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Abstract

How do economies adjust to technological innovations? We develop a theory where overlap-
ping generations of workers are heterogeneous over a continuum of technology-specific skills.
Forward-looking investment decisions upon entry determine the worker’s skill-type. Given a
type’s technology-specific wage, workers self-select into a technology. We show that this econ-
omy can be represented as a q-theory of skill investment. This allow us to sharply characterize the
transitional dynamics and welfare implications of a technology-improving innovation. The adjust-
ment is slower in economies with higher technology-skill specificity because the larger increases in
relative wages induce larger, more persistent changes in the skill distribution across generations.
We then empirically study the adjustment of developed economies to recent cognitive-biased tech-
nological innovations. We find strong responses of cognitive-intensive employment for young but
not old generations. This suggests that cognitive-skill specificity is high and that the supply of
cognitive skills is elastic at longer horizons. In such economies, ignoring the adjustment across
generations by extrapolating from changes at short or long horizons alone leads to severe biases in
the average and distributional welfare implications of technological innovations.
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1 Introduction

New technologies are the key drivers of increases in living standards over long horizons.
Yet, more recently, a literature has shown that they may have strong distributional conse-
quences at shorter horizons.1 If adjustment margins vary at different horizons, focusing on
the consequences of technological innovations over short or long periods alone risks mis-
measuring their overall impact on welfare and labor markets. In this paper, we develop a
theory to study technological transitions where this is relevant because changes in the distri-
bution of technology-specific skills happen slowly over generations. We then use this theory
to empirically assess the implications of recent cognitive-skill-biased innovations.

The theory has three distinct features. First, there are overlapping generations of workers
with stochastic lifetimes, as in Yaari (1965) and Blanchard (1985). Second, within each gen-
eration, workers are heterogeneous over a continuum of skill types. A type determines the
worker’s productivity in the two technologies of the economy, as in Roy (1951). Given each
type’s technology-specific wages at a point in time, there is a threshold determining which
skill types self-select into each of the two technologies. The output of the two technologies is
then combined to produce a final consumption good. Third, given the expected future path
for the wage distribution, workers make a costly investment upon entering the labor market
that determines their skill type, similar to Chari and Hopenhayn (1991) and Caselli (1999).
This gives rise to differences in technology-specific skill heterogeneity across generations.

The equilibrium of this economy is a joint path for the skill distribution, the assignment
of skill types to technologies, and relative technology-specific wages and output. It entails
a high-dimensional fixed-point problem: forward-looking entrants make skill investment
decisions based on the expected future path for technology-specific wages, which determine
how the skill distribution evolves over time and, ultimately, the actual equilibrium path of
technology-specific wages and all other outcomes.

Our first result establishes that the approximate equilibrium of this economy can be rep-
resented as a q-theory of skill investment.2 The path for the skill distribution is only a
function of two variables at each point in time: the present-discounted value of log-relative
technology-specific wages (q) and the threshold determining the assignment of skills to tech-
nologies (which plays the role of the pre-determined variable). The equilibrium dynamics of
these two variables is described by a simple system of linear differential equations. Our char-
acterization of the equilibrium dynamics thus consists of “tracking" variables determining
the evolution of the skill distribution rather than the high-dimensional skill distribution it-
self. Such an approach is reminiscent of those in Lucas and Moll (2014) and Perla and Tonetti
(2014) which also reduce the analysis of the equilibrium dynamics of a high-dimensional

1See Durlauf and Aghion (2005) for a review of the literature on the impact of new technologies and innovation on
long-run living standards. See Acemoglu and Autor (2011) and Autor and Salomons (2017) for reviews of the literature
documenting the impact of new technologies on employment and wages of workers associated with different skills, occu-
pations, industries, and firms.

2 See Tobin (1969) and Hayashi (1982) for the original q-theory of capital investment.
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endogenous object–the distribution of firm productivity– to the characterization of the evo-
lution of a threshold over time.

Our second result derives in closed-form the transitional dynamics following a one-time,
permanent increase in the productivity of all skill types employed in one of the technologies.
We refer to this as a skill-biased technological innovation. The logic of the economy’s adjust-
ment follows immediately from the q-theory representation of the equilibrium. The relative
productivity increase leads to an increase in the relative labor demand and wages in the
improved technology. On impact, marginal skill-types now reallocate into that technology.
The extent to which they do so crucially depends on how different skill types are in their
relative technology-specific productivity. That is, the degree of technology-skill specificity
determines the short-run skill supply elasticity (η). The increase in current and future rela-
tive wages leads younger entering generations to invest in skills that are complementary to
the improved technology. The extent to which they do so crucially depends on a parameter
(ψ) governing the cost of investing in technology-specific skills. That is, ψ determines the
skill supply elasticity at longer horizons and, therefore, the differences in skill heterogeneity
across generations. Along the transition, q falls and relative output increases because the
supply of skills expands as younger generations replace older generations.

This result shows that the impact of new technologies on the economy may significantly
change over time due to the endogenous evolution of the skill distribution across genera-
tions. It provides a micro-foundation for the idea that supply elasticities tend to be lower
at shorter horizons compared to longer horizons, a form of Samuelson’s LeChatelier princi-
ple. However, as opposed to naive theories that use a reduced-form supply elasticity, such
micro-foundation allows us to: (i) speak to why is it that some technological transitions are
different than others, (ii) appropriately compute the welfare and distributional implications
of new technologies, and (iii) connect observables to parameters governing technology-skill
specificity and the skill investment cost. The rest of the paper explores each of these points.

Our third result presents comparative static exercises with respect to changes in technology-
skill specificity and the cost of skill investment. These exercises show why technological tran-
sitions may look different. Therefore, they speak to past episodes (or future transitions) with
differences in the nature of technologies, skills, and educational institutions. We establish
that an economy where technology-skill specificity is higher has a slower adjustment path
to the new long-run equilibrium. Specifically, it has more persistent dynamics of q and rela-
tive output as measured by their cumulative impulse responses. The q-theory analogy again
delivers the intuition for this novel result. When technology-skill specificity is higher (and
η is lower), the reallocation of worker skill-types across technologies is smaller following
the skill-biased innovation and, therefore, the increase in relative wages is larger—as is the
case in static assignment models. In our model though, the larger increase in relative wages
implies that younger entering generations have stronger incentives to invest in the skills that
became more valuable. As a result, there are larger differences in skill heterogeneity across
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generations. Thus, the economy’s adjustment is slower because larger changes in the skill
distribution take place as younger generations replace older generations. This implies that
the more relevant margin of adjustment in economies with higher technology-skill speci-
ficity is not the reallocation of workers within a generation but the changes in the supply of
skills that occur across generations. Importantly, a lower cost of skill investment (higher ψ)
reinforces the impact of technology-skill specificity on the persistence of the adjustment.

Our fourth and last theoretical result analyzes the average and distributional welfare
consequences of a skill-biased technological innovation. Our notion of average welfare is
the average across all generations of ex-ante expected utility. Our notion of inequality is the
average across all generations in lifetime welfare inequality. We establish that both measures
depend not only on the long- or short-run responses of labor market outcomes but also on
their persistence.

Taken together, these results indicate which economies should cause researchers to ex-
ercise more caution when extrapolating from observed changes at shorter horizons: those
with a more back-loaded, persistent adjustment due to higher technology-skill specificity or
lower costs of skill investment. Such extrapolations will miss most of the inequality decline
and the output increase that happens at longer horizons. Therefore, they will understate the
average welfare benefits and overstate the lifetime welfare inequality increases. Finally, these
results also illustrate the risks of directly extrapolating from past episodes where the nature
of technologies and skills involved, as well as educational institutions, may have differed.

In the second part of the paper, we empirically assess the role that our two main the-
oretical mechanisms play in the adjustment of economies to recent cognitive-skill-biased
technological innovations. We start by connecting the parameters governing technology-
skill specificity and the cost of skill investment to observable dynamic responses of worker
allocations within and between generations. We do so by exploiting the closed-form expres-
sions for the economy’s transitional dynamics. Intuitively, for older generations of workers
with a given skill distribution, the innovation-induced employment reallocation is larger if
skills are less specific to each technology (i.e., η is higher). Relative to older generations,
younger workers adjust their skills in response to the technological innovation. This gen-
erates between-generation differences in relative employment that are larger whenever the
cost of investing in skills is lower (i.e. ψ is higher).

We then explore this insight to provide three pieces of evidence indicating that these
two separate mechanisms are relevant to understand the economy’s adjustment to the recent
arrival of cognitive-biased technologies.3 First, we analyze the employment trends in nine
broad occupation groups in eighteen developed countries. We document that, in all coun-
tries, employment growth in the three most cognitive-intensive occupations was stronger

3Our approach follows an extensive literature documenting that the recent arrival of new technologies in the workplace,
like the computer and the internet, augmented the productivity of jobs intensive in cognitive and analytical tasks while
substituted jobs intensive in routine tasks —e.g. Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn
(2013), Akerman, Gaarder, and Mogstad (2015), Acemoglu and Restrepo (2017), and, for a review, Acemoglu and Autor
(2011).
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for younger workers than for older workers. Second, we use microdata to provide a more
detailed investigation of these responses in Germany. Controlling for a number of confound-
ing factors, we show that employment and payroll grew more in occupations that require
more time spent performing cognitive-intensive tasks. We find that the effect of cognitive
intensity on these variables is strong for younger generations, but weak for older genera-
tions. Finally, following Falck, Gold, and Heblich (2014), we use pre-determined conditions
of the German telephone network to obtain quasi-experimental variation across regions in
the adoption timing of broadband internet in the early 2000s. By comparing late to early
adopting regions, we estimate causal impulse response functions that show an increase in
the relative employment and payroll of more cognitive-intensive occupations starting after
2005. The estimates are again different for older and young generations. The impact on
relative employment is small and nonsignificant for older generations at all horizons, but it
is positive and statistically significant for younger generations.

In sum, the three pieces of evidence suggest that cognitive-skill specificity is high and
that the supply of cognitive skills is elastic at longer horizons. As discussed before, this is
precisely the environment that is likely to lead to substantial welfare biases from ignoring
the slow adjustment across generations. To quantify this, we parameterize our model to
match our estimated dynamic responses for Germany. We consider a skill-biased innovation
that increases the cognitive-intensive technology’s employment share from 20 percent to 50
percent across long-run equilibria. This is about the range of cognitive-intensive employ-
ment shares across developed economies. We find that the consumption equivalent average
welfare increase across all generations is 46 percent and the lifetime welfare inequality in-
crease is 39 percent. We then compare these figures to those obtained by calculations that
ignore the adjustment across generations. If we assumes that changes observed at impact are
permanent, we find a lower average welfare increase of 31 percent and a larger inequality
increase of 76 percent. If we assume that changes observed in the long-run were permanent
and happened at impact, we instead find a higher average welfare increase of 55 percent
and a lower inequality increase of 30 percent. These biases are much smaller in economies
with lower skill-specificity or higher cost of skill investment because the economy’s adjust-
ment is much less persistent due to the smaller differences in the skill-distribution across
generations.

Related literature. Our paper is related to several strands of the literature. A long litera-
ture has analyzed the labor market consequences of technological innovations. We depart
from the canonical framework in Katz and Murphy (1992) by modeling the supply of skills
across technologies at different time horizons. Specifically, given the skill distribution at any
point in time, the short-run skill supply to each technology arises from the static sorting
decision of workers. This static assignment structure has been used in a recent literature
analyzing how labor markets respond to a variety of shocks – e.g, Costinot and Vogel (2010),
Acemoglu and Autor (2011), Hsieh, Hurst, Jones, and Klenow (2013), Burstein, Morales, and
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Vogel (2016), and Adão (2016). In addition, our theory entails slow-moving changes in skill
supply that arise from the entry of young generations with different skills than those of pre-
vious generations, as in Chari and Hopenhayn (1991), Caselli (1999) and Galor and Moav
(2002).4 We show that the combination of these features yields tractable expressions for the
equilibrium dynamics that resemble a q-theory of skill investment. We exploit the parsimony
of our theory to establish that higher levels of technology-skill specificity and long-run skill
supply elasticity generate slower adjustments following skill-biased innovations. We then
link the two margins of skill supply in our theory to observable dynamic responses of labor
market outcomes within and across generations. Our empirical application indicates that
separately allowing for these two forces is important in the context of the recent experiences
of developed countries, in general, and Germany, in particular.

The main source of dynamics in our theory is the endogenous change in the supply of
technology-specific skills over time. Several papers have proposed alternative sources of dy-
namics to study the transition following technological innovations, including sluggish labor
mobility across sectors (Matsuyama, 1992), technology diffusion across firms (Atkeson and
Kehoe, 2007), firm-level investment in R&D (Atkeson, Burstein, and Chatzikonstantinou,
2018), endogenous creation of new tasks for labor in production (Acemoglu and Restrepo,
2018), and permanent changes in the returns to wealth accumulation following increases in
automation (Moll, Rachel, and Restrepo, 2019). Our paper complements this literature by
analyzing empirically and theoretically how the endogenous dynamics of skill heterogeneity
across generations affects the economy’s adjustment to skill-biased technological innova-
tions.

An extensive literature has estimated the distributional consequences of new technologies
– for a review, see Acemoglu and Autor (2011). Our empirical analysis follows the litera-
ture showing the impact of new technologies on occupations with different task intensity –
e.g., Autor, Levy, and Murnane (2003), Autor and Dorn (2013) and Acemoglu and Restrepo
(2017). As in Akerman, Gaarder, and Mogstad (2015), we exploit regional characteristics to
estimate the labor market consequences of broadband internet adoption. While they focus
on the impact of this technology on the educational composition of employment in Norwe-
gian firms, we estimate its effect on the occupation composition of employment in German
regional labor markets. Similar to Card and Lemieux (2001) and Autor and Dorn (2009), we
find that the impact of new technologies varies across worker generations. We complement
this literature by showing that such short-run empirical analysis alone may miss part of the
impact of new technologies on average welfare and lifetime inequality in economies with
high technology-skill specificity, but it is an essential input in the measurement of the main
mechanisms in our theory that control the transitional dynamics triggered by the arrival of

4Recent papers have documented that demand-driven shocks in relative wages affect educational attainment decisions
– e.g., Atkin (2016) and Charles, Hurst, and Notowidigdo (Forthcoming). Our theory builds on the insight in Ben-Porath
(1967) that workers make the bulk of their skill investment early in the life cycle, implying that young workers have a
higher elasticity to changes in relative wages than old workers (e.g., Lee and Wolpin (2006)).
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new technologies.
Our paper is also related to the literature analyzing structural transformation in the form

of long-run worker reallocation across sectors – e.g., Ngai and Pissarides (2007), Buera and
Kaboski (2012), Herrendorf, Herrington, and Valentinyi (2015) and, for a review, Herrendorf,
Rogerson, and Valentinyi (2014). Recently, Young (2014) and Lagakos and Waugh (2013)
show that endogenous skill-sector sorting affects the process of structural transformation.
Moreover, a number of papers have also emphasized the adjustment across generations.
Kim and Topel (1995) document that the expansion of the manufacturing sector in Korea
was driven almost entirely by new, young entrants to the labor force. Porzio and Santangelo
(2019) document substantial variation across countries in the extent to which the realloca-
tion out of agriculture happens within- or between-cohorts. Hobijn, Schoellman, and Vindas
(2019) also document that many countries exhibit large between-generation differences in
worker reallocation between agriculture, manufacturing and services. Relative to this liter-
ature, we make three contributions. First, we provide a tractable theory to analyze the role
of skill heterogeneity within and across generations in the transitional dynamics following
technological innovations. Second, we estimate impulse response functions to a technologi-
cal innovation in Germany and show how they discipline the key parameters of our theory.
Third, we point out which features of the economy (e.g., technology-skill specificity) lead to
slow adjustment dynamics and, as result, large biases from welfare calculations that ignore
them.

Outline. Our paper is organized as follows. Section 2 presents our model and establishes
the q-theory representation of its equilibrium. In Sections 3 and 4, we analyze the dynamic
adjustment to skill-biased technological innovations. The welfare consequences implied by
our theory are evaluated in Section 5. Section 6 links our theory to responses in observ-
able outcomes for different generations of workers. It then presents our empirical analysis.
Section 7 shows our quantitative analysis. Section 8 concludes.

2 A Model of Skilled-biased Technological Transitions

We consider a closed economy in continuous time. There is a single final output whose
production uses the input of two intermediate goods. The production technology of each
intermediate good requires workers to perform a technology-specific task bundle. We denote
the two technologies as high-tech (k = H) and low-tech (k = L). There is a continuum of
worker skill types, i ∈ [0, 1]. The skill type determines the worker’s productivity with each
production technology.
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Final product. Production of the final product is a CES aggregator of the two intermediate
inputs:

Yt =
[
(AtYHt)

θ−1
θ + (YLt)

θ−1
θ

] θ
θ−1 (1)

where θ > 0 is the demand elasticity of substitution between the low-tech and the high-tech
intermediate inputs, and At is a shifter of the relative productivity of the high-tech input (as
in Katz and Murphy (1992)).

Conditional on the price of intermediate inputs, the cost minimization problem of firms
producing the final good implies that the relative spending on the high-tech input is

yt =

(
ωt

At

)1−θ

, (2)

where ωt ≡ ωHt/ωLt is the relative price of the high-tech input. We normalize the price of
the low-tech input to one, ωLt ≡ 1.

We consider a competitive environment, so that profit maximization implies that the
equilibrium price of final output is

Pt = (1 + yt)
1

1−θ . (3)

Assignment of skills to technologies. We assume that a worker’s skill type determines
her productivity with the two technologies in the economy. For a worker of type i, α(i) is
the overall productivity and σ(i) is their differential productivity in high-tech production.
Specifically, we assume that the production function of the low-tech input is

XLt =
∫ 1

0
α(i)sLt(i)di, (4)

and that of the high-tech good is

XHt =
∫ 1

0
α(i)σ(i)sHt(i)di, (5)

where skt(i) is the density function of workers employed with technology k at time t.5

We assume a competitive labor market with zero profit in low-tech and high-tech pro-
duction. In equilibrium, the wage rates of skill type i with the H and L technologies are
respectively given by

wHt(i) = ωtσ(i)α(i) and wLt(i) = α(i). (6)

As in Roy (1951), workers self-select across technologies to maximize labor income. Thus,
5Appendix D.1 provides a microfoundation for the production functions in (4)–(5). In this environment, production

of each good combines the output of workers where each worker’s output is a Cobb-Douglas function of “cognitive" and
“non-cognitive" tasks performed on the job. Production of the H and L goods require different bundles of cognitive and
non-cognitive tasks. The function σ(i) is determined by each skill-type’s ability to perform task bundles.
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the wage of a worker with skill type i is

wt(i) = max{ωtσ(i), 1}α(i). (7)

Equation (7) determines the labor income of workers of type i. It is the result of a max-
imization problem in which skill types select the technology they will work with. As dis-
cussed in detail below, the implied assignment of skill types to technology plays a central
role in determining the economy’s adjustment to technological shocks. Equation (7) illus-
trates that such an assignment depends on the endogenous price ωt defining the relative
value of one unit of effective labor employed in high-tech production, as well as the exoge-
nous function σ(i) defining the differential productivity of type i in high-tech production.
Without loss of generality, we assume that σ(i) is increasing; that is, we order types such that
high-i types have a higher relative productivity in high-tech production. Recent papers have
considered a similar structure of endogenous sorting of workers to different technologies –
e.g., Acemoglu and Autor (2011), Costinot and Vogel (2010), Adão (2016).

In our theory, ωt is a natural measure of inequality as it is the endogenous relative wage
rate of skill types employed in different technologies conditional on their productivity. In
what follows, we will refer to ωt as the relative technology-specific wage or, sometimes,
simply as the relative wage. However, it is important to notice movements in ωt are not
perfectly aligned with movements in the relative labor income of high-tech employees. As
pointed out by Heckman and Honore (1990), the endogenous assignment problem in (7)
implies that high-tech relative labor income may change due to changes in the “selection” of
skill types employed in high-tech production – that is, changes in the average σ(i) and α(i)
of types employed with the H technology. Adão (2016) shows that, depending on the shape
of α(i), these selection forces may amplify or offset the impact of ωt on the average income
of high-tech employees.

Skill investment. We consider an overlapping generations setting in which the birth and
death of workers follows a Poisson process with rate δ.6 At each point in time, workers use
their labor earnings to purchase the final good. Utility is the present value of a logarithmic
flow utility discounted by a rate ρ. For a worker of type i born at time t, lifetime utility is

Vt(i) =
∫ ∞

t
e−(ρ+δ)(s−t)log

(
ws(i)

Ps

)
ds. (8)

Crucially, as in Chari and Hopenhayn (1991) and Caselli (1999), we allow workers to
acquire different skills at birth taking into account the value of future earnings streams.
Given the future path for the wage distribution {ws(i)}s>t, workers born at time t can pay a
utility cost to select a lottery s̃t(i) over skill types. If they do not pay the cost, their type is
drawn from an exogenous distribution of innate ability, s̄t(i). A worker’s type is then fixed

6In Appendix Section ??, we consider an extension where population grows because the birth and death rates differ.
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during their lifetime.
Formally, we assume that the cost of the lottery is proportional to the Kullback-Leibler

divergence between the lottery s̃t(i) and the baseline distribution s̄t(i):

1
ψ

∫ 1

0
log (s̃t(i)/s̄t(i)) s̃t(i)di, ψ > 0.

Thus, the skill investment problem is

max
s̃t(.):

∫ 1
0 s̃t(i)di=1

∫ 1

0

(
Vt(i)−

1
ψ

log
(

s̃t(i)
s̄t(i)

))
s̃t(i)di. (9)

The parameter ψ governs the cost of targeting particular skill types. In the limit when
ψ→ 0, the cost of targeting a particular skill-type is infinite and the economy’s skill distribu-
tion does not respond to changes in the lifetime earnings of different skill types. Whenever
ψ > 0, the optimal lottery s̃t(i) endogenously responds to the relative present discounted
value of different skill types, Vt(i).

Equilibrium. The assumption that only new generations choose a skill lottery implies that
the evolution of the skill distribution st(i) follows the Kolmogorov-Forward equation,

∂st(i)
∂t

= −δst(i) + δs̃t(i). (10)

Finally, the economy’s equilibrium must satisfy market clearing for all t. By Walras law,
it is sufficient to only consider the relative demand and supply of the high-tech intermediate
input:

yt = ωtxt (11)

where yt is given by (2) and xt is the ratio of the high- to low-tech production from (4)–(5).

