for assets trading at a loss because investors are in the

convex region of the prospect theory value function. This effect turns out not to play a major role in our

results. The reason is that, as shown in the top-right graph of Figure 2, for each of the 220 stocks we are

pricing, the absolute value of the stock’s gain overhang is lower than the stock’s return volatility. As such,

the investors in these stocks are still quite close to the kink in the value function, and price the stocks
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Figures 5 to 11 show that our model can explain not only the alphas for the extreme

deciles, but also those for the intermediate deciles. In particular, for several of the anomalies,

the dashed lines, which plot the empirical alphas, are concave: the alphas are similar for most

deciles, but fall rapidly as we approach the extreme decile with the most skewed stocks. This

pattern is particularly stark for the volatility and failure probability anomalies in Figures 6

and 7, but is present for a number of other anomalies as well. The solid lines in the graphs

show, strikingly, that our model captures this concavity. This successful prediction is a direct

consequence of the heterogeneous-holdings equilibrium structure, and shows that, while this

structure is novel and unusual, it has useful predictive content.

Prior studies have linked the diminishing-sensitivity component of prospect theory to

some of the anomalies we consider – specifically, to momentum and post-earnings announce-

ment drift (Grinblatt and Han, 2005; Frazzini, 2006; Li and Yan, 2013). In the case of

momentum, the idea is that stocks in momentum decile 10 have capital gains which bring

investors into the concave, risk averse region of the value function, leading them to charge

a higher average return on these stocks. Our analysis confirms that this mechanism helps

to explain these anomalies, but also shows that the argument is incomplete in important

ways. It is not just that stocks in momentum decile 10 trade at a gain; their returns are

also less volatile and less skewed than the returns of stocks in momentum decile 1 – charac-

teristics that, due to loss aversion and probability weighting, also affect the average return

that prospect theory predicts for momentum deciles. Our analysis shows that, once we take

all three characteristics – volatility, skewness, and gain overhang – into account, prospect

theory can indeed explain the momentum anomaly, but it is only through a quantitative

framework like the one we develop in this paper that this conclusion can be drawn.

Similarly, prior work has linked the probability-weighting component of prospect theory

to some of the anomalies we consider – specifically, to the idiosyncratic volatility, skewness,

and failure probability anomalies (Campbell, Hilscher, and Szilagyi, 2008; Boyer, Mitton,

and Vorkink, 2010; Conrad, Kapadia, and Xing, 2014). The idea is that, for these anomalies,

stocks in decile 10 have positively-skewed returns, which, due to probability weighting, leads

investors to charge a lower average return on them. Our analysis confirms this mechanism,

but also indicates that the argument is incomplete. Highly skewed stocks also tend to have

more volatile returns and to trade at a loss – characteristics that, in a prospect theory

accordingly: greater volatility interacts with the kink to generate a higher average return. Similarly, An et

al. (2019) propose and document empirically that, in a prospect theory framework, greater skewness lowers

an asset’s average return primarily for assets trading at a loss. This effect is also not playing a major role in

our results: we find that, for the 220 stocks we are pricing, greater skewness leads to a lower average return

regardless of a stock’s prior gain or loss.
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framework, also affect their average returns. We show that, when all three characteristics

are taken into account, prospect theory can explain the above anomalies – but, again, it is

only through our quantitative approach that this can be confirmed.

Figures 5 to 11 also draw a connection between prospect theory and a number of anomalies

that, to our knowledge, has not previously been noted. For example, they show that prospect

theory is helpful for thinking about the gross profitability, return on equity, external finance,

composite equity issuance, net stock issuance, and difference of opinion anomalies – again,

anomalies that prospect theory has not previously been linked to.

5.2 Anomalies where prospect theory performs poorly

For seven of the 22 anomalies, the model performs poorly, in that, as laid out in the conditions

in (33), it predicts a substantial difference between the alphas for deciles 1 and 10, but of the

wrong sign. These are the size, value, long-term reversal, short-term reversal, accrual, asset

growth, and investment anomalies. We discuss two of these – the size and value anomalies

– in more detail, and the others more briefly.

Figure 12 presents the results for the size anomaly. As in the earlier graphs, the dashed

line plots the empirical alphas, while the solid line plots the alphas predicted by the model.

