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We study a setting in which dynamically arriving items are assigned to waiting agents, who have hetero-

geneous values for distinct items and heterogeneous outside options. An ideal match would both target items

to agents with the worst outside options, and match them to items for which they have high value.

Our first finding is that two common approaches – using independent lotteries for each item, and using a

waitlist in which agents lose priority when they reject an offer – lead to identical outcomes in equilibrium.

Both approaches encourage agents to accept items that are marginal fits. We show that the quality of the

match can be improved by using a common lottery for all items. If participation costs are negligible, a

common lottery is equivalent to several other mechanisms, such as limiting participants to a single lottery,

using a waitlist in which offers can be rejected without punishment, or using artificial currency.

However, when there are many agents with low need, there is an unavoidable tradeoff between matching

and targeting. In this case, utilitarian welfare may be maximized by focusing on good matching (if the

outside option distribution is light-tailed) or good targeting (if it is heavy-tailed). Using a common lottery

achieves near-optimal matching, while introducing participation costs achieves near-optimal targeting.

1. Introduction

Lotteries and waitlists are commonly used to ration items for which demand exceeds supply. For

example, New York City allocates public housing using a waitlist, and allocates newly-built afford-

able housing by lottery. Many Broadway shows, musicians, and sports teams offer lotteries for

discounted tickets. Organs from deceased donors are typically allocated using a waitlist. Occasion-

ally, more complex allocation systems are employed – for example, Feeding America allows food

banks to bid for donations using a virtual currency (Prendergast 2017).

Designers of these systems face many questions, such as

a) Is it better to use lotteries, waitlists, or an artificial currency system?

b) When using lotteries, should there be a limit on how many times each agent can apply?

c) In a waitlist, should agents who reject an offer keep their spot in line, or lose it?

1



2

We address these questions by studying how different allocation systems perform according to

the following objectives:1

• Targeting individuals with the highest need. Food banks and housing assistance programs

target low-income individuals, and organs may be preferentially allocated to sicker patients.

• Matching individuals with items that are well-suited to their needs. Food banks may need

different types of food, housing units are in different locations of the city, and organs have

different biological markers.

Targeting may be achieved explicitly through eligibility and priority rules based on observable

characteristics, or implicitly due to the fact that agents with different levels of need make different

choices about where to apply and what to accept. In this paper, we focus on implicit targeting by

studying anonymous mechanisms – that is, mechanisms that treat all eligible applicants identically.

In many settings, anonymity is a reasonable approximation of current practice. In settings where

agents are given priority based on observable characteristics, our study can be interpreted as

analyzing the allocation within each priority group.

We use as a leading example the allocation of affordable housing in New York, where developers

receive a tax break if they offer a fraction of their newly-built units to low- and middle-income

residents. These units are awarded by lottery when the development is completed, and lotteries are

independent across developments. More information about this system is available in Appendix A.

We capture the main features of this setting using a stylized model in which developments arrive

over time, and upon arrival, are allocated to agents who are waiting for them. Each agent has an

outside option, which is private information. Furthermore, agents have idiosyncratic values for each

development. In this setting, targeting refers to matching agents with the worst outside options,

who we also refer to as the agents with the greatest need. Meanwhile effective matching requires

that agents are assigned to developments for which their value is high.

We reach several high-level conclusions.

1. Several lottery-based approaches yield identical outcomes to waitlist-based alternatives. Thus,

similar objectives can be achieved by superficially disparate systems.

2. Using a common lottery to determine priority for all items results in better matching than

several existing systems, and near-optimal matching if agents remain eligible for many periods.

3. When there are many eligible agents with low need, there is a tradeoff between matching and

targeting: improving one comes at the expense of the other.

1 These objectives appear to be fairly universal. For example, a policy document released by the government of
the United Kingdom lists “Support for those in greatest housing need” as an “outcome which allocation policies
must achieve”, and lists “Greater choice and wider options” as an “outcome which the Government believes allo-
cation policies should achieve.” See http://webarchive.nationalarchives.gov.uk/20120919214909/http://www.

communities.gov.uk/documents/housing/pdf/1403131.pdf

http://webarchive.nationalarchives.gov.uk/20120919214909/http://www.communities.gov.uk/documents/housing/pdf/1403131.pdf
http://webarchive.nationalarchives.gov.uk/20120919214909/http://www.communities.gov.uk/documents/housing/pdf/1403131.pdf
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4. The shape and support of the distribution of outside options determines whether it is more

important to prioritize matching or targeting. In either case, simple mechanisms can attain

near-optimal welfare.

We now introduce the mechanisms studied in this paper, and discuss each of the four conclusions

above in more detail. We begin with two systems that closely resemble common practice.2

• Independent Lotteries: In each period, agents may enter a lottery for a unit at the current

development. Tickets are drawn until the development fills or all tickets have been selected.

• Waitlist without Choice: Entering agents are placed at the bottom of a waitlist. In each period,

the current development is offered to agents at the top of the waitlist until it fills or is offered

to every agent. Agents who reject an offer lose their spot and must reapply.

In addition, we consider the following approaches:

• Common Lottery: Agents are assigned a random priority number upon entering the system.

In each period, agents may apply for a unit at the current development. Units are offered to

agents in order of their priority number.

• Waitlist with Choice: A waitlist in which agents keep their spot after rejecting an offer.3

• Ticket-Saving Lottery: Hold a lottery for every development. All agents receive a ticket each

period, which can be used for the current development or for any future development. Agents

can enter multiple tickets in a given lottery, and are allocated if any of their tickets wins.

• Single-Entry Lottery: Allocate by a separate lottery for every development, but each agent

can enter at most one lottery in his or her lifetime.

1.1. Equivalence of Mechanisms

We show in Theorem 1 a) that despite their very different descriptions, independent lotteries and

the waitlist without choice lead to identical outcomes in equilibrium. By this, we mean that for each

agent, the probability of matching, distribution of value conditioned on matching, and expected

time in system are identical across the two systems.

Analogously, Theorem 1 b) states that the ticket-saving lottery is equivalent to the waitlist with

choice. If participation costs are negligible, Theorem 1 c) establishes that both of these mechanisms

are equivalent to the common lottery and to the single-entry lottery.

2 As in New York City, a new lottery is used in Toronto to allocate affordable units in each new development (Pelley
2018). In Providence, public housing is allocated using a waitlist in which people who reject an offer lose their position
on the list (Providence PHA 2018). Minneapolis uses a similar system, but waits until a second rejection before
removing an applicant (Minneapolis PHA 2017).

3 This system is used to allocate public housing in Amsterdam (Van Ommeren and Van der Vlist 2016).
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1.2. Maximizing Match Quality

Independent lotteries and the waitlist without choice often fail to match agents to developments

that fit their needs. The reason is that when lottery odds are low or waits are long, agents are willing

to accept almost any development, and are therefore assigned nearly at random. By contrast, when

using a common lottery, agents with good priority numbers can get anything they choose, and will

therefore be selective in where they apply.

We formalize this intuition in Theorem 2 a), which shows that for every agent, a common lottery

achieves better matching (that is, higher utility per match) than any of the other systems considered

in this paper. In fact, Theorem 2 b) states when agents remain eligible for many periods, a common

lottery approximately maximizes match quality over the space of all anonymous mechanisms.

1.3. Tradeoff Between Matching and Targeting

Although a common lottery matches effectively, it might fail to target need. The intuition, formal-

ized in Theorem 2 b), is that in a common lottery, agents are selected at random and therefore all

agents match at similar rates. With independent lotteries, meanwhile, agents with worse outside

options enter more lotteries and match at higher rates.

When there are many agents with low need (good outside options), Theorem 3 establishes that

the tradeoff between matching and targeting is not unique to the mechanisms above, but holds for

any pair of anonymous mechanisms. This tradeoff does not hold when all agents have high need,

and apply to all developments: in that case, a common lottery outperforms independent lotteries

on both matching and targeting.

1.4. Maximizing Utilitarian Welfare

When there are many agents with low need – so that there is a tradeoff between matching and

targeting – Theorem 4 gives guidance on which objective to prioritize, in order to maximize util-

itarian welfare. If the distribution of outside options has a light left tail, it is more important to

match well. In this case, Theorem 2b) implies that a common lottery is approximately optimal. If

the distribution of outside options has a heavy left tail, it is most important to target effectively.

In this case, Theorem 6 shows that it is approximately optimal to increase participation costs until

only the most needy agents apply.4

When all agents have high need (poor outside options), it is not worthwhile to try to achieve tar-

geting endogenously. Theorem 5 shows that if all applicants have sufficiently poor outside options,

then a common lottery is approximately welfare optimal, regardless of the shape of the outside

option distribution.

4 This resembles the approach commonly used to allocate discounted tickets to popular sports events or shows, where
agents engage in a costly competition by physically waiting in long queues.
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2. Related Work

This paper contributes to the growing literature on dynamic matching markets. For reviews of

the literature on static matching markets, see Roth and Sotomayor (1992) or Sönmez and Ünver

(2011).

One strand of the dynamic matching literature focuses on generalizing the concept of stable

matchings in static two-sided markets to dynamic settings. Papers that fall into this category

include Damiano and Lam (2005), Kurino (2009), Pereyra (2013), Kennes et al. (2014), and Doval

(2018). Contrasted with this work, the markets we study are one-sided as items have no preferences.

Thus, the concept of stability is not meaningful.

Another set of papers assume that the social planner has all relevant information about the

quality of each match. Much of this literature focuses on the application to kidney exchange, which

started with the seminal paper of Roth et al. (2004). Representative recent works include Dickerson

et al. (2012), Gurvich and Ward (2014), Akbarpour et al. (2017), Baccara et al. (2018), and Ashlagi

et al. (2018). In earlier work, Kaplan (1987a,b, 1988) formulates the allocation of affordable housing

as a queueing problem, and studies waiting times and development diversity under various priority

rules. In contrast with the papers above, we assume that most of the relevant match information

is privately known and revealed strategically by agents.

Our paper falls into the category of dynamic matching with private, one-sided preferences. A

series of papers in this category is motivated by the allocation of cadaver organs (Su and Zenios

2004, 2005, 2006, Schummer 2016, Agarwal et al. 2018). In this setting, items (organs) are perishable

and thus can only be offered to a limited number of individuals, and agents agree on their relative

preferences across organs. Su and Zenios (2004) advocate for switching from a first-come-first-serve

queue to something resembling a last-come-first-serve queue, in order to make agents less picky

and increase the utilization of less desirable organs. Schummer (2016) notes that preventing agents

from rejecting offers may decrease wastage, at the expense of reducing match quality for agents at

the top of the queue. Agarwal et al. (2018) study the organ wastage problem from an empirical

perspective and estimate agent preferences from data and simulate counterfactuals. In our setting,

wastage is not a concern, and preference heterogeneity is horizontal rather than vertical. As a

result, it is generally preferable to induce agents to be more (rather than less) selective.

Closer to our work are the papers of Bloch and Cantala (2017) and Leshno (2017), which are

motivated by the allocation of subsidized housing units, and focus on how to match people to the

right places. Bloch and Cantala (2017) find, as we do, that the waitlist with choice induces agents

to be pickier than under independent lotteries, resulting in higher match quality. Leshno (2017)

notes that agents who have a middling position in a waitlist with choice would be more selective

under a hybrid mechanism, which makes offers randomly among all agents with sufficiently high
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positions on the waitlist. The biggest difference between our work and these papers is that our

agents have heterogeneous outside options, and thus the efficiency of a matching depends crucially

on which agents match. Additionally, by studying a continuum model, we are able to consider

richer environments (rather than assuming that values for a development are binary), and develop

new insights about the equivalence of various mechanisms.

The problem of targeting aid to certain sub-populations has been considered in the public finance

literature on the design of subsidies. Nichols and Zeckhauser (1982) and Blackorby and Donaldson

(1988) use a simple model with two agent types to illustrate that one can target the type with

higher need by restricting the flexibility of the subsidies or by adding friction. A similar idea

appears in a series of papers on “money-burning auctions”(Hartline and Roughgarden 2008, Hoppe

et al. 2009, Condorelli 2012, Chakravarty and Kaplan 2013), in which a social planner allocating

a homogeneous good cannot use monetary payments to determine who value it the most, but

may screen agents based on how much wasteful effort they are willing to incur. Several of these

papers have results resembling our Theorem 4: when the valuation distribution is heavy-tailed, the

designer should use wasteful effort to improve targeting; when it is light-tailed, it is more efficient

to allocate randomly. We extend this insight to a setting where agents care about which good they

receive, and illustrate that reducing match quality – instead of requiring wasteful effort – is an

alternative way of targeting agents with greater need.

Finally, there is a growing empirical literature on the allocation of affordable housing. Glaeser

and Luttmer (2003) provide evidence on the misallocation of rent controlled housing in New York

City, and argue that it is caused by the random matching that arises from rationing. We show that

in spite of the reality of scarce supply, there are mechanisms that can improve the matching. Geyer

and Sieg (2013), Sieg and Yoon (2017), and Waldinger (2018) estimate random utility models

of development choice using public housing data from Pittsburgh, New York, and Cambridge

respectively. All three papers assume a certain parametric form for the outside option of agents,

and use this to separately identify agent values for various developments and agent outside options;

these two entities respectively correspond to our F and G distributions in Section 3.1, except

that the empirical papers allow for a richer correlation structure through the use of agent and

development characteristics. Thakral (2016) simulates the demand model of Geyer and Sieg (2013)

and reports significant welfare gains by switching from the waitlist without choice to alternatives

that encourage greater selectivity. Waldinger (2018) performs simulations using Cambridge data,

and reports that increasing choice leads to better matching but worse targeting (similar to our

Theorem 3), but the net benefit in social welfare is positive (similar to our Theorem 4 a)). Both

papers estimate economically significant welfare gains from switching to a mechanism that improves

matching: Thakral (2016) estimates gains equivalent to a cash transfer of $2,572 per unit per year
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in Pittsburgh, and Waldinger (2018) estimates gains equivalent to a transfer of $1,557 per unit per

year in Cambridge.

Our theoretical analysis complements the empirical works by showing that the insights of poor

match quality from the waitlist without deferal, matching-targeting trade-off, and positive net

benefit of better matching on welfare are not particular to the data from these cities, but also

hold for a wide variety of distributions and allocation mechanisms. Furthermore, our theory can

also guide empirical researchers on what functional forms to explore for robustness checks. For

example, Geyer and Sieg (2013), Sieg and Yoon (2017), Waldinger (2018) all parameterize outside

options within each demographic group as a linear function of the logarithm of household income,

which makes it likely to be approximately light-left-tailed as household income is known to be

approximately log-normal distributed for low-middle income groups (Clementi and Gallegati 2005).

It is possible that the simulation result from Thakral (2016) and Waldinger (2018) that mechanisms

that encourage selectivity have better utilitarian welfare is an artifact of the parametric form. One

robustness check suggested by our Theorem 4 for these researchers is to also explore heavy-tailed

parameterizations of outside options, such as using square root of income instead of the logarithm.5

3. Model

Section 3.1 describes the timing of agent arrivals, and our assumptions about agent utilities. Section

3.2 discusses the dynamic decision problem facing each agent. Section 3.5 defines our equilibrium

concept, which builds on a definition of optimal agent strategies (Section 3.3) and match outcomes

(Section 3.4). Section 3.6 introduces the metrics that we use to evaluate equilibria. For clarity of

exposition, we refer to all agents using female pronouns.

3.1. Agents, Outcomes, Utilities, Timing

Time is discrete. In every period j, a continuum of agents of unit mass arrives, as does a new

development, which can house a mass µ of agents and must be allocated immediately. We refer to

µ as the supply-demand ratio.

Each agent will eventually either be matched to a single development, or depart from the system

unmatched. Before being matched, agent i receives payoff αi in each period, and after being matched

to development j, the agent receives payoff vij in each period. We refer to αi as the agent’s outside

option, and vij as her value for development j. We sometimes refer to αi as the type of agent i.

Each agent (matched or not) has a life event with probability 1− δ in each period, after which

she becomes ineligible for future allocations and leaves her affordable unit if she has been allocated

5 If income Y is log-normal distributed, then using Y a for any parameter a ∈ (0,1) results in an outside option
distribution with a heavy left tail that also exhibits diminishing returns to scale with respect to income.
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one.6 We normalize an agent’s utility after her life event to be zero. We assume that the timing of

the life event is independent of the agent’s past actions. The expected number of periods before

an agent’s life event is 1
1−δ : we refer to this quantity as her expected eligibility time.

The timing within each period is as follows:

1. Arrival and Participation Choice: A unit mass of new agents arrives, and each is given

a “state” (typically, a lottery number or waitlist position). Unmatched agents who remain

choose whether to continue to participate in the mechanism, or exit forever. Those who par-

ticipate incur participation cost c≥ 0. For convenience, we assume that agents who are exactly

indifferent between participating or exiting will choose to participate.7

2. Life Event Every agent (matched or not) has a major life event with probability 1− δ, in

which case she leaves her current housing. Her utility after this point is normalized to zero.

3. New Development and Matching: A development of mass µ arrives, labeled j. Each agent

i observes vij. Agents participate in a matching rule as described in Section 3.2. Those who

are matched become ineligible for future matches.

4. Payoff: Every agent that remains receives a payout that depends on her current housing (vik

if in development k, and αi if unmatched).

The outside options αi are distributed according to CDF F , and the values vij are drawn iid

(across agents and developments) from CDF G. We refer to F as the outside option distribution, and

G as the value distribution. For convenience, we assume that distributions F and G are continuous,

with strictly positive density on their domains (α,α) and (v, v) respectively.8 We allow for the

possibility that α or v may be −∞, or that α or v may be∞, and assume without loss of generality

that α ≤ v (agents with outside options exceeding v will never choose to participate, so we can

exclude them and normalize F appropriately). We denote the density of F by the function f(α),

and define G(v) = 1−G(v).