Definition 1 (Competitive Equilibrium) Given an initial skill distribution s0(i) and a path for
the exogenous {At, s̄t(i)}t≥0, a competitive equilibrium is a path of the technology-skill assignment
{Gt(i) : i ∈ [0, 1] → {H, L}}t≥0, the skill distribution {st(i)}t≥0, the skill lottery {s̃t(i)}t≥0,
the relative value of output {yt}t≥0, the relative technology-specific wage and ideal price index
{ωt, Pt}t≥0, such that

1. Given ωt, the technology-skill assignment is given by workers self-selection decisions according
to (7).

2. Given {ωt}t≥0, the skill lottery is given by the skill investment decisions of new generations
according to (9).

3. Given s0(i)) and {s̃t(i)}t≥0, the skill distribution satisfies the Kolmogorov-Forward equation
(10).

4. The ideal price index is given by (3).

9



5. For all t ≥ 0, the technology-skill assignment, the skill distribution, the relative value of output,
and the relative wage satisfy the market clearing conditions (11).

Discussion. A number of comments on the assumptions and their economic interpretation
are in order. There are admittedly three strong assumptions that we make for simplicity
and tractability. The first is that s̄t(i) is exogenous. The second is that only new incoming
generations can invest in skills in response to changes in relative wages. Old generations
may only respond to such wage changes by moving across technologies but not by changing
their skill-type. The third is that skill investment has an uncertain outcome represented by
the skill lottery s̃(i) whose cost takes the particular functional form in (9).

As can be seen from (10), the first and second assumptions imply that the flow of new
workers to a particular point in the skill distribution is independent of the current skill
distribution. This simplifies the law of motion of the skill-distribution and allows us to
characterize its dynamics in general equilibrium. In Appendix Section ??, we relax both as-
sumptions. First, we endogenize s̄t(i) by considering an extension where workers can “learn
from others." Specifically, we assume that s̄t(i) depends on the current skill distribution in
a way that makes it is easier for workers to target skills that are already abundant. Second,
we allow old generations to re-optimize their skill investments as well. We show that what
is important for our main results is that the cost of skill investment is lower for younger
generations when compared to that of older generations. It is not essential that this cost is
infinite for older generations, as in our baseline specification.

Our preferred economic interpretation of these assumptions is that changes in relative
wages may induce older workers in the labor market to switch towards sectors or occupa-
tions that require similar skills and may thus entail minimal re-training. Older workers face
a high cost to fundamentally change career paths by acquiring completely different skills.
Yet, for younger workers, such skill investments are less costly due to lower opportunity cost
or higher ability to learn new skills.7 For tractability, we collapse these investments that in
reality occur either through formal schooling or on-the-job into a one-time decision upon
entering the market.

Regarding the third assumption, we make it purely for reasons of tractability. Different
than in theories of uni-dimensional human capital investment, workers in our theory can
direct their investments to target specific skill types in the continuum of existing skills.
Yet, mathematically, this directed skill investment problem is in principle substantially more
complex. As we will see below, the uninsurable uncertainty in the skill investment of ex-ante
identical individuals simplifies the directed skill investment problem. This allows us to analyze
the consequences of technology-skill specificity for the economy’s dynamic adjustment to
technological innovations.

Our preferred interpretation for the uncertainty of the skill-type realization is that in-
7In line with this interpretation, Lee and Wolpin (2006) show that older workers exhibit much lower mobility across

occupations and sectors than younger workers.
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dividuals with different unobservables may have heterogeneous returns to education and
on-the-job training. This is in fact consistent with the evidence in Carneiro, Heckman, and
Vytlacil (2011). Our model treats this heterogeneity in unobservables through the uncertainty
of the type realization.

Our analysis is also simplified by the choice of the entropy cost function of skill invest-
ment. This function has a long tradition in macroeconomics. It has been used to tractably
compare the distance between distributions – e.g., in frameworks with rational inattention
(Sims (2003)) and model uncertainty (Hansen and Sargent (2008). As discussed later, this
function yields the continuous type analog of the skill acquisition solution in an environment
in which worker’s ability to acquire a discrete number of skills follows a Type 1 extreme-
value distribution.8 In our theory, the combination of a continuum of skill types, continuous
time, and the entropy cost function implies that the dynamic adjustment of all outcomes is
smooth along the equilibrium path. This allows us to sharply characterize the economy’s
transitional dynamics following technological innovations in general equilibrium.

2.1 Static and Dynamic Equilibrium Conditions

We now proceed to derive equilibrium conditions in two steps. First, we consider static con-
ditions that, given the skill distribution st(i) at time t, determine the assignment of workers
and the relative wage and value output of the high-tech input, {ωt, yt}t. Second, we con-
sider dynamic conditions that, given the path of the relative wage {ωt}t≥0, determine the
optimal skill lottery chosen by entering generations {s̃t(i)}t≥0 and thus the evolution of the
skill distribution {st(i)}t≥0.

Static equilibrium conditions. The endogenous sorting decision in (7) determines the as-
signment of skill types to technologies. It implies that types self-select to work with the
technology that yields the highest labor earnings. Thus, high-i (low-i) types receive higher
relative earnings in high-tech (low-tech) production and choose to be employed with that
technology. Since σ(i) is increasing, the assignment is described by a threshold lt charac-
terizing the type that is indifferent between working with any of the two technologies. The
following lemma formalizes this discussion.

Lemma 1 (Equilibrium Assignment) Worker types i ≤ lt are employed in low-tech production
with labor income of wt(i) = α(i). Worker types i > lt are employed in high-tech production with
labor income of wt(i) = ωtσ(i)α(i). The threshold is determined by the indifference condition

ωtσ(lt) = 1. (12)

Lemma 1 links the relative wage ωt to the allocation of skill types across technologies.
Condition (12) is central to understand the impact of technological shocks on the allocation

8With a discrete number of skill types, our specification yields skill choices that are isomorphic to those implied by a
discrete-choice problem a la McFadden et al. (1973). It can thus be seen as a generalization of this framework when there is
a continuous of available choices.
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of workers across technologies. The slope of σ(lt) determines the strength of the comparative
advantage in high-tech production of skill types slightly above lt compared to that of skill
type lt. Thus, as shown by Acemoglu and Autor (2011) and Costinot and Vogel (2010), it
essentially determines how much relative wages must change to induce the reallocation of
skill types above lt. Accordingly, the inverse elasticity of σ(i) controls the mass of skill types
that reallocate across technologies in response to changes in the relative wage. Formally, (12)
implies that

η ≡
∣∣∣∣∂ log lt(ωt)

∂ log ωt

∣∣∣∣ = (∂ log σ(lt)
∂ log i

)−1

.

where lt(ωt) is the implicit function defined by (12). Since the economy’s skill distribution
does not adjust instantaneously, the inverse elasticity of σ(i) plays the role of short-run skill
supply across technologies. In the rest of the paper, we refer to the elasticity of σ(i) (i.e.,
1/η) as the technology-skill specificity.

The technology-skill assignment in Lemma 1 determines the relative supply of high-
tech production as a function of the threshold lt. Conditional on the skill distribution st(i),
equations (4)–(5) imply that the relative supply is

xt(lt, st) =

∫ 1
lt

σ(i)α(i)st(i)di∫ lt
0 α(i)st(i)di

. (13)

The threshold lt is then determined by the market clearing condition in (11). Whenever
lt is high, equation (12) implies that ωt is low and, therefore, the relative demand for input
H is high. In this case, however, the relative high-tech supply is low as only a small share
of types are employed in high-tech production. Whenever lt is low, the opposite is true. In
equilibrium, relative demand and supply are equalized. The following lemma formalizes
the existence of a unique equilibrium threshold for lt for any given distribution st(i).

Lemma 2 (Equilibrium Threshold) Given st(i) and At, there is a unique equilibrium threshold lt
which is the solution to

Aθ−1
t σ(lt)θ

∫ lt

0
α(i)st(i)di =

∫ 1

lt
α(i)σ(i)st(i)di, (14)

Proof. See Appendix A.1.

Dynamic equilibrium conditions. We now turn to the entrant’s forward-looking problem
of choosing their skill lottery s̃t(i) conditional on the future path of the relative technology-
specific wage {ωs}s>t. The solution of the maximization problem in (9) immediately yields
the following optimal lottery.

Lemma 3 (Optimal Lottery) Define log (Qt(i)) ≡
∫ ∞

t e−(ρ+δ)(s−t) max{log (ωsσ(i)) , 0}ds. The
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optimal lottery is

s̃t(i) =
s̄t(i)α(i)

ψ
ρ+δ Qt(i)ψ∫ 1

0 s̄t(j)α(j)
ψ

ρ+δ Qt(j)ψdj
. (15)

Proof. See Appendix A.2.

The optimal lottery in (15) is a multinomial logit function over a continuum of types. It
shows that the investment on high-i types is a function of the present value of the relative
wage in high-tech production as captured by Qt(i). The parameter ψ governs the sensitivity
of the optimal lottery to changes in relative lifetime earnings. To see this more clearly,
consider the stationary equilibrium with ωt = ω such that

s(i) = s̃(i) =
s̄(i)W(i)ψ∫ 1

0 s̄(j)W(j)ψdj
(16)

where log(W(i)) = log(α(i)max{ωσ(i),1})
ρ+δ is the present discounted log-wage of skill type i.

In this case, the skill distribution is a constant-elasticity function of relative wages across
types, where the elasticity is ψ.9 Thus, a higher ψ implies that the long-run supply of high-i
types is more sensitive to changes in the relative wage in high-tech production. Accordingly,
ψ governs the long-run skill supply across technologies, which we formally define as

ψ ≡ ∂ log s(i)/s(i′)
∂ log W(i)/W(i′)

.

In the rest of the paper, we refer to 1/ψ as the cost of adjusting skill investment, which is
inversely related to the long-run skill supply across technologies.

2.2 Skill-distribution Dynamics: a q-theory of skill investment

We now combine the static and dynamic equilibrium conditions to solve for the equilibrium
path of the skill-distribution as well as all other equilibrium variables, given an arbitrary
initial skill distribution s0(i) and a constant path for {At, s̄t(i)}t≥0.

In principle, this involves solving a a complex infinite-dimensional fixed-point problem.
To see this, consider a conjectured path for the relative technology-specific wages ({ωt}t≥0).
This path determines the skill-investment decisions of new generations being born from (15)
and, as such, a path for the skill-distribution from (10) given an initial skill distribution.
Furthermore, the path of relative wages determines a path for the assignment of workers
to the two technologies ({lt}t≥0) from the indifference condition (12). Taken together, the

9Notice that the long-run equilibrium of our model is a generalization with a continuum of types of the extension of the
assignment model in Acemoglu and Autor (2011) with endogenous skill supply – see Section 4.6 in Acemoglu and Autor
(2011). In our framework however, along the transitional equilibrium, the skill distribution differs from the stationary skill
distribution.
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skill-distribution and the assignment threshold determine the relative supply of the high-
tech input ({xt}t≥0). In an equilibrium, the relative supply of the high-tech input needs to
be equal to its relative demand at the the conjectured path for relative wages, i.e., they need
to be consistent with market-clearing.

Our first result approximates the solution of this fixed-point problem by considering a
log-linear expansion around the stationary equilibrium. It establishes that the approximate
equilibrium of this economy can be represented as a q-theory of skill investment, where q
refers to the present discounted value of the log-relative wage or, as we call it from now on,
lifetime welfare inequality:10

log(qt) ≡
∫ ∞

t
e−(ρ+δ)(s−t)log(ωs)ds

Specifically, we show that one need not keep track of the whole skill-distribution in order
to solve for the equilibrium path of relative wages and the assignment threshold. This
significantly reduces the dimensionality of the fixed-point problem. Instead, the approximate
equilibrium path for the skill distribution is only a function of qt an the assignment threshold
threshold lt. The equilibrium dynamics of these two variables are in turn described by a
simple system of linear differential equations.

Letting " ˆ " denote variables in log-deviations from the stationary equilibrium, the fol-
lowing proposition presents the system of differential equations that, given l̂0,11 determines
the equilibrium path of {q̂t, l̂t} when {At, s̄t(i)}t≥0 are constant over time. The corollary then
characterizes the approximate dynamics of the skill-distribution ŝt(i), the optimal skill lot-
tery ˆ̃st(i) and relative value of output ŷt, given the equilibrium path for q̂t, l̂t and the initial
skill-distribution s0(i).

Proposition 1 (q-theory of Skill Investment) Suppose that {At, s̄t(i)}t≥0 are constant over time.

1. Given initial condition l̂0 and terminal condition limt→∞ l̂t = 0, the equilibrium dynamics of
{q̂t, l̂t} are described by the system of differential equations

∂l̂t
∂t

= −δl̂t +
ηψ

θ + κη
δq̂t (17)

∂q̂t

∂t
= (ρ + δ)q̂t +

1
η

l̂t, (18)

where κ > 0 is a constant.

2. The equilibrium {q̂t, l̂t}t≥0 is saddle-path stable and given by:

l̂t = l̂0e−λt and q̂t = ζ l̂t (19)

10Remember that log(ωt) is a natural measure of welfare inequality at a given point in time since it captures the relative
log-wage of skill types employed in different technologies conditional on their productivity.

11Note that an initial l0 is determined by the initial skill-distribution from the static equilibrium condition (14).
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where

λ = −ρ

2
+

√(ρ

2

)2
+ δ

(
(ρ + δ) +

ψ

θ + κη

)
and ζ = − 1

η

1
ρ + δ + λ

Proof. See Appendix A.3.

The first part of the proposition presents a system that is a rather standard one in macroe-
conomics. The assignment threshold, l̂t, is a state variable whose law of motion needs to be
solved backward. The present discounted value of relative technology-specific wages, q̂t, is a
control variable whose law of motion needs to be solved forward. The system is in fact math-
ematically isomorphic to the q-theory of capital investment (Tobin, 1969, Hayashi, 1982). In
our model, however, q̂t is the present discounted value of the relative wage of the high-tech
input. In other words, it is the shadow price of the human capital "asset" associated with
having one additional unit of high-tech good. Whenever this price is higher, the incentives
to invest in high-i skills are stronger. As entering generations replace old ones at rate δ, this
increases the relative supply of high-tech input and decreases its relative price over time.

As in the seminal q-theory, parameters governing the costs of adjustment in the economy
(i.e., δ and ψ) affect the sensitivity of changes in the assignment threshold ∂l̂t

∂t to q̂t. However,
our model features both imperfect substitution of human capital across technologies and
heterogeneous skills. Thus, the impact of qt on the evolution of lt also depends on the
degree of technology-skill specificity (as measured by η) and the substitutability of inputs
(as measured by θ).

The second part of the proposition shows that (locally) the equilibrium exists and is
unique—a consequence of saddle-path stability. Given an initial condition l̂0, both l̂t and q̂t

converge at a constant rate of λ to the stationary equilibrium. The expressions in (19) show
that, whenever l̂0 < 0, the assignment threshold lt increases and qt decreases along the equi-
librium path. In this case, the high value of q0 at time zero (i.e., q̂0 < 0) induces investment
in high-i types, which increases the supply of the high-tech good and, consequently, reduces
its relative value. The decline in ωt over time implies that only relatively higher i types find
it profitable to sort themselves into the high-tech sector, raising the threshold lt.

Having characterized the equilibrium dynamics of q̂t and l̂t, the following corollary
characterizes the approximate dynamics of the remaining supply-side variables: the skill-
distribution, the optimal skill-lottery, and the relative value of high-tech output.

Corollary 1 (Supply Dynamics) Given ŝ0(i) and the equilibrium path for {l̂t, q̂t}t≥0, the equi-
librium dynamics of the skill distribution ŝt(i), the optimal lotteries ŝt(i), and the value of relative
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high-tech output ŷt are approximated by:

ˆ̃st(i) =
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂t + ot(i) (20)

ŝt(i) = ŝ0(i)e−δt +
∫ t

0
eδ(τ−t) ˆ̃sτ(i)dτ (21)

ŷt = (θ − 1)
1
η

l̂t (22)

where ot(i) is such that
∫

s(i)ot(i)di = 0.

Proof. See Appendix A.4

Corollary 1 links the equilibrium path of the skill distribution and the assignment thresh-
old to the joint dynamics of {q̂t, l̂t}. The change in the optimal skill lottery in (20) along the
transition depends centrally on the evolution of the relative return of skills employed in the
high-tech production. In particular, changes in q̂t affect the relative lifetime earnings of types
employed in the H-technology. The parameter ψ controls the sensitivity of the optimal skill
investment to such changes. The overall skill distribution in (21) is then simply a population-
weighted average of the skill distributions of each generation. Since generations are born and
die at rate δ, the population share at time t of the initial generation is e−δt whereas entering
generation τ has a weight δeδ(τ−t). Finally, the value of relative high-tech output is driven by
changes in relative wages ω̂t = − 1

η l̂t. The sensitivity of such wage changes to changes in the
assignment threshold’s depends on the degree of technology-skill specificity controlled by
the short-run skill supply elasticity η. We obtain the expression in (22) because the demand
equation in (2) implies that ω̂t =

1
θ−1 ŷt.

One important implication of Proposition 1 is that the approximate equilibrium {q̂t, l̂t}t≥0

can be solved for without keeping track of the evolution of the whole skill distribution
st(i). Given {q̂t, l̂t}t≥0, Corollary 1 immediately yields the transitional dynamics of st(i).
This significantly reduces the dimensionality of state-space of the equilibrium’s fixed-point
problem. We achieve this by noticing that the dynamics of st(i) only depend on log(Qt(i)) =∫ ∞

t e−(ρ+δ)(s−t) max{log(ωsσ(i)), 0}ds via the optimal skill-lottery. Yet, as long as relative
wages are not too far from their stationary level along an equilibrium path, most worker
types never switch sectors. The only workers that do are those who are marginal. This
implies that the present discounted utility of skill-types far above the assignment threshold
only changes over time because the present discounted value of the relative wage changes
over time. That is, we have that log(Qt(i)) = log(qt) +

log(σ(i))
ρ+δ . Furthermore, the market-

clearing condition (14) determining the assignment lt only contains integrals of st(i). The
equilibrium characterization shows that, because of the continuum of skill types, the effect
of worker switches are of second order when evaluating such integrals. This then implies
that the approximate dynamics of lt depend only on log(qt) and not on the dynamics of the
full skill-distribution. Finally, since relative wages are fully determined by lt alone via the
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indifference condition (12), then log(qt) only depends on the future path of lt. This then
gives rise to the system of linear differential equations in (17)-(18).

3 The Adjustment to Skill-biased Technological Innovations

We now analyze the dynamic adjustment of our economy to a permanent, unanticipated
increase in the relative productivity A. Because this innovation increases the relative pro-
ductivity of workers with higher skill-types i that are sorted into the H sector, we refer to
it as a skill-biased technological innovation. We use the results from the previous section to
characterize in closed-form the dynamic responses of qt, lt and yt, as well as the evolution of
the skill distribution st(i). The dynamic responses show that the impact of new technologies
on the economy may significantly change over time due to the endogenous evolution of the
skill distribution across generations. The economy’s adjustment is thus shaped by a form
of Samuelson’s LeChatelier principle: the adjustment in the skill investment decisions of
incoming cohorts implies that the elasticity of relative output supply increases over time.

Our results formally establish the role that changes in the skill distribution across gener-
ations play in shaping the economy’s adjustment to technological innovations. It provides a
micro-foundation for the idea that supply elasticities are lower at shorter horizons compared
to longer horizons. In the rest of the paper, we show how this micro-foundation is useful for
understanding the determinants and implications of skill-biased technological innovations,
as well as point to the risks involved in using naive theories to extrapolate from either past
transitions or observed changes at short horizons.

3.1 Dynamic responses of equilibrium outcomes

We assume that immediately prior to the shock at time t = 0− the economy is in a sta-
tionary equilibrium. We let ∆ log(A) > 0 be the relative productivity shock, and denote
log-changes in equilibrium outcomes as ∆ log(qt) ≡ log (qt/q0−), ∆ log(yt) ≡ log (yt/y0−),
and ∆ log(lt) ≡ log (lt/l0−).

Proposition 2 (Dynamic responses) Given a skill-biased technological innovation ∆ log(A), the
dynamic responses ∆ log(lt), ∆ log(qt) and ∆ log(yt) are approximated by:

∆log(lt) = −
η

θ + κη

(
1 +

ψ

χ
(e−λt − 1)

)
(θ − 1)∆ log(A)

∆ log(qt) =
1
χ

(
1 +

λ− δ

δ
e−λt

)
(θ − 1)∆ log(A)

∆ log(yt) =

(
1 + κη

θ + κη
+

ψ

χ

θ − 1
θ + κη

(1− e−λt)

)
(θ − 1)∆ log(A)

where χ ≡
(

θ + κη + ψ
ρ+δ

)
(ρ + δ).
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Proof. See Appendix A.5.

The proposition shows that, when θ > 1, both yt and qt increase on impact and in
the long-run, whereas the assignment threshold lt falls. However, along the transition, qt

falls, and both lt and yt increase at rate λ. To derive these expressions, first note that the
results in Proposition 1 and Corollary 1 immediately yield the transitional dynamics right
after impact given an initial condition for l̂0 = log(l0/l∞). Then, to characterize the full
dynamic responses, we derive expressions for the short- and long-run changes implied by
the technological shock when s0(i) is the stationary distribution before the shock.

We are now ready to provide a unified account of the economy’s adjustment to a skill-
biased technological shock by combining this proposition with Corollary 1’s characterization
of the evolution of the skill distribution. Figure 1 provides a graphical illustration.

Figure 1: The economy’s adjustment to a skill-biased technological shock

The productivity increase causes an increase in the demand for workers in the high-tech
production. In equilibrium, the relative wage increases on impact (∆ log(ω0) > 0). This
causes workers of the old generation that had relatively low skill-types to enter the high-
tech sector (∆ log(l0) < 0). Along the transition, younger entering workers decide to invest
in high-i skills that are complementary to high-tech production in anticipation of higher
relative wages (as captured by ∆ log(qt) > 0). Then, the overall skill distribution changes
as older generations are replaced with younger generations at rate δ. This increase in the
mass of high-i workers expands the supply of high-tech output over time (∆ log(yt) > 0),
triggering a decline in the current and present discounted value of relative wages, ωt and qt,
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and an increase in the assignment threshold, lt. This implies that intermediate-i types that
initially entered the high-tech sector are displaced over time. Finally, compared to the initial
equilibrium of the economy, the new long-run equilibrium entails a higher relative wage and
output, and a larger mass of workers in the high-tech sector (driven both by a stationary skill
distribution with higher mass in high-i types and the lower assignment threshold).