The graph shows that our model has mixed success in explaining this anomaly. On the

one hand, the model captures, in part, the decline in the empirical alphas as we move from

decile 2 to decile 10. On the other hand, it fails to explain the positive historical alpha

for decile 1, which contains the stocks with the lowest market capitalizations. These stocks

are very volatile, which, all else equal, leads investors to charge a high average return on

them. However, they also have positively-skewed returns and trade at a loss, which leads

investors to charge a low average return on them. Our analysis shows that this second effect

overwhelms the first one.

Figure 13 presents the results for the value anomaly. The model fails to explain this

anomaly. The reason is that value stocks are more positively-skewed than growth stocks,

and trade at a larger loss; this leads investors to charge a lower average return on value

stocks. It is true that value stocks are also more volatile than growth stocks, which, all else

equal, leads investors to charge a higher average return on value stocks. However, the figure

shows that the second effect is overwhelmed by the first one.

Figure 14 and the top-left panel in Figure 15 present results for five other anomalies that

our model performs poorly on – the long-term reversal, short-term reversal, accrual, asset
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growth, and investment anomalies. In Section 6, we discuss some possible reasons why the

model performs poorly for these anomalies.

5.3 Anomalies where prospect theory does not make a strong pre-

diction

For two other anomalies, the net operating assets and organizational capital anomalies,

prospect theory does not make a strong prediction, in that, as specified in (34), it pre-

dicts alphas for the two extreme decile portfolios that differ by less than 1.5% in absolute

magnitude. The lower panel of Figure 15 presents the results for these anomalies.

6 Discussion

In Section 5, we used the framework of Sections 3 and 4 to see if prospect theory can help

explain 22 prominent anomalies, and found that it is able to shed light on a majority of

them. We now discuss some other issues raised by our analysis. In Section 6.1, we revisit

the assumption that investors have sensible beliefs about the return volatility and return

skewness of the typical stock in each anomaly decile. And in Section 6.2, we review the

limits to arbitrage that allow investors with prospect theory preferences to have a substantial

impact on asset prices, and discuss how allowing for investor heterogeneity would affect our

results.

6.1 Investor beliefs

Figures 12 to 15 show that, for some anomalies, our model performs poorly. Why is this?

One answer is that, for some anomalies, the risk attitudes captured by prospect theory are

not the primary driver of average returns. For example, for the value and long-term reversal

anomalies, extrapolative beliefs about cash flows or returns may be more important than

any aspect of preferences, while for the short-term reversal anomaly, liquidity-driven price

pressure may be the most relevant factor.

There is another answer, however, one that applies within the prospect theory framework.

In generating Figures 5 to 15, we assumed that investors have accurate beliefs about stocks’

return volatility, return skewness, and gain overhang. However, for certain types of stocks,
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investors’ beliefs about these characteristics may be incorrect.

To investigate this, we take data on the prices of stock options from the IvyDB Option-

Metrics database, and use them to extract estimates of risk-neutral volatility and risk-neutral

skewness; we describe our methodology in Appendix E. Since these are estimates of risk-

neutral quantities, they can offer only suggestive evidence regarding investors’ beliefs about

the physical return distribution. However, they do contain some information about these

beliefs, and prior studies have exploited this in useful ways (Birru and Wang, 2016).

Table 3 reports, for each anomaly, the 30-day risk-neutral variance and risk-neutral skew-

ness of the typical stock in each of the two extreme anomaly deciles. One-year risk-neutral

moments would be a better match for the volatility and skewness of annual returns that we

report in Table 2. We focus on 30-day moments because short-maturity options are more

heavily traded and are therefore likely to give us more reliable estimates. However, we have

also computed 60-day and one-year moments and find that these lead to similar conclusions.

We compute the risk-neutral moments using the following procedure. For a given month

and anomaly decile, we compute the moments for each stock in the decile for which option

data are available, and then average these results across the stocks in the decile. We then

compute time-series means across all months in the sample, which runs from January 1996

to December 2015.

Comparing the results in Table 3 to those in Table 2, we see that, for most types of stocks,

investors appear to have sensible beliefs: the risk-neutral volatility and skewness are almost

always higher for stocks whose actual return volatility and skewness are higher. There is,

however, one notable exception: the risk-neutral skewness of value stocks is similar to that

of growth stocks, even though the actual skewness of value stock returns is much higher than

that of growth stock returns.