6 Life events can be thought of as capturing scenarios such as marrying and moving in with a partner, receiving a
big promotion and moving to a nicer apartment close to work, or relocating to another city to take care of an elderly
family member. Mathematically, the presence of these life events ensures that the system is stable – that is, the
number of unmatched agents does not grow indefinitely. All of our results continue to apply in a model where the
probability of a life event in a given period depends on whether the agent is currently matched. For simplicity, we do
not model the reallocation of units that open up when previously matched agents leave due to their life event.

7 The assumption that indifferent agents will participate is not substantial, since the set of such agents has measure zero
in our model. This assumption allows us to rule out mixed strategies for these agents, simplifying the characterization
of equilibrium outcomes (see Proposition 2 in Appendix D and Proposition 5 in Appendix F.2).

8 The assumptions of continuity and positive density for F and G are not necessary for any of our results in the main
body. They are only included to simplify the notation in the proofs and remove uninteresting technicalities, such as
allowing mixed strategies for agents who are exactly indifferent in order to ensure that the market clears exactly.
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3.2. Actions

The values vij and the outside option αi are privately known to agent i. Thus, they cannot be

directly used to determine an allocation. Instead, agents participate in a matching rule, which asks

them to take an action in each period, and uses the actions to determine who will match to the

current development.

Before giving our formal definition of a matching rule, we motivate this definition: Although

agents are in principle playing a dynamic game, we restrict attention to designs in which agents are

affected only by the aggregate profile of actions selected by others, and assume that agents respond

to this aggregate (rather than to actions of specific other agents). This implies that no single agent

can directly influence the market, or the future behavior of others. Therefore, each agent perceives

herself not as playing a dynamic game, but rather as facing a Markov decision process (MDP). She

begins each period in some state, which determines the set of actions available to her.9 Her action,

in turn, influences whether she matches, and which state she transitions to in the event that she

does not match.

Definition 1 (Matching rule). A matching rule R= (S,D,A,T ) specifies a countable set of

states S, and a distribution D over S specifying the probability of assigning each state s ∈ S as

the initial state. There is a countable set of actions A=
⋃
s∈SAs, where As is a finite set of actions

for state s ∈ S. For each action a ∈ As, there is a transition function Ta : S × (S ∪ {m})→ [0,1],

where Ta(s, s
′) is the probability of transitioning to state s′ after taking action a in state s, and m

corresponds to being matched to the current development.

Implicit in the above definition is the assumption that the mechanism is anonymous: it can

differentiate agents based on the history of actions taken, but not based on the identity of the

agent. Another implicit assumption is that the mechanism is stationary, meaning that in our

continuum model, the aggregate profile of agent types and actions is deterministic and constant

across periods. For this reason, the transition function Ta is not indexed by the period j.

Below, we describe how the allocation systems described in the introduction can be encoded as

matching rules. The lottery-based rules are fully characterized by a success probability p ∈ (0,1],

which is the chance that any given ticket will win a lottery. The waitlist-based rules are characterized

by an average idle time τ ≥ 0, which is the expected number of periods a newly arrived agent must

wait before receiving an offer.

I. Lottery Matching Rules:

9 For example, her state may be the number of periods that she has waited. If she has just arrived, she can only
continue to wait, whereas if she has waited for a long time, she may be offered the current development and asked to
accept or reject the offer. Alternately, her state may represent the number of lotteries that she has entered so far, or
her priority as determined by a common lottery.
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• Independent Lotteries. S consists of a single state. In it, the agent chooses from the

action set {Enter,Abstain}. If she abstains, she is not matched. If she enters, she is

matched with probability p. When p = 1, we refer to this as the guaranteed choice

matching rule.

• Common Lottery. S = {0,1}. The initial state of an agent is 1 with probability p, and

an agent’s state remains the same in every period. In both states, agents choose from

the action set {Enter,Abstain}. An agent is matched if and only if she is in state 1 and

chooses to enter (agents in state 0 will never match).

• Single-Entry Lottery. S = {0,1}. All agents start in state 1, from which they can choose

from actions {Enter,Abstain}. If an agent abstains, she does not match and remains in

state 1. If she enters, she matches with probability p, and otherwise transitions to state

0, from which she will never be matched.

• Ticket-Saving Lottery. S =N represents the number of tickets possessed by the agent.

The agent starts in state 1. From state s, the agent chooses an action j ∈ {0, . . . , s} (the

number of tickets to use this period). An agent in state s choosing action j matches with

probability 1− (1− p)j, and otherwise transitions to state s− j+ 1.

II. Waitlist Matching Rules:

The state space is N, representing the number of periods that the agent has waited. The

initial state is zero. In states s < bτc, the agent has a single action {Wait}, and transi-

tions deterministically to state s + 1. In states s > bτc, the agent selects an action from

{Accept,Reject}. From state s= bτc, the agent is offered the action {Wait} with probability

τ − bτc, and otherwise offered the actions {Accept,Reject}.10 An agent matches if and only

if she chooses Accept. The two variants are as follows:

• Waitlist with choice. Agents who reject retain their position (increment their state).

• Waitlist without choice. Agents who reject lose their position (go back to state 0).

We define a mechanism M to be a class of matching rules. For example, the independent

lotteries mechanism is the set of all independent lotteries matching rules, parameterized by all

possible values of success probability p. Analogously define the mechanisms for the common lottery,

single-entry lottery, ticket-saving lottery and waitlists with and without choice.

10 While our formal definition does not allow for the action set As to be randomized, it is straightforward to encode
an equivalent matching rule with a deterministic action set: in state s= bτc, the agent is always offered the actions
{Accept,Reject}. With probability τ − bτc, the agent’s action is ignored and her state incremented, and otherwise
she transitions as defined above. We choose the description with a randomized action set for its conceptual clarity.
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3.3. Strategies

A matching rule R= (S,D,A,T ) (along with the probability δ of remaining eligible, a value α for

going unmatched, the value distribution G, and the participation cost c) induces an MDP for each

agent. A strategy profile Σ consists of a Markovian strategy Σ(α) for every agent type α. This

strategy specifies, for each state s, whether to exit and what action to take as a function of the

value v for the current development. A strategy is optimal if the continuation value of being in

each state satisfies the following Bellman equation:

V (s) = max

(
0, δEv∼G

[
max
a∈As

{
Ta(s,m)

(
v−α
1− δ

)
+
∑
s′∈S

Ta(s, s
′)V (s′)

}]
− c

)
. (1)

The above equation can be interpreted as follows: the value of being in state s∈ S is the maximum

of the value of exiting (normalized to zero), and staying. The value of staying is based on choosing

the best action a∈As, and each action determines a probability Ta(s,m) of matching in state s to

the current development, as well as a probability Ta(s, s
′) of transitioning to state s′. If the agent

matches with the current development with value v∼G, her value is v−α
1−δ because she would receive

a net benefit (over her current situation) of v−α in each period, and she is expected to be able to

enjoy this benefit for 1
1−δ periods. We multiply the term within the expectation by δ and subtract

c because agents only receive value if they pay the participation cost and do not have a life event

in the current period. Appendix C formally defines the MDP facing each agent, and shows that

for any δ < 1, a solution V (s) to the above Bellman Equation exists and is unique.

3.4. Outcomes

An outcome specifies a distribution of payoffs for each agent type. Formally, an outcome E specifies

an outcome function PE : [α,α] × [v, v]→ [0,1] and a waiting time function tE : [α,α]→

[0,∞), where PE(α,v) specifies the probability that an agent with outside value α matches to a

development for which her value is at most v, and tE(α) specifies the expected number of periods

she participates in the mechanism before leaving or being matched. For a given matching rule R,

every strategy profile Σ induces an unique outcome, which refer to as the outcome corresponding

to R and Σ.11 Proposition 1 in Section 4.3 implies that for outcomes that correspond to optimal

strategy profiles, the waiting time function tE can be expressed in terms of the outcome function.12

For any such outcome E, it suffices to specify only the outcome function, and our proofs in the

Appendix abuse notation and use E(α,v) to refer to the outcome function instead of PE(α,v).

Given outcome E = (PE, tE), define the corresponding

11 See Appendix C for more details about how to compute the outcome induced by the matching rule R, strategy
profile Σ, and market primitives.

12 Specifically, it holds that tE(α) = 1
c(1−δ)

(∫∞
α
PE(x, v)dF (x)−

∫ v
v

(v−α)dPE(α,v)
)

.
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• allocation function to be

πE(α) = PE(α,v) (2)

This specifies the probability that an agent of outside option α matches to some development.

• match rate to be the fraction of agents who match:

πE =Eα∼F [πE(α)]. (3)

• expected utility function to be

uE(α) =

∫ v

v

(v−α)dPE(α,v)− (1− δ)ctE(α). (4)

This specifies each agent’s expected total benefit from participation, multiplied by (1− δ).

This scaling factor keeps the utility in the same scale as each period’s value and cost, as the

expected eligibility time of an agent is 1
1−δ periods.

3.5. Equilibrium

For simplicity, we first rule out the trivial case in which supply is so abundant that the market

designer can offer every development to every agent – if this were feasible, then it would be clearly

optimal to do so. Define GC to be the outcome when agents play optimally in the MDP induced

by the guaranteed choice matching rule.13 We assume the following for the remainder of the paper.

Assumption 1. It is infeasible to offer guaranteed choice to all agents (µ< πGC).

Under this assumption, an equilibrium can be defined as a matching rule and an optimal strategy

profile that exactly clears the market.

Definition 2 (Equilibrium Outcome). An outcome E is an equilibrium outcome of

matching rule R if it can be expressed as the outcome corresponding to R and a strategy profile

Σ, such that

a) For every α, the strategy Σ(α) is optimal for an agent with outside option α.

b) The average match rate of E equals supply-demand ratio: πE = µ.14

We sometimes refer to E simply as an equilibrium outcome, without mentioning the matching rule

R. If E satisfies a) but not b), we refer to it as a partial equilibrium outcome.

In our model, the exogenous parameters are the market primitives F ,G, δ, c, µ, and the designer’s

choice of mechanism M . The matching rule R ∈M is endogenously determined in equilibrium,

as are the strategy profile Σ and the outcome E. The pair (R,Σ) corresponds to an equilibrium

13 Proposition 2 in Appendix D shows that this outcome is unique.

14 In ruling out the case πE <µ, we eliminate mechanisms that intentionally withhold supply. Nevertheless, one can
study the effect of withholding supply by performing comparative statics with respect to µ.
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outcome E if and only if aggregate demand is equal to aggregate supply.15 When M is a lottery-

based matching rule, the endogenous quantities are characterized by the success probability p,

which uniquely determines the matching rule R and the corresponding strategies and outcome.

When M is waitlist-based, the endogenous quantities are characterized by the average idle time τ .

3.6. Metrics for Evaluating Equilibria

Below, we define several metrics used to evaluate outcomes. Given outcome E, define the

• match distribution FE to be the distribution of outside options conditional on matching:

FE(α) =

∫ α
−∞ π

E(x)dF (x)∫∞
−∞ π

E(x)dF (x)
. (5)

Thus, FE(α) is the fraction of matched agents who have outside options no better than α.

• value per match νE(α) for each type α to be the expected benefit per unit of housing

allocated to type α,

νE(α) =
uE(α)

πE(α)
(6)

For convenience, define the value per match to be zero when the denominator is zero.

• utilitarian welfare WE to be the aggregate benefit per allocated housing unit over all types:

WE =Eα∼F [uE(α)]/πE. (7)

In the introduction, we discussed two objectives: ensuring that matched individuals receive a

desirable development with minimal participation cost, and targeting the most needy individuals.

The first of these objectives – which we refer to as matching – is captured by the value per match

νE(α), while the second – which we refer to as targeting – is captured by the match distribution

FE. We now define what it means for one outcome to result in better matching or targeting than

another. The definitions have a strong requirement of point-wise or stochastic dominance, but we

will show that such relationships exist among the mechanisms we study.

Definition 3. Let E and E′ be arbitrary outcomes. We say that

• E match dominates E′ if νE(α)≥ νE′(α) for all α.

• E′ targeting dominates E if the match distribution of E first-order stochastic dominates

the match distribution of E′. That is, FE′(α)≥ FE(α) for all α∈ (α,α).

15 This is analogous to the definition of a Walrasian equilibrium. A price vector can arise in Walrasian equilibrium if
when agents respond optimally, the market clears. In our model, a matching rule R ∈M can arise in equilibrium if
when agents respond optimally, the average match rate equals to µ.
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4. Results
4.1. Equivalence of Mechanisms

We first show that mechanisms that look very different can achieve equivalent outcomes. In fact,

when participation costs are negligible compared to the values of being allocated, all six mechanisms

defined in Section 3.2 are equivalent to either independent lotteries or the common lottery.

To state the result formally, we say that mechanisms M and M ′ are outcome equivalent if

the set of equilibrium outcomes are equal: EM = EM ′ , where

EM = {(PE, tE) :E is an equilibrium outcome of some matching rule R ∈M}. (8)

In other words, there is a one-to-one correspondence between the equilibrium outcomes of the two

mechanisms, such that in each pair of equilibrium outcomes, the distribution of matches and the

expected waiting times are equal for every agent type.

Theorem 1 (Equivalence of Mechanisms).

a) Independent lotteries is outcome equivalent to the waitlist without choice.

b) The ticket-saving lottery is outcome equivalent to the waitlist with choice.

c) When c = 0, the ticket-saving lottery, waitlist with choice and the single-entry lottery are

outcome equivalent to the common lottery.

The proof is in Appendix F.2. We give the intuition below.

For part a), think of the following implementation of independent lotteries: instead of asking

agents to enter the lottery and then selecting winners, select winners among all eligible agents and

offer these winners the opportunity to match to the development. This procedure is equivalent

because the agents who choose to enter the lottery in the first description are exactly those who

will accept the development in the second. Therefore, in both independent lotteries and the waitlist

without choice, agents are periodically offered the chance to match to the current development. In

the waitlist without choice, this occurs approximately every τ periods. Under independent lotteries,

this occurs independently in each period, with some probability p. However, what matters to each

agent is not the distribution of when she will next receive an offer, but rather the probability that she

will receive at least one more offer (call this q).16 This probability determines which developments

she will accept, and thus her probability of matching. Because both mechanisms match the same

number of agents, it follows that any value of q that arises in equilibrium of independent lotteries

must also be an equilibrium of the waitlist without choice – and that in these equilibria, each agent

sets the same threshold when determining which developments to accept, and matches with the

same probability.

16 In both mechanisms, the number of offers received by an agent who decides to reject all offers follows a geometric
distribution on {0,1,2, . . .} with a mean of q

1−q .
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For part b), first consider the waitlist with choice. Because the equilibrium is stationary, once an

agent is offered one development, that agent will be offered every future development. Therefore,

agents in the waitlist with choice must wait (for approximately τ periods) before playing guaranteed

choice. Now consider the ticket-saving lottery, and recall that regardless of when it is used, each

ticket wins with some fixed probability p. Consider a variant of the ticket-saving lottery in which

each ticket, when given to a participant, is visibly labeled as a “winning ticket” (with probability

p) or a “losing ticket” (with probability 1− p). It is clear that in this variant, agents must wait a

geometric number of periods before receiving a winning ticket, and from that point onward, will set

an acceptance threshold as in guaranteed choice (and use all tickets when entering). As in part a),

the distribution of idle time does not matter to an agent, but only the probability q that she

becomes eligible before her life event. Because both the waitlist with choice and the ticket-saving

variant match the same number of agents, they must have the same value of q, and therefore lead

to equivalent outcomes.

Of course, in the actual ticket-saving lottery, the labels of “winning ticket” and “losing ticket”

are revealed only after the tickets are used. But this knowledge does not an change agent’s optimal

strategy, because when she does not hold a winning ticket, her actions do not matter.17 Therefore,

she should always behave as though she holds a winning ticket: set an acceptance threshold as in

guaranteed choice, and use all tickets upon seeing such a development.

For part c), note that when participation cost c= 0, delays are costless, so the delayed guaranteed

mechanisms in part b) are equivalent to selecting a random subset of agents to face guaranteed

choice, which is the definition of the common lottery. Similarly, the single-entry lottery effectively

selects some agents (those with winning tickets) to play guaranteed choice, while eliminating others.

Although agents in a single-entry lottery do not know whether they have been selected until after

entering a lottery, the reasoning from part b) implies that they will set acceptance thresholds as

though they held a winning ticket.

Note that the arguments for part c) no longer hold when c > 0. In particular, the waitlist with

choice is no longer equivalent to the common lottery, as agents in the former must incur a significant

cost in order to be given the option to match to a development. Moreover, agents in the single-

entry lottery have an incentive to use their ticket early, so that they can exit and stop incurring

participation costs.

17 One crucial but subtle point is that agents in a ticket-saving lottery are never worse off than they are upon entry,
and therefore any agent who chooses to participate will not quit even if told that she does not hold a winning ticket.
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4.2. Maximizing Match Quality

In our model, effective matching requires that agents are matched to items that are a good fit,

at minimal participation cost. The common lottery accomplishes both of these goals. Agents with

good lottery numbers have high continuation values, and therefore an incentive to be selective;

agents with poor lottery numbers learn immediately that they will not match, and therefore do not

incur participation costs while clinging to a false hope. In fact, Theorem 2 shows that the common

lottery not only match dominates all the other mechanisms we study, but also converges to the

best possible outcome in terms of matching when agents are eligible for many periods (δ→ 1). We

think that this is a reasonable limit to study for the application of affordable housing in New York:

there are lotteries for over 70 new developments each year, so if agents expect to remain eligible

and interested for at least 18 months, then δ exceeds 0.99.