3.2 LeChatelier Principle in Action: Supply and Demand Framework

To provide further intuition for the impulse response functions above, we connect our theory
to a supply and demand framework. At each point in time, the relative output and wage in
sector H solve the following system of equations:

∆log(xt) = (θ − 1)∆log(A)− θ∆log(ωt), (23)

∆log(xt) = ϕt∆log(ωt). (24)

The first expression is the “relative demand equation” in (2). As discussed above, it is the
cornerstone of the canonical model in Katz and Murphy (1992) and its extensions reviewed
by Acemoglu and Autor (2011). The demand equation relates changes in relative demand,
∆log(xt), to changes in relative productivity, ∆log(A), and relative wages, ∆log(ωt). In our
setting, θ plays the role of the elasticity of substitution between the output of skill types
employed with different technologies.

The second expression is the “relative supply equation" linking changes in relative output
supply, ∆log(xt), to changes in relative wages, ∆log(ωt). The parameter ϕt is the elasticity of
relative output supply, which is a function of the degree of skill-technology specificity and
the cost of adjusting skill investment. Specifically, Proposition 2 implies that

ϕ̃t =
κη + ψ

ρ+δ

(
1− θ

θ+κη e−λt
)

1 + ψ
ρ+δ

1
θ+κη e−λt

. (25)

At every point in time, the relative supply elasticity is positive, ϕt > 0. Importantly,
it is straight forward to show that this elasticity is increasing over time. Thus, our theory
exhibits a form of Samuelson’s LeChatelier principle: the elasticity of relative output supply
is higher over longer horizons. The higher elasticity in the long-run is a direct consequence
of the adjustment in the skill investment decisions of incoming cohorts in response to the
skill-biased technological innovation. As these new cohorts slowly take over the labor force,
the supply of skills to high-tech production slowly increases, implying a higher elasticity of
relative output supply over longer horizons.

We can now return to the impulse response functions in Figure 1. Since ϕt increases over
time, the same shock will generate stronger relative output responses and smaller relative
wage increases over longer horizons. Thus, as in Samuelson’s LeChatelier principle, the
initial impact of the shock becomes weaker over time.
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This discussion illustrates the risks of extrapolating from observed responses in the econ-
omy over any given horizon. To make this point clear, consider a researcher who knows θ

and obtains ϕT and ∆ log A from the estimated impact of a technological shock on relative
output and wages at horizon T.

Now suppose that the researcher uses these estimates to analyze the impact of techno-
logical innovations. It is clear that the time-varying nature of the reduced-form parameter
ϕt implies that predictions will be biased for any period other than T. Specifically, the
researcher’s predictions will overestimate (underestimate) inequality changes and underes-
timate (overestimate) relative output changes for any period after (before) horizon T. The
magnitude of the bias depends on the change in ϕt over time. In our theory, this is a function
of the parameters governing technology-skill specificity (η) and the skill investment cost (ψ).
Section 5 shows that failing to account for the transitional dynamics in ϕt also introduces
bias in the quantification of the average and distributional consequences of technological
innovations.

This researcher also faces another type of bias. Whenever the nature of the technology
or the underlying flexibility of skill investment is different, the parameters η and ψ will be
different, implying that the relative supply elasticity ϕT will also be different. This type of
concern is important even if the researcher matches the dynamics of ϕt from a particular
episode as these parameters affect the entire path of ϕt. Section 4 investigates how η and ψ

affect the transitional dynamics through their impact on ϕt at different horizons.

4 Determinants of Skill-biased Technological Transitions

In this section, we analyze how parameters governing technology-skill specificity and the
skill investment cost affect the economy’s adjustment to a skill-biased technological innova-
tion. This comparative statics exercises show why is it that some technological transitions
are different than others. They speak to past episodes (or future transitions) with differences
in the nature of technologies, skills, and educational institutions involved. Furthermore, they
highlight which classes of economies are associated with larger in differences in supply elas-
ticities at longer horizons and should thus give researchers more caution when extrapolating
from observed changes at shorter horizons.

4.1 Comparative Statics with respect to Technology-Skill Specificity (η)

Consider first how the economy’s impulse response functions respond to changes in technology-
skill specificity (i.e., how different skill types are in terms of relative productivity in the
high-tech sector). In our theory, specificity is inversely related to the short-run skill sup-
ply elasticity η. Thus, this exercise speaks to differences in the transitional dynamics across
events in which skills of incumbent workers were more or less easily transferable for use in
the new improved technology.
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The following proposition formally establishes how η affects different features of the
impulse response functions to skill-biased technological innovations.

Proposition 3 (Comparative statics with respect to η) Assume that θ > 1. Then,

1. Short-run adjustment

∂∆log(y0)

∂η
> 0,

∂|∆log(l0)|
∂η

> 0,
∂∆log(q0)

∂η
< 0

2. Long-run adjustment

∂∆log(y∞)

∂η
,

∂|∆log(l∞)|
∂η

> 0,
∂∆log(q∞)

∂η
< 0

3. Persistence

∂
(∫ ∞

0 |ŷt| dt
)

∂η
< 0,

∂
(∫ ∞

0

∣∣∣l̂t∣∣∣ dt
)

∂η

?

S 0,
∂
(∫ ∞

0 q̂tdt
)

∂η
< 0

Proof. See Appendix A.6.

To fix ideas, Figure 2 illustrates the results in Proposition 3 with the impulse response
functions of two economies.12 The black lines show the responses of an economy with a high
value of η (i.e., high short-run skill supply elasticity or low technology-skill specificity). The
blue lines show the responses of an economy with a low value of η (i.e., low short-run skill
supply elasticity or high technology-skill specificity).

In the short-run, when technology-skill specificity is higher (lower η), a smaller mass
of workers reallocate across technologies in response to the shock (as can be seen from
∂|∆log(l0)|

∂η > 0). As a result, the increase in relative wages (and lifetime inequality) on impact
is larger and the increase in relative output smaller. Then, the larger increase in relative
wages (current and future) implies that younger entering generations have stronger incen-
tives to invest in the skills that became more valuable. As a consequence, there are larger
differences in skill heterogeneity across generations. This then implies that the transitional
dynamics of yt and qt are less persistent, as measured by the cumulative impulse response
(e.g.,

∫ ∞
0 q̂tdt), because larger changes in the skill distribution take place as younger gener-

ations replace older generations. Finally, while the smaller changes in the skill distribution
could have implied a smaller (larger) overall long-run adjustment in relative output (life-
time inequality), it turns that the larger (smaller) short-run response dominates. Thus, the
long-run adjustment in relative output (lifetime inequality) is larger (smaller).

These results show that economies with higher technology-skill specificity feature over-
all smaller responses in relative output and larger responses in lifetime inequality at all

12The figure shows the case where the threshold’s cumulative impulse response increases with η.

21



Figure 2: Comparative statics with respect to η
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horizons, as well as a slower and more persistent adjustment path to the new long-run equi-
librium.

4.2 Comparative Statics with respect to Skill Investment Cost (ψ)

We now consider how the parameter ψ affects the economy’s adjustment to the technolog-
ical innovation in high-tech production. This comparative statics exercise illustrates how
economies with different costs of skill investment—and thus different degrees of long-run
skill supply elasticity—respond to skill-biased technological shocks over time. Thus, it
speaks to differences across historical episodes where young workers may have found it
easier to invest in skills in high demand due to, for example, better educational systems, the
availability of vocational training, or better opportunities to learn on the job.

Proposition 4 (Comparative statics with respect to ψ)

1. Short-run adjustment

∂∆log(y0)

∂ψ
= 0,

∂|∆log(l0)|
∂ψ

= 0,
∂∆log(q0)

∂ψ
> 0
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2. Long-run adjustment

∂∆log(y∞)

∂ψ
> 0,

∂|∆log(l∞)|
∂ψ

< 0,
∂∆log(q∞)

∂ψ
< 0

3. Persistence

∂
(∫ ∞

0 |ŷt| dt
)

∂ψ

∣∣∣∣∣
ψ=0

> 0,
∂
(∫ ∞

0

∣∣∣l̂t∣∣∣ dt
)

∂ψ

∣∣∣∣∣∣
ψ=0

> 0,
∂
(∫ ∞

0 q̂tdt
)

∂ψ

∣∣∣∣∣
ψ=0

> 0

Proof. See Appendix A.6.

Figure 3 illustrates Proposition 4 with a graphical representation of the impulse response
functions of two economies. The blue lines depict the adjustment of an economy with a
high value of ψ, and the black lines represent the responses of an economy with a low value
of ψ. Accordingly, the "black" economy is closer to a static model with an exogenous skill
distribution, since skill investment decisions do not change if 1/ψ is zero.

Figure 3: Comparative statics with respect to ψ
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The first part of Proposition 4 indicates that, in the short-run, both economies exhibit
identical responses in relative output and worker allocation. This follows from the fact that
ψ does not affect the self-selection decisions of generations born before the shock. However, a
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higher ψ attenuates the short-run increase in lifetime inequality because future relative wages
fall by more due to the larger increase in the future supply of high-i skills (as can be seen from
Lemma 1). The latter also implies that relative output (lifetime inequality) increases more
(less) in the long-run. Finally, because of the larger change in the skill distribution along the
transition, the persistence of both lifetime inequality and relative output are higher when ψ

is higher. Thus, economies with a larger long-run skill supply elasticity (lower cost of skill
investment) exhibit slower, more persistent adjustment in relative output and wages.

4.3 Discussion

The results above show that the dynamic adjustment differs in economies with lower levels of
technology-skill specificity (i.e., higher η) or skill investment cost (i.e., higher ψ). Increasing
either η or ψ yield similar qualitative implications in the long-run. In both cases, there is
a stronger long-run increase in relative output and a weaker long-run increase in lifetime
inequality. However, while a higher η reduces the adjustment’s persistence by front-loading
changes in all outcomes, a higher ψ increases the persistence of the transitional dynamics by
back-loading the response in relative output and relative wage.

To understand these differences, it is useful to return to the supply-demand representa-
tion of the economy’s adjustment introduced in Section 3.2. The different dynamic implica-
tions of changing η or ψ arises because the two parameters shape different horizons of the
reduced-form elasticity of relative output supply. As illustrated in Figure 4, higher values of
η and ψ increase the elasticity of relative supply in the long-run. However, the timing of the
increase in ϕt differs when the economy has a higher η or a higher ψ. Specifically, increasing
η flattens the path of ϕt, but increasing ψ steepens the evolution ϕt.

Figure 4: Effect of η and ψ on the elasticity of relative output supply (ϕt)

Intuitively, the different implications for the path of ϕt follow directly from the impact of
η and ψ on between-generation skill differences. A lower cost of adjusting skill investment
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(i.e., higher ψ) implies that, in response to the shock, it is easier for new generations to
adjust their skills, amplifying the distance between the skill distribution of new and old
generations. In contrast, a lower level of technology-skill specificity (i.e., higher η) makes it
easier for skill-types to reallocate across technologies in response to the shock. This reduces
the relative wage change and, therefore, the incentives of young workers to modify their skill
investment compared to that of old generations.

This discussion highlights that the shape and persistence of skill-biased technological
transitions varies across economies with different levels of technology-skill specificity or skill
investment cost. They establish which economies should cause researchers to exercise more
caution when extrapolating from observed responses at short horizons because increases in
relative output and decreases in relative wages are back-loaded. This is the case precisely
when technology-skill specificity is high and the skill investment cost is low. These results
also indicate that researchers should be cautious when making predictions based on lessons
from historical episodes in which the nature of technologies, skills, or education institutions
were different. Such features are likely to affect technology-skill specificity and/or skill
investment cost, causing the transition to be different.

4.4 Additional determinants of skill distribution dynamics

The theory so far has ignored a number of determinants of the dynamics of the skill dis-
tribution that shape technological transitions. We now consider three extensions that relax
some of the assumptions in our baseline model of Section 2. We leave a detailed description
of these extensions to Appendix E and briefly discuss their implications in the main text.

Our first extension considers a "learning-from-others" externality. Specifically, we relax
the assumption that the reference distribution s̄τ(i) in the skill investment problem is exoge-
nous and fixed over time. Instead, we assume that certain skills may be easier to acquire than
others because workers can "learn from others" when such skills are already abundant in the
economy. Formally, we assume that the baseline distribution s̄τ(i) is a geometric average of
a fixed distribution ε̄(i) and the current skill distribution in the economy sτ(i) at the time
where generation τ is born,

s̄τ(i) = sτ(i)
γε̄(i)1−γ, γ ∈ [0, 1). (26)

Note that as γ increases it becomes easier for workers to choose skill lotteries that put
more weight in those skill types that are already abundant in the economy. As opposed
to our benchmark case (γ = 0), this extension with γ > 0 introduces a backward-looking
element to the skill investment problem and complementarities in skill investment decisions
across generations.13 As we show in Appendix E, this yields a behavior qualitatively similar
to our baseline economy with a lower cost of skill investment ψ and a smaller death-rate δ.

13Similar to the complementarities in Chari and Hopenhayn (1991) with the exception that they are not internalized by
workers.
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Both these forces make the adjustment following a skill-biased innovation more persistent
and the long-run elasticity of yt higher and that of qt smaller.

Our second extension relaxes the assumptions that workers can only invest in new skills
upon birth. We allow an exogenous fraction of workers that were present before the skill-
biased innovation to re-optimize their skill investment "as if" they were a young generation
entering at time t = 0. The transitional dynamics and long-run responses are qualitatively
identical to our baseline economy. The key difference is that the short-run response of y and
l (of q) are larger (smaller) in magnitude and have lower persistence. Thus, compared to our
baseline economy, the impact of this extension on the transition is similar to that of reducing
the degree of technology-skill specificity (i.e., increasing η).

Our third extension allows for population growth by making the birth and death rates
different. We show that the convergence rate λ is increasing on the rate of population growth,
which implies lower persistence for all variables. The population growth rate does not affect
any variable in the long-run.

Finally, it is worth mentioning that none of these extensions qualitatively change our main
comparative statics with respect to η and ψ. Specifically, in all these extensions, the adjust-
ment persistence responds in a similar way to changes in either the degree of technology-skill
specificity or the cost of skill investment. However, the discussion above indicates that these
extensions affect the level of the adjustment’s persistence.

5 Welfare Analysis of Skill-biased Technological Transitions

We now evaluate the welfare consequences of skill-biased technological innovations. We
show how the economy’s transitional dynamics shape the innovation’s impact on average
welfare and lifetime inequality of different worker generations.

Our welfare measure is the ex-ante expected utility of individuals born at each point in
time. This is equivalent to the average across all individuals in a cohort of their discounted
lifetime utility. Given our log-utility assumption, we obtain the consumption-equivalent
utility by multiplying the ex-ante utility by (ρ + δ). In our setting, the ex-ante utility of a
worker cohort born at time τ is given by the solution of the utility maximization problem
in (9). Combining this solution with the expression for wages in (7), we can write the
consumption-equivalent utility of cohort τ as

Uτ = (ρ + δ)
∫ 1

0
s̃τ(i)

[
log
(

α(i)ρ+δQτ(i)
)
−
∫ ∞

τ
e−(ρ+δ)tlog (Pt) dt− 1

ψ
log
(

s̃τ(i)
s̄(i)

)]
,

where s̃τ(i) is the skill distribution of cohort τ, Qτ(i) is the present-discounted value of
max{log(ωtσ(i)), 0} defined in Lemma 3, and Pt is the ideal price index defined in (3).

In order to obtain a welfare measure for the economy, it is necessary to aggregate the
welfare of the different worker cohorts. We take an utilitarian approach by considering a
weighted sum of the ex-ante utility of different cohorts. Specifically, we define the economy’s
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discounted average welfare at t as

Ūt = r
∫ ∞

t
e−rτUτdτ.

Our social welfare function multiplies cohort τ’s ex-ante utility by a cohort-specific weight
of re−rτ. The parameter r captures the idea that the welfare of future generations may be
discounted at each point in time. To see this, it is useful to consider two extreme cases. When
r → ∞, the social welfare function completely ignores the welfare of all future cohorts. In
the other extreme, when r → 0, the social welfare function only gives positive weight to
generations born in the new stationary equilibrium.

We also consider the impact of the new technology on welfare inequality. Notice that
the relative wage is the only endogenous component of the relative earnings of skill types
employed in different technologies. This implies that it will be useful to define the lifetime
welfare inequality for cohort τ as the consumption-equivalent of the present discounted
value of the relative wage, (δ + ρ) log qτ. We again aggregate different worker cohorts by
defining the economy’s discounted lifetime welfare inequality at t as

Ω̄t = r(ρ + δ)
∫ ∞

t
e−rτ log(qτ)dτ.

We now use these measures to characterize the welfare consequences of the one-time
permanent change in A. As in Section 3, we assume that the economy is in a stationary
equilibrium before the shock at t = 0−, so that Ū0− = U0− and Ω̄0− = log(q0−). The
following proposition characterizes the induced changes in average welfare ∆Ū ≡ Ū0 −U0−

and lifetime inequality ∆Ω̄ ≡ Ω̄0 − log(q0−).

Proposition 5 (Average welfare and lifetime welfare inequality) The changes in average wel-
fare ∆Ū and lifetime inequality ∆Ω̄ are approximately:

∆Ū =
y∞

1 + y∞
∆ log(A)−

(
y∞

1 + y∞
− e∞

1 + e∞

)
∆Ω̄

∆Ω̄ = (ρ + δ)

(
∆ log(q∞) +

λr
r + λ

∫ ∞

0
q̂τdτ

)
where e∞ ≡

(∫ 1
l∞

s(i)di
)

/
(∫ l∞

0 s(i)di
)

is the relative H-specific employment in the new stationary
equilibrium.

Proof. See Appendix A.7.

The change in average welfare, ∆Ū, combines the impact of the shock on both the present
value of the cost of the final consumption good and the average lifetime earnings of workers.

27



Consider first the change in the price of the final good. Since the price of the low-tech good
is the numeraire, only changes in the cost of the high-tech good affect the price index. Such
an effect is proportional to the share of the H-good in the consumption bundle, y∞

1+y∞
. The

cost of the high-tech good itself changes for two reasons: (i) the exogenous technology shock
captured by the term y∞

1+y∞
∆ log(A), and (ii) the endogenous relative wage change captured

by the term y∞
1+y∞

∆Ω̄. In addition, the change in average welfare responds to the change in
the average lifetime earnings of workers. Again, since only the H-specific wage changes, the
change in average lifetime earnings is the product of the high-tech employment share, e∞

1+e∞
,

and the change in lifetime inequality, ∆Ω̄.
Proposition 5 indicates that inequality has a negative impact on welfare whenever the

H-technology accounts for a higher share of output than employment. Intuitively, in this
case, changes in the relative wages induce changes in the price index for everyone that are
larger than the increase in the average wage of those employed in the H-technology. In our
theory, this happens whenever the labor earnings of workers in the H-technology are above
the economy’s average labor earnings.14

Turning to the change in welfare inequality in the second part of the proposition, we can
see that ∆Ω̄ combines the long-run change and the persistence of changes in log(qt). The
relative importance of persistence is increasing in λ since it governs how fast lifetime in-
equality decays along the transition, and as such, between-generation differences in lifetime
inequality. When λ is higher, generations far in the future have similar lifetime inequality
to the initial generation. Then, because such future generations are discounted at rate r, the
average lifetime inequality across generations increases.

Discussion. Taken together, the results above highlight the importance of accounting for
the persistence of the transitional dynamics when evaluating the welfare consequences of
technological innovations.

To provide further intuition for this point, we illustrate the bias in welfare calculations
that ignore the economy’s transitional dynamics. We again rely on the supply-demand
representation of Section 3.2, and consider the same researcher that has estimates of θ and
ϕT. For any shock ∆ log(A), such estimates permit the calculation of the predicted change
in relative wage at time T, ∆ log ωT. By ignoring that ϕt changes over time, the researcher
assumes that this relative wage change is permanent and mistakenly computes the shock-
induced change in lifetime inequality as ∆Ω̄Static

T = (ρ + δ)∆ log qT = ∆ log ωT.
It is clear from the dynamics of log qt in Figure 1 that, in general, ∆Ω̄Static

T is different from
the true value of ∆Ω̄ in Proposition 5. The direction and magnitude of the bias depends on
the particular horizon T used in estimation: ∆Ω̄Static

T < ∆Ω̄ when T is large, but ∆Ω̄Static
T >

∆Ω̄ when T is low. To make this point explicit, consider the extreme case of T = 0, which
14Such a case arises if absolute advantage is positively correlated with the comparative advantage to operate the H-

technology – i.e., α(i) is increasing in i.
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yields the highest possible value of ∆Ω̄Static
0 = ∆ log ω0. In this case, the bias is

∆Ω̄Static
0 − ∆Ω̄ =

(
1 +

ρ + δ

r + λ

)
λ2
∫ ∞

0
q̂tdt > 0.

The fact that the bias is proportional to the persistence of inequality is intuitive. Longer
periods of inequality decline following the shock amplify the difference between the relave
wage at t = 0 and the present discounted value of the inequality change, ∆Ω̄. For any given
log(A), Proposition 5 immediately implies that the researcher underestimates the average
welfare gain of the new technology. Again, the size of this negative bias is increasing in the
persistence of the adjustment.15

6 Application: Cognitive-biased Technological Transitions

Our theoretical results establish that technology-skill specificity and skill investment cost
play a central role in the economy’s dynamic adjustment to skill-biased technological inno-
vations. In this section, we empirically assess the importance of these mechanisms in shaping
recent cognitive-skill-biased technological transitions. We start by connecting the parameters
of technology-skill specificity and skill investment cost to the employment adjustment of old
and young generations respectively. We then explore this insight to provide three pieces of
evidence indicating that these two separate mechanisms affected the transitional dynamics
following the recent arrival of new cognitive-biased technologies.