This last finding may explain why our model performs poorly on the value anomaly. To

generate Figure 13, we assumed that investors know that value stocks have more positively-

skewed returns than growth stocks; this, in turn, leads the model to predict a lower average

return on value stocks. However, if investors think that the return skewness of value stocks

and growth stocks is similar, this will increase the average return that our model predicts for

value stocks relative to growth stocks, reducing the gap between the empirical and model-

predicted alphas.18

18Bordalo, Gennaioli, and Shleifer (2013) suggest that investors find the potential upside of growth stocks,

and the potential downside of value stocks, to be more salient. Such a mechanism may underlie investors’

incorrect beliefs about the relative skewness of value and growth stock returns.
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6.2 Limits to arbitrage and investor heterogeneity

A theme of this paper is that investors who evaluate risk according to prospect theory leave

an imprint on asset prices. Can traditional Expected Utility investors attenuate these price

effects?

For several reasons, it is difficult for Expected Utility investors to do so. One reason re-

lates to the specific form of the mispricing that prospect theory investors generate, namely,

mild underpricing but severe overpricing. This pattern characterizes the model’s predictions

for almost all of the 22 anomalies. For example, in Figure 7, which corresponds to the volatil-

ity anomaly, the stocks in deciles 1 to 7 are slightly underpriced – they are predicted to earn

small positive alphas – while the stocks in deciles 9 and 10 are very overpriced. Importantly,

the stocks in deciles 9 and 10 are not only very volatile, but also have highly-skewed returns

and low market capitalizations. To attenuate the mispricing caused by prospect theory in-

vestors, Expected Utility investors need to correct the overpricing; what underpricing there

is, is already small in magnitude. But to correct the overpricing, they have to short a large

number of highly-skewed small-cap stocks, a strategy that entails high costs and fees.

Expected Utility investors also face other, more general limits to arbitrage. For most

anomalies, the stocks in each extreme decile comove in their returns; for example, there is

a common factor in the returns of value stocks, and also in the returns of growth stocks.

As such, a strategy that buys the stocks in one extreme decile and shorts the stocks in the

other can have very volatile returns, which limits arbitrage. The risk that the mispricing will

worsen in the short run, leading to fund outflows or margin calls, is an additional deterrent

to professional arbitrageurs (Shleifer and Vishny, 1997).

Finally, to exploit the mispricing caused by prospect theory investors, Expected Utility

investors would first need to detect it, and this can take many years. For example, the

idiosyncratic volatility anomaly was present in the data for decades before it became widely

known with the publication of Ang et al. (2006). If some part of the volatility anomaly was

due to the actions of prospect theory investors, these actions went undetected for a very long

time.

In our model, investors at time 0 are identical in their wealth, preferences, and past gain

or loss in each risky asset. It is beyond the scope of our paper to formally explore investor

heterogeneity; the case we consider is already a challenging one. However, the reasons given

above for why Expected Utility investors are unlikely to attenuate the mispricing caused by

prospect theory investors also suggest that our predictions will not be strongly affected by

taking heterogeneity among the prospect theory investors into account.
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For example, in our model, a risky asset is priced by the investors who are holding it.

Suppose that we also take into account prospect theory investors who are not holding the

asset. Such investors may attenuate the underpricing shown in Figures 5 to 15, but this

underpricing is mild in the first place. The more severe mispricing is over -pricing – but to

exploit this, the prospect theory investors not holding the overpriced assets would need to

short them in large quantities. As noted above, this is a costly strategy.

7 Conclusion

We present a new model of asset prices in which investors evaluate risk according to prospect

theory and examine its ability to explain 22 prominent stock market anomalies. The model

incorporates all the elements of prospect theory, takes account of investors’ prior gains and

losses, and makes quantitative predictions about an asset’s average return based on empirical

estimates of its beta, volatility, skewness, and capital gain overhang. We find that the model

is helpful for thinking about a majority of the anomalies we consider. It performs particularly

well for the momentum, volatility, distress, and profitability anomalies, but poorly for the

value anomaly. For several anomalies, the model explains not only the difference in average

returns across extreme anomaly deciles, but also more granular patterns in the average

returns of intermediate deciles.
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Appendix A: The probability weighting terms

Here, we provide the full expressions for the dw(P (Ri)) and dw(1− P (Ri)) terms which

appear in (11), (20), and (24). We can write

dw(P (Ri)) =
dw(P (Ri))

dP (Ri)

dP (Ri)

dRi

dRi.