For the asymptotic limit to be defined, we require that values are bounded (v <∞).

Definition 4. When v <∞, define perfect matching (PM) to be the outcome in which agents

of all types match with probability µ, and conditioned on matching, have the highest possible

value v for their assignment, with negligible participation cost: P PM(α,v) = µ1(v ≥ v > α), with

tPM(α) = 0.

Definition 5. A sequence of equilibrium outcomes En converges to outcome E if the outcome

functions converge point-wise: that is, PEn(α,v)→ PE(α,v) for all α,v.18

Theorem 2 (Match Dominance of the Common Lottery).

a) The unique equilibrium outcome of the common lottery match dominates any equilibrium out-

come of independent lotteries, single entry lottery, ticket-saving lottery, waitlist with choice,

and waitlist without choice.

b) When v <∞, as δ→ 1, the equilibrium outcome of the common lottery converges to perfect

matching, which match dominates any equilibrium outcome.

The proof of Theorem 2 is in Appendix F.4. Part a) is based on the structural results derived in

the proof of Theorem 1, which allow us to derive explicit expressions for the value per match in each

mechanism. Part b) is based on showing that when δ is high, agents will only accept developments

close to the maximum value of v. Moreover, any utility loss they incur while waiting for such a

development is negligible compared to the many periods they get to enjoy their apartment after

matching. Finally, almost every agent who wins the common lottery eventually matches, so the

probability of matching is nearly the same (and equal to µ) for all agents.

18 Definition 5 does not mention waiting times, because for any equilibrium outcome E, the waiting time function tE

is determined by the outcome function PE by Proposition 1 in Section 4.3. Convergence of outcome function as δ→ 1
does not imply convergence of the waiting time function, but does imply convergence of the scaled participation cost:
that is, (1− δn)c|tEn(α)− tE(α)| → 0. This is sufficient to imply that utilities, the value per match, and the match
distribution all converge point-wise: uEn(α)→ uE(α), νEn(α)→ νE(α) and FEn(α)→ FE(α) for all α.



17

When participation cost is negligible, the equilibrium outcomes of the single-entry lottery, waitlist

with choice, and ticket-saving lottery also converge to perfect matching by Theorem 1. When c > 0,

Appendix F.4 shows that the single-entry lottery converges to perfect matching, but the waitlist

with choice and ticket-saving lottery do not. The reason is that under these mechanisms, high

values of δ result in long expected wait times, causing some agents not to participate and the

remainder to experience significant participation costs. By contrast, in the single-entry lottery,

agents can leave as soon as they use their ticket, so the participation cost they incur is minimal.

4.3. Tradeoff Between Matching and Targeting

An anonymous mechanism cannot benefit agents with the greatest need without allocating also

agents with less need, because low-need agents can always copy the behavior of high-need agents.

This is formalized in Proposition 1, which states that in any equilibrium outcome, the utility of an

agent is equal to the integral of the match rate for all agents with better outside options. Hence,

in order to increase the utility of agents with poor outside options, it is necessary to increase the

match probability of those with better outside options.

Proposition 1. For any partial equilibrium outcome E, the allocation function πE(α) is weakly

decreasing, and the expected utility function is given by

uE(α) =

∫ ∞
α

πE(x)dx. (9)

Proposition 1 can be used to show that when there are many low-need individuals, there is a

tradeoff between providing high-quality matches and targeting need effectively.

Definition 6. There are many low-need individuals if α ≥ v and the density of outside

options f is increasing on (α,α).

Theorem 3 (Matching vs Targeting). Let E and E′ be equilibrium outcomes. If E match

dominates E′, and if there are many low-need individuals (see Definition 6), then E′ targeting

dominates E.

4.4. Maximizing Utilitarian Welfare

When matching and targeting are in conflict with one another, it is natural to wonder which

objective is more important. Theorem 4 shows that the answer to this question depends on both

the shape of F and the support of F and G.

Definition 7.

F has a light left tail if F (x)/f(x) is weakly increasing in the domain (α,α).

F has a heavy left tail if F (x)/f(x) is weakly decreasing in the domain (α,α).
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Examples of distributions with a light left tail include the uniform, the normal, and the negated

exponential or Gumbel distributions. Translated or truncated versions of these distributions also

have a light left tail. The (negated) exponential distribution has the property that F (x)/f(x) is

constant (and thus is the dividing line between light and heavy-tailed distributions). The negated

versions of the Pareto and the log-normal distributions have heavy left tails.19

Theorem 4 (Welfare Comparisons). Let E and E′ be equilibrium outcomes. If α ≥ v and

E′ targeting dominates E, then the following hold:

a) If F has a light left tail, then WE ≥WE′.

b) If F has a heavy left tail, then WE ≤WE′.

Theorem 3 implies that the conditions of Theorem 4 are satisfied if E match dominates E′ and

there are many low-need individuals (Definition 6). Therefore, Theorem 4b) implies that when there

are many low-need individuals and the outside option distribution has a heavy left tail, optimizing

for match quality is detrimental to aggregate welfare. In this case, a common lottery might lower

utilitarian welfare compared to independent lotteries.

For affordable housing allocation in New York, we believe that this is not the case. The reason is

that those who qualify for housing already fall within a narrow income range, so it seems reasonable

that many agents have similar outside options. Moreover, the developments being allocated in New

York are newly-constructed and designed to be attractive to market-rate renters, so we expect that

most eligible applicants consider many of these units preferable to their current living situation.

Hence, the setting in New York may be better approximated by the conditions of Theorem 5,

which states that if outside options are light-tailed or sufficiently poor20, then utilitarian welfare

is maximized by prioritizing good matching. Under these conditions, it follows from Theorem 2 b)

that when δ is high, a common lottery achieves near-optimal utilitarian welfare.

Theorem 5 (Optimality of Perfect Matching). Perfect matching achieves weakly higher

utilitarian welfare than any equilibrium outcome if either

a) F has a light left tail, or

b) v−α≥ α−α.

We interpret Theorems 4 and 5 to mean that matching is more important than targeting when-

ever outside options follow a light-tailed distribution or are sufficiently low. Figure 1 reinforces this

19 Typically, the tail of a distribution refers to the right tail. Definition 7 refers to the left tail because the agents
with the highest need for being matched are those with the worst outside options.

20 In particular, condition b) of Theorem 5 is that the value of matching any agent well is greater than the difference
in need between any two agents.
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Welfare Comparison: Common vs Independent Lotteries
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Figure 1 Heatmap of the difference in welfare between the common and independent lotteries, varying the

shape and support of the outside option distribution F while holding other parameters fixed.22 Positive values

(pink) correspond to higher welfare under the common lottery. Moving from bottom to top, the tail of F

becomes lighter, with log(κ) = 0 corresponding to the exponential distribution. Moving from right to left, the

outside option distribution shifts downward. A common lottery attains higher welfare whenever outside options

are light tailed (top region) or sufficiently poor (left region). A difference of 2 means that the improvement in

per-match welfare is equal to two standard deviations of the outside option distribution G.

point21: it displays the welfare difference between common and independent lotteries, as the shape

and support of the outside option distribution vary. The common lottery is superior unless the

outside option distribution is heavy-tailed and outside options are good (the lower right region).

Furthermore, the differences are significant: a welfare difference of 1.5 implies that the difference

between the two mechanisms is equal to the difference between matching agents to random devel-

opments and matching them to something that they prefer to 93% of developments.

The proof of Theorem 3 and a more general version of Theorem 4 are in Appendix F.7. The proof

of Theorem 5 is in Appendix F.8. All make use of Proposition 1, which we prove in Appendix F.5.

4.5. Achieving Effective Targeting

Although a common lottery may not be effective at targeting need, the same is true of independent

lotteries and the waitlist without choice. In fact, Proposition 3 in Appendix E shows that in some

cases, these approaches result in no targeting at all! Even when there are many low need individuals

21 The findings in Figure 1 are in alignment with our interpretation, despite the fact that the example violates the
conditions of Theorems 3, 4 and 5: G follows a normal distribution, for which v =∞; and F follows a (negated)
Weibull distribution, for which the density is not increasing whenever log(k)> 0.

22 We take G to be Normal(0,1), µ = 0.1, δ = 0.99, and c = 0. The outside option distribution F is a (negated)
Weibull distribution, given by F (α) = exp

(
−
(
Γ(1 + 1

κ
)(α−α)

)κ)
. This distribution has expected value α− 1. It is

light-tailed for κ> 1 and heavy-tailed for κ< 1, with κ= 1 corresponding to an exponential distribution.
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– in which case Theorems 2a) and 3 jointly imply that these approaches targeting dominate a

common lottery – there are generally more effective ways to target need.

A simple approach to achieve good targeting regardless of distributional assumptions is as follows:

artificially increase participation cost until it is possible to match every agent who is willing to

participate. In practice, this may mean requiring agents to undergo a costly ordeal to remain

eligible, such as to complete endless paperwork or to physically line up at a central office every

week.23 While we do not believe that this is a good solution for allocating affordable housing, such

practices may be reasonable in settings with loose eligibility criteria, such as in the allocation of

discounted Broadway tickets.

Precisely speaking, participation cost c is said to be market clearing if under this participation

cost, the average match rate under the guaranteed choice matching rule is equal to the supply-

demand ratio µ. We show in Appendix F.9 that a market clearing cost always exists; although

market clearing costs may not be unique, there always exists a highest market clearing cost c <∞.

Define the costly guaranteed choice outcome be the guaranteed choice outcome under the

highest market clearing cost c. When participation cost is increased to c, all of the mechanisms

studied in this paper implement the costly guaranteed choice outcome.

Theorem 6 shows that costly guaranteed choice always targeting dominates the common lottery.

Furthermore, it converges to the best possible outcome in terms of targeting when agents are

long-lived (δ→ 1) and values are bounded (v <∞).

Definition 8. Define perfect targeting (PT) to be the outcome in which agents with outside

option α ≤ F−1(µ) are matched with certainty, and no other agents are matched: P PT (α,v) =

1(α≤ F−1(µ))Pv′∼G(v ≥ v′|v′ ≥ F−1(µ)), and tPT (α) = 1
c(1−δ)1(α≤ F−1(µ))Ev′∼G[v′−F−1(µ)|v′ ≥

F−1(µ)].24

Theorem 6 (Targeting Dominance of Costly Guaranteed Choice).

a) The costly guaranteed choice outcome targeting dominates any equilibrium outcome of the

common lottery, single-entry lottery, ticket-saving lottery, and waitlist with choice.

b) When v <∞, as δ→ 1, the sequence of costly guaranteed choice outcomes converges to perfect

targeting, which targeting dominates any equilibrium outcome.

23 Our model assumes that the participation cost c is identical for all agents, and therefore that the agents who
participate will be those with the greatest need (worst outside options). In practice, an important caveat when
adding participation costs is that the designer should ensure that the type of cost added does not disproportionately
impact high-need agents. For example, if wealthier applicants are systematically more adept at filling out forms, or
more able to take an afternoon off of work, then adding paperwork to the application process or mandating physical
presence may have the opposite of the desired effect. Alatas et al. (2016) and Deshpande and Li (2017) explore this
concern using (quasi-)random experiments to empirically estimate the effect of certain types of friction on various
sub-populations. We discuss this point further in Section 5.1.

24 This waiting time ensures that agents with outside option α= F−1(µ) are indifferent about whether to participate.
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The proof is given in Appendix F.9. Part a) is based on structural results derived in the proof

of Theorem 1. The Appendix also shows that costly guaranteed choice targeting dominates inde-

pendent lotteries and the waitlist without choice when the value distribution G is light tailed. For

part b), we show that if agents remain in the system for many periods, then almost everyone who

chooses to participate will eventually find a development that they are willing to accept. Moreover,

the agents who choose to participate will be those with the greatest need. Since the most needy

are matched with near-certainty and everyone else is not matched at all, this is the best possible

outcome in terms of targeting.

Hence, it is rarely a good idea to use independent lotteries with low participation cost: if matching

is more important, the designer should adopt a common lottery. If targeting is more important,

the designer should increase participation cost so that low need agents do not participate at all.

5. Discussion

In this paper, we argue that two common systems for allocating affordable housing – indepen-

dent lotteries and a waitlist in which applicants lose priority after declining an offer – incentivize

prospective tenants to accept buildings that are only marginally better than their outside options.

The resulting allocation is inefficient, in that many or all agents could be simultaneously made

better off. We discuss several reforms that could improve the quality of the assignment, including

limiting lottery entry, allowing applicants to keep their position in a waitlist after rejecting an offer,

allowing applicants to save and combine lottery tickets, and using a common lottery to determine

priority for all buildings. Our equivalence results suggest that authorities can select among these

allocation procedures based on criteria such as ease of implementation.

In New York, several features suggest that switching to a system that offers choice to applicants

would improve outcomes. First, income eligibility limits prevent those with the best outside options

from participating. Second, the available units are in new developments with good amenities, built

to attract market-rate tenants but offered at much lower prices. Combined, these facts suggest that

applicants may significantly prefer these units to their outside options – in which case Theorem

5b) states that welfare is highest when applicants are offered choice. Furthermore, the size of the

city and dispersion of units across boroughs suggest that the benefits of matching applicants to

suitable apartments may be economically significant.

We believe that using a common lottery could improve outcomes while requiring only minor

changes to current practice. As discussed in Appendix A, the allocation in New York includes

features not captured in our model. For example, eligibility is building-specific, and certain groups –

such as city employees or neighborhood residents – get priority for a certain number of units in each

building. These practices could be maintained under a common lottery, if desired: the city could
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treat units that give priority to specific groups as separate buildings, and for each building, offer

units to those eligible for them, in the order determined by the (universal) ranking of applicants.

There are of course many ways in which our model oversimplifies reality. We conclude by dis-

cussing the robustness of our findings when our modeling assumptions are relaxed.

5.1. Multi-dimensional Agent Types

Consider a richer model in which agents differ not only in their outside option, but also in their value

distribution, participation cost, and expected eligibility time. The type of an agent is represented

by a tuple θ= (α,G, c, δ), and is distributed according to distribution Θ. This is a straightforward

generalization of our current framework, and the Bellman equation for the optimal strategy of each

agent remains the same as in (1). The only difference is that we must define the outcome E as a

function of the tuple (θ, v), instead of only (α,v).

In this model, our result on the matching efficacy of the common lottery (Theorem 2) continues

to hold, as the proof is based on analyzing each agent type separately. For a similar reason, the

equivalence results continue to hold if agents are homogeneous in δ. However, if the expected

eligibility time 1
1−δ varies across agents, then the equivalences break down: agents who are eligible

for more periods are more likely to match in waitlist-based mechanisms, whereas short-lived agents

prefer lottery-based mechanisms.

Analysis of targeting becomes nuanced under such a model. First, it is unclear whom to target:

does someone with very high value for one development but not another have greater or less need

than someone with a moderate value for all developments? Second, even if the market designer

identifies which types to target, the answer to the question of how to target effectively will depend

on the distribution of types. For example, if it happens that agents with the worst outside options

also have higher participation costs, then it is possible that a common lottery simultaneously match

dominates and targeting-dominates independent lotteries, even if there are many agents with low

need. The reason is that independent lotteries may require participation for many periods before

matching (and therefore deter entry by those with high participation costs), whereas the winners

of a common lottery are matched very quickly.

5.2. Vertical Differentiation of Developments

Our model assumes purely horizontal differentiation between developments, so that all are equally

popular in the aggregate. One might consider a model in which development j has quality qj, and

values are distributed as vij = qj+εij, where εij ∼G is the horizontal component of preferences. It is

much harder to analyze an equilibrium under this model because it is no longer stationary: the type

distribution of agents remaining in the system depends on the history of development qualities,

and agents must reason about how this type distribution will evolve when making decisions.
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Nevertheless, under such a model, we would still expect independent lotteries and waitlist with-

out choice to yield low match quality when supply is scarce, because agents’ acceptance thresholds

on the added value of a development (vj − α) will still equal their continuation value, which is

approximately zero if µ is small. Meanwhile, we expect the common lottery to result in better

match quality, as agents offered a building j for which their idiosyncratic term εij is small could

wait for a building of similar quality that was better-suited to their needs. Furthermore, the match-

ing/targeting tradeoff described in Theorem 3, 4, and 5 would continue to hold, as the proofs rely

only on anonymity of the mechanism, and not on any assumptions about the nature of the dynamic

game being played by agents.25

5.3. Partially Observable Outside Options

In practice, observable information is often used to prioritize certain agents. This can be captured

by an extension of our model in which agents are classified into groups based on characteristics

such as income, family status, current residence, etc. Within each group k, the arrival rate of agents

is λk per period, and the primitives F , G, c and δ may also be indexed by k. A natural extension

of the common lottery to this setting is as follows: assign a priority to each group, and a lottery

number to each agent; agent-level priorities are induced by the group priorities, and the lottery

numbers are used to break ties. Under this mechanism, it will be the case that high-priority groups

can choose whatever they want, and low priority groups are never matched; agents in borderline

priority groups are selected based on their lottery numbers.

Our results imply that this extension of the common lottery would work well if priority is given

to groups with the lowest average outside option. In particular, if agents remain eligible for many

periods, v is the same for each group and finite, and outside options are light-tailed within each

group, one can show that this version of the common lottery assigns every matched agent to a

development where her value is close to the upper bound v, thus generalizing Theorems 2 b). More-

over, this mechanism achieves near-optimal utilitarian welfare among all stationary mechanisms

that are anonymous within each group, thus generalizing Theorem 5 a).