First, in 18 developed countries, employment growth in the most cognitive-intensive oc-
cupations was stronger for young workers than for old workers. Second, turning to a de-
tailed investigation of these responses in Germany, we show that in the cross-section of
occupations, growth of employment and payroll was increasing in the time spent perform-
ing cognitive-intensive tasks. We find that these responses are stronger for younger than
for older generations. Finally, we explore cross-regional variation in adoption timing to
obtain empirical impulse response functions to one cognitive-biased technological innova-
tion: the arrival of broadband internet in the early 2000s. We find that the impact on rela-
tive employment is small for older generations at all horizons, but increasing over time for
younger generations. These estimates suggest that, for recent cognitive-biased innovations,
technology-skill specificity is high, but the skill supply elasticity is larger at longer horizons.

15In Appendix D.2, we consider researchers taking alternative approaches that ignore the the dynamics of the skill
distribution across generations. In particular, we consider a researcher using a static assignment model (i.e., a version of
our model with ψ = 0) to analyze the impact of a new technology in an economy that behaves according to our theory
with ψ > 0. Similar biases in the welfare calculation arise when the researcher uses different procedures to match observed
changes in relative output and/or relative wages.
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6.1 Observable Predictions: Within- and Between-Generation Adjustment
of Labor Market Outcomes

This section links the model’s predictions to observable labor market outcomes. There
are three important challenges to design empirical specifications based on the impulse re-
sponse functions shown in Section 3. First, as discussed in Section 2, the endogenous skill-
technology assignment implies that the relative average labor income is different from the
relative wage ωt. This difference arises from changes in the "selection" of skill types em-
ployed in high-tech production implied by changes in ωt – that is, changes in the average
σ(i) and α(i) of types employed with the H technology.16 Second, as in the q-theory of cap-
ital investment, qt is a forward-looking variable whose measurement requires knowledge of
the entire equilibrium path of ωt. So, to construct qt, we would need to observe ωt along
the entire transition to the new stationary equilibrium. Finally, the direct measurement of
the skill distribution st(i) and the technology-skill assignment lt require taking an explicit
stance on observable attributes that determine worker skills in different activities (e.g., col-
lege graduation or occupation history). The empirical analysis is misspecified whenever the
chosen attributes do not completely determine the relative productivity of workers in the
two technologies.

Given these challenges, our empirical analysis focuses on observable responses in relative
payroll and relative employment across technologies. Specifically, we investigate whether
relative payroll yt slowly increases following the shock. As stated in Proposition 2, the
evolution of yt converges at rate λ. In addition, we use responses in relative employment
to indirectly investigate the underlying responses in the skill distribution, the relative wage,
and the assignment threshold. As we now show, the evolution of relative employment for
different worker generations is a function of the two main mechanisms in our theory: the
degree of technology-skill specificity, as captured by η, and the skill investment cost, as
captured by ψ.

Consider the same one-time permanent change in A at t = 0. We define older generations
as those born before period t = −x and younger generations as those born at period t = −x.
In period t ≥ 0, the relative high-tech employment of these worker generations are given by

eold
t =

∫ 1
lt

s0(i)di∫ lt
0 s0(i)di

and eyoung
t =

x̃0e−δt ∫ 1
lt

s0(i)di + δ
∫ t

0 eδ(τ−t) ∫ 1
lt

s̃τ(i)didτ

x̃0e−δt
∫ lt

0 s0(i)di + δ
∫ t

0 eδ(τ−t)
∫ lt

0 s̃τ(i)didτ
,

where x̃0 ≡ 1− e−δx is the population share of the young generation at t = 0.
For both worker groups, the technology-skill assignment is identical and determined by

the threshold lt. Notice that all workers of the old generations have the pre-shock skill
distribution, s0(i). However, the skill distribution of young generations combines the pre-

16Recent empirical applications of assignment models use functional forms for σ(i) and α(i) that yield identical dis-
tributions of labor income across technologies – for examples, see Hsieh et al. (2013) and Burstein, Morales, and Vogel
(2016).
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shock distribution, s0(i), and the post-shock lotteries, s̃τ(i). The overlapping generation
structure of the model implies that the relative share of workers in the young generation
with the pre-shock skill distribution decays at the constant rate δ.17

Relative employment of old generation: Technology-skill specificity. In Appendix A.8,
we show that the change in the relative employment of old generations is

∆ log eold
t ≈

η

θ + κη

1
eH

(
1− ψ

χ
(1− e−λt)

)
(θ − 1)∆ log A, (27)

where eH is the high-tech employment share at t = 0−.
Among old generations, the increase in the relative productivity of high-tech production

induces the reallocation of older workers towards high-tech production whenever θ > 1.
The expression indicates that this positive effect on relative high-tech employment becomes
weaker over time. As discussed in the previous section, this follows from the expansion of
high-i skills among younger generations, which displaces old workers with marginal skills
from high-tech production – i.e., those with skills i ∈ (l0, l∞).

Importantly, expression (27) shows that the magnitude of the increase in relative em-
ployment of older generations is decreasing in the degree of technology-skill specificity (i.e.,
increasing in η). To see this more clearly, consider the relative employment response of old
workers at t = 0:

∆ log eold
0

∆ log A
≈ η

θ + κη

θ − 1
eH

.

This expression indicates that, conditional on the shock size, a high η induces a large
short-run change in relative employment for older generations. In this case, skills in the
economy are easily transferable across technologies, so any change in the relative wage
induces a large reallocation of workers.

Relative employment of young generation: Skill investment cost. Turning to the employ-
ment response among young generations, Appendix A.8 also establishes that

∆ log eyoung
t ≈ ∆ log eold

t +
ψ

χ

1− e−λt

1− (1− x̃0)e−δt (θ − 1)∆ log A. (28)

This expression indicates that the evolution of the allocation of young workers has two
components. The first term captures the change in technology-skill assignment and, since
it is the only determinant of the relative employment of old generations, it can be approxi-

17We allow the young group to include workers born before the shock (since x ≥ 0). This circumvents the challenge of
identifying the cohorts that start adjusting their skills after the shock, which arises because, in practice, technologies may
not be adopted instantaneously and young workers may still invest on skills after entering the labor force (in the form of
vocational training or on-the-job learning). It is also possible to allow part of the workers born before the shock to adjust
their skills at t = 0. In this case, rather than s0(i), the initial skill distribution would be a mix of s0(i) and s̃0(i). This
extension does not alter our main qualitative insights, but reduces the magnitude of the short-to-long adjustment in the
economy.
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mated by ∆ log eold
t . The second term captures the change in the skill investment decision of

incoming cohorts. At each point in time, this term is positive as young workers distort skill
investment towards high-i skills that became more valuable in high-tech production. We can
also show that the between-generation difference grows shortly after the shock.

Expression (27) indicates that the between-generation difference in the response of relative
employment is decreasing in the skill investment cost (i.e., it is increasing in ψ). To see this
more clearly, consider the between-generation difference in the long-run:

∆ log eyoung
∞ − ∆ log eold

∞
∆ log A

≈ ψ

ψ + (θ + κη)(ρ + δ)
(θ − 1).

Conditional on the shock size, a higher ψ yields stronger employment differences across
generations in the long-run. Intuitively, this parameter controls the sensitivity of the skill
supply of incoming cohorts to changes in relative lifetime earnings. A higher elasticity
implies that young workers adjust their skills more in response to changes in future relative
wages, which amplifies between-generation differences in employment.

6.2 Cognitive-Intensive Employment Growth in Developed Economies

We define cognitive-intensive occupations as being the set of production activities that were
disproportionately augmented by recent technological innovations. In our theory, we will
interpret these activities as those corresponding to high-tech production. Our approach fol-
lows an extensive literature documenting that the recent arrival of new technologies in the
workplace, like the computer and the internet, had different effects on jobs with different
task content —e.g. Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn
(2013), Akerman, Gaarder, and Mogstad (2015), and, for a review, Acemoglu and Autor
(2011). Specifically, this literature has documented that these new technologies augmented
the productivity of cognitive-intensive jobs whose daily activities require problem-solving,
creativity, or complex interpersonal interactions. On the other hand, these recent technolog-
ical innovations substituted for routine-intensive jobs whose tasks follow well-understood
procedures that can be codified in computer software, performed by machines or, alterna-
tively, offshored over computer networks to foreign work sites.18

We analyze the evolution of the occupation employment composition of 18 developed
countries. We use data on the number of males employed by occupation for two age groups:
“Young” workers aged 15-39 yrs and “Old” workers aged 40-64 yrs. We consider employ-
ment in 9 aggregate occupation groups.19 Using the German BERUFNET dataset, we rank

18In Appendix B.2, we use the German Qualification and Working Conditions Survey to show that internet and computer
usage is strongly correlated with time spent on cognitive tasks across occupations. We also document that there are no
systematic differences in internet and computer usage across different cohorts of workers employed in the same occupation.

19Our sample of countries includes Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, United Kingdom, United States. As data sources,
we use Eurostat for European countries and IPUMS International for Non-European countries. For all countries, these
data sources report the number of persons employed in the following 2-digit ISCO occupations: Managers, Professionals,
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occupations according to their share of time spent on tasks that intensively require analytical
non-routine and interactive skills. We classify as cognitive-intensive the top 3 occupations in
this ranking: Managers, Professionals, Technicians and Associate Professionals.20

Figure 5 displays the recent trends of employment in cognitive-intensive occupations
for several developed countries. The dashed bars indicate that employment in cognitive-
intensive occupations has been expanding in 16 out of the 18 countries in our sample. This
trend is a reflection of the occupation polarization process documented by Goos, Manning,
and Salomons (2009) for European countries, Autor and Dorn (2013) for the United States,
and Green and Sand (2015) for Canada.

Figure 5 also shows how employment growth in cognitive-intensive occupations differed
for younger and older generations of workers. While older workers increased their employ-
ment in cognitive-intensive occupations in most countries, this increase was substantially
stronger for younger generations. Across all countries, the average log-change in cognitive
employment of younger workers was 75% higher than that of older workers. The young-old
gap is higher whenever overall reallocation is higher: across countries, there is a correlation
of 0.47 between the young-old gap in cognitive-intensive employment growth and that of all
workers. These new stylized facts complement the finding in Autor and Dorn (2009) that the
average age of workers employed in contracting middle-wage occupations increased in the
United States between 1980 and 2005.

As discussed in Section 6.1, the different employment responses for young and old work-
ers suggest that the relative supply of cognitive-intensive occupations is more elastic in the
long-run than in the short-run. However, the aggregate trends in Figure 5 are subject to
concerns about potential confounding shocks driving the expansion of cognitive-intensive
employment. Moreover, by not relying on a specific innovation, they are not informative
about the dynamic adjustment of economies to new technologies. For these reasons, we now
investigate the impact of cognitive-biased technologies on the German labor market.

6.3 Cognitive-Intensive Employment Growth and New Technologies: Ev-
idence from Germany

We next study how the German economy adjusted to recent cognitive-skill-biased techno-
logical shocks. We first describe the data used in our analysis. We then investigate how
employment and payroll growth varied with the time spent on cognitive tasks across occu-
pations in Germany. Finally, we exploit quasi-experimental cross-regional variation in adop-
tion timing of broadband internet to estimate the differential impact of this new technology

Technicians and Associate Professionals, Clerical Workers, Service and Sales Workers, Skilled Agricultural Workers, Craft
Trades workers, Plant and Machine Operators, and Elementary Occupations.

20The German Federal Employment Agency produces the BERUFNET dataset using expert knowledge about the skills
required to perform the daily tasks in each occupation. We define an occupation’s cognitive intensity as the simple average
of the time spent on analytical non-routine and interactive tasks in the years of 2011-2013.
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Figure 5: Recent trends in cognitive-intensive employment growth in developed countries

Note. The figure reports the log-change in the share of males employed in cognitive-intensive occupations in 1997-2017 for
European countries, in 2000-2010 for the United States, and in 2001-2011 for Canada. Sample of males in two age groups:
“Young” workers aged 15-39yrs and “Old” workers aged 40-64yrs. Cognitive-intensive occupations defined as the 3 occupa-
tion groups spending more time performing cognitive tasks on the job among the 9 occupation groups in the 2-digit ISCO
classification: Managers, Professionals, Technicians and Associate Professionals.

on occupations with a higher cognitive intensity over time.

6.3.1 Data

Our main source of information on German labor market outcomes is the LIAB Longitudinal
Model between 1995 and 2014. We follow Card, Heining, and Kline (2013) to construct a
sample of full-time employed males aged 20-60 years old residing in West Germany.21 We
first use individual-level information to construct yearly series of employment and payroll
for 120 occupations. While our theory features only two technologies, this is an abstraction,
and we obtain more variation empirically by using more detailed occupation information.
We therefore now move from the sharp predictions of the two-technology theory to look at
employment trends across occupations more generally.

We then construct a second dataset with annual data on employment and payroll for
each occupation in 323 regional labor markets. Following Dauth, Findeisen, and Suedekum
(2014) and Huber (2018), we use administrative districts to define regional labor markets
in West Germany.22 We use the BERUFNET dataset discussed previously to define each

21Appendix B.1 lists the steps involved in constructing our sample.
22We construct our data using the district of the establishment of the main job of each individual in any given year. Since
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occupation’s cognitive intensity as the share of time spent performing analytical non-routine
and interactive skills.

We consider labor market outcomes for two generations of workers. We define the
“Young” generation as all individuals born after 1960. The young generation was at most
35 years old in the beginning of our period of analysis in 1995, representing 57.5% of the
German labor force in that year. Over time, the young generation increased its overall em-
ployment share, reaching around 89% by the end of the analysis period in 2014 (when the
young generation was at most 54 years old). Appendix B shows that all qualitative results in
this section are robust to defining worker generations using different cohort or age groups.

6.3.2 Cognitive Intensity and Labor Market Outcomes Across Occupations

We now study the relationship between employment growth and cognitive intensity across
occupations in Germany. Motivated by the model’s predictions in (27)–(28), we estimate the
following linear regression for each worker generation g and year t:

log Yg
o,t − log Yg

o,1995 = β
g
t C̄o + ε

g
o,t (29)

where Yg
o,t is a labor market outcome in occupation o at year t of workers of generation g,

and C̄o is the cognitive intensity of occupation o.23

Table 1 reports the estimation of equation (29) in the periods of 1995-2000 (Panel A), 1995-
2005 (Panel B), 1995-2010 (Panel C), and 1995-2014 (Panel D). We report the estimated impact
of the occupation’s cognitive intensity on its log-employment growth in columns (1)–(3) and
log-payroll growth in columns (4)-(6).

Over all horizons, columns (1) indicates that occupations with a higher cognitive inten-
sity experienced stronger growth in employment. Compared to the least cognitive-intensive
occupation, the employment growth in the most cognitive-intensive occupation was around
143 percent higher by 2014. These results show that the German trends in Figure 5 also
hold when we consider variation across occupations with different levels of cognitive inten-
sity. Comparing the responses by generation in columns (2)–(3), we find that the entry into
cognitive-intensive occupations was weaker for older generations than for younger genera-
tions. In fact, the coefficient estimates for the old generations are about 1/3-1/2 the size of
that for the young generations at all horizons. Column (2) shows that young generations
display very strong employment growth in occupations with a higher cognitive intensity in
all sample periods.

Columns (4)-(6) show the relative payroll responses are slightly stronger than the relative
employment responses between 1995 and 2014. This suggests that there were only small

this information is only available after 1999, we use the establishment’s district in 1999 to construct the worker’s district
affiliation in 1995-1998.

23We do not include any controls in our baseline specification. Appendix Table B3 shows that results are similar when
we include controls that capture potential confounding effects from the occupation’s exposure to immigration and trade
shocks in the period of analysis.
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Table 1: Cognitive intensity and labor market outcomes across occupations in Germany

Dependent variable: Employment Growth Real Payroll Growth
All Young Old All Young Old
(1) (2) (3) (4) (5) (6)

Panel A: Change in 1995-2000

Cognitive intensity 0.388*** 0.650*** 0.113*** 0.340*** 0.616*** 0.157***
(0.076) (0.098) (0.043) (0.048) (0.070) (0.037)

Panel B: Change in 1995-2005

Cognitive intensity 0.778*** 1.150*** 0.290*** 0.741*** 1.158*** 0.404***
(0.111) (0.130) (0.079) (0.086) (0.114) (0.063)

Panel C: Change in 1995-2010

Cognitive intensity 1.110*** 1.523*** 0.454*** 1.036*** 1.525*** 0.539***
(0.137) (0.149) (0.125) (0.111) (0.133) (0.091)

Panel D: Change in 1995-2014

Cognitive intensity 1.488*** 1.894*** 0.871*** 1.535*** 2.029*** 1.044***
(0.225) (0.234) (0.229) (0.227) (0.238) (0.223)

Note. Sample of 120 occupations. Each panel reports the estimate for the dependent variable over the indicated time
period. Young cohort defined as all workers born after 1960 and Old cohort as all workers born before 1960. Robust
standard errors in parentheses. *** p < 0.01

relative changes in the average earnings of those employed in cognitive-intensive occupa-
tions. As discussed above, in our theory, these relative payroll responses include the rise in
the marginal productivity of labor in more cognitive-intensive occupations, as well as the
change in overall productivity of workers employed in cognitive-intensive occupation (i.e.,
the selection effect created by the change in worker allocations). So, the difference between
columns (4) and (1) do not correspond to the response of the relative wage per efficiency
unit of more cognitive-intensive occupations. In fact, the small responses in relative aver-
age earnings for both young and old are consistent with the strong selection forces that
arise from assignment models with a Frechet distribution of technology-specific ability, as in
Hsieh et al. (2013) and Burstein, Morales, and Vogel (2016).

We now qualitatively relate the evidence in Table 1 to the two main features of our model.
The difference in employment responses of old and young generations indicates that the
relative supply of cognitive-intensive occupations is more elastic in the long-run than in the
short-run. In our theory, such a difference arises from the ability of younger generations
to adjust their skill investment. In addition, the small relative employment response for
old generations suggests that skills are very specific to occupations with the same cognitive
content.

Robustness Appendix B.4 presents additional results that attest the robustness of the find-
ings presented in this section. First, Tables B2 and B3 present robustness exercises of the
cross-occupations estimates presented in Table 1. Specifically, we show that the positive rel-
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ative employment growth in cognitive occupations is driven by the top third of occupations
by cognitive intensity (for all workers and separately for each worker generation). We also
report similar estimates when restricting the sample to native-born Germans, changing the
definition of the young generation, or including controls for each occupation’s exposure to
trade and immigration shocks.

6.3.3 Dynamic Adjustment to Broadband Internet Adoption

The evidence above establishes that employment and payroll responses to the arrival of new
technologies differ across worker generations. Although this evidence qualitatively speaks
to the main mechanisms in our model, it cannot be quantitatively mapped to the observ-
able predictions of Section 6.1 since it does not allow the estimation of impulse response
functions to one-time permanent shocks. Specifically, the occupation-level responses above
may be driven by different innovations introduced throughout the period of analysis – e.g.
computers, industrial robots, or the internet.

Thus, in this section, we analyze the dynamic response to one cognitive-biased techno-
logical innovation: the introduction of broadband internet in the early 2000s.24 There are
two main reasons to focus on this particular innovation in Germany. First, it resembles the
one-time permanent shock studied in Section 3 since its adoption was fast: the share of
households with broadband access increased from 0% in 2000 to over 90% in 2009. Second,
it is possible to explore cross-regional variation in adoption timing to estimate the impulse
response functions of labor market outcomes for different worker generations. Our strategy
relies on the fact that the timing of broadband adoption was spatially heterogeneous: across
German districts in 2005, the mean share of household with broadband internet access was
76% and the standard deviation was 16%. In addition, following Falck, Gold, and Heblich
(2014), we isolate exogenous spatial variation in adoption timing implied by the suitability
of pre-existing local telephone networks for broadband internet transmission.

Empirical Strategy Our goal is to estimate the dynamic impact of broadband internet adop-
tion on labor market outcomes across districts in Germany. For each year between 1996 and
2014, we estimate the following linear specification

Yio,t −Yio,1999 = (αt + βtC̄o) DSLi + δo,t + Xio,tγt + εio,t, (30)

where o denotes an occupation and i district in Germany. In this specification, Yio,t is a la-
bor market outcome for occupation o of district i at year t (either employment or payroll),
and DSLi is the broadband internet penetration in district i in 2005 (normalized to have
standard deviation of one). As before, C̄o is the time-invariant measure of the cognitive
intensity of occupation o. The term δo,t is an occupation-year fixed-effect that absorbs any

24As shown Akerman, Gaarder, and Mogstad (2015), broadband internet expanded the relative demand for more edu-
cated workers in non-routine jobs inside firms. In Appendix B.2, we show that this new technology is disproportionately
used by individuals employed in more cognitive-intensive occupations.
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confounding shock that has the same impact on occupations in all regions. Similarly, Xio,t

is a control vector which includes the dependent variable pretrend growth in 1995-1999 and
initial district demographic characteristics. These controls account for differential perfor-
mance of cognitive-intensive occupations in regions with characteristics that may affect the
profitability of broadband internet adoption.25

To compare responses across generations, we also estimate a similar specifications for
different worker generations g:

Yg
io,t −Yg

io,1999 = ∑
c∈{young, old}

(αc
t + βc

tC̄o) 1[g=c]DSLi + δo,t + ζg,t + Xg
io,tγ

g
t + ε

g
io,t, (31)

where Yg
io,t is a labor market outcome for individuals of cohort g employed in occupation

o of district i at year t. As above, we consider two generations: the old generation born
before 1960 and the young generation born after 1960. Notice that this specification also
includes generation-year fixed effects that capture nationwide trends in employment of dif-
ferent worker cohorts. In this specification, we include the group’s pretrend control in Xg

io,t.
We are mainly interested on the impact of broadband internet adoption on the relative

outcome of cognitive-intensive occupations: βt in (30) for the all workers, and β
g
t in (31)

for generation g. To understand the interpretation of this coefficient, consider region A
whose broadband internet penetration in 2005 was one standard deviation higher than that
of region B. In each year t, βt is the difference between regions A and B in the relative
outcome of a more cognitive intensive occupation. Similarly, β

g
t is the equivalent difference

among workers of generation g.
The consistent estimation of equations (30)–(31) requires an exogenous source of variation

on the adoption of broadband internet across German districts in 2005. However, the cross-
regional variation in internet penetration is unlikely to be random since adoption should
be faster in regions with workers more suitable to use that technology. For instance, this
would be the case if broadband internet expands first in regions with a growing number of
young individuals specialized in cognitive-intensive occupations. To circumvent this issue,
we follow Falck, Gold, and Heblich (2014) to obtain exogenous variation in broadband inter-
net adoption across German districts stemming from pre-existing conditions of the regional
telephone networks. In West Germany, the telephone network constructed in the 1960s used
copper wires to connect households to the municipality’s main distribution frame (MDF).
The initial roll-out of DSL internet access in Germany used these pre-existing copper wire
lines to provide high-speed internet to households. As argued by Falck, Gold, and Heblich
(2014), the copper wire transmission technology did not support high-speed internet provi-
sion over long distances. In fact, provision was impossible in areas located more than 4200m

25We follow Dix-Carneiro and Kovak (2017) and Freyaldenhoven, Hansen, and Shapiro (2018) by explicitly controlling
for pretrends. As argued by the latter paper, pretrends caused by unobserved confounding effects might exist even when
they are not actually observed in the data due to estimation error, implying they should be controlled for in estimation.
The demographic controls are the college graduate population share, the manufacturing employment share, the immigrant
employment share, and the age composition of the labor force. Appendix Table B4 shows results for different control sets.
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away from an existing main distribution frame (MDF). It was necessary to set up an entirely
new system to provide DSL access to areas connected to a MDF located more than 4200m
away. Thus, areas initially located close to MDFs obtained broadband internet access before
areas located far away from them.