By differentiating the probability weighting function in (6), and using P as shorthand for

P (Ri), we can write the right-hand side as

δP δ−1(P δ + (1− P )δ)− P δ(P δ−1 − (1− P )δ−1)

(P δ + (1− P )δ)1+
1
δ

p(Ri)dRi,

where the probability density function p(Ri) is given in (15) and (16). Similarly,

dw(1− P (Ri)) =
dw(1− P (Ri))

dP (Ri)

dP (Ri)

dRi
dRi

= −δ(1 − P )δ−1(P δ + (1− P )δ)− (1− P )δ((1− P )δ−1 − P δ−1)

(P δ + (1− P )δ)1+
1
δ

p(Ri)dRi.

Appendix B: Rescaling the decision problem

Substituting the definitions in (23) into (20) and multiplying the resulting expression by

the exogenous parameter Θ−1
M,R, we obtain

θi(μi +
νζi

ν − 2
− Rf )− γ̂

2
(θ2i σ

2
i + 2

∑
j �=i

σijθiθM,j)

−λb̂0

∫ Rf−θi,−1gi/θi

−∞
(θi(Rf − Ri)− θi,−1gi)

αdw(P (Ri))

−b̂0

∫ ∞

Rf−θi,−1gi/θi
(θi(Ri − Rf) + θi,−1gi)

αdw(1− P (Ri)), (35)

where

γ̂ = γW0ΘM,R, b̂0 = b0W
α−1
0 Θα−1

M,R.

It follows that, if Θi maximizes (20), then θi = Θi/ΘM,R maximizes (35), and conversely

that, if θi maximizes (35), then Θi = θiΘM,R maximizes (20). Maximizing (20) is therefore

equivalent to maximizing (35).

The rescaling also allows us to simplify the variance term in the first row of (35). Specif-

ically, the quantity ∑
j �=i

θM,jσij
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can be rewritten as

−θM,iσ
2
i +

∑
j

θM,jσij = −θM,iσ
2
i + cov(R̃i, R̃M ) = −θM,iσ

2
i + βiσ

2
M ,

where R̃M is the return on the market portfolio of all risky assets, σM is the standard

deviation of this return, and βi is the beta of asset i. Substituting this into (35) leads to the

expression in (24).

Appendix C: Procedure for computing expected returns

The equilibrium structure we consider – a bounded-rationality equilibrium with hetero-

geneous holdings – consists of a location vector (μ1, . . . , μN) such that, for each i, and in the

range θi ∈ [0,∞), the expression in (24) has either a unique global maximum at θ∗i = θM,i

or else two global maxima at θ∗i and θ∗∗i with θ∗i < θM,i < θ∗∗i .

We now explain how we compute this heterogeneous-holdings equilibrium. For a given

risky asset i, we first check whether investors have identical holdings in that asset, in other

words, whether they all hold the same per-capita market supply θM,i. To do this, we take

the first derivative of (24), substitute in θi = θM,i, and set the resulting expression to 0. This

gives19

0 = (μi +
νζi

ν − 2
− Rf)− γ̂βiσ

2
M

−αλb̂0

∫ Rf−θi,−1gi/θi

−∞
(θM,i(Rf −Ri)− θi,−1gi)

α−1(Rf − Ri)dw(P (Ri))

−αb̂0

∫ ∞

Rf−θi,−1gi/θi
(θM,i(Ri −Rf ) + θi,−1gi)

α−1(Ri − Rf )dw(1− P (Ri)). (36)

We then check whether, for the μi that solves (36), the function in (24) has a global maximum

at θi = θM,i, as opposed to only a local maximum or a local minimum. If θi = θM,i indeed

corresponds to a global maximum, then all investors have identical holdings of risky asset

i, each holding the per-capita supply of the asset, namely θM,i. If the function in (24) does

not have a global maximum at this θi, then, in equilibrium, investors do not have identical

holdings of asset i. We must instead look for an equilibrium with heterogeneous holdings of

this asset.

To find an equilibrium with heterogeneous holdings of asset i, we search for a value of μi

such that the maximum value of the function in (24) in the range [0, θM,i), attained at θi = θ∗i ,

say, is equal to the maximum value of the function in the range (θM,i,∞), attained at θi = θ∗∗i .