25 In particular, Theorems 3, 4 and 5 also apply in settings where agents have information about future develop-
ments, where the designer delays allocation of some units, or where the designer observes agent values and uses this
information to determine the allocation.
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Appendix A: Affordable Housing Allocation in New York City

Since the mid 1980’s, New York City has been granting private developers of rental apartments tax exemp-

tions for setting aside a certain proportion of units at an affordable rate.26 The newly built affordable units

are allocated by the oversight of the NYC Department of Housing Preservation and Development (HPD)

and the NYC Housing Development Corporation (HDC). Allocation of the newly built affordable units is by

lottery, and an independent lottery is conducted for each building. Before 2012, the application was by paper

only: applicants had to periodically check announcements for new buildings and mail in their requests to

enter the lottery. Since 2012, HPD and HDC launched the NYC Housing Connect web portal, which allows

prospective applicants to browse the list of upcoming lotteries and apply to as many as they want with a

few clicks of a button (see Figure 2). In 2017, there were 5,300 units offered through Housing Connect.27

Figure 2 Screen shot of NYC Housing Connect web portal in April 2017.

To be eligible for a given unit, an applicant’s household income must not exceed a certain fraction of

New York’s Area Median Income (AMI). Furthermore, there is a minimum income that depends on the

size of the unit, to make sure that the applicant can afford the reduced rent. (Due to this requirement, the

system does not target the lowest-income individuals, which differentiates it from the government owned

public housing system administered by the NYC Housing Authority.) A certain proportion of units in each

building are set-aside for people with disability, for community board residents, and for municipal employees.

Once the application deadline passes, the Housing Connect platform generates a randomized log number

26 Most units are financed under legislation 421-a, under which at least 20% of units must be certified to be affordable
by the NYC HPD. Since 2017, the proportion requirement increased to 25-30% of units. A lesser used program is
called Article IX, under which at least two thirds of units must be affordable. See https://www1.nyc.gov/site/hpd/

developers/tax-incentives.page for a listing of all HPD tax incentive programs.

27 Source: http://www.nychdc.com/pr_01-16-2018. For a map of developments currently accepting applications, see:
http://hpd.maps.arcgis.com/apps/webappviewer/index.html?id=b06672e7899b40d0b0f8e1c81f9a5f58.

https://www1.nyc.gov/site/hpd/developers/tax-incentives.page
https://www1.nyc.gov/site/hpd/developers/tax-incentives.page
http://www.nychdc.com/pr_01-16-2018
http://hpd.maps.arcgis.com/apps/webappviewer/index.html?id=b06672e7899b40d0b0f8e1c81f9a5f58
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for each application and gives these to the developer, who must process applications in the order of the

log numbers subject to first filling all of the set-side units with applicants from the corresponding groups.28

Figure 3 shows an information page for a particular development, specifying the income restrictions and

the amount set aside for special groups. For more information on the Housing Connect system, see https:

//a806-housingconnect.nyc.gov/nyclottery/lottery.html#faq.

 
   Affordable Housing for Rent 
   540 WEST 53RD STREET APARTMENTS 

102 NEWLY CONSTRUCTED UNITS AT 540 WEST 53RD STREET, NEW YORK, NY 10019 
CLINTON 
Amenities: 12-hour attended lobby, on-site resident super, two residential terraces, children’s splash pad, children’s 
play room, fitness center, laundry room (card operated), adjacent public community garden.  
Transit: Trains – A, B, C, D, E, 1 Buses – M11, M12, M20 M31, M50, M57, M104 
No application fee • No broker’s fee • Smoke-free building • More information: www.540w53.com  

  This building is being constructed through the Inclusionary Housing and Multifamily Rental Mixed Programs of the New York City 
Department of Housing Preservation and Development. 

Who Should 
Apply? 

Individuals or households who meet the income and 
household size requirements listed in the table below 
may apply. Qualified applicants will be required to 
meet additional selection criteria.  Applicants who live 
in New York City receive a general preference for 
apartments.  

• A percentage of units is set aside for applicants with 
disabilities: 

o Mobility (5%)  
o Vision/Hearing (2%). 

• Preference for a percentage of units goes to: 
o Residents of Manhattan Community Board 4 

(50%) 
o Municipal employees (5%)

 AVAILABLE UNITS AND INCOME REQUIREMENTS 
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Minimum – Maximum4 

Studio $1,091 2 → 1 person $39,292 - $58,480 $1,377 3 → 1 person $49,098 - $73,100 

1 bedroom $1,375 9 → 
1 person $49,098 - $58,480 

$1,733 9 → 
1 person $61,372 - $73,100 

2 people $49,098 - $66,800 2 people $61,372 - $83,500 

2 bedroom $1,660 10 → 

2 people $58,903 - $66,800 

$2,089 13 → 
2 people $73,612 - $83,500 

3 people $58,903 - $75,120 3 people $73,612 - $93,900 
4 people $58,903 - $83,440 4 people $73,612 - $104,300 

3 bedroom $1,910 3 → 

3 people $68,023 - $75,120 

$2,407 1 → 

3 people $85,063 - $93,900 
4 people $68,023 - $83,440 4 people $85,063 - $104,300 
5 people $68,023 - $90,160 5 people $85,063 - $112,700 
6 people $68,023 - $96,800 6 people $85,063 - $121,000 
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Minimum – Maximum4 
Studio $1,735 3 → 1 person  $61,372 - $91,375 $2,165 6 → 1 person $76,115 - $120,615 

1 bedroom $2,180 8 → 
1 person  $76,698 - $91,375 

$2,717 11 → 
1 person $95,109 - $120,615 

2 people $76,698 - $104,375 2 people $95,109 - $137,775 

2 bedroom $2,626 14 → 
2 people $92,023 - $104,375 

$3,270 10 → 
2 people $114,103 - $137,775 

3 people $92,023 - $117,375 3 people $114,103 - $154,935 
4 people $92,023 - $130,375 4 people $114,103 - $172,095 

       1 Tenant Responsible for electricity. 
      2 Household size includes everyone who will live with you, including parents and children. Subject to occupancy criteria. 
      3 Household earnings includes salary, hourly wages, tips, Social Security, child support, and other income. Income guidelines subject to change. 
      4 Minimum income listed may not apply to applicants with Section 8 or other qualifying rental subsidies. Asset limits also apply. 

How Do You Apply?  
Apply online or through mail. To apply online, please go to nyc.gov/housingconnect. To request an application by mail, send a self-addressed 
envelope to: 540 West 53rd Street c/o Wavecrest Consulting LLC, 87-14 116th Street, Richmond Hill, NY 11418. Only send one application per 
development. Do not submit duplicate applications. Do not apply online and also send in a paper application. Applicants who submit more than one 
application may be disqualified.
When is the Deadline?  
Applications must be postmarked or submitted online no later than December 7, 2018. Late applications will not be considered.
What Happens After You Submit an Application?  
After the deadline, applications are selected for review through a lottery process. If yours is selected and you appear to qualify, you will be invited to an 
appointment for eligibility to continue the process of determining your eligibility. Appointments are usually scheduled from 2 to 10 months after the 
application deadline. You will be asked to bring documents that verify your household size, identity of members of your household, and your household 
income. 

Español Presente una solicitud en línea en nyc.gov/housingconnect. Para recibir una traducción de español de este anuncio y la solicitud 
impresa, envíe un sobre con la dirección a: 540 West 53rd Street c/o Wavecrest Consulting LLC, 87-14 116th Street, Richmond Hill, 
NY 11418. En el reverso del sobre, escriba en inglés la palabra “SPANISH.” Las solicitudes se deben enviar en línea o con sello postal 
antes de 7 de diciembre 2018.

䬨ỻᷕ㔯 䇯䰞 nyc.gov/housingconnect ൘㓯⭣䈧Ǆྲ㾱㧧ਆᵜᒯ੺৺Җ䶒⭣䈧㺘Ⲵㆰփѝ᮷⡸ˈ䈧ሶᛘⲴഎ䛞ؑሱᇴ䘱㠣：540 West 53rd Street 
c/o Wavecrest Consulting LLC 87-14 116th Street, Richmond Hill, NY 11418. 信封背面请用英语注明“CHINESE”。必须在以下日期之

前在线提交申请或邮寄书面申请2018ᒤ12ᴸ7ᰕ。

Русский Чтобы подать заявление через интернет, зайдите на сайт: nyc.gov/housingconnect. Для получения данного объявления и заявления на 
русском языке отправьте конверт с обратным адресом по адресу 540 West 53rd Street c/o Wavecrest Consulting LLC, 87-14 116th 
Street, Richmond Hill, NY 11418. На задней стороне конверта напишите слово “RUSSIAN” на английском языке. Заявки должны быть 
поданы онлайн или отправлены по почте (согласно дате на почтовом штемпеле) не позднее 7 декабрь 2018.

한국어 nyc.gov/housingconnect 에서 온라인으로 신청하십시오. 이 광고문과 신청서에 대한 한국어 번역본을 받아보시려면 반송용 봉투를 540 
West 53rd Street c/o Wavecrest Consulting LLC, 87-14 116th Street, Richmond Hill, NY 11418으로 보내주십시오. 봉투 뒷면에 

“KOREAN” 이라고 영어로 적어주십시오. 2018년12월7일까지 온라인 신청서를 제출하거나 소인이 찍힌 신청서를 보내야 합니다.

Kreyòl 
Ayisyien

Aplike sou entènèt sou sitwèb nyc.gov/housingconnect. Pou resevwa yon tradiksyon anons sa a nan lang Kreyòl Ayisyen ak aplikasyon 
an sou papye, voye anvlòp ki gen adrès pou retounen li nan: 540 West 53rd Street c/o Wavecrest Consulting LLC, 87-14 116th 
Street, Richmond Hill, NY 11418. Nan dèyè anvlòp la, ekri mo “HATIAN CREOLE” an Anglè. Ou dwe remèt aplikasyon yo sou entènèt 
oswa ou dwe tenbre yo anvan dat desanm 7, 2018.

العربية . للحصول على ترجمة باللغة العربية لهذا الإعلان ولنموذج الطلب الورقي، أرسل مظروف يحمل اسمك nyc.gov/housingconnectتقدم بطلب عن طريق الإنترنت على الموقع الإلكتروني 
على الجهة الخلفية للمظروف، . West 53rd Street c/o Wavecrest Consulting LLC, 87-14 116th Street, Richmond Hill, NY 11418 540وعنوانك إلى: 

.2018ديسمبر،  7يجب إرسال نماذج الطلبات عن طريق الإنترنت أو ختمها بختم البريد قبل  ".ARABICاكتب باللغة الإنجليزية كلمة "

Mayor Bill de Blasio • HPD Commissioner Maria Torres-Springer   

Figure 3

28 A detailed description of the required process developers follow in allocating units is available at https://www1.

nyc.gov/assets/hpd/downloads/pdf/developers/marketing-handbook.pdf.

https://a806-housingconnect.nyc.gov/nyclottery/lottery.html#faq
https://a806-housingconnect.nyc.gov/nyclottery/lottery.html#faq
https://www1.nyc.gov/assets/hpd/downloads/pdf/developers/marketing-handbook.pdf
https://www1.nyc.gov/assets/hpd/downloads/pdf/developers/marketing-handbook.pdf
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In the allocation system outlined above, an applicant’s chance of being selected for a given unit depends on

the location, quality, and number of units of the requested size at the development, and whether the applicant

is part of a special group (i.e., disabled, community board resident or municipal employee). On the other

hand, our stylized model assumes that developments are of equal size and desirability, and that all applicants

are treated identically. Furthermore, working in the continuum eliminates stochasticity in aggregate demand.

These simplifications allow us to focus on the first-order effect of generating the randomized log numbers

independently across developments, and to analytically describe the effects of alternative designs. Having a

simplified model also allows us to pinpoint the driving forces behind our results, and produce insights that

generalize beyond the idiosyncracies of the NYC system.29

Appendix B: Alternate Payout Models

In this section, we give two alternative ways to formulate our model in Section 3 that are mathematically

equivalent. These alternative formulations enrich the interpretation of our results.

B.1. One-Time Payoffs

In the first formulation, payoffs are incurred upon matching or exit, instead of in each period. This model is

more natural for allocating Broadway tickets or other experience goods such as hiking, camping, and hunting

permits. The modified timeline is as follows:

1. Arrival and Participation Choice: As in Section 3.

2. Life Event: Every agent exits exogenously with probability 1− δ and receive their outside option αi.

3. New Development and Matching: As in Section 3.

4. Payoff: Every matched agent i exits with a one-time payoff of vij . The unmatched agents continue to

the next period.

Agents seek to maximize their expected payout before matching or exiting, minus any participation costs.

The updated Bellman Equation is as follows.

V (s) = max

(
0, δEv∼G

[
max
a∈As

{
Ta(s,m)(v−α) +

∑
s′∈S

Ta(s, s
′)V (s′)

}]
− c

)
. (10)

The only change from the original Bellman Equation (1) is that there is no longer a multiplicative factor

of 1
1−δ before the (v − α) term, which does not change the mathematical structure. Correspondingly, we

remove the (1− δ) scaling term in an agent’s expected utility, so uE(α) =
∫ v
v

(v−α)dPE(α,v)− ctE(α). The

definitions for outcome, match distribution, value per match, and utilitarian welfare are unchanged. All the

results are unchanged, except that the asymptotic results in which δ→ 1 also require scaling c so that c
1−δ

is bounded.

29 To properly account for the aforementioned complications of the NYC system, one would need to apply a different
research methodology based on empirical estimation and counterfactual simulations. This would yield more precise
estimates for NYC, but the findings would be particular to the data used to estimate the model’s parameters, and
the key factors driving any conclusions would be more opaque.
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B.2. Reward for Voluntary Exit

Instead of incurring a participation cost c for each period before exiting, agents get a one-time bonus30 of

r := c
1−δ for voluntarily exiting, and the outside options are all shifted downward by c.

To see that this formulation is equivalent, note that a function V (s) satisfies the Bellman (1) if and only

if the function Ṽ (s) := V (s) + r satisfies

Ṽ (s) = max

(
r, δEv∼G

[
max
a∈As

{
Ta(s,m)

(
v− (α− c)

1− δ

)
+
∑
s′∈S

Ta(s, s
′)Ṽ (s′)

}])
, (11)

which is the Bellman equation for the formulation with exit reward r, no participation cost, and outside

option α shifted down by c.

Appendix C: Formal Definition of Matching MDP, Corresponding Outcome and
Optimal Strategy

Given a matching rule R = (S,D,A,T ) and an outside option α, value distribution G, persistence δ, and

participation cost c, a matching MDP Ψ(R) = (S′,A′, T ′,Γ) is a Markov Decision Process with the following

parameters:

• State space S′ = S ∪ (S×R)∪{m,e}. The states {m,e} are terminal states, corresponding respectively

to matching and to exiting without a match.

• Action set A′ =
⋃
s∈S′ A

′
s. A

′
s = {l, r} for every state s ∈ S, where l corresponds to voluntarily leaving

and r to remaining; A′(s,v) =As for every state (s, v)∈ S×R.

• Transition probability function T ′ : S′×A′×S′→R and reward function Γ : S′×A′→R are as follows.

— If the current state is s ∈ S, the action l results in transition to state e with no reward, and

the action r results in transition with probability 1− δ to e with reward −c, and transition with

probability δ to (s, v) with reward −c, where v is a new draw from G.

— If the current state is (s, v), the action a ∈ As results in transition with probability Ta(a,m) to

state m with reward v−α
1−δ , and transitions with probability Ta(s, s

′) to state s′ ∈ S and no reward.

A strategy σ to the above MDP is represented by functions a : S × R→ A and b : S → {0,1}, where

a(s, v)∈As is what action to take in state (s, v) and b(s) is whether to take action r in state s.

Every strategy σ = (a, b) defines a Markov chain with state space S′′ = S ∪ {m,e1, e2}, where m, e1 and

e2 are absorbing. e1 corresponds to a voluntary exit and e2 to a forced exit due to the life event. The

transition probabilities are pse1 = 1− b(s), pse2 = (1− δ)b(s), and pss′ = δb(s)Ev∼G[Ta(s,v)(s, s
′)] for all s ∈ S

and s′ ∈ S ∪ {m}. This is an absorbing Markov chain with a countable state space, in which the chance

of transitioning to an absorbing state from any state is at least 1 − δ > 0. Hence, given the initial state

distribution D, the expected number of times a transition occurs between each pair of states (s, s′)∈ S′′×S′′

before the chain reaches an absorbing state is well-defined. Denote this quantity by χ(s, s′). The outcome

function and waiting time function corresponding to this strategy for this agent type α are given by:

P (α,v) :=
∑

s:psm>0

χ(s,m)

psm
Ev′∼G[Ta(s,v′)(s,m)1(v′ ≤ v)]. (12)

30 Instead of a one-time bonus, agents who voluntarily exit can equivalently receive a subsidy of c per period until
their life event.
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t(α) :=
∑
s∈S

∑
s′∈S∪{m,e2}

χ(s, s′) (13)

A strategy (a, b) is optimal if and only if

a(s, v)∈ arg max
a∈As

{Q(s, v, a)},

and b(s)∈ arg max (0, δEv∼G[Q(s, v, a(s, v))]− c) ,

where Q(s, v, a) = Ta(s,m)
(
v−α
1−δ

)
+
∑

s′∈S Ta(s, s
′)V (s′) is the term inside the max of the Bellman equa-

tion (1), and V (s) is the unique solution to (1).