This discussion suggests that the initial location of MDFs is an exogenous shifter of DSL
access in 2005. This requires that, conditional on controls, the determinants of MDF construc-
tion in the 1960s were orthogonal to the determinants of changes in labor market outcomes
in the 2000s, except through their effect on broadband internet penetration in 2005.26 Build-
ing on this idea, we construct two instrumental variables at the district-level that measure the
region’s population share located in areas where the existing telephone network could not be
used to supply high-speed internet. These variables are aggregates of the municipality-level
instrumental variables used in Falck, Gold, and Heblich (2014). The first variable is a simple
count of the number of municipalities in the district that did not have a MDF within the
municipality, and whose population center (measuring as a population-weighted centroid)
was further than the cut-off threshold of 4200m to the MDF used by the municipality. We
refer to this variable as the “MDF density measure.” The second variable counts the number
of municipalities that satisfied the conditions in the first variable, but were further hampered
by the lack of any MDFs in neighboring municipalities that were closer than 4200m. The mu-
nicipalities in the second group required the installation of completely new networks since it
was not possible to install copper wire lines connecting them to any existing MDF. We refer
to this variable as “Alternative MDF availability.”

Let Zi denote the district-level instrument vector with the district’s “MDF density mea-
sure” and “Alternative MDF availability.” Since the observations in equation (30) vary at the
occupation-district level, we estimate this equation with an instrument vector that includes
Zi interacted with a constant and the cognitive intensity C̄o for each occupation o. Similarly,
to equation (31), we also interact the instrumental variable vector with dummies for each
generation g.

Results We start by examining the first-stage regression that relates the initial telephone
network to DSL access. Although equations (30)–(31) vary by district-occupation or district-
occupation-generation, the exogenous variation in the instrument vector is only across dis-
tricts. Therefore, to provide a clear picture of the exogenous variation underlying the model’s
first-stage, we first examine the impact of the instrument vector Zi on the district’s share of
population with broadband internet access, DSLi.27 That is, we begin by estimating the

26While some of these MDFs were built in population centers, others were built in locations where large empty building
sites were available. Falck, Gold, and Heblich (2014) provide a detailed discussion of why the main orthogonality assump-
tion is plausible in this setting. Our strategy is similar to the geographic barriers exploited in Akerman, Gaarder, and
Mogstad (2015) to estimate the impact of broadband internet on within-firm skill upgrading in Norway. In contrast, our
empirical strategy uncovers reduced-form responses in regional outcomes, which combine adjustment margins within and
between firms at the regional-level.

27As discussed above, equations (30)–(31) have multiple endogenous variables since they include DSL access interacted
with occupation cognitive intensity and worker generation dummies. To test for weak instruments in this setting, we
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following linear regression for year t:

DSIi,t = Ziρt + Xiγt + εi,t (32)

where Xi is the vector of district-level controls used in the estimation of (30)–(31).
Table 2 shows that districts with adverse initial conditions for internet adoption had

a lower share of households with high-speed internet in 2005. This difference is similar
in 2007, and still significant. However, regional differences in broadband penetration are
converging throughout the period of analysis; as discussed above, the share of households
with broadband access exceeds 90% by 2009. Columns (1) and (3) report the first-stage
estimates controlling for the baseline set of district-level controls. We can see that the F
statistic of excluded variables remains high in the presence of these controls.

Table 2: First-stage regressions – Share of households with DSL access in 2005 and 2007

2005 2007
(1) (2) (3) (4)

MDF density measure -0.020∗∗∗ -0.018∗∗∗ -0.026∗∗∗ -0.024∗∗∗

(0.005) (0.005) (0.005) (0.005)
Alternative MDF availability 0.002 -0.001 0.002∗ -0.00003

(0.001) (0.002) (0.001) (0.001)
Baseline controls Yes No Yes No
F statistic 26.49 43.06 23.51 38.62

Note. Sample of 323 districts in West Germany. All regressions are weighted by the district popula-
tion size in 1999. Baseline controls include the following district variables in 1999: college graduate
population share, manufacturing employment share, immigrant employment share and workforce age
composition. Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We now turn to the estimation of βt in (30). Figure 6 reports the estimates of broadband
internet expansion on the relative employment (Panel A) and the relative payroll (Panel B) of
more cognitive-intensive occupations. For both outcomes, we find no evidence of responses
in the pre-shock period of 1996-2005. Starting in 2005, our estimates indicate a slow and
steady increase in the relative employment of more cognitive-intensive occupations. In 2014,
the point estimate suggests that a region with a one-standard deviation higher broadband
internet penetration in 2005 had 0.3 log-points higher employment in the most cognitive-
intensive occupation than in the least cognitive-intensive occupation.

These results are consistent with the predictions of our model. We interpret the introduc-
tion of broadband internet as a positive shock to the relative productivity of the occupations
that use this technology more intensively: cognitive-intensive occupations. In line with the
results in Section 3, we find that employment and payroll increase more in these occupations.
Such a positive impact becomes larger along the transition to the new stationary equilibrium.

provide the Sanderson-Windmeijer F-statistics (Sanderson and Windmeijer, 2016) for the first stage of each specification in
Appendix Table B6. This test statistic checks for whether any of our endogenous variables are weakly instrumented, as well
as whether there are sufficiently many strong instruments to instrument the multiple endogenous variables. As shown in
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Figure 6: Impact of early DSL adoption on more cognitive-intensive occupations: All generations

(a) Relative aggregate employment response (b) Relative aggregate wagebill response

Note. Estimation of equation (30) in the sample of 120 occupations and 323 districts. Dependent variable: log employment (left) and log
payroll (right). All regressions are weighted by the district population size in 1999 and include occupation-time fixed-effects. Baseline
controls include the following district variables in 1999: college graduate population share, manufacturing employment share, immigrant
employment share, district age composition, and the dependent variable pre-shock growth in 1995-1999. For each year, the dot is the
point estimate of βt, and the bar is the associated 90% confidence interval implied by the standard error clustered at the district level.

We now turn to the estimation of employment responses for each generation: βold
t and

β
young
t in (31). Panel A of Figure 7 reports the estimates for each year between 1996 and 2014.

Prior to 2003, regions with early DSL expansion did not experience differential growth in
the relative outcomes of cognitive-intensive occupations for old and young workers. After
2005, we find a significant impact on the relative employment of young cohorts in cognitive-
intensive occupations. In contrast, we do not find such an effect for old cohorts – if anything,
the effect is negative. Panel B of Figure 7 shows that the between-generation difference in
relative employment growth is statistically significant in every year after 2006. In line with
our model’s prediction, the between-generation component grows shortly after the shock
and then starts to stabilize.

We can use our model to interpret the results in Figure 7. The small relative employ-
ment response of old generations suggests that technology-skill specificity is very high (i.e.,
η is low). In this case, old generations do not switch occupations as their skills would have
a lower value in the more cognitive-intensive occupations augmented by the technological
innovation. Alternatively, the positive between-generation difference in the relative employ-
ment response indicates that incoming cohorts adapt their skill investment decision towards
skills more suitable for cognitive-intensive jobs. This suggests that cost of skill investment
for young workers is moderate (i.e., ψ is positive).

Robustness In Appendix Tables B4 and B5, we evaluate the robustness of the results in Fig-
ures 6-7 to variations in both our sample definition and control set. As shown in Appendix
Table B4, results are qualitatively similar when we drop the pretrend control, but estimated

the table, we obtain uniformly high first-stage SW F-statistics in all specifications.
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Figure 7: Impact of early DSL adoption on more cognitive-intensive occupations: Within- and between
generations

(a) Relative employment response by generation (b) Between employment response and aggregate

Note. Estimation of equation (31) in the sample of 2 cohorts, 120 occupations and 323 districts. Dependent variable: log employment.
All regressions are weighted by the district population size in 1999 and include occupation-time and cohort-time fixed-effects. Baseline
controls include the following district variables in 1999: college graduate population share, manufacturing employment share, immigrant
employment share, district age composition, and the dependent variable pretrend growth in 1995-1999. For each year, the dot is the
point estimate of βt, and the bar is the associated 90% confidence interval implied by the standard error clustered at the district level.

coefficients are less precise and slightly smaller in magnitude. We also demonstrate that
results are similar when controlling for district-generation-year fixed-effects. This is reas-
suring as this restrictive set of controls absorbs all potential confounding shocks that affect
each district-generation pair in a year. In this case, identification comes purely from the
differential effect of DSL access expansion on occupations with a higher cognitive intensity.
That is, this control set captures any variation that might have resulted in a district receiving
broadband access early, including differential immigration into a district that received DSL
or differential aging or birth patterns in the district over time.

Table B5 presents results when we vary the definition of the young generation, as well
as when we restrict the sample to only native-born males. We consider several definitions
of the young generation: those born after 1955, 1965 or 1970, and those aged less than 35,
40 or 45 in each year. Once again, the results are qualitatively similar across specifications.
However, in line with our theory, the estimated coefficients for the young generation are
stronger when we restrict the young generation to include only those born in recent years.

In addition, we consider a sample that includes only workers employed in small estab-
lishments. The rationale is that larger establishments might have received DSL access prior
to the roll-out across Germany. In this case, we would expect adjustment in these establish-
ments to have occurred earlier, biasing our results to zero. In line with this intuition, we find
that our results are quantitatively stronger in the sample of small establishments.
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7 A Numerical Illustration of the Theory

We conclude the paper by using the evidence in the preceding section to analyze how
economies adjust to cognitive-biased innovations. Our goal is not to provide a full quan-
titative account of such technological transitions, but rather to numerically illustrate our
theoretical insights. In particular, we are interested in giving a sense of how large are the
impacts of technology-skill specificity and skill investment cost on the adjustment persis-
tence and the welfare changes following technological shocks. Furthermore, by presenting
the full non-linear equilibrium dynamics, the numerical exercise also demonstrates that our
theoretical insights are not entirely driven by the first-order approximations.

We map the H technology to cognitive-intensive occupations, and use the empirical im-
pulse responses of Section 6 to parameterize the model. We first externally calibrate the dis-
count rate ρ to match an annual interest rate of 2% and the demand elasticity of substitution
to θ = 3. We then select the parameters governing production technologies (α(i), σ(i)) and
the skill distribution dynamics (δ, ψ) to match the estimates in Figures 6 and 7. The decline
in the share of the old workers in total employment from 1997 to 2014 implies δ = 0.057,
i.e, an expected working life-span of about 18 years after age 35. The small response in
the cognitive-intensive employment of old generations yields an η close to zero, and the
large young-old gap in the relative employment response implies ψ = 0.35. Appendix C.1
describes the matching procedure in detail, along with the model’s goodness of fit.

We use the parameterized model to study the consequences of a cognitive-biased inno-
vation that increases the employment share in the cognitive-intensive technology from 20%
to 50%.28 We focus on the impact of the shock on average welfare (∆Ū) and lifetime welfare
inequality (∆Ω̄).29 Appendix C.2 shows the dynamics of the skill distribution and several
other labor market outcomes.

Table 3 shows that, for our baseline parameterization, the increase in average welfare
across all generations (in consumption equivalent units) is 46% and the increase in life-
time welfare inequality is 39%. These large effects follow from the substantial shock size
necessary to induce the reallocation of more than one-fourth of the economy’s labor force.
The remaining rows of Table 3 compare these figures to those obtained with two calcula-
tions that ignore the adjustment across generations. The ‘Short-run’ calculation assumes
that changes observed at impact are permanent, while the ‘Long-run’ calculation assumes
that the changes observed in the long-run were permanent and happened at impact. As
discussed in Section 5, these calculations are equivalent to those that would be obtained
by researchers using a reduced-form supply-demand model that ignores changes in supply

28These values approximately correspond to the cognitive-intensive employment share in 1997 of the countries with the
lowest and the highest cognitive-intensive employment share among those listed in Figure 5 (Portugal and Netherlands,
respectively). Thus, our quantitative results can be seen as analyzing the transitional dynamics of a cognitive-biased shock
that generates convergence in cognitive-intensive employment shares across such countries.

29Our analysis specifies the discount rate of social welfare to r = ρ+ δ, so that the social discounting of future generations
is identical to the discounting of worker’s future utility.
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Table 3: Changes in Average Welfare and Lifetime Welfare Inequality

Baseline Low specificity High cost
(η ≈ 0, ψ = 0.35) (η ≈ 0.75, ψ = 0.35) (η ≈ 0, ψ ≈ 0.05)

∆Ū ∆Ω̄ ∆Ū ∆Ω̄ ∆Ū ∆Ω̄

True 46% 39% 44% 29% 35% 66%
Short-run 31% 76% 40% 45% 31% 76%
Long-run 55% 30% 47% 24% 38% 62%∫ ∞

0 q̂tdt
1/δ 1.6 0.8 0.8

Note. The table reports the the changes in average welfare ∆Ū and lifetime welfare inequality ∆Ω̄ implied
by a shock calibrated to increase the employment share in cognitive-intensive occupations from 20% to
50% between stationary equilibria. ‘True’ corresponds to the measures that fully account for the economy’s
transitional dynamics. ‘Short-run’ assumes that changes at impact are permanent. ‘Long-run’ assumes that
long-run changes happened at impact.

elasticity over time. We can see that these two calculations lead to substantial biases in wel-
fare analysis. The ‘Short-run’ calculation severely understates the average welfare gains and
overstates the inequality increases. The opposite is true for the ‘Long-run’ calculation. The
biases arise because of the slow, persistent adjustment in the skill-distribution. For exam-
ple, as the last line shows, the inequality persistence is 1.6 expected lifetimes. Precisely, the
‘Short-run’ approach misses the future accumulation of skills that increases relative output–
thus reducing the ideal price index and increasing average real wages– and reduces relative
wage of cognitive-intensive occupations. In contrast, the ‘Long-run’ approach misses the fact
that it takes generations for the economy to accumulate the cognitive-biased skills necessary
to achieve the levels of relative output and wages observed in the long-run.

Finally, the remaining columns of Table 3 consider alternative economies where the
adjustment is less persistent, either due to a lower degree of technology-skill specificity
(higher η) or a higher skill investment cost (lower ψ). We pick the counterfactual degree
of technology-skill specificity to match existing estimates of the dispersion in occupation-
specific skills. In particular, we target typical estimates of 0.75 obtained from wage disper-
sion in a cross-section of workers.30 In addition, we pick the counterfactual skill investment
cost to match the same counterfactual persistence of lifetime inequality (0.8 lifetimes) as in
the counterfactual with respect to the degree of technology-skill specificity. Both counterfac-
tual exercises show that the biases from the short- and long-run welfare calculations become
much smaller when persistence is lower – particularly so for average welfare. Furthermore,
they show the risks of extrapolating from past episodes where the nature of technologies
and skills differed. For example, if we used estimates from past episodes where technology-

30Estimates in the literature are typically not reported in terms of η. Instead, they report the elasticity of relative
occupation-level employment with respect to a change in relative occupation-level wages: ∆ log(e)

∆ log(ω)
. Estimates for this

elasticity are between 1 and 2 – e.g., see Hsieh et al. (2013). Given that the equilibrium employment share is 0.5 in the
long-run of our economy, a reported relative employment elasticity of 1.5 (the mid-point between 1 and 2) implies η = 0.75.
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skill specificity was lower (as in the second column), then we would predict a much smaller
average lifetime welfare inequality increase than the true one corresponding to an economy
with higher skill specificity (29% versus 39%). Alternatively, if we used past episodes with
higher skill-investment costs (as in the third column), we would incorrectly predict much
smaller increases in average welfare (35% versus 46%).

8 Conclusions

In this paper, we develop a tractable theory to study how skill-biased technological innova-
tions affect the economy over different horizons. Our theory has three central ingredients:
(i) overlapping generations of workers with heterogeneous technology-specific skills, (ii) en-
dogenous sorting of worker skill-types to technologies, and (iii) forward-looking investment
in different skills by young workers. Following a technology-improving innovation, we char-
acterize in closed-form the dynamic responses of labor market outcomes for different worker
generations as a function of parameters governing the technology-skill specificity and the
cost of adjusting skill investment. We then show how these dynamic responses affect the
measurement of the welfare consequences of new technologies.

A novel insight from the theory is that economies will adjust more slowly to skill-biased
technological innovations when technology-skill specificity is higher. This is because the
larger increases in relative wages (as a result of a lower short-run skill supply elasticity)
induce larger, more persistent changes in the skill distribution across generations. As such,
most of the adjustment in economies with high skill-specificity follows from changes in
the supply of skills that happen across generations, as opposed to from the reallocation
of workers within a generation. We then show that the average and distributional welfare
implications of technological innovations are biased when ignoring the adjustment across
generations by extrapolating from changes at short or long horizons alone. These biases are
severe precisely in economies with large observed changes in inequality and differences in
outcomes across generations because they suggest a high degree of skill specificity at short
horizons and an elastic supply of skills at longer horizons.

Finally, we empirically investigate these issues by analyzing the adjustment of devel-
oped economies to recent cognitive-biased technological innovations, with a particular focus
on Germany. Several distinct pieces of evidence show strong responses in employment and
payroll in cognitive-intensive occupations to such innovations. Yet, such responses are strong
for young workers but weaker for older workers, suggesting that the cognitive-skill supply
elasticity is low at short horizons (a high degree of skill-specificity) but higher at longer
horizons. Parameterizing our model to match this evidence, we conclude that ignoring the
slow adjustment across generations by only considering short-run changes severely under-
states the average welfare benefits and overstates the lifetime inequality increases following
cognitive-biased technological innovations. Considering long-run changes alone generates
biases in the opposite direction.
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Taken together, we derive three broad lessons from this piece. First, recent technological
transitions may have been slower and more unequal than those of the past due to differ-
ences in the specificity of skills, themselves a consequence of differences in the sectors and
occupations involved as well as the educational and training institutions. Second, caution
should be exercised when interpreting technological transitions based only on empirical ob-
servations that span much less than a generation. This may lead to overly pessimistic views
of the consequences of new technologies for inequality and average welfare. In particular,
when the innovation affects activities with a high degree of technology-skill specificity be-
cause such transitions are slower. Third, empirical observations at short horizons are indeed
valuable if complemented with observations for different generations. Looking at the deci-
sions of younger workers allows us to "see the future" and thus appropriately derive the full
implications for average welfare and inequality of technological innovations.
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Appendix A Proofs

A.1 Proof of Lemma 2
We obtain (14) by applying this expression into the relative supply expression in (13) and the
relative demand expression in (2). Existence and uniqueness follow from applying Bolzano’s
theorem to (14). The left-hand side is strictly decreasing in ωt, converges to zero as ωt → ∞,
and converges to infinity as ωt → 0. Notice that l(ωt) is decreasing in ωt and l(ωt) ∈ [0, 1].
Thus, the right-hand-side is strictly increasing in l(ωt), it converges to infinity as l(ωt) → 0
and it converges to zero if l(ωt)→ 1.

A.2 Proof Lemma 3
The FOC of workers’ skill-accumulation problem are:

Vt(i)−
1
ψ

(
1 + log

(
s̃t(i)
s̄t(i)

))
− λt = 0

λt

(∫ 1

0
s̃t(x)dx− 1

)
= 0

Integrating over i ∈ [0, 1], we obtain an equation characterizing λt:

log
(∫ 1

0
s̄t(i)eψVt(i)di

)
= ψλt + 1

Therefore,

s̃t(i) =
s̄t(i)eψVt(i)∫ 1

0 s̄t(j)eψVt(j)dj
.

Using the wage expressions and assignment function in Lemma 1, we can write the value
function of a worker i at time t as

Vt(i) =
∫ ∞

t
e−(ρ+δ)(s−t)log(ws(i))ds

=
∫ ∞

t
e−(ρ+δ)(s−t) (log(ωsσ(i)α(i))Ii≥ls + log(α(i)) (1− Ii<ls)) ds

=
log(α(i))

ρ + δ
+
∫ ∞

t
e−(ρ+δ)(s−t)log (ωsσ(i)) Ii≥ls ds

By defining Qt(i) ≡ e
∫ ∞

t e−(ρ+δ)(s−t)log(ωsσ(i))Ii≥ls ds, we obtain

s̃t(i) =
s̄t(i)α(i)

ψ
ρ+δ Qt(i)ψ∫ 1

0 s̄t(j)α(j)
ψ

ρ+δ Qt(j)ψdj
.
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A.3 Proof of Proposition 1
First, we do a first order approximation around the stationary equilibrium of equations (10),
(12) and (14). We obtain:

∂ŝt(i)
∂t

= −δŝt(i) + δ ˆ̃st(i) (A.1)

l̂t =
η

θ − 1
ŷt (A.2)

l̂t =
η

κη + θ

(∫ 1

l
ŝt(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ŝt(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
(A.3)

where

κ ≡ α(l)s(l)l∫ l
0 α(i)s(i)di

+
α(l)σ(l)s(l)l∫ 1

l α(i)σ(i)s(i)di
.