If we find such a μi, then there is an equilibrium where investors have heterogeneous holdings

19As discussed in Section 4, we take θi,−1 = θM,i, which further simplifies (36).
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of the asset, with some investors allocated to θi = θ∗i and others allocated to θi = θ∗∗i . The

value of μi for which this holds is typically close to the value of μi that solves the first-order

condition (36). Therefore, if we find that, for the value of μi that solves (36), the function

in (24) does not have a global maximum at θi = θM,i, we search in the neighborhood of that

μi for an equilibrium with heterogeneous holdings of asset i.

Appendix D: Stock market anomalies

Here, we list the predictor variable associated with each of the 22 anomalies that we

study.

IVOL. Idiosyncratic volatility. Standard deviation of the residuals from a firm-level regression

of daily stock returns on the daily Fama-French three factors using data from the past month.

See Ang et al. (2006).

SIZE. Market capitalization. The log of the product of price per share and number of shares

outstanding, computed at the end of the previous month.

VAL. Book-to-market. The log of book value of equity scaled by market value of equity, com-

puted following Fama and French (1992) and Fama and French (2008); firms with negative

book value are excluded from the analysis.

EISKEW. Expected idiosyncratic skewness, computed as in Boyer, Mitton, and Vorkink

(2010).

MOM. Momentum. Measured at time t as the stock’s cumulative return from the start of

month t− 12 to the end of month t− 2.

FPROB. Failure probability. Estimated using a dynamic logit model with both accounting

and equity market variables as explanatory variables. See Campbell, Hilscher, and Szilagyi

(2008).

OSC. O-Score. Uses accounting variables to estimate the probability of bankruptcy. See

Ohlson (1980).

NSI. Net stock issuance. Growth rate of split-adjusted shares outstanding over the previous

fiscal year. See Stambaugh, Yu, and Yuan (2012).

CEI. Composite equity issuance. Five-year change in number of shares outstanding, exclud-

ing changes due to dividends and splits. See Daniel and Titman (2006).

ACC. Accruals. See Sloan (1996).
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NOA. Net operating assets. See Hirshleifer, Hou, Teoh, and Zhang (2004).

PROF. Gross profitability. Measured as revenue minus cost of goods sold at time t, divided

by assets at time t− 1. See Novy-Marx (2013).

AG. Asset growth. Percentage change in total assets over the previous year. See Cooper,

Gulen, and Schill (2008).

ROE. Return on equity. Net income divided by book equity. See Chen, Novy-Marx, and

Zhang (2011).

INV. Investment to assets. The annual change in gross property, plant, and equipment plus

the annual change in inventory, scaled by the lagged book value of assets. See Stambaugh,

Yu, and Yuan (2012).

MAX. A stock’s maximum one-day return in month t − 1. See Bali, Cakici, and Whitelaw

(2011).

ORGCAP. Organizational capital. See Eisfeldt and Papanikolaou (2013).

LTREV. Long-term reversal. The stock’s cumulative return from the start of month t− 60

to the end of month t− 13.

XFIN. External finance. Total net external financing scaled by total assets. See Bradshaw,

Richardson, and Sloan (2006).

STREV. Short-term reversal. The stock’s return in month t− 1.

DOP. Dispersion of opinion. The standard deviation of earnings forecasts (unadjusted IBES

file, item STDEV) divided by the absolute value of the consensus mean forecast (unadjusted

file, item MEANEST). We use the forecasts for the current fiscal year. See Diether, Malloy,

and Scherbina (2002).

PEAD. Post-earnings announcement drift. Measured as standardized unexpected earnings:

the change in the quarterly earnings per share from its value four quarters before divided by

the standard deviation of this change in quarterly earnings over the previous eight quarters.

See Foster, Olsen, and Shevlin (1984).

Appendix E: Inferring beliefs from option prices

In Section 6.1, we use option prices to back out estimates of the risk-neutral volatility

and skewness investors perceive for individual stocks. Below, we describe our methodology,
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which follows that of Birru and Wang (2016).