The claim the Bellman Equation (1) has an unique solution V (s) whenever δ < 1 follows from Proposition

1.6.1 of Bertsekas (2012). The claim that V (s) represents the maximum attainable continuation value in

state s from any strategy follows from Proposition 1.6.2 of Bertsekas (2012). The conditions needed to apply

these two propositions are verified in Lemma 1 below.

Definition 9. Let R(S) denote the set of functions S→R and B(S)⊆R(S) denote the set of functions

with a finite sup-norm. A mapping Π : R(S)→ R(S) is monotonic if for any two functions J,J ′ ∈ R(S),

J ≤ J ′ implies that ΠJ ≤ΠJ ′, where comparisons of functions are defined point-wise. It is a contraction with

modulus ρ if J ∈B(S) implies ΠJ ∈B(S), and for any J,J ′ ∈B(S), ‖ΠJ −ΠJ ′‖ ≤ ρ‖J − J ′‖, where ‖ · ‖ is

the sup-norm, with ‖J‖ := sups∈S J(s).

Lemma 1. Building on the notation of Definition 9, define the mapping Π :R(S)→R(S) where (ΠJ)(s) is

given by the right hand side of the Bellman Equation (1) with V replaced by J . For a given strategy σ= (a, b),

define the mapping Πσ :R(S)→R(S) where

(ΠσJ)(s) = b(s)

(
δEv∼G

[
Ta(s,v)(s,m)

(
v−α
1− δ

)
+
∑
s′∈S

Ta(s,v)(s, s
′)J(s′)

]
− c

)
. (14)

Both Π and Πσ are monotonic contraction mappings with modulus δ < 1.

Proof of Lemma 1 The monotonicity of Πσ follows from its linearity, and that of Π follows from

Π(s) = supσ Πσ(s). Define H(x) = Ev∼G[max(v−x,0)]. For any J ∈B(S),

‖ΠσJ‖ ≤ ‖ΠJ‖ ≤ δEv∼G
[
max

(
‖J |, v−α

1− δ

)]
≤ δ (‖J‖+H(α+ (1− δ)‖J‖))<∞.

Finally, we have ‖ΠσJ−ΠσJ
′‖ ≤ δ‖J−J ′‖ since

∑
s
Ta(s,v)(s, s

′)≤ 1, and ‖ΠJ−ΠJ ′‖ ≤ supσ ‖ΠσJ−ΠσJ
′‖ ≤

δ‖J − J ′‖. �

Appendix D: Characterizing Outcomes under Independent Lotteries

For simplicity, we use E(α,v) instead of PE(α,v) to denote the outcome function of equilibrium outcome E.

Define

H(x) = Ev∼G[max(0, v−x)] =

∫ ∞
x

G(y)dy. (15)

This is continuous and strictly decreasing for x< x and identically zero for x≥ x. Hence, its inverse H−1(x)

is well-defined for x> 0. For convenience, define H−1(0) = v.
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Proposition 2 (Optimal Strategy under Independent Lotteries). Under independent lotteries

with success probability p, an optimal strategy for an agent with outside option α is as follows: define k := pδ

1−δ ;

if α>α0 :=H−1( c
k
), then the agent exits immediately upon entry; if α≤ α0, then the agent never voluntarily

exits, and participates in lottery j if and only if her value vij > φ(α,p), where the threshold φ(α,p) is the

unique solution φ to the equation

φ−α= max(0, kH(φ)− c). (16)

In all optimal strategies, the outcome is the same,31 and is given by

ILp(α,v) :=

{
k(G(φ(α,p))−G(v))

1+kG(φ(α,p))
if α≤ α0 and v > φ(α,p),

0 otherwise.
(17)

The utility of an agent with outside option α is given by

uILp(α) = φ(α,p)−α. (18)

Appendix E: Pessimality of Independent Lotteries

In this section, we show that when participation cost is negligible, values are high so that everyone prefers

every development to their outside option, and supply is scarce, then independent lotteries are simply match-

ing random people to random developments, which is a bad outcome in terms of both matching and targeting.

Definition 10. Define the random matching outcome function as

RM(α,v) = µG(v). (19)

This matches random agents to random developments, irrespective of values or outside options. It is straight-

forward to show that this outcome is targeting dominated by all equilibrium outcomes with arbitrary c≥ 0,

and match dominated by any equilibrium outcome with c= 0.

Proposition 3. If c= 0 and α< v, then there exists a threshold µ0 > 0 on the supply-demand ratio such

that whenever µ< µ0, every equilibrium outcome under independent lotteries is equal to random matching.

The proof of Proposition 3 is in Appendix F.11. The intuition is that without participation costs, agents

under independent lotteries apply to any development for which the added value v−α is greater than their

continuation value, which is near zero if supply is scarce. Since everyone prefers every development to their

outside option, they will apply everywhere, and the resultant matching is completely random.

31 This result assumes that agents who are exactly indifferent between staying and leaving will always stay.
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Online Appendix

Appendix F: Additional Proofs

F.1. Properties of Independent Lotteries

Proof of Proposition 2. For any matching rule R and a given type α, if V (s) is the solution to the

Bellman Equation (1), and E is any equilibrium outcome of R, we have the identity

uE(α) = (1− δ)Es0∼D[V (s0)], (20)

where D is the initial state distribution specified in R. This identity follows from the definition of uE in

section 3.4.

For the independent lotteries matching rule, the Bellman Equation can be simplified as follows. (Since

there is only one state, we use V to denote the optimal continuation utility.)

V = max
(
0, δEv∼G[max(V,p

(v−α)

1− δ
+ (1− p)V )]− c

)
= max

(
0, δV + kH(α+ (1− δ)V )− c

)
. (21)

If kH(α)− c < 0, then (21) implies that V = 0. If kH(α)− c≥ 0, then V satisfies

(1− δ)V = kH(α+ (1− δ)V )− c.

Either way, we have the equation

(1− δ)V = max(0, kH(α+ (1− δ)V )− c), (22)

which is identical to (16) with the change of variables α+(1−δ)V = φ(α,p). From examining 21, we see that

an optimal solution is to exit if 0>kH(φ(α,p))−c, which is equivalent to α>α0.32 If α≤ α0, then the agent

should join every lottery in which the value v≥ α+ (1− δ)V = φ(α,p). In fact, every optimal solution must

voluntarily exit if α>α0, never exit if α<α0, and while in the system, join a lottery if the value v > φ(α,p),

and not join if v < φ(α,p). The only flexibility is what to do in the knife edge cases in which α= α0 or if

v= φ(α,p). However, we assumed that agents with α= α0 will participate, and v= φ(α,p) with probability

zero since G is continuous. Hence, the outcome function is unique.

We now derive the expression (17). Suppose that α ≤ α0, then the agent never chooses to exit. In each

period j, the agent matches with probability δpG(φ(α,p)), and exits due to the life event with probability

1− δ. Hence, the probability of eventually matching before exiting is

πILp(α) =
pδG(φ(α,p))

1− δ+ pδG(φ(α,p))
=

kG(φ(α,p))

1 + kG(φ(α,p))
. (23)

Now, since the threshold on the value is fixed, the value that the agent is matched with is drawn according

to the distribution v∼G conditional on v > φ(α,p). This yields (17).

Finally, the utility uILp(α) = (1− δ)V = φ(α,p)−α. �

Proposition 4 (Comparative Statics of the Threshold Function φ). Let φ(α,p) : R × (0,1] → R

be the optimal threshold for an agent with outside-value α under independent lotteries with success probability

p, given by (16). The function φ(α,p) is continuous in both arguments. Furthermore, let v = sup{v :G(v)<

1}, k= pδ

1−δ , and α0 =H−1( c
k
). We have

32 To see this, note that kH(φ(α,p))< c implies φ(α,p) = α, so this implies kH(α)< c, which is equivalent to α>α0.
Conversely, since H is weakly decreasing and φ(α,p)≥ α, kH(α)< c also implies kH(φ(α,p))< c.



34

Figure 4 Geometry of the fixed point equation (16) that determines the optimal threshold φ under independent

lotteries. The curves y= x−α and y= kH(x)− c intersect at x= φ. Let β denote the x-intercept of the tangent

to the curve y= kH(x)− c at x= φ. Proposition 2 implies that the distance φ−α is equal to the utility u(α) of an

agent of outside value α; the distance β−α is equal to her value per match ν(α); the ratio φ−α
β−α is equal to her

probability of matching π(α).

a) If α<α0, then φ(α,p) is strictly increasing in both p and α. Furthermore, φ(α,p)−α is strictly positive

and strictly decreasing in α, and converges to zero as α→ α0.

b) When α≥ α0, then φ(α,p) = α. (In particular, the above monotonicity conditions are still weakly true.)

c) For any p > 0, limα→−∞ φ(α,p) =−∞.

d) limp→0 φ(α,p) = α.

Proof of Proposition 4 As illustrated in Figure 4, φ(α,p) is defined to be the point at which the

curves LS(x) = x− α and RS(x) = max(0, kH(x)− c) intersect (the names LS and RS are given because

these represent the left and right sides of (16), respectively). Note that LS is strictly increasing, RS is

weakly decreasing, and both curves are continuous in α and p, implying that φ(α,p) is also continuous in

both arguments.

When α < α0, then G(α) > 0. Increasing p strictly increases RS, and does not affect LS. Increasing α

strictly decreases LS, and does not affect the RS. In either case, the intersection strictly shifts to the right.

This proves the strict monotonicity of φ(α,p). Furthermore, since φ(α,p) − α is the vertical component

of the intersection, this strictly decreases when α increases. Moreover, the fact that φ(α,p)− α is strictly

positive follows from the fact that it is equal to RS(φ(α,p)), which is strictly positive for α < α0. The

convergence of φ(α,p)−α to zero as α approaches α0 from the left follows from the fact that RS(φ(α,p))≤
max(0, kH(α)− c), which goes to zero as α→ α0.

Note also that RS(x) is identically zero for α≥ α0, so for such α, φ(α,p) = α.

For the third claim, note that when α→−∞, LS shifts to the left. Since RS is weakly decreasing with

slope bounded between [−1,0], it must be that φ(α,p) (which is the horizontal component of the point of

intersection of the two curves) also tends to −∞.
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For the final claim, note that since φ(α,p) ≥ α and H is weakly decreasing, we have 0 ≤ φ(α) − α ≤

max(0, kH(α)− c), which tends to zero as p does since k= pδ

1−δ and c≥ 0. �

F.2. Proofs of Outcome Equivalence (Theorem 1)

Propositions 5 and 6 not only imply Theorem 1, but also characterize the structure of equilibrium outcomes.

Proposition 1 implies that for any equilibrium outcome, the waiting function can be expressed in terms of the

outcome function, so to prove outcome equivalence, it suffices to show that the set of outcome functions are

equal. As explained in Section 3.4, we use the simplified notation of E(α,v) to denote the outcome function

of equilibrium outcome E.

Define uGC(α) = φ(α,1)− α to be the utility for an agent of outside option α under guaranteed choice,

and let αGC(x) be its inverse. By Proposition 4, this is well defined in the domain x∈ (0,∞) and is strictly

decreasing. αGC(x) is the agent type that obtains utility of exactly x under guaranteed choice. Define

αGC(0) =H−1
(

1−δ
δ
c
)
.

Proposition 5 (Equivalence to Waitlist with Choice). For any participation cost c≥ 0, the unique

equilibrium outcome of the waitlist with choice and the ticket-saving lottery is given by

WC(α,v) =

{
qGC(α,v) if α≤ α1 := αGC( 1−q

q
c),

0 otherwise,
(24)

where GC = IL1 is the outcome under guaranteed choice as given in (17), and q ∈ (0,1] is the unique value

that satisfies the fixed point equation

µ= q

∫ αGC( 1−q
q
c)

−∞
πGC(x)dF (x). (25)

The corresponding utilities are

uWC(α) = max{0, q(φ(α,1)−α)− (1− q)c}, (26)

where φ(α,p) is given by (16).

When c = 0, WC is also the unique equilibrium outcome of the single-entry lottery and of the common

lottery.

The above expressions for the outcome function and utility have the following intuitive explanation. Both

the waitlist with choice and the ticket-saving lottery are equivalent to having agents wait τ ∼ Λ periods

before playing the guaranteed choice game. The equilibrium parameter q represents Eτ∼Λ[δτ ], which is the

probability that an agent has not yet exited exogenously by period τ , and the expected cost one has to pay

before reaching period τ , multiplied by the scaling term of (1− δ) from (4), is

(1− δ)Eτ∼Λ

[
τ∑

k=1

δk−1

]
c= (1− q)c. (27)

so only agents whose utility under guaranteed choice is more than 1−q
q
c will choose to join, and those who

do obtain the guaranteed choice outcome function scaled down by q≤ 1.
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Proposition 6 (Equivalence to Independent Lotteries). For any participation cost c ≥ 0, the set

of equilibrium outcomes under the waitlist without choice and independent lotteries are both non-empty and

equal to

{ILp : p∈ (0,1], πILp = µ}, (28)

where ILp is the outcome under independent lotteries with success probability p as given in (17).

Proof of Proposition 5. The idea is to show that the waitlist with choice, the ticket-saving lottery,

and the single-entry lottery are special cases of a general class of mechanism which we call delayed guaranteed

choice (Definition 11). This equivalence is described in Definition 12 and Lemma 2. The proof concludes by

showing that under certain assumptions, any delayed guaranteed choice mechanism yields outcome functions

of a particular form (Lemma 3).

Definition 11. Given an arbitrary distribution Λ on the non-negative integers plus infinity, define the

delayed guaranteed choice matching rule with idle-time distribution Λ as follows. Each agent plays

guaranteed choice after being idle for τi ∼ Λ periods. The agent knows the distribution Λ but not her

realization τi.

To precisely encode this as a matching rule, let the set of actions be {Accept,Reject}. Let the state space

be {(s1, s2) : s1, s2 ∈N, s1 ≥ s2}. The first component represents the number of periods the agent has waited

since entry; the second encodes the last period the agent chose to accept, counting from time of entry. The

initial state is (0,0). The transitions are as follows.

• Accept:

— with probability pΛ(s1, s2) := Pτ∼Λ(τ ≤ s1|τ ≥ s2), the idle time has been reached and the agent is

matched to the current development;

— otherwise, the state transitions to (s1 + 1, s1 + 1). (The idle time has not been reached and the

agent knows it.)

• Reject: the state transitions to (s1 +1, s2). (The agent waits another period but does not learn anything

new about her idle time.)

The following definition gives a strong notion of equivalence of matching rules. In colloquial terms, two

rules are strategically equivalent if one can transform both to a common rule by relabeling states and actions,

and by collapsing multiple states into equivalence classes. An implication is that strategically equivalent

matching rules have the same set of equilibrium outcomes.

Definition 12. A matching rule (S′,D′,A′, T ′) is said to be a simpler representation of matching rule

(S,D,A,T ) if there exists a surjective mapping ω : S∪A→ S′∪A′ taking state to state and action to action,33

such that for each state s∈ S, the initial state distribution is preserved:∑
s∈ω−1(s′)

D(s) =D′(s′) for all s′ ∈ S′. (29)

33 The mapping encodes an equivalence relationship; each element of S′ ∪A′ is a representative of a equivalence class
of S ∪A.
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The action set is preserved:

A′ω(s) = {ω(a) : a∈As}, (30)

and for each action a∈As, and each state s̃∈ S′, we have:

T ′ω(a)(ω(s), s̃) =
∑

s′:ω(s′)=s̃

Ta(s, s
′) (31)

T ′ω(a)(ω(s),m) = Ta(s,m) (32)

Two matching rules are said to be strategically equivalent if there is a common matching rule that is a

simpler representation of both.

Define the ticket-saving lottery with all-or-nothing constraint as the modification of the ticket-saving

lottery in which the set of action each period is j ∈ {0, s}. In other words, the agent is constrained each

period to either use all tickets available, or use none at all.

Lemma 2. The following matching rules are strategically equivalent to a delayed guaranteed choice match-

ing rule with a certain idle-time distribution Λ.

a) Waitlist with choice with expected idle-time τ : Λ has support {bτc, dτe} and mean τ .

b) Ticket-saving lottery with success probability p and all-or-nothing constraint: Λ =Geom(p)− 1, where

Geom(p) is the geometric distribution with parameter p.

c) Single-entry lottery with success probability p: Λ has support {0,∞}, with probability of being zero equal

to p.

Let the probability that starting in state (s1, s2), the agent will reach her idle time before exogenously

exiting be denoted

qΛ(s1, s2) = Eτ∼Λ[δmax(τ−s1,0)|τ ≥ s2], (33)

the following assumption is satisfied by the delayed guaranteed choice description of the waitlist with choice

and the ticket-saving lottery.

Assumption 2. The idle-time distribution Λ is such that the function qΛ(s1, s2) is minimized at (s1, s2) =

(0,0), with qΛ(0,0) = Eτ∼Λ[δτ ]> 0.

The above assumption implies that agents who choose initially to participate will never choose to exit,

which also holds when c= 0.

Lemma 3. When c= 0 or when Λ satisfies Assumption 2, an optimal strategy for an agent with outside

option α under the delayed guaranteed choice matching rule with idle time distribution Λ is as follows:

if α > α1 := αGC( 1−qΛ(0,0)

qΛ(0,0)
c), then exit immediately; otherwise, do not voluntarily exit, and accept every

development with value exceeding φ(α,1), which is the same threshold as used in guaranteed choice.