Differentiating (A.3) with respect to time, we get that

∂l̂t
∂t

=
η

κη + θ

(∫ 1

l

∂ŝt(i)
∂t

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0

∂ŝt(i)
∂t

α(i)s(i)∫ l
0 α(i)s(i)di

di

)

Applying (A.1) to this expression, we obtain

∂l̂t
∂t

= −δl̂t +
η

κη + θ
δ

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
. (A.4)

Furthermore, we will guess an verify that lt converges monotonically along the equilib-
rium path. We show the proof starting from l̂0 < 0. The proof for l̂0 > 0 is analogous and
omitted.

Whenever l̂0 < 0 and increases monotonically along the equilibrium path, we have that
for all s > t, types i < lt are employed in technology L and types i > l are employed in
technology H. Also, for workers with i ∈ (lt, l), there exist a τ(i) such that they work in H
for all t < s < t + τ(i) and in L for all s > t + τ(i).

Then, from equation (15), we have

Qt(i) =


1 i ≤ lt
e
∫ t+τ(i)

t e−(ρ+δ)(s−t)log(ωsσ(i))ds i ∈ (lt, l)

σ(i)
1

ρ+δ qt i > l

(A.5)

So, we can write the optimal lottery as

s̃t(i) =


s̃(i)
s̃(l) s̃t(l)e−ψ

∫ ∞
t e−(ρ+δ)(s−t)log(ωs

ω )ds i ≤ lt

s̃(i)
s̃(l)

(
σ(i)
σ(l)

) ψ
ρ+δ (1−e−(ρ+δ)τ(i))

s̃t(l)e
−ψ

∫ ∞
t+τ(i) e−(ρ+δ)(s−t)log(ωs

ω )ds i ∈ (lt, l)
s̃(i)
s̃(l) s̃t(l) i ≥ l

(A.6)
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Log-linearizing (A.6) we obtain that

ˆ̃st(i) = ˆ̃st(l)− ψq̂tIi<lt − ψq̂t+τ(i)Ii∈(lt,l) (A.7)

Replacing in the expression inside the parenthesis in (A.4), we obtain

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
=

∫ l

0
ψ
(

q̂tIi<lt + q̂t+τ(i)Ii>lt

) α(i)s(i)∫ l
0 α(x)s(x)dx

di =

ψq̂t − ψ
∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di

where the last line uses our guess that lt ≤ l for all t.
Then, given our guess that lt increases monotonically along the equilibrium path, from

(12) we see that ωt decreases monotonically along the equilibrium path. This implies that
q̂t > q̂t+τ(i) > 0 for all i and all t. So, we can show that the term inside the integral is of
second order:

0 ≤
∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di ≤
∫ l

lt
q̂t

α(i)s(i)∫ l
0 α(x)s(x)dx

di ≤
maxi∈(lt,l) α(i)s(i)l∫ l

0 α(x)s(x)dx
l̂tq̂t ≈ 0.

Replacing this expression back in (A.4), we obtain the Kolmogorov-Forward equation for
l̂t shown,

∂l̂t
∂t

= −δl̂t +
η

κη + θ
δψq̂t. (A.8)

To show the Kolmogorov-Backward equation satisfied by q̂t, we differentiate the defini-
tion of log(qt) with respect to time and obtain

∂qt

∂t
= −ωt + (ρ + δ)qt.

Then, using the indifference condition ωt =
1

σ(lt)
and log-linearizing, we obtain the equa-

tion shown in the lemma,

∂q̂t

∂t
=

1
η

l̂t + (ρ + δ)q̂t. (A.9)

To complete the proof, we need to derive the policy functions, show the equilibrium is
saddle-path stable, and verify that lt increases monotonically along the equilibrium path.

Let us guess that the policy functions are given by ∂l̂t
∂t = −λl̂t and q̂t = ζ l̂t. Replacing in
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the 2X2 dynamic system, we obtain the expressions in the proposition for λ and ζ:

−λ =− δ +
η

κη + θ
δψζ

−ζλ =
1
η
+ (ρ + δ)ζ

Notice that the second equation immediately yields the expression for ζ. To get the
expression for λ, notice that substituting the expression for ζ into the first equation implies
that

(δ− λ)(ρ + δ + λ) +
ψδ

κη + θ
= 0

Then, the solutions for λ is

λ12 = −ρ

2
±

√(ρ

2

)2
+ δ

(
(ρ + δ) +

ψ

κη + θ

)
Because the term inside the square root is always positive, two solutions always exist.

Furthermore, one of the solutions is negative and the other one is positive. This implies
that the equilibrium is saddle-path stable. Furthermore, the positive solution is the speed of
convergence of equilibrium variables.

Finally, the equilibrium threshold is l̂t = l̂0e−λt. Then, if l̂0 < 0, this implies that lt
increases monotonically along the equilibrium path, which verifies our initial guess and
completes the proof of the proposition.

A.4 Proof of Corollary 1

Notice that
∫

s(i) ˆ̃st(i)di =
∫
(s̃t(i)− s(i))di = 0. Using (E.2) , we have that

0 =
∫ 1

0
s(i) ˆ̃st(i)di

= ˆ̃st(l)− ψ
∫ l

0

(
q̂tIi<lt + q̂t+τ(i)Ii∈(lt,l)

)
s(i)di

= ˆ̃st(l)−
(∫ l

0
s(i)di

)
ψq̂t + ψ

∫ l

lt

(
q̂t − q̂t+τ(i)

)
s(i)di

We can use use the same arguments as in A.3 to show that the last term is of second
order. Thus,

ˆ̃st(l) =
(∫ l

0
s(i)di

)
ψq̂t

and, therefore,

ˆ̃st(i) =
(∫ l

0
s(i)di

)
ψq̂t − ψq̂tIi<l + ψ(q̂t − q̂t+τ(i))Ii∈(lt,l).
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To prove the result, we use that q̂t+τ(i) = q̂te−λτ(i). So,

ˆ̃st(i) =
(∫ l

0
s(i)di

)
ψq̂t − ψq̂tIi<l + ψ(q̂t − q̂t+τ(i))Ii∈(lt,l)

= Ii>lψq̂t −
(

1−
∫ l

0
s(i)di

)
ψq̂t + ψq̂t(1− e−λτ(i))Ii∈(lt,l)

=

(
Ii>l −

∫ 1

l
s(i)di

)
ψq̂t + ot(i)

where ot(i) ≡ ψq̂t(1− e−λτ(i))Ii∈(lt,l) and has
∫

s(i)ot(i)di = 0.
Finally, the dynamics of the skill distribution and the relative value of output yt were

already derived in equations A.1 and A.2.

A.5 Proof of Proposition 2
Using the definitions yt and qt together with Proposition 1, we have

∆log(yt) = (θ − 1) (∆log(A)− ∆log(ω)− ω̂t)

= (θ − 1)
(

∆log(A)−
(

∆log(ω) + ω̂0e−λt
))

(A.10)

∆log(qt) = ∆log(q) + q̂t

=
1

ρ + δ
∆log(ω) +

1
ρ + δ + λ

ω̂0e−λt (A.11)

Furthermore,

∆log(lt) = −η∆log(ωt) = −η
(

∆log(ω) + ω̂0e−λt
)

(A.12)

We next derive the long-run change ∆log(ω) and the short-to-long-run change ω̂0

Long-run. In this case the skill distribution is given by (16), so that the equilibrium threshold
solves

Aθ−1σ(l)θ
∫ l

0
α(i)(α(i))

ψ
ρ+δ di =

∫ 1

l
α(i)σ(i)

(
α(i)

σ(i)
σ(l)

) ψ
ρ+δ

di

Consider a log-linear approximation around the final stationary equilibrium:

(θ − 1)∆log(A) +

((
θ +

ψ

ρ + δ

)
1
η
+ κ

)
∆log(l) = 0

Thus,
∆log(l) = − η(

θ + ψ
ρ+δ

)
+ ηκ

(θ − 1)∆log(A)
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From equation (12), ∆log(ω) = − 1
η ∆log(l) and, therefore,

∆log(ω) =
1(

θ + ψ
ρ+δ

)
+ ηκ

(θ − 1)∆log(A) (A.13)

Short-to-Long We start by deriving the change in the skill distribution using (16): ŝ0(i) =

ŝ0(l) if i < l and ŝ0(i) = ŝ0(l)− ψ
ρ+δ ∆log(ω) if i > l. Along the transition, the change in the

assignment threshold is determined by (14) given the change in the skill distribution:(
θ

η
+ κ

)
l̂0 = − ψ

ρ + δ
∆log(ω)

Then,

ω̂0 =
1

θ + κη

ψ

ρ + δ
∆log(ω) (A.14)

Dynamic responses We now use the derivations above to show that

∆log(lt) = −
η

θ + κη

1 +
1

θ + κη + ψ
ρ+δ

ψ

ρ + δ
(e−λt − 1)

 (θ − 1)∆ log(A)

∆log(yt) =
1

θ + κη

(1 + κη) +
(θ − 1)

θ + κη + ψ
ρ+δ

ψ

ρ + δ
(1− e−λt)

 (θ − 1)∆log(A)

∆log(qt) =
1

θ + κη + ψ
ρ+δ

1
ρ + δ

(
1 +

λ− δ

δ
e−λt

)
(θ − 1)∆log(A)

where the last line uses the solution to λ from Proposition 1.

A.6 Proof of Proposition 3 and Proposition 4
1. Long-run adjustment

∆log(y∞) =

1− θ − 1

θ + κη + ψ
ρ+δ

 (θ − 1)∆log(A)

∆log (q∞) =
1

θ + κη + ψ
ρ+δ

1
ρ + δ

(θ − 1)∆ log(A)

∆log(l∞) = − η

θ + κη + ψ
ρ+δ

(θ − 1)∆log(A)

Then, it is straightforward to see that ∆log(y∞) is increasing in both η and ψ, while the
opposite holds for ∆log(q∞). Moreover, , |∆log(l∞)| is increasing in η but decreasing in
ψ.
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2. Short-run adjustment

∆log(y0) =

(
1− θ − 1

θ + κη

)
(θ − 1)∆log(A)

∆log (q0) =
1

θ + κη + ψ
ρ+δ

λ

δ

1
ρ + δ

(θ − 1)∆log(A)

=
1

θ + κη

1
ρ + λ

(θ − 1)∆log(A)

|∆log(l0)| =
η

θ + κη
(θ − 1)∆log(A)

The first and last lines show that ∆log(y0), |∆log(l0)| are increasing in η and indepen-
dent of ψ. Since λ is decreasing in η, the second line shows that ∆log(q0) is decreasing
in η. Since λ is increasing in ψ, the third line shows that ∆log(q0) is decreasing in ψ.

3. Persistence

∫ ∞

0
|ŷt|dt = − 1

λ
ŷ0 =

1
λ

ψ
ρ+δ

θ + κη + ψ
ρ+δ

θ − 1
θ + κη

(θ − 1)∆log(A)

∫ ∞

0
q̂tdt =

1
λ

q̂0 =
1

θ + ηκ + ψ
ρ+δ

λ− δ

λ

1
δ

1
ρ + δ

(θ − 1)∆log(A)

∫ ∞

0
|l̂t|dt =

η

θ − 1

∫ ∞

0
|ŷt|dt

The second line shows that
∫ ∞

0 q̂tdt is decreasing in η, since λ is decreasing in η. Fur-
thermore,

∫ ∞
0 q̂tdt is increasing in ψ around ψ = 0. This is because λ is increasing in ψ,

λ = δ when ψ = 0, and
∂

(
1
λ

1
θ+κη+

ψ
ρ+δ

)
∂ψ is bounded.

The first line shows that
∫ ∞

0 |ŷt|dt is increasing in ψ around ψ = 0 since
∂

(
1
λ

1
ρ+δ

θ+κη+
ψ

ρ+δ

)
∂ψ is

bounded. To show that it is decreasing in η, we show that:

∂log( 1
λ

ψ
ρ+δ

θ+κη+
ψ

ρ+δ

θ−1
θ+κη )

∂η
=

1
λ

1
ρ + 2λ

ψδκ
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− κ
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= −


1− λ− δ

λ

ρ + δ + λ

ρ + 2λ︸ ︷︷ ︸
<1 because λ>δ

 1
(θ + κη)

+
1

θ + κη + ψ
ρ+δ

 κ < 0

Finally,
∫ ∞

0 |l̂t|dt is increasing in ψ around ψ = 0, since it is proportional to
∫ ∞

0 |ŷt|dt.
However, the derivative with respect to η is ambiguous. This is because the constant of
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proportionality η/(θ − 1) is increasing in η while
∫ ∞

0 |ŷt|dt is decreasing in η.

A.7 Proof of Proposition 5
We have that, because of the envelope theorem,

Uτ =
∫

s̃τ(i)Vτ(i)di− 1
ψ

∫
s̃τ(i)log
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Also,
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Then,

∆Ū = U∞ −U0− + r
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Finally, using Proposition 2,

∆Ω̄ = r
∫ ∞

0
e−rt∆log(qτ)dτ

= ∆log(q∞) + r
∫ ∞

0
e−rtq̂τdτ

≈ ∆log(q∞) +
r

r + λ
q̂0

≈ ∆log(q∞) +
rλ

r + λ

∫ ∞

0
q̂τdτ

A.8 Proof of equations (27)–(28)

Proof of equation (27). We first use a first-order approximation to write the log-change in
relative high-tech employment in terms of changes in the high-tech employment share:

∆ log
(

eold
t

)
= log

(
eold

t

eold
0−

)
≈ 1
(1− eH,∞)eH,∞

(
eold

H,t − eold
H,0−

)
where eold

H,t =
∫ 1

lt
s0(i)di.

Since ∆
(

1
(1−eH,∞)eH,∞

) (
eold

H,t − eold
H,0−

)
is a second order term, we get the approximation:

∆ log
(

eold
t

)
≈ 1
(1− eH,0−)eH,0−

(
eold

H,t − eold
H,0−

)
Notice that

eold
H,t − eold

H,0− =
∫ l0−

l
s0(i)di +

∫ l

lt
s0(i)di

By approximating these expressions around l,

eold
H,t − eold

H,0− ≈ s0(l)l
(

∆ log(l)− l̂t
)

≈ (s0(l)l) η∆ log(ωt)

≈ (s0(l0−)l0−) η∆ log(ωt)

≈ (1− eH,0−)η∆ log(ωt)

where the third equality follows from the fact that ∆ (s0(l)l)∆ log(ωt) is a second order term,
and the last equality follows from normalizing the initial skill distribution to be uniform
(which implies s0(l0−)l0− = 1− eH,0−).

Combining the two expressions,

∆ log
(

eold
t

)
≈ 1

eH,0−
η∆ log(ωt)
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Using the demand expression in (2),

∆ log
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eold
t

)
≈ 1

eH,0−
η

(
− 1

θ − 1
log yt + ∆ log A

)
Using the expression for the evolution of yt in Proposition 2,

∆ log
(

eold
t

)
≈ 1

eH,0−

η

θ + κη

(
−1− κη − ψ

χ
(θ − 1)(1− e−λt) + (θ + κη)

)
∆ log A

∆ log
(

eold
t

)
≈ 1

eH,0−

η
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(
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which is identical to (27).

Proof of equation (28). We first use a first-order approximation to write the log-change
in relative high-tech employment in terms of changes in the high-tech employment share:

log(
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t
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)
where the last equality follows from the fact that before the shock old and young make
identical choices, eyoung

H,0− = eold
H,0− .

Using the definition of employment shares for each generation,
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H,t − eold

H,t ≈
1

1− (1− x̃0)e−δt

(
x̃0e−δt

∫ 1

lt
s0(i)di + δ

∫ t

0
eδ(τ−t)

∫ 1

lt
s̃τ(i)didτ

)
−
∫ 1

lt
s0(i)di

≈ 1
1− (1− x̃0)e−δt

(
δ
∫ t

0
eδ(τ−t)

∫ 1

lt
(s̃τ(i)− s0(i)) didτ

)
Thus,

log(
eyoung

t

eyoung
0−

)− log(
eold

t

eold
0−

) ≈ 1
(1− eH,∞)eH,∞

1
1− (1− x̃0)e−δt

(
δ
∫ t

0
eδ(τ−t)

∫ 1

lt
(s̃τ(i)− s0(i)) didτ

)
(A.15)

We now consider the following approximation:∫ 1

lt
(s̃τ(i)− s0(i))di ≈

∫ 1

l
s(i)( ˆ̃sτ(i)− ŝ0(i))di
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Then, we derive ŝ0(i) using the expression for the stationary skill distribution
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Using Corollary 1,∫ 1
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We now apply this expression into (A.15):
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Notice that Proposition 2 implies that

∆ log(q) =
1
χ
(θ − 1)∆ log A

∆ log(q0) =
1
χ

(
1 +

λ− δ

δ

)
(θ − 1)∆ log A

q̂0 = ∆ log(q0)− ∆ log(q) =
1
χ

λ− δ

δ
(θ − 1)∆ log A

Thus,

log(
eyoung

t

eyoung
0−

)− log(
eold

t

eold
0−

) ≈ ψ

χ

1
1− (1− x̃0)e−δt

(
(e−δt − e−λt) + (1− e−δt)

)
(θ − 1) log A

≈ ψ

χ

1− e−λt

1− (1− x̃0)e−δt (θ − 1)∆ log A,

which is equivalent to (28).
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Appendix B Empirical Application

B.1 Data Construction
The raw data in the LIAB comes in the form of entire job histories of workers in the sample.
Individual entries therefore contain worker information, as well as information on the start
and end date of a job spell for that individual, the location (establishment), and characteris-
tics of the job spell. We transform this data into an annual panel dataset following the steps
in Card, Heining, and Kline (2013), with minor modifications. These steps are:

• Restrict sample to males in West Germany.

• Restrict ages to 15-64 years at the time of the job spell.

• Restrict sample to full-time job spells only.

• Select job-spell within a calendar year with maximum earnings.

• Deflate earnings using German CPI information from FRED (Series id: DEUCPIALLMIN-
MEI).

• Replace daily wages with Upper Earnings Limits in Card, Heining, and Kline (2013) for
daily wages above censor limit.

• Impute district of employment using the district of the establishment if the district of
employment is missing.

While the years represented in our data and our underlying data sample differ from Card,
Heining, and Kline (2013), our panel well represents the data used in that paper. Figure B1
illustrates that the mean wage changes of job movers, classified by the mean log wages of
coworkers in their old and new establishments, is similar in our data to the main findings in
Card, Heining, and Kline (2013) (their Figure Vb).

We link our LIAB-based worker panel to the DSL access data from Falck, Gold, and
Heblich (2014) using the district identifiers in both datasets. These data are discussed in
detail in Section 6.3.1. Figure B2 illustrates the spatial variation in our main instrument
which underlies the identification in Section 6.

B.2 Cognitive Intensity and Use of New Technologies Across Occupations
This section analyzes the types of tasks required by cognitive-intensive occupations. Figure
B3 reports the correlation between the occupation’s intensity in cognitive skills and the share
of individuals in that occupation reporting they intensely perform each of the listed tasks.
The top tasks performed in cognitive-intensive occupations are directly related to technolog-
ical innovations recently introduced in the workplace: working with internet, in particular,
and with computers, more generally. On the other extreme, individuals employed in the least
cognitive-intensive occupations tend to perform routine tasks associated with manufactur-
ing and repairing. The results in Figure B3 are consistent with the evidence establishing the
heterogeneous impact of new technologies on different tasks performed by workers – e.g.,
Autor, Levy, and Murnane (2003), Spitz-Oener (2006), Autor and Dorn (2013), and Akerman,
Gaarder, and Mogstad (2015).
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Figure B1

Note. Figure illustrates the mean wage changes for job movers from the fourth and first quartile of establishments
in all quartiles of establishments. Movers are defined as workers who move jobs from a job they held for two
years before moving, and stay in the new job for two years after moving. Quartiles are defined by the mean log
wages of coworkers in the old and new establishments. The sample period is 2002-2009. transt = 3 is the year
of moving.

Figure B2

(30,168]
(11,30]
(0,11]
[0,0]
No data

Note. Figure illustrates the mean number of municipalities across districts in Germany that did not have access
to an MDF within the 4000m radius, as described in Section 6.3.1.
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Figure B3: Cross-occupation correlation between cognitive intensity and perfomance of different tasks

Note. Sample of 85 occupations. The occupation task intensity is the share of individuals in that occupation
reporting to intensively perform the task in the 2012 Qualification and Working Conditions Survey. The occu-
pation cognitive-skill intensity is the share of time spent on cognitive-intensive tasks in the BERUFNET dataset
(2011-2013).

We then investigate whether these new technologies affected worker generations differ-
ently conditional on their occupation. We consider two generations: a young generation
aged less than 40 years and an old generation aged more than 40 years.31 Figure B4 shows
that, while internet and computer usage are biased towards cognitive-intensive occupations,
there were only small differences in the usage of these new technologies across worker co-
horts employed in the same occupation in 2012. These results are complement the finding
in Spitz-Oener (2006) that there were small between-cohort differences in the change of the
task content of German occupations in the 1990s.

B.3 Sample statistics
This section reports the summary statistics of our baseline sample. We begin with illustrating
the increase in inequality, measured by the standard deviation of log wages, in our sample.
Figure B5 compares the overall change in inequality together with the between district-
generation-occupation component, measured using the residual log-wage dispersion from
a mincer regression including dummies for the district-generation-occupation estimated on
the sample in each year. Between 1997-2012, overall inequality in our sample increased by
about 8.5 log points. As the figure illustrates, the between district-generation-occupation
component explains about half of the increase in inequality during this period. In results
available on request, we attest that, separately, these characteristics do not account for the

31Results are similar if we define young generations to include workers who are less than 30, 35 or 45 years old.
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Figure B4: Internet and Computer Usage by Occupation: Within- and Between-Generation

Note. Sample of 85 occupations in Working Condition Survey. For each occupation, we compute the share of individuals
reporting intensive internet and computer usage on their job. Young generations defined as workers aged below 40 years
and Old generations defined as all workers aged above 40 years. The occupation cognitive-skill intensity is the share of time
spent on cognitive-intensive tasks in the BERUFNET dataset (2011-2013). Figure reports the lowess smooth fit.

inequality rise.32

Figure B5: Aggregate Trends in Log Wage Variance

Note. Estimation of the aggregate standard deviation of log wages on the full LIAB sam-
ple and the residual dispersion in log wages from a mincer regression including district-
occupation-generation dummies. Estimates are changes in dispersion relative to 1999.