We compute risk-neutral volatility and risk-neutral skewness using equations (1)-(4) in

Birru and Wang (2016). These equations were originally derived by Bakshi, Kapadia, and

Madan (2003); see their Theorem 1. In principle, these equations should be implemented

using a continuum of options; we use a discrete approximation. We implement the calculation

only for stocks with at least two out-of-the-money (OTM) puts and two OTM calls; Dennis

and Mayhew (2002) argue that the biases that arise from the discrete approximation are

small in this case. We compute 30-day risk-neutral moments by interpolating the moments

of the option with expiration closest to, but less than, 30 days and the option with expiration

closest to, but greater than, 30 days. If there is no option with maturity longer (shorter)

than 30 days, we use the option with the longest (shortest) available maturity. We have also

computed 60-day and one-year risk-neutral moments; these lead to similar conclusions.

Our options data come from the IvyDB OptionMetrics database, which provides option

prices, volume, and open interest from January 1996 to December 2015. We include options

on all securities classified as common stock. To minimize the impact of data errors, we

remove options with missing best bid or offer prices, as well as those with bid prices less

than or equal to $0.05. We also remove options that violate arbitrage bounds; options with

zero open interest; options with special settlement arrangements; and options for which the

underlying stock price is under $10. We take the option price to be the midpoint of the best

bid and best offer.
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Table 1. Stock market anomalies.

Anomaly Abbreviation
Idiosyncratic volatility IVOL
Market capitalization SIZE
Value VAL
Expected idiosyncratic skewness EISKEW
Momentum MOM
Failure probability FPROB
O-Score OSC
Net stock issuance NSI
Composite equity issuance CEI
Accrual ACC
Net operating assets NOA
Gross profitability PROF
Asset growth AG
Return on equity ROE
Investment INV
Maximum daily return MAX
Organizational capital ORGCAP
Long-term reversal LTREV
External finance XFIN
Short-term reversal STREV
Difference of opinion DOP
Post-earnings announcement drift PEAD
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Table 3. The first column lists 22 anomalies; the acronyms are defined in
Table 1. The remaining columns report, for each anomaly, the 30-day risk-
neutral variance and risk-neutral skewness of the typical stock in anomaly
decile 1 and anomaly decile 10. The risk-neutral measures are extracted from
the prices of options on individual stocks over the 1996-2015 sample period.

Anomaly RN-variance RN-variance RN-skewness RN-skewness
Decile 1 Decile 10 Decile 1 Decile 10