Moreover, in all optimal strategy profiles, the outcome function and utilities are equal to WC(α,v) and

uWC(α) as given in (24) and (26) with parameter q= qΛ(0,0). 34

34 The uniqueness of the outcome function assumes that agents who are indifferent between participating and leaving
will participate; otherwise the outcome is not unique for the agents who are indifferent.
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Note that when c= 0, the description in Lemma 3 is equivalent to selecting a random proportion of agents

of measure q to play guaranteed choice, which is exactly the common lottery.

Moreover, in any equilibrium, the total match rate must equal to µ, so the value of q must satisfy the

fixed point equation (25), which always has an unique solution since the left side is a constant, αGC
(

1−q
q
c
)

is strictly increasing in q, πGC(x)> 0 for any x<αGC(0), and πGC ≥ µ.

To finish off the proof of Proposition 5, we show that assuming the all-or-nothing constraint for the

ticket-saving lottery is without loss of generality.

Lemma 4. The ticket-saving lottery with all-or-nothing constraint is outcome equivalent to the ticket-

saving lottery without this constraint.

The proofs to Lemmas 2, 3, and 4 are in Section F.3. �

Proof of Proposition 6. The proof is analogous to that of Proposition 5. We show that both classes of

matching rules are strategically equivalent to special cases of a more general class of matching rules, which we

call periodic-offer: offer each agent a new development every certain number of periods, with the inter-offer

time possibly random but following a fixed distribution (Definition 13 and Lemma 5). We then derive the

set of equilibrium outcomes for such matching rules via a common analysis (Lemma 6).

Definition 13. Given an arbitrary distribution Λ on the non-negative integers plus infinity, define the

periodic-offer matching rule with idle-time distribution Λ as follows. The actions are “Accept” and

“Reject,” and the state space is N. The initial state is 0, and in this state, the an idle time τi ∼ Λ for the

agent is drawn. The agent knows the distribution Λ but not the realization τi. The transitions are as follows:

• With probability pΛ(s) := Pτ∼Λ(τ = s|τ ≥ s),

— “Accept” results in being matched to the current development,

— “Reject” results in the agent going back to state 0 and receiving a new draw of τi.

• With probability 1− pΛ(s), either action results in the state incrementing to s+ 1.

Lemma 5. The following matching rules are strategic equivalent (see Definition 12) to the periodic offer

matching rule with a certain idle-time distribution Λ.

a) Waitlist without choice with expected idle-time τ : Λ has support {bτc, dτe} and mean τ .

b) Independent lotteries with success probability p: Λ = Geom(p) − 1, where Geom(p) is the geometric

distribution with parameter p.

Define qΛ(s1, s2) as in (33), then δqΛ(s, s) is the probability that starting from state s, the agent will be

able to receive an offer before exiting exogenously. Note that both of the idle-time distributions above satisfy

Assumption 2: the probability of receiving another offer is minimized in the initial state (0,0).

Lemma 6. Under Assumption 2, an optimal strategy under periodic-offer with idle-time distribution Λ is

to follow an optimal strategy to independent lotteries with success probability p0 := (1−δ)qΛ(0,0)

1−δqΛ(0,0)
. Moreover,

every optimal strategy yields the same outcome function ILp0
.

Finally, the set of equilibrium outcomes is non-empty because by continuity, {πILp : p∈ (0,1]} ⊇ (0, πGC ]3
µ. This completes the proof of Proposition 6. The proofs of Lemmas 5 and 6 are given in Appendix F.3. �
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F.3. Proofs of Lemmas used in the Equivalence Proof (Appendix F.2)

Proof of Lemma 2. For the waitlist with choice, consider first the strategically equivalent matching

rule in which the set of actions is {Accept,Reject} in every state, but the action is ignored and the state

is incremented if the idle time has not been reached.35 Consider the following mapping from the delayed

guaranteed choice matching rule to this: the mapping preserves each action, and maps state (s1, s2)→ s1.

When Λ has support {bτc, dτe} and mean τ , this mapping preserves transitions because,

pΛ(s1, s2) = Pτ∼Λ(τ ≤ s1|τ ≥ s2) =


0 if s1 < bτc,
1 + bτc− τ if s1 = bτc,
1 if s1 ≥ bτc+ 1.,

(34)

which is equal to the probability of matching in a waitlist with choice in state s1 when the agent accepts.

For the ticket-saving lottery with all-or-nothing constraint, consider the mapping from delayed guaranteed

choice which takes state (s1, s2) to state s1 − s2 in the ticket saving lottery, action “Accept” in delayed

guaranteed choice to the action in the ticket saving lottery of using all tickets, and action “Reject” in delayed

guaranteed choice to using no tickets. When Λ =Geom(p)− 1, it preserves the transitions because

pΛ(s1, s2) = Pτ∼Λ(τ ≤ s1|τ ≥ s2) = 1− (1− p)s1−s2 , (35)

which is equal to the probability of matching in the ticket-saving lottery when the agent spends s1 − s2

tickets.

For the single-entry lottery, consider the mapping which takes “Accept” in delayed guaranteed choice to

“Enter” in the single-entry lottery, and “Reject” to “Abstain.” It takes any state (s1,0) in delayed guaranteed

choice to the initial state in the single-entry lottery (corresponding to not having entered a lottery yet), and

any state (s1, s2) with s2 ≥ 1 to the null state in the single-entry lottery (corresponding to already having

entered a lottery). The transitions are preserved because

pΛ(s1, s2) = Pτ∼Λ(τ ≤ s1|τ ≥ s2) =

{
p if s2 = 0,

0 otherwise,
(36)

which is equal to the probability of matching in the single-entry lottery when the agent chooses “Enter” in

states 1 and 0 respectively.

Proof of Lemma 3. First note the following fact about the threshold α1 as defined in the lemma: if

c > 0, then Assumption 2 implies that α1 <∞. Moreover, qΛ(0,0)uGC(α)− (1− qΛ(0,0))c≥ 0 if and only if

α≤ α1, because the definition of α1 implies this expression is identically zero at α= α1, and Proposition 4

implies that uGC(α) is weakly decreasing in α everywhere and strictly decreasing at α= α1.

Consider for now only agents with outside option α ≤ α1. Consider also the restriction on the strategy

space in which agents cannot voluntarily exit. Under this constraint, it is optimal to play delayed guaranteed

choice the same way as guaranteed choice, since whatever actions have no effect before the idle time has

been reached. Therefore, an optimal strategy is to accept development j if and only if vij > φ(α,1), which

35 Precisely speaking, the action is ignored with probability 1 for every state s < bτc, with probability τ −bτc in state
s= bτc, and with probability 0 in state s≥ bτc+ 1. This matching rule is a simpler representation of waitlist with
choice as presented in Section 3.2 because the action “Wait” can map to “Accept,” which is ignored anyway.
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is the optimal threshold under guaranteed choice (see Proposition 2). This strategy results in continuation

values,

V (s1, s2) = qΛ(s1, s2)
uGC(α)

1− δ
− (1− qΛ(s1, s2))

c

1− δ
, (37)

because qΛ(s1, s2) is the probability that the agent will not exogenously exit before her idle time is reached,

and

(1− qΛ(s1, s2))
c

1− δ
=Eτ∼Λ[

τ−s1∑
k=1

δk−1c|τ ≥ s2],

is the expected participation cost incurred before her idle time is reached. This implies that the utility of

the agent from state 0, scaled as in (4), is

u(α) = (1− δ)V (0,0) = qΛ(0,0)(φ(α,1)−α) + (1− qΛ(0,0))c.

Now, we show that the above restriction on the strategy space is without loss of generality. It is clearly

true if participation cost c= 0. If c > 0, then α<α1 implies that the expression in (37) satisfies

(1− δ)V (s1, s2) + c= qΛ(s1, s2)(uGC(α) + c)> qΛ(0,0)(uGC(α1) + c) = c.

So V (s1, s2) > 0 for all states (s1, s2), so the agent should never choose to exit when following the above

strategy. This proves that the above strategy is optimal even allowing voluntary exits, and that (37) describes

the optimal continuation values. This also proves that (26) with q set to qΛ(0,0) describes the optimal utility

for these agents.

For agents with outside α > α1, we show that an optimal strategy for them is to exit immediately. This

is because the arguments above showed that when α1 <∞, then an agent with outside value exactly α1

receives zero utility in state (0,0). Since utilities are weakly decreasing in α, all agents with outside option

α>α1 must also receive zero utility in state (0,0), so it is optimal to exit immediately.

It remains to prove that set of outcome functions under optimal strategies are as given in Lemma 3. For

α > α1, Proposition 1 implies that in any optimal strategy, the agent matches with probability zero.36 So

the outcome is zero.

For α<α1, when c= 0 or Λ satisfies Assumption 2, it is never optimal to voluntarily exit, since 37 implies

that V (s1, s2)≥ V (0,0)> 0. Moreover, in order to obtain utilities as in (26), the agent must play an optimal

strategy to guaranteed choice when her idle time has been reached, and Proposition 2 implies that conditional

on reaching her idle time, the outcome must be as in (17) with p= 1. Since without exiting, she cannot affect

the probability that she remains in the system until her idle time is reached, the outcome must be as in (24)

with q= qΛ(0,0).

For α = α1, the agent is indifferent between exiting and staying in the initial state, and in each state

(s1, s2) with V (s1, s2) = 0. Since we assume that she always stays, the outcome function is as in the case

with α<α1. �

36 To apply Proposition 1, let E be a partial equilibrium outcome in which agents follow a certain optimal strategy
profile to delayed guaranteed choice. If α1 <∞, then we have by the formula for utilities that we have already proved
that uE(α1) = 0, which implies that πE(α) = 0 for any α>α1.
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Proof of Lemma 4. Let pk = 1− (1− p)k. For a fixed outside option α, the Bellman equation for the

ticket-saving lottery is

V (s) = max(0, δEv∼G[ max
0≤k≤s

{pk
v−α
1− δ

+ (1− pk)V (s− k+ 1)}]− c). (38)

Let V0(s) be the DP value for the ticket-saving lottery with all or nothing constraint. Then V0 satisfies the

modification of (38) with the domain of the inner maximum replaced with k ∈ {0, s}. By Lemma 2 and 3, the

optimal threshold in the inner maximum for V0 is φ(α,1), which is the optimal threshold under guaranteed

choice. Let uGC(α) = φ(α,1)−α. This implies that

V0(s+ 1) = ps
uGC(α)

1− δ
+ (1− ps)V0(1). (39)

Now, let λ = uGC(α)

1−δ , using the above and the identity (1− pa)(1− pb) = 1− pa+b, we have that for any

1≤ k≤ s,

pkλ+ (1− pk)V0(s− k+ 1) = pkλ+ (1− pk)[ps−kλ+ (1− ps−k)V0(1)]

= [pk + (1− pk)ps−k]λ+ (1− ps)V0(1)

= psλ+ (1− ps)V0(1).

This implies that V0(s) also satisfies the Bellman Equation (38). This is because after we plug in V0,

the inner maximum of (38) is the maximum of k + 1 linear function of v, all of of which have a common

intersection point at v = φ(α,1). Since ps is increasing in s, the maximum is achieved with action k = 0 if

v ≤ φ(α,1) and with k = s if v ≥ φ(α,1), so we can remove the actions k ∈ {1,2, · · · , s− 1} without loss of

generality and get back the Bellman equation for the ticket-saving lottery with all-or-nothing constraint.

Moreover, since G is continuous, the action k ∈ {1,2, · · · , s− 1} is optimal with probability zero in state

s, so imposing the all-or-nothing constraint does not affect the set of equilibrium outcomes.

Proof of Lemma 5. For the waitlist without choice, consider the identity mapping that takes state s

in periodic-offer to s in the waitlist, while preserving the actions Accept and Reject. This mapping preserves

the transitions by the definitions of the two matching rules.

For independent lotteries, consider the mapping which takes every state in periodic-offer to the only state

under independent lotteries, the action Accept in periodic-offer to Enter under independent lotteries, and the

action Reject to Abstain. This preserves the transitions because with Λ =Geom(p)− 1, pΛ(s) = Pτ∼Λ(τ =

s|τ ≥ s) = p always. �

Proof of Lemma 6. Note that δ′ := δqΛ(0,0) is the probability that starting from entry, or from receiv-

ing a previous offer, the agent will get to decide on another offer before exiting. By inspecting (16) and (17)

in Proposition 2, we see that the outcome under independent lotteries with success probability p0 is the

same as the outcome under guaranteed choice when the continuation probability is changed to δ′.37 By

Proposition 2, an optimal strategy is to exit immediately if α>α0 :=H−1(c/k), where k = p0δ

1−δ , and to not

exit otherwise and accept every lottery with value exceeding φ(α,p0).

37 The value of p0 should be such that p0
δ

1−δ = δ′

1−δ′ , which implies that p0 = (1−δ)qΛ(0,0)
1−δqΛ(0,0)

.
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We show that under Assumption 2, the above strategy is optimal under periodic-choice with idle-time

distribution Λ. Consider first a restriction on the strategy space that disallows voluntary exit in states s > 0.

In this case, the agent can effectively do nothing before her idle-time is reached. In state 0, the agent knows

that her chance of still being around for the next offer is δ′ = δqΛ(0,0) and she can exit now and get a

reward of r. In every state s > 0, the agent can behave as if the current state is one with an offer, because

in other states the action does not matter anyway. Therefore, the agent’s decision problem is the same as

in under guaranteed choice with continuation probability δ′, so the above strategy is optimal. Furthermore,

by the argument above that allows us to ignore states s > 0 before the idle time has been reached, and by

Proposition 2, the outcome under any optimal strategy (with the above restriction) is the same and is equal

to ILp0
.

Now, it suffices to show that allowing voluntary exits does not affect the optimality of the above strategy

and does not change the set of equilibrium outcomes. For ease of computation, adopt the change of variable

Ṽ (s) = V (s) + r, where r = c
1−δ . As explained in Appendix B.2, this can be interpreted as offering a one-

time reward of r for voluntary exits and not charging any participation cost. For agent types α ≤ α0, the

transformed continuation value upon entry is

Ṽ (0) =
φ(α,p0)−α

1− δ
+ r,

and the transformed continuation value in state s under the above strategy is:

Ṽ (s) =
qΛ(s, s)

qΛ(0,0)
Ṽ (0) (40)

This is because her transformed continuation value at the time of receiving an offer is Ṽ0/(δqΛ(0,0)), and

δqΛ(s, s) is the chance that the agent will not be forced to exit before receiving the next offer. When r = 0

or when Λ satisfies Assumption 2, it is impossible for Ṽ (0)≥ r but Ṽ (s)< r for s > 0, so agents never have

strict incentives to exit in states s > 0, and by our assumption that only agents with strict incentives will

exit, they will not do so. This proves the desired result for α≤ α0.

For agents with outside option α>α0, we get by an analogous argument as found in the proof of Proposi-

tion 3 that in any optimal strategy of periodic-offer, these agents must match with probability zero38, which

yields the desired result. �

F.4. Efficacy of the Common Lottery for Matching (Proof of Theorem 2)

We first show two structural results of independent lotteries and single entry lottery (Propositions 7 and 8).

Proposition 7. The value per match under independent lotteries matching rule is weakly increasing in

the success probability p and weakly decreasing in the participation cost c.

Geometric Proof of Proposition 7 We first give a geometric proof based on analyzing Figure 4 in

Section D, which shows that the value per match ν(α) = β−α, where β is the x-intercept of the tangent of the

function y = kH(x)− c at x= φ. From the figure, we see that increasing c shifts the function y= kH(x)− c

downward, which moves the x-intercept β to the left. The decrease in β is strict until c≥ kH(α), at which
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Figure 5 Illustration of how the x-intercept β shifts to the right as k increases. As can be seen, the curve

y= k2H(x)− c is the result of vertical scaling the curve y= k1H(x)− c away from the horizontal line y=−c. As a

result, their tangents at x= φ1 (the lines l′ and l1) intersect on the horizontal line y=−c, which implies that the

x-intercept β′ ≥ β1. Now, l2 is the tangent to y= k2H(x)− c at x= φ2 ≥ φ1. By convexity, the x-intercept β2 of

the tangent line l2 shifts to the right from β′, which implies that β2 ≥ β′ ≥ β1.

point the value per match becomes identically zero as it is optimal for the agent to exit immediately upon

entry.

Increasing p corresponds to increasing k= pδ

1−δ . Figure 5 illustrates how the x-intercept β weakly increases

as k increases. Let k1 <k2 be the two values of k, with corresponding acceptance thresholds φ1 and φ2 from

the fixed point equation (16). Let l1 be the tangent to the curve y= k1H(x)−c at x= φ1 and l2 be the tangent

to the higher curve y = k2H(x)− c at x= φ2. Draw also the tangent l′ to the higher curve y = k2H(x)− c

at the lower threshold x= φ1. Let the x-intercept of lines l1, l′, and l2 be β1, β′ and β2 respectively. Since

the higher curve y = k2H(x)− c is the result of vertically scaling y = k1H(x)− c by the factor k2/k1 away

from the horizontal line y = −c, the tangents l1 and l′ must intersect on y = −c. Since c ≥ 0, this implies

that the x-intercept β′ ≥ β1, with the inequality being strict if c > 0. Now, by Proposition 4, φ2 ≥ φ1, so by

the convexity of the curve y= k2H(x)− c, the x-intercept β2 ≥ β′. Combining, we get that β2 ≥ β1 with the

inequality strict if c > 0. This implies that the value per match is weakly higher under the higher success

probability. �

38 The argument is as follows. We have already shown that under periodic-choice with participation cost c, the utility
of an agent with outside value α0 is zero, so by Proposition 1, the probability of matching must be zero for α>α0.
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Algebraic Proof of Proposition 7 By Proposition 2, under independent lotteries with success prob-

ability p, the value per match of an agent type α is

ν(α) = φ−α+
φ−α
kG(φ)

, (41)

where φ= φ(α,p) as given in Proposition 2 and k= pδ

1−δ .