32We also attest that the explanatory power of the between district-generation-occupation component is similar to that
of the between establishment component of log-wage variance, which Card, Heining, and Kline (2013) point as the main
driver of the inequality increase in Germany during this period. Notice that this is not mechanical because there are nearly
50 times as many establishments as district-occupation-generation triples in our sample.
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Table B1 presents summary statistics underlying the FDZ microdata used in our empirical
analysis. They illustrate the evolution of the number of employees, ages and log-wage of the
baseline generations used in estimation.

Table B1: Summary Statistics: German Microdata

1995 2014
Number of observations

Born before 1960 (“Old”) 185,751 96,045
Born after 1960 (“Young”) 251,451 538,590

Mean log wage
Born before 1960 (“Old”) 4.54 4.42
Born after 1960 (“Young”) 4.15 4.54

Mean age
Born before 1960 (“Old”) 44.86 60.53
Born after 1960 (“Young”) 28.22 39.56

Note. Sample of male workers in LIAB data, living in West Germany, employed
full-time with a positive wage in 120 occupations. Generations as defined in the
table.
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B.4 Impact of New Technologies on Cognitive-intense Occupations
This section investigates the robustness of the results in Table 1 and Figures 6-7.

We first investigate the impact of cognitive-intensity on occupation employment growth
with a more flexible specification that allows for different coefficients for different levels of
cognitive-intensity. As is clear from Table B2, the results in Table 1 are driven largely by an
increase in employment for all generations in the most cognitive intensive occupations (above
the 60th percentile of cognitive intensity). This increase is substantially stronger for the
young generation. Some evidence of polarization is also evident for the young generation,
as they also disproportionately enter the least cognitive intensive occupations.

Appendix Table B3 investigates the robustness of the estimates of equation (29) reported
in Table 1. Panel A of Table B3 reports similar results when we include occupation-level
controls for import and export exposure and the growth in the fraction of migrants. Panel
B shows that results are also robust to restricting the sample to native-born German males
only. Panel C presents results where the “Young” generation is defined alternatively as those
born after 1965 or 1955. As expected, when the definition of the young generation is further
restricted to include only more recent cohorts, the coefficient on "Young" is stronger. The
opposite happens if we relax the young definition to include older cohorts. Panel C also
shows that results are similar if the “Young” generation is defined as those aged below 40 in
each year (as in Figure 5).

Appendix Tables B4 and B5 investigate the robustness of the estimates of equations (30)-
(31) reported in Figures 6-7. Table B4 investigates how our baseline set of controls affects
estimates. The three panels of Table B4 present estimates for the entire post-shock period of
the sample (1999-2014, Panel A), the period during which DSL was rolled out across German
regions (1999-2007, Panel B), and the period before the shock (1996-1999, Panel C). Each
panel includes the results of our baseline specification, as well as alternative specifications
in which (i) we drop only the pre-trend control, and (ii) we augment baseline controls with
district-year or district-generation-year fixed effects.

Consider first the impact of the pretrend control in the second row of each panel. This
control increases the magnitude and the precision of the estimates coefficients in the period
of 1999-2007 and 1999-2014. However, it has the opposite impact on the pre-shock period
of 1996-1999. In this pre-shock period, there are marginally significant negative responses.
Once those are taken into account, the impact of broadband internet adoption on more
cognitive intensive occupations is stronger.

Turning to the specification including district-year or district-generation-year fixed effects,
we can see that results are remarkably similar to our baseline estimates. This is reassuring as
this specification includes a restrictive set of controls that absorb all potential confounding
shocks that affect each district-generation pair in a year. For instance, they account for any
pre-existing variation that might have lead to differential DSL access speeds in the district.
As a result, identification in this specification comes purely through the differential effect of
the cognitive intensity of the occupation for its response to the DSL access shock.

Table B5 investigates the robustness of the baseline estimates in Figures 6-7 to the sample
specification. The two panels present estimates for the entire post-shock period of the sample
(1999-2014, Panel A), and the period during which DSL was rolled out across German regions
(1999-2007, Panel B). All specifications include the baseline set of controls.

The second row of each panel show that results are similar if we restrict the sample to
only include workers born in Germany. This suggests that immigration does not seem to
affect our baseline results.
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We consider next several alternative definitions of the young generation based on (i)
cohorts groups born after 1955, 1965 or 1970, and (ii) age groups aged below 35, 40 or 45
in each year. For all definitions, the coefficient on the cognitive intensity of the occupation
for young workers is positive and strongly significant, while that for the old generation is
insignificant and close to zero. As before, the coefficient in column (2) is stronger when we
restrict the young generation to cohorts born in more recent years. In contrast, the coefficient
is weaker when we expand the young generation to also include cohorts born in less recent
years. Similar patterns arise when we define the young generation based on a lower or
higher age cutoff in each year.

The last row of each panel reports estimates when we restrict the sample by excluding
workers employed in establishments belonging to the top 25 percentile of establishment
sizes. This exercise accounts for the likelihood that the largest establishments in Germany
acquired DSL earlier through specialized private connections. In this case, we would expect
adjustment in these establishments to have occurred earlier, biasing our results to zero. In
line with this intuition, estimated coefficients are stronger than the baseline for all workers
in column (1) and for the young-old gap in column (4). This indicates that our instrument
seems to generate variation in the roll-out of broadband internet that mostly affected the
occupation composition of small establishments across German districts.

Finally, Table B6 presents the Sanderson-Windmeijer F-statistics (Sanderson and Wind-
meijer, 2016) for the first-stage of equation (31) in the period of 1999-2014. As discussed
in Section 3, this equation has multiple endogenous variables since it include DSL access
interacted with occupation cognitive intensity and worker generation dummies. To test for
weak instruments in this setting, we use the Sanderson-Windmeijer F-statistic, which checks
whether any of our endogenous variables is weakly instrumented, as well as whether there
are sufficiently many strong instruments to instrument the multiple endogenous variables.
The table makes clear that we obtain uniformly high first-stage SW F-statistics in all specifi-
cations.
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Table B2: Cognitive intensity and labor market outcomes across occupations in Germany: Percentiles
specification

Dependent variable: Employment Growth Real Payroll Growth
All Young Old All Young Old

Percentile of Cognitive Intensity (1) (2) (3) (4) (5) (6)
Low: below percentile 30 -0.012 0.286** -0.946*** 0.220* 0.590*** -0.875***

(0.128) (0.137) (0.129) (0.132) (0.140) (0.135)
Medium: percentiles 30-60 -0.054 -0.046 0.031 -0.086 -0.036 -0.014

(0.194) (0.205) (0.208) (0.195) (0.208) (0.202)
High: above percentile 60 0.812*** 1.038*** 0.531*** 0 .816*** 1.099*** 0 .592***

(0.156) (0.166) (0.016) (0.158) (0.169) (0.157)
Note. Sample of 120 occupations. The table reports the estimate for the dependent variable over the time period 1995-2014. Occupations
have been classified into 100 percentiles based on cognitive intensity, and separate coefficients estimated for percentiles below 30, 30-60 and
above 60. Young generation defined as all workers born after 1960 and Old generation as all workers born before 1960. Robust standard
errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01

Table B3: Cognitive intensity and labor market outcomes across occupations in Germany: Robustness

Dependent variable: Employment Growth
All Young Old Between
(1) (2) (3) (4)

Panel A: Alternative control set, 1995-2014
Controls for immigration and trade 1.426*** 1.807*** 0.841*** 0.966***

(0.261) (0.279) (0.252) (0.376)

Panel B: Alternative sample definition, 1995-2014
Native-born Males Only 1.396*** 1.807*** 0.778*** 1.029***

(0.226) (0.235) (0.231) (0.340)
Panel C: Alternative generation definition, 1995-2014

Young: Born after 1965 1.488*** 2.137*** 0.857*** 1.280***
(0.225) (0.299) (0.246) (0.387)

Young: Born after 1955 1.488*** 1.639*** 0 .967*** 0.671*
(0.225) (0.268) (0.290) (0.395)

Young: Aged Below 40 in each year 1.488*** 1.748*** 0.773*** 0.975**
(0.225) (0.294) (0.246) (0.383)

Note. Sample of 120 occupations, sample periods as defined in the table. Columns (1)–(3) report the estimated coefficient on the
occupation’s cognitive intensity in equation (29). Column (4) reports the difference between the coefficients in columns (3) and (2).
Each row defines a separate robustness exercise. The row "Controls for immigration and trade" includes a set of baseline controls:
growth in occupational exposure to exports during the sample period, growth in occupational exposure to imports during the
sample period, and growth in the fraction of immigrants in the occupation during the sample period. Robust standard errors in
parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table B4: Impact of early DSL adoption on more cognitive-intensive occupations: Alternative control
sets

Dependent variable: Employment Growth
All Young Old Between

Control Set (1) (2) (3) (4)
Panel A: 1999-2014

Baseline 0.240*** 0.482*** -0.065 0.546**
(0.085) (0.154) (0.193) (0.287)

No Pretrend Control 0.177** 0.292*** -0.026 0.319
(0.087) (0.114) (0.189) (0.222)

District-Year Effects 0.149** 0.475*** -0.035 0.510*
(0.067) (0.160) (0.203) (0.302)

Panel B: 1999-2007
Baseline 0.077* 0.223*** -0.138 0.361**

(0.043) (0.092) (0.116) (0.177)
No Pretrend Control 0.015 0.137 -0.200 0.337

(0.061) (0.085) (0.127) (0.149)

District-Year Effects 0.093 0.234** -0.134 0.368*
(0.060) (0.098) (0.125) (0.019)

Panel C: 1996-1999
Baseline -0.002 0.011 -0.019 0.029

(0.026) (0.030) (0.031) (0.049)
No Pretrend Control -0.109* -0.141* -0.074 -0.068

(0.065) (0.077) (0.084) (0.061)

District-Year Effects 0.012 0.011 -0.022 0.034
(0.032) (0.032) (0.032) (0.050)

Note. Sample of 2 cohorts, 120 occupations and 323 districts. Sample periods as defined in the
table. Column (1) reports the estimated coefficient on interaction between the occupation’s cognitive
intensity and district DSL access in equation (30). Columns (2)-(3) report the estimated coefficients
on interaction between the occupation’s cognitive intensity, generation dummies and district DSL
access in equation (31). Column (4) reports the difference between the coefficients in columns (3)
and (2). Generations are the baseline generations with young workers those born after 1960. All
regressions are weighted by the district population size in 1999 and include a set of baseline district-
level controls as well as occupation-year and generation-year fixed effects. Each row defines a separate
robustness exercise. "District-Year Effects" are estimated as district-year fixed effects in column (1) and
as district-year-generation fixed effects in columns (2)-(4). Standard errors clustered at the district-level
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table B5: Impact of early DSL adoption on more cognitive-intensive occupations: Sample selection

Dependent variable: Employment Growth
All Young Old Between

Sample Definition (1) (2) (3) (4)
Panel A: 1999-2014

Baseline 0.240*** 0.482*** -0.065 0.546**
(0.085) (0.154) (0.193) (0.287)

Native-born Males Only 0.223*** 0.446*** 0.074 0.372**
(0.078) (0.143) (0.144) (0.208)

Young: born after 1970 0.714*** -0.048 0.789**
(0.182) (0.242) (0.371)

Young: born after 1965 0.612*** -0.171 0.783***
(0.157) (0.201) (0.303)

Young: born after 1955 0.573*** -0.298 0.871**
(0.196) (0.233) (0.355)

Young: Aged < 35 in each year 0.612*** 0.059 0.553***
(0.139) (0.139) (0.203)

Young: Aged < 40 in each year 0.529*** 0.076 0.453**
(0.164) (0.163) (0.237)

Young: Aged < 45 in each year 0.445*** 0.159 0.286
(0.170) (0.198) (0.266)

Small Establishments Only 0.309*** 0.466*** -0.128 0.594**
(0.083) (0.140) (0.183) (0.286)

Panel B: 1999-2007
Baseline 0.077* 0.223*** -0.138 0.361**

(0.043) (0.092) (0.116) (0.177)
Native-born Males Only 0.054 0.145* 0.037 0.108

(0.045) (0.092) (0.105) (0.171)
Young: born after 1970 0.449*** -0.070 0.518*

(0.120) (0.191) (0.289)
Young: born after 1965 0.298*** -0.168 0.465**

(0.092) (0.118) (0.183)
Young: born after 1955 0.203** -0.155 0.358***

(0.087) (0.115) (0.167)
Young: Aged < 35 in each year 0.118** 0.095 0.022

(0.066) (0.095) (0.130)
Young: Aged < 40 in each year 0.195** 0.030 0.165

(0.086) (0.104) (0.166)
Young: Aged < 45 in each year 0.206*** 0.091 0.115

(0.090) (0.111) (0.174)
Small Establishments Only 0.129* 0.263** -0.170 0.434**

(0.070) (0.103) (0.120) (0.181)
Note. Sample of 2 cohorts, 120 occupations and 323 districts. Sample periods as defined in the table. Column
(1) reports the estimated coefficient on interaction between the occupation’s cognitive intensity and district DSL
access in equation (30). Columns (2)-(3) report the estimated coefficients on interaction between the occupation’s
cognitive intensity, generation dummies and district DSL access in equation (31). Column (4) reports the differ-
ence between the coefficients in columns (3) and (2). All regressions are weighted by the district population size
in 1999 and include a set of baseline district-level controls, pretrend controls, occupation-year and generation-
year fixed effects. Each row defines a separate sample selection exercise: (i) baseline sample restricted to only
Germans ("Native-born"), (ii) different definitions of young workers based on year of birth or age cutoff in each
year, and (iii) baseline sample restricted to workers employed in establishments below the 75th percentile of all
establishment sizes ("Small Establishments Only"). Standard errors clustered at the district-level in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table B6: First-stage SW F-statistics for estimation of equation (31) reported in Figure 7

Instrumented Variable 1997 2007 2014
Panel A:Log Change in Occupation Employment
Young Generation*DSL Access 18.74 18.78 19.04
Old Generation* DSL Access 19.04 17.57 20.45
Young Generation*DSL Access*Cognitive Intensity 21.95 20.48 19.77
Old Generation*DSL Access*Cognitive Intensity 21.31 18.57 22.32

Panel B:Log Change in Occupation Payroll
Young Generation*DSL Access 18.89 18.67 18.89
Old Generation* DSL Access 19.18 17.73 21.16
Young Generation*DSL Access*Cognitive Intensity 21.76 20.37 19.46
Old Generation*DSL Access*Cognitive Intensity 21.14 18.16 21.48

Note. Sample of 2 cohorts, 120 occupations and 323 districts. Table reports the Sanderson-Windmeijer
F-statistic for each endogenous regressor when estimating equation (31).
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Appendix C Numerical Analysis

C.1 Parameterization by impulse response matching
This appendix discusses in detail the parameterization of the model. As in Section 6, we map
the H technology in our theory to the set of production activities performed by cognitive-
intensive occupations. We calibrate our theory in two steps. In the first step, we exogenously
specify a subset of parameters and functions in the theory. We set the discount rate to
match an annual interest rate of 2%, ρ = 0.02. We calibrate the elasticity of substitution
across cognitive and non-cognitive intensive occupations to θ = 3. Finally, for all welfare
calculations, we specify welfare-weights re−rt with r = ρ + δ so that the social discounting
of future generations is identical to the discounting of worker’s future utility.

We also specify functional forms for the productivity of skill types in the two technolo-
gies. We abstract from differences in non-cognitive productivity across skills by normalizing
α(i) ≡ 1. This implies that, for any given worker generation, employment and payroll re-
sponses are both driven by the degree of technology-skill specificity in the economy.33 In
addition, we assume that σ(i) takes the form of a logistic function:

σ(i) =
eσ(i−l)

1 + eσ(i−l)

where l is the assignment threshold in the initial stationary equilibrium. This specification
is a tractable manner of capturing technology-skill specificity in the economy. It implies that
the equilibrium exists for any σ > 0 since the relative productivity is bounded. Also, by
setting the midpoint of the function to l, the parameter σ controls the elasticity of σ(i) for
the marginal skill-types in the initial equilibrium (i.e., i close to l). Thus, σ specifies the
magnitude of the the short-run skill supply elasticity, η.

In the second step, we use the estimated responses of Section 6 to calibrate (δ, σ, ψ). We
select δ = 0.057 and x̃0 = 40% to match the decline in the share of the old generation in
total employment from 40% in 1997 to 15% in 2014. In line with the discussion in Section
6.1, we select ψ to match the estimated impulse response function of the between-generation
difference in relative cognitive-intensive employment. The positive estimated coefficients in
Panel B of Figure 7 yields ψ = 0.35. In addition, we select η to match the estimated impulse
response function of the relative cognitive-intensive employment of the old generation. Due
to the nonsignificant estimates reported in Panel B of Figure 7, we set the short-run skill
supply to the low value of η = 0.02.

We formally present the parametrization procedure next, along with an analysis of the
model fit.34

For all parameters, we assume that the shock starts with the roll-out of broadband inter-
net in 2003. We then select parameters to match the estimates for the period of 2008 to 2014
in which we find statistically significant response in the relative payroll and relative employ-
ment of cognitive-intensive occupations. We also select the distribution of innate ability to
normalize the initial skill distribution to be uniform: s0(i) ≡ 1.

33The function form of α(i) controls how labor earnings respond to changes in the employment composition across
technologies – for a discussion, see Adão (2016). Alternative specifications of α(i) can thus be used to match responses in
relative earnings for different worker generations.

34In this calibration, we select the distribution of innate ability distribution, s̄(i), to generate a uniform distribution of
skills in the initial equilibrium: s0(i) ≡ 1. In our theory, this normalization is innocuous since it does not affect changes in
the skill distribution for a given change in q (Lemma 1) and η matches the short-run employment change.
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Generation size: δ and x̃0. We first set x̃0 to match the 60% share of young workers in the
national population in 1997. We then select δ to match the incline of 25 p.p. in the share of
young workers in population between 1997 and 2014. Specifically, we select x and δ such
that

δ̂ =
1

2014− 1997
log(0.40/0.15)

x = −1
δ

log 0.4

We obtain δ = 0.0574. This says that the expected work life of a worker after turning 40
years is 18 further years.

Speed of Adjustment: λ. Proposition 2 implies that it is possible to write the impulse
response function of relative output as

∆log(yt) = α0 + α1e−λt

where α0 > 0, α1 < 0, and λ > 0.
We select the parameter λ to match the growth in the estimates response of relative

payroll of more cognitive-intensive occupations:

λ̂ = arg min
λ

2014

∑
t=2008

[(
β̂

y
t − β̂

y
2007
)
− α1e−λ(t−2007)

]2
(C.1)

where β̂
y
t is the estimated coefficient of (30) reported in Panel B of Figure 6.

The minimization problem in (C.1) yields λ̂ = 0.135. Figure B7 shows the fit of the
calibrated model

Long-run skill supply elasticity: ψ. To calibrate ψ, we first construct the parameter

α̂ = δ̂

[(ρ

2
+ λ̂

)2
−
(ρ

2

)2
− δ̂(ρ + δ̂)

]−1

Our baseline calibration implies that α̂ = 3.484.
Proposition 1 implies that

κη = ψα̂− θ (C.2)

Using expression (28), we have that

∆ log eyoung
t − ∆ log eold

t =
ψ

χ

1− e−λt

1− (1− x̃0)e−δt (θ − 1)∆ log A.

From Proposition 2,

(θ − 1)∆log(A) = ∆ log(yt)

(
1 + κη

θ + κη
+

ψ

χ

θ − 1
θ + κη

(1− e−λt)

)−1

(C.3)

where χ = (θ + κη) (ρ + δ) + ψ.
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Combining these two expressions, we get that

∆ log eyoung
t − ∆ log eold

t
∆ log yt

=
1− e−λt

1− (1− x̃0)e−δt

(
1 + κη

θ + κη

χ

ψ
+

θ − 1
θ + κη

(1− e−λt)

)−1

Using the expression for κη in (C.2),

∆ log eyoung
t − ∆ log eold

t
∆ log yt

=
1− e−λt

1− (1− x̃0)e−δt

(
(ρ + δ)

1 + ψα− θ

ψ
+ 1− θ − 1

ψα
e−λt

)−1

.

We then define the function:

Fψ(ψ, t) ≡ 1− e−λ̂t

1− (1− x̃0)e−δ̂t

((
ρ + δ̂

) 1 + ψα̂− θ

ψ
+ 1− θ − 1

ψα̂
e−λ̂t

)−1

.

We select the parameter ψ to match the ratio of the between-generation employment
response and the payroll response:

ψ̂ = arg min
ψ

2014

∑
t=2008

[
β̂

young
t − β̂old

t

β̂
y
t

− Fψ(ψ, t)

]2

(C.4)

where β̂
y
t is the estimated coefficient of (30) reported in Panel B of Figure 6, and β̂

young
t −

β̂old
t is the between-generation employment response obtained from the estimation of (31)

reported in Panel B of Figure 7.
The minimization problem in (C.4) yields ψ̂ = 0.345. Figure B7 shows the fit of the

calibrated model.

Short-run skill supply elasticity: η. The combination of (27) and (C.3) implies that

∆ log eold
t

∆ log yt
≈ η

eH,0−1

1− ψ
χ (1− e−λt)

1 + κη + ψ
χ (θ − 1)(1− e−λt)

.

Using the expression for κη in (C.2),

∆ log eold
t

∆ log yt
≈ η

eH,0−

1− (θ−1)(1−e−λt)
α(ρ+δ)+1

1 + ψα− θ + (θ−1)(1−e−λt)
α(ρ+δ)+1

.

We then define

Fη(η, t) ≡ η

eH,0−

1− θ−1
α̂(ρ+δ̂)+1

(1− e−λ̂t)

1 + ψ̂α̂− θ + θ−1
α̂(ρ+δ̂)+1

(1− e−λ̂t)
.

where (δ̂, λ̂, ψ̂) are the calibrated parameters above and eH,0− is the initial share of employ-
ment in cognitive-intensive occupations.