IVOL 0.03 0.17 -0.53 -0.21
SIZE 0.23 0.02 -0.12 -0.60
VAL 0.06 0.13 -0.36 -0.36
EISKEW 0.04 0.17 -0.45 -0.18
MOM 0.17 0.07 -0.21 -0.32
FPROB 0.05 0.22 -0.35 -0.24
OSC 0.05 0.18 -0.36 -0.18
NSI 0.05 0.10 -0.41 -0.28
CEI 0.04 0.10 -0.43 -0.28
ACC 0.12 0.09 -0.27 -0.26
NOA 0.10 0.07 -0.28 -0.34
PROF 0.13 0.06 -0.25 -0.34
AG 0.12 0.09 -0.27 -0.29
ROE 0.17 0.05 -0.19 -0.37
INV 0.09 0.08 -0.30 -0.32
MAX 0.03 0.14 -0.46 -0.29
ORGCAP 0.08 0.08 -0.34 -0.31
LTREV 0.17 0.06 -0.25 -0.35
XFIN 0.05 0.11 -0.39 -0.25
STREV 0.12 0.09 -0.12 -0.4
DOP 0.04 0.11 -0.44 -0.29
PEAD 0.08 0.06 -0.33 -0.36
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Figure 1. The left panel plots the value function proposed by Tversky and Kahne-
man (1992) as part of their cumulative prospect theory, namely, v(x) = xα for x ≥ 0
and v(x) = −λ(−x)α for x < 0, for α = 0.5 and λ = 2.5. The right panel plots the
probability weighting function proposed by Tversky and Kahneman (1992), namely,
w(P ) = P δ/(P δ + (1 − P )δ)1/δ, for three different values of δ. The dashed line
corresponds to δ = 0.4, the solid line to δ = 0.65, and the dotted line to δ = 1.
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Figure 2. Each graph plots 220 asterisks, where each asterisk corresponds to one
of 10 deciles for one of 22 anomalies. In the top-left graph, a given asterisk that
corresponds to some anomaly decile marks the standard deviation of returns and the
return skewness of the typical stock in that anomaly decile. In the top-right graph,
each asterisk marks the standard deviation of returns and the capital gain overhang
of the typical stock in some anomaly decile. In the bottom-left graph, each asterisk
marks the return skewness and capital gain overhang of the typical stock in some
anomaly decile.
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Figure 3. The graph shows that all investors have identical holdings of each stock
in momentum decile 1. The solid line plots the value of an investor’s objective
function in equilibrium, as a function of θ1, the (scaled) fraction of the investor’s
portfolio allocated to stock 1, which belongs to momentum decile 1. The function
has a unique global maximum at the point where θ1 equals the weight of stock 1 in
the market portfolio, namely 1.85× 10−4.
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Figure 4. The graph shows that investors have heterogeneous holdings of each
stock in momentum decile 10. The solid line plots the value of an investor’s objective
function in equilibrium, as a function of θ901, the (scaled) fraction of the investor’s
portfolio allocated to stock 901, which belongs to momentum decile 10. The function
has two global maxima which straddle the weight of stock 901 in the market portfolio,
namely 7.5×10−4. The dashed line plots the objective function for a higher expected
return on the stock, while the dash-dot line plots the objective function for a lower
expected return.
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Figure 5. The dashed line plots the historical annual alpha of each momentum
anomaly decile. The solid line plots the alphas predicted by a model where investors
evaluate risk according to prospect theory.
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Figure 6. The dashed line plots the historical annual alpha of each failure proba-
bility anomaly decile. The solid line plots the alphas predicted by a model where
investors evaluate risk according to prospect theory.
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Figure 7. The dashed line plots the historical annual alpha of each idiosyncratic
volatility anomaly decile. The solid line plots the alphas predicted by a model where
investors evaluate risk according to prospect theory.
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Figure 8. The dashed line plots the historical annual alpha of each gross prof-
itability anomaly decile. The solid line plots the alphas predicted by a model where
investors evaluate risk according to prospect theory.
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Figure 9. The dashed line plots the historical annual alpha of each expected
idiosyncratic skewness anomaly decile. The solid line plots the alphas predicted
by a model where investors evaluate risk according to prospect theory.

55



2 4 6 8 10

decile

-10

-5

0

5

al
ph

a
Return on equity

2 4 6 8 10

decile

-15

-10

-5

0

5

al
ph

a

Maximum daily return

2 4 6 8 10

decile

-10

-5

0

5

al
ph

a

O-score

2 4 6 8 10

decile

-10

-5

0

5
al

ph
a

External finance

Figure 10. In each graph, the dashed lines plot the historical annual alpha of
each anomaly decile for the return on equity, maximum daily return, O-score, and
external finance anomalies. The solid lines plot the alphas predicted by a model
where investors evaluate risk according to prospect theory.

56



2 4 6 8 10

decile

-10

-5

0

5

al
ph

a
Composite equity issuance

2 4 6 8 10

decile

-10

-5

0

5

al
ph

a

Net stock issuance

2 4 6 8 10

decile

-5

0

5

al
ph

a

Post-earnings announcement drift

2 4 6 8 10

decile

-5

0

5

al
ph

a

Difference of opinion

Figure 11. In each graph, the dashed lines plot the historical annual alpha of each
anomaly decile for the composite equity issuance, net stock issuance, post-earnings
announcement drift, and difference of opinion anomalies. The solid lines plot the
alphas predicted by a model where investors evaluate risk according to prospect
theory.
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Figure 12. The dashed line plots the historical annual alpha of each size anomaly
decile. The solid line plots the alphas predicted by a model where investors evaluate
risk according to prospect theory.
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Figure 13. The dashed line plots the historical annual alpha of each value anomaly
decile. The solid line plots the alphas predicted by a model where investors evaluate
risk according to prospect theory.
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Figure 14. In each graph, the dashed line plots the historical annual alpha of each
anomaly decile for the long-term reversal, short-term reversal, accrual, and asset
growth anomalies. The solid lines plots the alphas predicted by a model where
investors evaluate risk according to prospect theory.
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Figure 15. In each graph, the dashed line plots the historical annual alpha of each
anomaly decile for the investment, net operating assets, and organizational capital
anomalies. The solid lines plot the alphas predicted by a model where investors
evaluate risk according to prospect theory.

61