When the participation cost c increases, we see by inspection of the fixed point equation (16) that φ−α
weakly decreases. Moreover, φ weakly decreases, which means that G(φ) weakly increases. Hence, the value

per match is weakly decreasing in c.

When the success probability p increases, k = pδ

1−δ increases. Suppose it increases from k1 to k2. From

Proposition 2, the threshold on α for exiting is weakly higher under k2 than k1, so it suffices to consider

the case in which the agent matches with positive probability under both success probabilities. In this case,

G(φ1)≥G(φ2)> 0, and the above expression for value per match becomes

ν(α) = φ−α+
H(φ)− c/k

G(φ)
. (42)

Now, D(x) :=H(x)− c/k2 is convex, non-negative, and strictly decreasing in the interval (−∞, φ2], with

subgradient −G(x). Hence, we can apply the following lemma.

Lemma 7. If D(x) is a strictly decreasing, non-negative convex function on the domain (−∞, x], and

(−d(x)) is any subgradient to D(x) at x, then

h(x) := x+
D(x)

d(x)

is a weakly increasing function of x on the domain (−∞, x].

By Lemma 7,

φ1−α+
H(φ1)− c/k1

G(φ1)
≤ φ1−α+

H(φ1)− c/k2

G(φ1)
≤ φ2−α+

H(φ2)− c/k2

G(φ2)
, (43)

so the match value is weakly higher under k2 than under k1. �

Proof of Lemma 7 For any x< x′ ≤ x, we have by convexity,

D(x′)≥D(x) + (x′−x)(−d(x)).

Since d(x)> 0, and d(x)≥ d(x′), the above implies that

x′−x≥ D(x)

d(x)
− D(x′)

d(x)

≥ D(x)

d(x)
− D(x′)

d(x′)
,

which implies that h(x′)≥ h(x). �

Proposition 8. For any c≥ 0 and p≤ 1, an optimal strategy for an agent with outside option α under

the single entry lottery is to follow that of the agent under the guaranteed choice matching rule with partic-

ipation cost c/p. Furthermore, in all optimal strategies, the outcome is the same and given by SEp(α,v) =

p ·GC c
p
(α,v), and utility uSEp(α) = p ·uGC cp (α,v), where GC c

p
denotes the guaranteed choice outcome under

participation cost c/p.
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Proof of Proposition 8 The proof is analogous to that of Proposition 2, except the Bellman equation

for the continuation value of agent type α is now

V = max

(
0, δEv∈G

[
max

(
p
v−α
1− δ

,V

)]
− c
)

= max

(
0, δV +

pδ

1− δ
H

(
α+

1− δ
p

V

)
− c
)
.

Let ψ = α+ 1−δ
p
V be the optimal acceptance threshold, we follow the same argument as in Proposition 2

and get that ψ satisfies the fixed point equation

ψ−α= max

(
0,

δ

1− δ
H(ψ)− c

p

)
, (44)

which is the same as (16) for the guaranteed choice problem with participation cost c
p
. The utility is (1−δ)V =

p(ψ − α) = p ·GC c
p
(α). The outcome function is p multiplied by the outcome conditional on winning the

lottery, which is the same as GC c
p
(α,v). As in the proof of Proposition 2, uniqueness of the outcome follows

from our assumption that agents indifferent about staying will stay, and from G being continuous. �

Proof of Theorem 2 a) The common lottery has an unique equilibrium outcome because the proba-

bility that an agent is selected to be eligible must be equal to µ/(πGC). Furthermore, it has the same value

per match as in guaranteed choice, which match dominates any equilibrium outcome of independent lotteries

by Proposition 7.

By Proposition 5, the value per match in the unique equilibrium outcome of the waitlist with choice and

the ticket-saving lottery is

νWC(α) = max

(
νGC(α)− 1− q

qπGC(α)
c,0

)
,

where q is as defined in Proposition 5 and GC is the guaranteed choice outcome. Since c≥ 0 and q≤ 1, this

is weakly smaller than νGC(α), which is the same as the value per match under the common lottery.

Finally, the common lottery match dominates any equilibrium outcome of the single-entry lottery, because

Proposition 8 shows that the latter has the same value per match as guaranteed choice with a higher

participation cost. However, Proposition 7 implies that the value per match under guaranteed choice is

weakly decreasing in the participation cost. �

Proof of Theorem 2 b). Perfect matching match dominates any equilibrium outcome because the

value per match in any equilibrium outcome is equal to the expected value conditional on matching, minus

the outside option, minus the expected total participation cost. The first term is upper-bounded by v, and

the third term is non-negative, so an overall upper-bound is v−α.

We now show that the common lottery converges to perfect matching when δ→ 1. Define GCδ
c (α,v) to

be the guaranteed choice outcome under continuation probability δ and participation cost c. Define φδc(α)

to be the optimal acceptance threshold for agent type α as in Proposition 2, and πδc(α) the probability of

matching. By Proposition 2,

GCδ
c (α,v) = Pv′∼G(v≥ v′|v′ ≥ φδc(α))πδc(α). (45)

For any c≥ 0 and ε < 1, define δ(ε, c) to be the unique value of δ < 1 such that

δ

1− δ
=

1− ε2 + c

H(v− ε2)
. (46)
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Lemma 8. For any c≥ 0, any ε > 0 (such that ε < 1), and any δ≥ δ(ε, c) (such that δ < 1), we have

a) v− ε≤ φδc(α)≤ v for all v− 1
ε
≤ α< v.

b) (1− ε)1(α≤ v− ε)≤ πδc(α)≤ 1(α< v) for all α∈R.

Proof of Lemma 8 For part a), it suffices by Proposition 4 to show that φδc(α3)≥ v− ε for α3 = v− 1
ε
.

This is true because H(v− ε)≥ 1
ε
H(v− ε2) by convexity of H and H(v) = 0. So for any x< v− ε,

x−α3 < (v− ε)− (v− 1

ε
)≤ 1

ε

(
δ

1− δ
H(v− ε2)− c

)
≤ δ

1− δ
H(v− ε)− c≤max

(
δ

1− δ
H(x)− c,0

)
,

which means that x cannot satisfy the fixed point equation (16) determining φδc(α3).

For part b), it suffices to show that anyone with outside option α≤ v− ε matches with probability at least

1− ε. To do this, it suffices to show that πδc(α4)≥ 1− ε for α4 = v− ε, since Lemma 9 implies that πδc(α) is

weakly decreasing. Let φ4 = φδc(α4). We first show that φ4 ≥ v− ε2. This is because for x≤ v− ε2, we have

x−α4 < (v− ε2)− (v− ε)≤ δ

1− δ
H(v− ε2)− c≤max

(
δ

1− δ
H(x)− c,0

)
,

so x cannot satisfy the fixed point equation (16) determining φ4. Now,

δ

1− δ
G(φ4)≥

δ
1−δ

∫ v
φ4
G(x)dx

v−φ4

≥ φ4−α4

v−φ4

≥ 1− ε
ε

,

which implies that

πδc(α4) =
δ

1−δG(φ4)

1 + δ
1−δG(φ4)

≥ 1− ε.

�

Returning to the proof of Theorem 2 b), Lemma 8 implies that for any sequence δ1, δ2, · · · of such that

limn→∞ δn = 1 and δn < 1, and any sequence c1, c2, · · · , such that cn < c<∞ for some constant c, we have

lim
n→∞

GCδn
cn

(α,v) = 1(α< v)1(v≥ v).

Now, define En(α,v) = µGCδ
c (α,v)/πGC

δ
c , then since the average match rate πGC

δ
c → 1, En→ PM .

This immediately implies the convergence of any sequence of the common lottery outcome to perfect

matching, as long as the participation costs in this sequence is upper-bounded by a constant. Now, Proposi-

tion 8 implies that any sequence of equilibrium outcomes of the single-entry lottery with success probabilities

(pn) is outcome equivalent to a sequence of guaranteed choice outcomes with participation costs cn = c
pn

.

Moreover, each pn ≥ µ, so cn <
c
µ
<∞. Hence, any sequence of single-entry lottery outcomes also converges

to perfect matching as δ→ 1. �

F.5. Proof of Proposition 1

Proposition 1 follows immediately from Lemma 9. The basic mathematical argument parallels that of the

revenue equivalence theorem in auction theory, which shows that incentive compatibility conditions pin

down a precise relationship between the allocation function and each agent’s utility. We show that this

mathematical recipe can be applied in our model, which features dynamics and no monetary transfers.

Lemma 9. For any partial equilibrium outcome E, we have:
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a) The allocation function πE(α) is weakly decreasing, which implies that it is continuous almost every-

where.

b) The utility function uE(α) is continuous everywhere, and differentiable wherever πE(α) is continuous.

For such α,
duE(α)

dα
=−πE(α). (47)

c) The utility of the highest type is zero: uE(v) = 0. (For simplicity, define uE(∞) to be a short hand for

limx→∞ u
E(x).)

Proof of Lemma 9 Fix a partial equilibrium outcome E. The main idea is that agents should not

envy the allocation outcome of other agent types, otherwise their strategy profile would not be optimal. By

inspecting the equation for utility uE(α) in (4), we see that when an agent i of outside option α copies the

behavior of an agent i′ with outside option α′, she obtains the utility

uE(α′) +

∫ v

v

(α′−α)dPE(α′, v) = uE(α′) +πE(α′)(α′−α).

Therefore, we have the following incentive-compatibility condition:

uE(α)≥ uE(α′) +πE(α′)(α′−α). (48)

For the remainder of the proof, the superscript E will be omitted to keep the notation uncluttered. Writing

the same inequality above with the roles of α and α′ exchanged and adding, we get

(π(α)−π(α′))(α−α′)≤ 0 ∀α,α′ ∈R (49)

This implies that π(α) is weakly decreasing (point 1 of Lemma 9).

Rearranging (48) and the analogous equation with the roles of α and α′ exchanged, we get that for all

α>α′

−π(α)≥ u(α)−u(α′)

α−α′
≥−π(α′) (50)

This implies that u(α) is continuous everywhere. Moreover, whenever π(α) is continuous, u(α) is differentiable

with derivative equal to −π(α).

We now show that u(v) = 0. Suppose first that v <∞. We have

0≤ u(v)≤ φ(v,1)− v,

where the first inequality follows because agents have the option of exiting immediately, and the second

follows from Proposition 9 below. Because v=H−1(0)≥H−1( 1−δ
δ
c), Proposition 4 b) states that φ(v,1) = v,

so u(v) = 0.

Suppose that v=∞, then the same argument as above holds, except that we replace u(v) by limα→∞ u(α)

and φ(v,1)− v by limα→∞ φ(α,1)−α. This last limit is equal to zero by the Proposition 4 a). �

Proposition 9 (Upper Bound on Utility of an Agent). In any equilibrium outcome E, the utility

of an agent is no more than her utility under guaranteed-choice:

uE(α)≤ uGC(α) = φ(α,1)−α, (51)

where φ(α,1) is the optimal cutoff under guaranteed choice, as defined in (16) with k= δ
1−δ .
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Proof of Proposition 9. Let V (s) be the optimal solution to the Bellman Equation (1). By Lemma 1,

we can apply Proposition 1.6.1 of Bertsekas (2012), which implies that sups∈S V (s)<∞. Let V = sups∈S V (s).

V ≤max

(
0, δEv∼G

[
max

(
v−α
1− δ

,V

)]
− c
)

= max

(
0, δV +

δ

1− δ
H(α+ (1− δ)V )− c

)
. (52)

Let y= δ
1−δH(α+(1−δ)V ). If y≤ c, then the above is equivalent to V ≤ 0. If y > c, then since V ≥ 0 (as agents

can always exit upon entry), we have δV +y−c > 0, so the above is equivalent to (1−δ)V ≤ δ
1−δH(α+V )−c.

Either way, the above is equivalent to

(1− δ)V ≤max

(
0,

δ

1− δ
H(α+ (1− δ)V )− c

)
. (53)

Let the function φ be as in (16). Setting (1−δ)V = φ(α,1)−α would make the above left side (LS) and right

side (RS) equal. Since the LS is an increasing function of V for δ < 1 and since the RS is weakly decreasing

in V , it must be that any V satisfying the above inequality also satisfies (1− δ)V ≤ φ(α,1)− α. By (20),

uE(α)≤ (1− δ)V ≤ φ(α,1)−α. �

F.6. Machinery Used in the Proofs of Theorems 3 and 4

F.6.1. Theory of Hazard Rate Dominance The proofs of Theorems 3 and 4 make use of the following

tools from theory of stochastic ordering. For ease of exposition, we develop the tools in general before applying

to our problem.

Definition 14 (Hazard Rate Dominance)). Let a(x) and b(x) be non-negative real-valued functions,

with A(x) :=
∫∞
x
a(y)dy and B(x) :=

∫∞
x
b(y)dy both finite for all x∈R. We say that function a(x) hazard-

rate dominates b(x) if a(x)/A(x)≤ b(x)/B(x) wherever the denominators are both positive.

Given a function a(x) as in Definition 14, and given y ∈R such that A(y)> 0, define random variable Xa
y

taking on values (y,∞) with CDF

P(Xa
y ≤ x) =

∫ x
y
a(z)dz

A(y)
. (54)

Define random variable Xb
y similarly.

Lemma 10 (Equivalence Definitions of Hazard Rate Dominance). Let a(x), b(x), A(x), and B(x)

be as in Definition 14. The following statements are equivalent.

1. a(x) hazard rate dominates b(x).

2. A(x)/B(x) is weakly increasing in x wherever the denominator is positive.

3. Xa
y first order stochastic dominates Xb

y for every y such that both A(y) and B(y) are positive.

4. a(x)h(x) hazard rate dominates b(x)h(x) for every non-negative, weakly increasing, and bounded func-

tion h(x).

Our proof of Lemma 10 makes use of a well-known fact and a technical lemma given below.

Fact 1. If X and Y are random variables taking values on set D, and if X first order stochastic dominates

Y , then for any weakly increasing function γ :D→R, we have

E[γ(X)]≥E[γ(Y )].

Moreover, if γ is instead weakly decreasing, then the above inequality is reversed.
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Lemma 11. If A(x) and B(x) are continuous, weakly-decreasing and non-negative functions in x, and

the ratio A(x)/B(x) is weakly increasing in x whenever the denominator is positive, then A(x) = 0 implies

B(x) = 0.

Proof of Lemma 11. Define x= sup{x :A(x)> 0 and B(x)> 0}. Suppose on the contrary that A(x) =

0 while B(x)> 0. Then for any x< x, A(x)

B(x)
> 0 = A(x)

B(x)
, which contradicts the weakly decreasing property of

A(x)/B(x). �

Proof of Lemma 10. Define x= sup{x :A(x)> 0 and B(x)> 0}. By Lemma 11, statement 2) is equiv-

alent to A(x)/B(x) being weakly increasing for x∈ (−∞, x). We prove the equivalence in steps.

1) ⇐⇒ 2): The equivalence follows from the fact that for any x< x, we have A(x)> 0 and B(x)> 0, and

A(x)/B(x) is differentiable, with
d

dx
log(

A(x)

B(x)
) =− a(x)

A(x)
+
b(x)

B(x)
.

2) ⇐⇒ 3): The equivalence follows from the fact that for any y < x < x, we have A(y)≥ A(x) > 0, and

B(y)≥B(x)> 0, with

P(Xa
y ≤ x)−P(Xb

y ≤ x) =
B(x)

B(y)
− A(x)

A(y)
.

3) =⇒ 4): If h(x) = 0 for every x < x, then there is nothing to prove. Otherwise, we have that for any

y < x, both E[h(Xa
y )] and E[h(Xb

y)] are strictly positive and finite (strictly positive because h(x)> 0 in some

open interval containing x, and finite because h is bounded). Using condition 3) and Fact 1 we have

A(y)∫∞
y
a(x)h(x)dx

=
1

E[h(Xa
y )]
≤ 1

E[h(Xb
y)]

=
B(y)∫∞

y
b(x)h(x)dx

.

Multiplying this by h(y)a(y)/A(y)≤ h(y)b(y)/B(y) yields the desired condition.

4) =⇒ 1): This is clear since h(x) = 1 is a non-negative, weakly increasing and bounded function. �

A sufficient condition for hazard rate dominance is as follows.

Lemma 12 (Monotone Likelihood Ratio Implies Hazard Rate Dominance). Let a(x) and b(x)

be as in Definition 14, then if a(x)/b(x) is weakly increasing in x on the domain where the denominator is

positive and if b(x) is weakly decreasing in x everywhere, then a(x) hazard rate dominates b(x).

Proof of Lemma 12. Under the conditions of the Lemma, for any x such that A(x) > 0, B(x) > 0,

then it must be that b(x)> 0, and we have

A(x)

B(x)
=

∫∞
x
a(y)dy

B(x)
≥
∫∞
x

a(x)

b(x)
b(y)dy

B(x)
=
a(x)

b(x)
.

So a(x)/A(x)≤ b(x)/B(x), as desired. �

F.6.2. Strong Targeting Dominance We prove that a notion of targeting dominance also implies

match dominance, thus providing a partial converse to Theorem 3.