We select the parameter η to match the ratio of the employment response of old workers
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and the payroll response:

η̂ = arg min
η

2014

∑
t=2008

[
β̂old

t

β̂
y
t
− Fη(η, t)

]2

(C.5)

where β̂
y
t is the estimated coefficient of (30) reported in Panel B of Figure 6, and β̂old

t is the
employment response for old workers obtained from the estimation of (31) reported in Panel
A of Figure 7.

The negative point estimates reported in Panel A of Figure 7 imply that the minimization
problem in (C.5) yields η̂ < 0. Since the employment response of old generations is small
and nonsignificant, we assume that they are identical to zero, which yields η̂ = 0. Hence, we
calibrate η = 0 and evaluate the model predictions under alternative specifications of this
parameter.

Figure B6: Calibration of λ
Note. Blue dots represent the point estimates of βt reported in Panel B of Figure 6. Black solid curve represents the bet fit line with
λ = 0.135 obtained from the solution of (C.1).

C.2 Dynamic Adjustment to Cognitive-biased Technological Innovations
We now present the quantitative predictions of our theory regarding the economy’s dy-
namic adjustment to the arrival of cognitive-biased technologies. We calibrate the mag-
nitude of the shock, ∆ log A, to match a long-run increase in the employment share in
cognitive-intensive occupations from 25% to 50%. These values approximately correspond
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Figure B7: Calibration of ψ

Note. Blue dots represent the point estimates of β̂
young
t −β̂old

t
β̂

y
t

using the estimates reported in Panel B of Figures 6 and 7. Black solid curve

corresponds to Fψ(ψ̂, t) with ψ̂ = 0.354 obtained from the solution of (C.4).

to the cognitive-intensive employment share in 1997 of the countries with the lowest and
the highest cognitive-intensive employment share among those listed in Figure 5 (Portu-
gal and Netherlands, respectively). Thus, our quantitative results can be seen as analyzing
the transitional dynamics of a skill-biased shock that generates international convergence in
cognitive-intensive employment shares. Given our calibration, this interpretation requires
all countries to have the same parameters of short- and long-run skill supply elasticity of
Germany.

Figure B8 presents the predicted impulse response functions of labor market outcomes.
Consider first response at impact. Given that our theory abstracts from several additional
sources of dynamics, it would be wrong to interpret the impact adjustment as happening
instantaneously in reality. We view this short-run response as capturing changes over the
time window encompassing dynamic forces triggered by other variables that are likely to
move faster than the distribution of skills (e.g., physical capital). In other words, we prefer
to interpret the “length” of the impact adjustment as related to the time that it takes for such
faster moving variables to converge to the new long-run equilibrium.

Results show that there is a substantial increase in the relative cognitive-intensive output
in the short-run. This large response is a consequence of the large magnitude of the shock.
This becomes clear when we take into account that relative employment almost does not
change at impact because of the low value of the short-run skill supply elasticity. The combi-
nation of the large increase in relative output and the small increase in relative employment
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translates into large changes in lifetime inequality.
Our results also indicate that the responses in all outcomes change substantially over

time (measured in terms of worker generations, 1/δ ≈ 18yrs). Over the course of the two
generations following the shock, the responses in relative output doubles in magnitude due
to the reallocation of workers across technologies. Such a reallocation is entirely driven by
incoming generations of young workers. This pattern is a consequence of the change in the
skill distribution across generations. The bottom right panel shows that the initial spike in
lifetime inequality induces young workers to invest in high-i skills allocated to cognitive-
intensive occupations. The economy’s slow process of skill accumulation triggers a decline
in lifetime inequality, which recedes by more than 30% over the course of two generations.

Figure B8: Transitional dynamics to a cognitive-biased innovation at t = 0

Note. The figure reports the theoretical impulse response function with a shock calibrated to increase
the employment share in cognitive-intensive occupations from 25% to 50% between stationary equilibria.
Baseline calibration described in Appendix C.1.
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Appendix D Additional Results

D.1 Microfoundation of the Production Functions in (4)–(5)

Consider two firms: high-tech (k = H) and low-tech (k = L). Assume that the output of firm
k at time t aggregates per-worker output ykt(i),

Ykt =
∫ 1

0
ykt(i)skt(i)di,

where skt(i) is the quantity demanded of workers of type i at time t by firm k.
The output of workers of type i depends on their skills to perform cognitive and noncog-

nitive tasks, {aC(i), aNC(i)}, as well as how intensely each task is used the firm’s production
process:

ykt(i) = aC(i)βk aNC(i)1−βk ,

where βk denotes the production intensity of firm k on cognitive tasks.
In our model, technology-skill specificity arises whenever firms are heterogeneous in terms

of task intensity and workers are heterogeneous in terms of their task bundle. To see this,
suppose that firm H’s technology uses cognitive tasks more intensely than firm L’s technol-
ogy, βH > βL, and that a worker of type i is able to produce a higher cognitive-noncognitive
task ratio than a worker of type j, aC(i)/aNC(i) > aC(j)/aNC(j). In this case, i has a
higher relative output with the cognitive-intensive technology H than j, yHt(i)/yLt(i) >
yHt(j)/yLt(j), and, therefore, type i is more complementary to the cognitive-intensive tech-
nology H than type j.

To map this setting to the production functions in (4)–(5), we assume that high-tech
production is more intensive in cognitive tasks than low-tech production, βH > βL. We
also assume that types differ in terms of their skill bundle and, without loss of generality,
impose that high-i types are relatively better in performing cognitive-intensive tasks.

1. High-tech technology H uses cognitive tasks more intensely than Low-tech technology
L: βH > βL.

2. Define σ(i) ≡
(

aC(i)
aNC(i)

)βH−βL
and α(i) ≡ aC(i)βL aNC(i)1−βL . Assume that high-i types

have higher cognitive-noncognitive task ratio: σ(i) is increasing in i.

D.2 Welfare Consequences of Adjustment Across Generations
This section investigates how calculations of the welfare consequences of technological shocks
are affected by the persistence of changes in labor market outcomes along the transition to
the new equilibrium. In our theory, persistence arises from the dynamics of the skill distri-
bution. So, in order to evaluate its consequences, we consider a static version of our model
in which we shut down any skill investment of young workers. However, we allow this
static model to match labor market responses over one particular horizon. This exercise
thus speaks directly to the risks of ignoring the adjustment across generations by focusing
on estimates of the impact of new technologies on labor market outcomes over fixed time
horizons.
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To be more precise, we engage in the following thought experiment. Consider an econ-
omy subject to a one-time permanent shock ∆ log A. Suppose that this economy behaves
according to the theoretical predictions described in Section 3 with short- and long-run skill
supply elasticity given by η and ψ, respectively. We consider a researcher that relies on a
static assignment model to analyze how this economy responds to the technological shock.
Through the lens of our theory, this researcher considers a misspecified parametrization of
the economy in which the long-run elasticity equals zero. This parametrization shuts down
any dynamics in the economy because the skill distribution is the same for all generations.

We assume that this researcher observes responses in labor market outcomes over a fixed
horizon t = T. We focus on changes in lifetime inequality since this is the main endogenous
outcome entering the welfare computations in Proposition 5. We consider two ways in which
the researcher may decide to use the static model to match the observed inequality response,
∆ log qT. In the first approach, the researcher observes the true shock (∆ log A1 = ∆ log A),
and selects η1 to match ∆ log qT with ψ1 = 0. In the second, the researcher observes the true
parameter (η2 = η), and selects the size of the shock ∆ log A2 to match ∆ log qT with ψ2 = 0.

The following proposition shows that, despite matching inequality responses at time T,
this researcher misses the economy’s transitional dynamics triggered by the evolution of the
skill distribution across generations. This introduces biases in the evaluation of the welfare
consequences of the technological innovation.

Proposition 6 Consider an economy in which η and ψ are positive. Assume that ∆ log A generates
a change in lifetime inequality between t = 0 and t = T of ∆ log qT. Consider predictions under two
alternative static parametrizations of the model (ψ1 = ψ2 = 0).

1. Suppose ∆ log A1 = log A is known such that ∆ log(A)
∆ log(qT)

> θ(ρ+δ)
θ−1 . There exists η1 that matches

∆ log qT with an associated T1 such that ∆Ω̄1 > ∆Ω̄ and ∆Ū1 < ∆Ū if, and only if, T < T1.

2. Suppose η2 = η is known. There exists ∆ log A2 that matches ∆ log qT with an associated T2

such that ∆Ω̄2 > ∆Ω̄ and ∆Ū2 < ∆Ū if T < T2.

Proof. See Appendix D.2.1.

This proposition shows that there are multiple ways in which researchers can use a static
version of our model to match observed inequality responses over a fixed horizon. All ver-
sions ignore the transitional dynamics of labor market outcomes generated by changes in the
skill distribution across generations. This introduces biases in the evaluation of the welfare
consequences of new technologies. If the researcher only matches inequality responses in
short horizons (i.e. T is low), then she will think that inequality will remain high in the
future. This makes her overpredict the present value of lifetime inequality, and underpredict
the average welfare gain. Alternatively, a researcher using the first approach would reach
the opposite conclusions if she matches inequality responses in long horizons (i.e. T is high).

Such biases will be larger when there is higher persistence in labor market outcomes due
to larger changes in the skill distribution along the transition. As shown in Section 4, this is
the case whenever the skill supply elasticity is low in the short-run (i.e, η is low) but large in
the long-run (i.e., ψ is large).

D.2.1 Proof of Proposition 6

We start by pointing out that, by the definition in Proposition 1, λ1 = λ2 = δ because
ψ1 = ψ2 = 0. Thus, Proposition 2 immediately implies that both parametrizations must
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satisfy the condition that

∆ log(qT) =
θ − 1

(θ + κηP) (ρ + δ)
∆ log AP (D.1)

where P = 1 for the first approach or P = 2 for the second approach.
Notice also that the combination of Propositions 1 and 5 implies that

∆Ω̄ = ∆ log(qT)− q̂0

(
e−λT − 1 +

λ

r + λ

)
and, therefore,

∆Ω̄ = ∆ log(qT)

(
1 + λ−δ

δ
r

r+λ

1 + λ−δ
δ e−λT

)
. (D.2)

This expression implies that, because λ1 = λ2 = δ , both parametrizations entail

∆Ω̄P = ∆ log(qT) (D.3)

for P = 1, 2.
We now use these expressions two establish the two parts of the proposition.

Part 1. In the first approach, we set ∆ log A1 = log A. So, by equation (D.1), we must set

κη1 =
θ − 1
ρ + δ

∆ log(A)

∆ log(qT)
− θ,

which is positive as long as ∆ log(A)
∆ log(qT)

> θ(ρ+δ)
θ−1 .

By taking the ratio between the expressions in (D.2) and (D.3),

∆Ω̄1

∆Ω̄
> 1 ⇐⇒ e−λT >

r
r + λ

⇐⇒ T < T1 ≡ 1
λ

log
(

r + λ

r

)
.

The expression of ∆Ū in Proposition 5 immediately implies that ∆Ω̄1 > ∆Ω̄ ⇐⇒ ∆Ū1 <
∆Ū whenever y∞ > e∞.

Part 2. In the second approach, we set η2 = η. So, by equation (D.1), we must set .

∆ log A2 = ∆ log(qT)
(θ + κη) (ρ + δ)

θ − 1
.

Expressions in (D.2) and (D.3) also hold in this case, so the same steps used above guar-
antee that ∆Ω̄2 > ∆Ω̄ if, and only if, T < T1. To establish the result, it is sufficient to show
that ∆ log A2 ≤ ∆ log A because, by Proposition 5, ∆Ω̄2 > ∆Ω̄ and ∆ log A2 ≤ ∆ log A imply
that ∆Ū2 < ∆Ū.

We now show that ∆ log A2 ≤ ∆ log A. By combining Proposition 2 and equation (D.1),
we have that

∆ log A2 =
(θ + κη)(

θ + κη + ψ
ρ+δ

) (1 +
λ− δ

δ
e−λT

)
∆ log A

81



and, therefore,

∆ log A2 ≤ (θ + κη)(
θ + κη + ψ

ρ+δ

) λ

δ
∆ log A.

So, ∆ log A2 ≤ ∆ log A if

F(ψ) ≡ (θ + κη)(
θ + κη + ψ

ρ+δ

) λ(ψ)

δ
≤ 1

with λ(ψ) defined in Proposition 1.
This condition always holds because λ(0) = δ, F(0) = 1 and sign

(
∂F(ψ)

∂ψ

)
< 0. To see

this, we use the expression for λ(ψ) in Proposition 1 to show that

sign
(

∂F(ψ)
∂ψ

)
=sign

(
∂λ(ψ)

∂ψ

(
θ + κη +

ψ

ρ + δ

)
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

δ

θ + κη

(
θ + κη +

ψ

ρ + δ

)
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

(
δ +

1
ρ + δ

ψ

θ + κη

)
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

(
δ +

1
ρ + δ

[(
λ +

ρ

2

)2
−
(ρ

2

)2
− δ(ρ + δ)

])
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

(
1

ρ + δ

[(
λ +

ρ

2

)2
−
(ρ

2

)2
])
− λ

ρ + δ

)
=sign

(
1

2λ + ρ

[(
λ +

ρ

2

)2
−
(ρ

2

)2
]
− λ

)
=sign

(
λ + ρ

2λ + ρ
− 1
)

.

Appendix E Extensions

This section discusses the extensions described in Section 4.4.

E.1 Learning-from-others
In what follows, we reproduce the key steps that change in the proofs in Appendix A.3 and
Appendix A.4 when

s̄τ(i) = sτ(i)
γε̄(i)1−γ, γ ∈ [0, 1). (E.1)

First, we log-linearize the extended version of (A.6). We begin by noting that the station-
ary distribution exist and is
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s(i) =
s(i)γε(i)1−γw(i)

ψ
ρ+δ∫ 1

0 s(j)γε(j)1−γw(j)
ψ

ρ+δ dj
=⇒ s(i) =

ε(i)w(i)
1

1−γ
ψ

ρ+δ∫ 1
0 ε(i)w(i)

1
1−γ

ψ
ρ+δ di

Then, we obtain that

ˆ̃st(i) = γ (ŝt(i)− ŝt(l)) + ˆ̃st(l)− ψq̂tIi<lt − ψq̂t+τ(i)Ii∈(lt,l). (E.2)

Second, we replace the above in the expression inside the parenthesis in (A.4), we obtain

(∫ 1

l
ˆ̃st(i)

α(i)σ(i)s(i)∫ 1
l α(i)σ(i)s(i)di

di−
∫ l

0
ˆ̃st(i)

α(i)s(i)∫ l
0 α(i)s(i)di

di

)
=

γ
∫ 1

l
ŝt(i)

α(i)σ(i)s(i)∫ 1
l α(x)σ(x)s(x)dx

di−
∫ l

0

(
γŝt(i)− ψq̂tIi<lt − ψq̂t+τ(i)Ii>lt

) α(i)s(i)∫ l
0 α(x)s(x)dx

di =

γ
κη + θ

η
l̂t + ψq̂t − ψ

∫ l

lt

(
q̂t − q̂t+τ(i)

) α(i)s(i)∫ l
0 α(x)s(x)dx

di

where the last line uses (A.3) annd (A.2).
Third, as in the proof in Appendix A.3, we can show that the last term inside the inte-

gral is of second order. Thus, replacing the above expression back in (A.4), we obtain the
Kolmogorov-Forward equation for l̂t in the economy with learning-from-others,

∂l̂t
∂t

= −δ(1− γ)l̂t +
η

κη + θ
δψq̂t. (E.3)

Fourth, since the law of motion for q̂t is the same as in the benchmark model, this implies
that the equilibrium is saddle-path stable where the new λ in the economy with learning-
from-others is the positive solution to

(δ(1− γ)− λ)(ρ + δ + λ) +
ψδ

κη + θ
= 0.

Finally, the optimal lottery in the economy with learning-from-others is

ˆ̃st(i) = γŝt(i) +
(

Ii>l −
∫ 1

l
s(i)di

)
ψq̂t + ot(i).

Next, we reproduce the key steps that change in Appendices A.5 and A.6. First, from the
expression for the stationary distribution above, note that the long-run skill supply elasticity
in the learning-from-others economy is 1

1−γ ψ as opposed to simply ψ.
This implies that the dynamic responses are
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∆log(lt) = −
η

θ + κη

1 +
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
1− γ

ψ

ρ + δ
(e−λt − 1)

 (θ − 1)∆ log(A)

∆log(yt) =
1

θ + κη

(1 + κη) +
(θ − 1)

θ + κη + 1
1−γ

ψ
ρ+δ

1
1− γ

ψ

ρ + δ
(1− e−λt)

 (θ − 1)∆log(A)

∆log(qt) =
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ

(
1 +

λ− δ(1− γ)

δ(1− γ)
e−λt

)
(θ − 1)∆log(A)

where the last line follows from the equation for the new λ.
Second, note that the short-run responses for lt and yt are identical than in the benchmark

model. The long-run responses are larger (smaller) in magnitude for yt (for lt) in the econ-
omy with learning-from-others since the long-run skill supply elasticity is larger and thus

1
θ+κη+ 1

1−γ
ψ

ρ+δ

1
1−γ

ψ
ρ+δ is larger. As for their persistence, note that λ is smaller in the learning-

from-others economy. Together with the fact that 1
θ+κη+ 1

1−γ
ψ

ρ+δ

1
1−γ

ψ
ρ+δ is larger, they imply

that the persistence of both yt and lt is higher in the learning-from-others economy.
Third, for qt we have that

∆log(q∞) =
1

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ

(θ − 1)∆log(A)

∆log(q0) =
1

θ + κη

1

(ρ + δ + ψδ
θ+κη

1
ρ+δ+λ )

(θ − 1)∆log(A)

∫ ∞

0
q̂tdt =

1
1−γ

ψ
ρ+δ

θ + κη + 1
1−γ

ψ
ρ+δ

1
ρ + δ + λ

1
λ

1
θ + κη

(θ − 1)∆log(A).

Then, since λ is smaller, the short- and long-run responses are smaller in magnitude and
the persistence is larger in the economy with learning-from-others.

Finally, we note that the proofs for the comparative statics in A.6 with respect to η and
ψ are unchanged. To see this, it suffices to show that the dynamics for qt, lt, yt in the econ-
omy with learning-from-others are equivalent to those from a re-parameterized benchmark
economy where δ′ = δ(1− γ), ψ′ = 1

1−γ ψ and ρ′ = ρ + δγ.

E.2 Old generations skill investment
We now let a fraction of workers that were present before the shock re-optimize their skill
investment "as if" they were a young generation entering at time t = 0. Formally, the skill
distribution on impact now becomes

s0(i) = (1− β)s0−(i) + βs̃0(i),
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where β is the fraction of workers in the generation present before the shock that can re-
optimize.

The first thing to note is that this does not change any of the transitional dynamics given
the new initial skill distribution on impact. As such Proposition 1 and its corollary are
unchanged. However, the initial conditions and the dynamic responses do change. Next, we
reproduce the key steps that change in Appendix A.5.

The deviation from the skill distribution on impact from the new stationary distribution
is now

ŝ0(i) = ŝ0−(i) + β
(

ˆ̃s0(i)− ŝ0−(i)
)

= (1− β)

(
ŝ0(l)− Ii>l

ψ

ρ + δ
∆log(ω)

)
+ β

(
Ii>l −

∫ 1

l
s(i)di

)
ψq̂0

where the long-run change ∆log(ω) is the same as in the benchmark model.
Following the same steps as in the benchmark proof, this then implies that

(
θ

η
+ κ

)
l̂0 =

∫ 1

l

σ(i)α(i)s(i)∫ 1
l σ(i)α(i)s(i)

ŝ0(i)di−
∫ l

0

α(i)s(i)∫ l
0 α(i)s(i)

ŝ0(i)di

= −(1− β)
ψ

ρ + δ
∆log(ω) + βψq̂0.

Thus,

ω̂0 = − 1
η

l̂0

=
1

θ + κη

(
ψ

ρ + δ
∆log(ω)− β

(
ψ

ρ + δ
∆log(ω) + ψq̂0

))
=

1
θ + κη

(
ψ

ρ + δ
∆log(ω)− β

(
ψ

ρ + δ
∆log(ω) +

ψ

ρ + δ + λ
ω̂0

))
=

1− β

1 + β
ψ

ρ+δ+λ
1

θ+κη

1
θ + κη

ψ

ρ + δ
∆log(ω).

Finally, using the above together with the expression for ∆log(ω) in equations A.10-A.12,
we obtain:

∆log(yt) =
1

θ + κη

(
1 + κη + (θ − 1)

ψ

χ

(
1− 1− β

1 + β λ−δ
δ

e−λt

))
(θ − 1)∆log(A)

∆log(qt) =
1
χ

(
1 +

λ− δ

δ

1− β

1 + β λ−δ
δ

e−λt

)
(θ − 1)∆log(A)

∆log(lt) = −
η

θ + κη

(
1 +

ψ

χ

(
1− β

1 + β λ−δ
δ

e−λt − 1

))
(θ − 1)∆log(A)

Then, mathematically, the dynamics responses in the economy where old generations can
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re-optimize their skills are similar to those in the benchmark economy except that that the
function e−λt is now multiplied by 1−β

1+β λ−δ
δ

< 1. This immediately implies that: the long-

run responses are the same in both economies, the short-run responses of y and l (of q )
are now larger (smaller) in magnitude, and the persistence of all variables is now smaller.
Hence, in many ways, this new economy behaves qualitatively similar to an economy with
a lower degree of skill specificity (higher η), with the exception that long-run responses are
unchanged.

E.3 Population growth
We now assume that the size of entering generations is µ as opposed to δ. This implies
that the population growth rate is µ− δ. The Kolmogorov-Forward equation describing the
evolution of the skill distribution becomes

∂e(µ−δ)tst(i)
∂t

= −δe(µ−δ)tst(i) + µe(µ−δ)t s̃t(i).

Then, we have that

∂st(i)
∂t

= −µst(i) + µs̃t(i).

The remaining elements in the model remain the same. Hence, the economy with popu-
lation growth is identical to our benchmark economy except that the convergence rate λ is
higher iff µ > δ since it is now the positive solution to:

(λ− µ)(ρ + δ + λ) =
ψµ

θ + κη
.

Then, if µ > δ, the short- and long-run dynamic responses for yt, lt remain unchanged,
the short-run response of q is smaller in magnitude, and the persistence of all variables is
lower. The opposite holds when µ < δ.
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