Definition 15. We say that partial equilibrium outcome E′ strongly targeting dominates E if the

ratio πE(α)/πE
′
(α) is weakly increasing in α wherever the denominator is positive.39

39 This condition states that the ratio of the density of matched agents under E to the density of matched agents
under E′ is increasing – that is, the densities associated with FE and FE

′
have a monotone likelihood ratio. Because

monotone likelihood ratio implies first order stochastic stochastic dominance, strong targeting dominance implies
targeting dominance.
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It is possible to show that if no agent desires all possible units (α≥ v), and either

• G follows a uniform or an exponential distribution,

• or G is heavy-tailed and µ is sufficiently small,

then any equilibrium outcome of independent lotteries strongly targeting dominates the unique equilibrium

outcome of the common lottery.

Proposition 10. Any partial equilibrium outcome E strongly targeting domintes perfect matching (PM

from Definition 4).

Proof of Proposition 10 This follows immediately from the weakly-decreasing property of the alloca-

tion function πE from Lemma 9, and the fact that PM is constant in the domain (−∞, v).

Proposition 11. If partial equilibrium outcome E′ strongly targeting dominates E’, then E match dom-

inates E′.

Proof of Proposition 11 By Lemma 9, a(x) = πE(x) and b(x) = πE
′
(x) satisfy the condition of

Lemma 12. So πE hazard rate dominates πE
′
, which implies match dominance by Lemma 13. �

F.7. Matching and Targeting Tradeoff (Proofs of Theorems 3 and 4)

The following lemma allows us to analyze match dominance using the machinery of hazard rate dominance

developed in Section F.6.1.

Lemma 13. An equilibrium outcome E match dominates outcome E′ if and only if the allocation function

πE hazard rate dominates πE
′
.

Proof of Lemma 13. For any equilibrium outcome E, by the definition of value per match and by

Proposition 1, we have

νE(α) =
uE(α)

πE(α)
=

∫∞
α
πE(x)dx

πE(α)
. (55)

Therefore, match dominance implies that

πE(α)∫∞
α
πE(x)dx

=
πE(α)

uE(α)
≤ πE

′
(α)

uE′(α)
=

πE
′
(α)∫∞

α
πE′(x)dx

, (56)

wherever the uE(α) and uE
′
(α) are both positive. So πE hazard rate dominates πE

′
.

Because (55) is an identity, the above argument can be used to prove the converse implication when all four

of the following are strictly positive: πE(α), πE
′
(α),uE(α), and uE

′
(α). To complete the proof, it suffices to

check that if πE hazard rate dominates πE
′
, then uE(α) = 0 implies uE

′
(α) = 0, which follows by Lemma 11.

�

Proof of Theorem 3. Define

h(x) =

{
f(x) if x≤ α
f(α) otherwise.

(57)

This is the smallest function larger than f that is weakly increasing throughout R. If πE(α) = 0, then

uE(α) = 0, which implies by match dominance that uE
′
(α) = 0. This in turn implies that πE(x) = πE

′
(x) = 0

for any x>α. Therefore,

FE(α) =

∫ α
−∞ π

E(x)dF (x)∫∞
−∞ π

E(x)dF (x)
=

∫ α
−∞ π

E(x)h(x)dx∫∞
−∞ π

E(x)h(x)dx
. (58)
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An analogous equation holds for FE′(α). By Lemma 10, condition 3), it suffices to prove that πE(x)h(x)

hazard rate dominates πE
′
(x)h(x), which follows by Lemma 10, condition 4), since h(x) is non-negative,

weakly increasing and bounded, while πE(x) hazard rate dominates πE
′
(x) by Lemma 13. �

Proof of Theorem 4. We prove the following more general of Theorem 4, in which the condition α≥ v

is replaced by the weaker conditions of πE
′
(α) = 0 and πE(α) = 0. Moreover, we also include alternative

condition based on match dominance and strong targeting dominance (Definition 15).

Theorem 7 (Generalization of Theorem 4). Let E and E′ be equilibrium outcomes. If any of the

following conditions are satisfied:

• E match dominates E′ and f is weakly increasing in (α,α), or

• E′ targeting dominates E and πE
′
(α) = 0, or

• E′ strongly targeting dominates E,

then the following hold:

a) If F has a light left tail, then WE ≥WE′ .

b) If F has a heavy left tail and πE(α) = 0, then WE ≤WE′ .

For clarity, we split up the proof into the following two parts.

Lemma 14. If equilibrium outcome E′ targeting dominates E, then

a) WE ≥WE′ if F has a light left tail and πE
′
(α) = 0.

b) WE ≤WE′ if F has a heavy left tail and πE(α) = 0.

Lemma 15. If F has a light left tail, then WE ≥WE′ if either

a) E′ strongly targeting dominates E, or

b) E match dominates E′ and f is weakly increasing in (α,α).

These two lemmas together imply Theorem 7, because when F has a heavy left tail, then f is guaranteed to

be weakly increasing on its domain. If in addition we have πE(α) = 0, then all three conditions of Theorem 4

imply targeting dominance40, so Theorem 7 reduces to part b) of Lemma 14. When F has a light left tail,

Theorem 7 reduces to part a) of Lemma 14 and to both parts of Lemma 15. �

The proof of both Lemma 14 and 15 are based on the following identity.

Lemma 16. The welfare of any equilibrium outcome E can be expressed as

WE =

∫∞
−∞ π

E(x)F (x)dx∫∞
−∞ π

E(x)dF (x)
(59)

=Eα∼FE [γ(α)] +uE(α)/µ, (60)

where γ(α) := F (α)/f(α) for α∈ (α,α), and uE(∞) := 0 for convenience.

40 Appendix F.7 shows that if E match dominates E′, f is increasing on (α,α) and πE(α) = 0, then E′ targeting
dominates E. Furthermore, strong targeting dominance always implies targeting dominance.
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Proof of Lemma 14. Consider the first term of (60). Suppose that F is light-tailed, so that γ is

increasing. In that case, we have Eα∼FE [γ(α)] ≥ Eα∼FE′ [γ(α)]. If πE
′
(α) = 0, then by Proposition 1 we

have uE
′
(α) = 0≤ uE(α), implying that WE ≥WE′ . Analogous logic implies that if F is heavy-tailed (γ is

decreasing) and πE(α) = 0, then WE′ ≥WE.

Proof of Lemma 15. We first prove part a). Because E′ targeting dominates E and γ is weakly increas-

ing, we have that

Eα∼FE [γ(α)]≥Eα∼FE′ [γ(α)].

By (60), it suffices to prove that uE(α)≥ uE′(α). Suppose that uE
′
(α) = 0, then we have nothing to prove.

Suppose that uE
′
(α)> 0, then πE

′
(α)> 0, and by strong targeting dominance

uE(α)

uE′(α)
=

∫∞
α
πE(x)dx∫∞

α
πE′(x)dx

≥ πE(α)

πE′(α)
≥
∫ α
−∞ π

E(x)dF (x)∫ α
−∞ π

E′(x)dF (x)
= 1.

The first inequality above follows from πE(x)≥ πE(α)

πE
′ (α)

πE
′
(x) for all x≥ α, and the second from the reverse

inequality when x≤ α. The last inequality follows because both equilibria induce the same average match

rate µ by definition.

We now prove part b). Define h(x) as in (57). By Lemma 10, πE(x)h(x) hazard rate dominates πE
′
(x)h(x),

and

∫ α
−∞ π

E(x)h(x)dx∫∞
−∞ π

E(x)h(x)dx
≤
∫ α
−∞ π

E′(x)h(x)dx∫∞
−∞ π

E′(x)h(x)dx
(61)

Define random variables X and X ′ with densities proportional to πE(x)h(x) and πE
′
(x)h(x) respectively.

This is well defined because the integral
∫∞
−∞ π

E(x)h(x)dx= f(α)uE(α)+µ<∞. We have that X first order

stochastic dominates X ′. Extend γ(x) to domain R as follows,

γ(x) =


0 if x≤ α
F (x)/f(x) if x∈ (α,α)

1/f(α) if x≥ α.

(62)

Since F has a light tail, γ(x) is weakly increasing on R. Moreover, γ(x)h(x) = F (x) everywhere. Therefore,∫∞
−∞ π

E(x)F (x)dx∫∞
−∞ π

E(x)h(x)dx
=E[γ(X)]≥E[γ(X ′)] =

∫∞
−∞ π

E′(x)F (x)dx∫∞
−∞ π

E′(x)h(x)dx
. (63)

Dividing inequality (63) by (61), and noting that h(x) = f(x) on the domain (−∞, α), we get that WE ≥

WE′ , as desired. �

Proof of Lemma 16. Equation (59) follows from Proposition 1 and switching the order of integrals.

WE ·πE =

∫ ∞
−∞

uE(α)dF (α)

=

∫ ∞
−∞

∫ ∞
α

πE(x)dxdF (α)

=

∫ ∞
−∞

πE(x)

∫ x

−∞
dF (α)dx

=

∫ ∞
−∞

πE(x)F (x)dx,
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Equation (60) follows from the fact that for equilibrium outcomes, πE = µ, and that the last integral above

can be split into two components,∫ ∞
−∞

πE(x)F (x)dx=

∫ α

−∞
πE(x)γ(x)dF (x) +

∫ ∞
α

πE(x)dx

= πEEα∼FE [γ(α)] +uE(α),

where the last line follows from πE =
∫ α
−∞ π

E(x)dF (x), and from
∫∞
α
πE(x)dx= uE(α) (Proposition 1). �

F.8. Welfare Optimality of Perfect Matching (Proof of Theorem 5)

Part a) of Theorem 5 follows from Theorem 7 in Appendix F.7, as every equilibrium outcome strongly

targeting dominates perfect matching (see Proposition 10 in section F.6.2).

Proof of Theorem 5 b) Let E be any equilibrium outcome with allocation function π(α). Note that

there must exist an α with π(α) ≤ µ, as otherwise πE > µ. Define β := inf{x : π(x) ≤ µ}. If β ≤ α, then

π(α)≤ µ for all α≥ α, so WE ≤WPM by Lemma 16. If β ≥ α, then it must be π(α) = µ for all α ∈ (α,α),

so we again have π(α)≤ µ for all α≥ α, since π(x) is weakly decreasing by Lemma 9.

It remains to consider the case when β ∈ (α,α). Define

θ :=

∫ β

α

π(x)dF (x)≥ µF (β).

We have by the identity πE = µ that

θ−µF (β) = (1−F (β))µ−
∫ α

β

π(x)dF (x)≤ (1−F (β))(µ−π(α))≤ µ−π(α). (64)

Moreover, we have ∫ β

α

(π(x)−µ)F (x)dx=

∫ β

α

∫ β

x

π(y)−µdy dF (x)

≤
∫ β

α

(π(x)−µ)(β−x)dF (x)

≤ (α−α)

∫ β

α

(π(x)−µ)dF (x)

≤ (v−α)(θ−µF (β)).

In addition, ∫ v

β

(π(x)−µ)F (x)dx=

∫ α

β

(π(x)−µ)F (x)dx+

∫ v

α

(π(x)−µ)dx

≤ 0− (v−α)(µ−π(α)).

Adding the two above inequalities and applying Lemma 16, we have

µ(WE −WPM)

v−α
=

∫ v
α

(π(x)−µ)F (x)dx

v−α
≤ θ−µF (β)− (µ−π(α))≤ 0,

where the last inequality is by (64). So WE ≤WPM , as desired. �
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F.9. Efficacy of Costly Guaranteed Choice for Targeting (Proof of Theorem 6)

Proposition 12.

a) Every market clearing cost c′ ≤ δ
1−δH(F−1(µ)).

b) If the average match rate πGCc ≥ µ, then there exists a market clearing cost c′ ≥ c.

c) Under Assumption 1, a highest market clearing cost c always exists.

Proof of Proposition 12. Let GCc be the guaranteed choice outcome under participation cost c. For

part a), note that for any c′ > δ
1−δH(F−1(µ)), we have πGCc′ ≤ F (H−1(c′))<µ. Hence, c′ cannot be a market

clearing cost.

For part b), note that πGCc =
∫∞
−∞ π

GCc(α)f(α)dα is continuous in c, because by Proposition 2, πGCc(α) is

continuous in c except at α=H−1( 1−δ
δ
c). Now, since πGCc ≥ µ, and πGCc′′ <µ for any c′′ > δ

1−δH(F−1(µ)),

continuity implies that there must exists a market clearing cost c′ ≥ c.
For part c), note that c = max{c : πGCc ≥ µ}. The maximum exists because the set is non-empty by

Assumption 1, closed by the continuity of πGCc as a function of c, and has a finite upper-bound as established

in a). �

Proof of Theorem 6 a). Let c be the largest market clearing cost. Let E be an equilibrium outcome

of the common lottery, waitlist with choice, or the ticket-saving lottery with participation cost c. We show

that

πE(α)≤ πGCc(α)≤ πGCc(α) for any α≤H−1

(
1− δ
δ

c

)
. (65)

The first inequality holds

• for the common lottery because in this case πE(α) is equal to πGCc(α) times the probability of being

selected.

• for the waitlist with choice (and equivalently the ticket-saving lottery), because in this case πE(α) is

either zero or equal to πGCc(α) times the quantity q as defined in Proposition 5.

The second inequality of (65) holds by the fact that c≥ c (Proposition 12 b)), the fact that πGCc(α) is weakly

decreasing in α, and the following identity, which follows directly from Proposition 2.

Lemma 17. If c′ ≥ c, with ∆ = c′− c≥ 0,

GCc′(α,v) =

{
GCc(α−∆, v) if α≤ α0 =H−1( (1−δ)

δ
c′),

0 otherwise.

Note that by Proposition 2,

πGCc(α) = 0≤ πE(α) for any α>H−1

(
1− δ
δ

c

)
. (66)

By the definition of the match distribution FE, and by Lemma 18 (given below), inequalities (65) and (66)

together imply that GCc targeting dominates E.

To complete the proof, note that by Proposition 8, any equilibrium outcome of the single-entry lottery is

equivalent to a equilibrium outcome of the common lottery with a higher participation cost, so it is targeting

dominated by the costly guaranteed choice outcome as well. �
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Lemma 18. Given two continuous distributions with densities f1 and f2. If there is a threshold x∗ such

that

f1(x)≤ f2(x) for all x≤ x∗,

f1(x)≥ f2(x) for all x> x∗,

then the first distribution first order stochastic dominates the second: F1(x)≤ F2(x) for all x∈R.

Proof of Lemma 18. Let the CDFs of the two distribution be F1 and F2. It suffices to prove that for

all x∈R, F1(x)≤ F2(x). For any x≤ x∗, this is true because

F1(x) =

∫ x

−∞
f1(y)dy≤

∫ x

−∞
f2(y)dy= F2(x).

For any x> x∗, this is true because

1−F1(x) =

∫ ∞
x

f1(y)dy≥
∫ ∞
x

f2(y)dy= 1−F2(x).

�

Proof of Theorem 6 b). We first show that PT targeting dominates any equilibrium outcome E. This

holds because for α≤ F−1(µ),

FE(α) =
1

µ

∫ α

−∞
πE(x)dF (x)≤ 1

µ

∫ α

−∞
dF (x) = F (α)/µ= FPT (α),

and for α>F−1(µ), we have FPT (α) = 1≥ FE(α).

We now show that costly guaranteed choice converges to perfect targeting when δ→ 1. Define GCδ
c (α,v),

πδc(α), πδc(α), and δ(ε, c) as in the proof of Theorem 2 b) in Appendix F.4. Without loss of generality, let

µ< 1, otherwise guaranteed choice with c= 0 would be feasible. So F−1(µ)<α≤ v. Define ε > 0 to be any

small constant such that F−1( µ

1−ε0
)< v− ε0.

By the expression of GCδ
c in terms of πδc and φδc in Equation (45) (from proof of Theorem 2 b) in

Appendix F.4), Theorem 6 b) follows from the following lemma, which implies as δ→ 1, all agent types

α > F−1(µ) will not participate under costly guaranteed choice, and any type α≤ F−1(µ) will participate

and set an acceptance threshold of F−1(µ). �

Lemma 19. For any ε > 0 (such that ε≤ ε0), and any δ≥ δ(ε,0) (such that δ < 1), we have

a) (1− ε)1(α≤ F−1(µ))≤ πδc(α)≤ 1(α≤ F−1( µ

1−ε )) for any α∈R.

b) F−1(µ)− ε≤ φδc(α)≤ F−1( µ

1−ε ) for any α∈ [F−1(µ)− 1
ε
, F−1( µ

1−ε )].

Proof of Lemma 19 Let α0 = H−1( c(1−δ)
δ

) be the type that is indifferent between participating and

leaving as in Proposition 2. By Lemma 8 in Appendix F.4 and by Lemma 17 above, we have that for any

δ≥ δ(ε,0), and any α≤min(v− ε,α0),

πδc(α)≥ πδ0(α)≥ 1− ε.

Thus, since F−1( µ

1−ε )≤ v− ε for any ε≤ ε0, we have

πδc(α)∈ {0}∪ [1− ε,1] for all α≤ F−1(
µ

1− ε
),
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where πδc(α) = 0 if α > α0. The above implies that πδc(α) = 0 for any α > F−1( µ

1−ε ), because otherwise the

total match rate would exceed µ by the monotonicity of πδc(α) (see Lemma 9). Furthermore, πδc(α)≥ 1− ε

for any α≤ F−1(µ), as otherwise the overall match rate would be strictly less than µ. This proves part a).

For part b), note that part a) implies that F−1(µ)≤ α0 ≤ F−1( µ

1−ε ). Proposition 4 implies that for any

α < α0, φδc(α) ≤ α0 ≤ F−1( µ

1−ε ). Now, let α3 = F−1(µ)− 1
ε

and φ3 = φδc(α). It suffices to show that φ3 ≥

F−1(µ)− ε. This is because for any x<F−1(µ)− ε, we have

x−α3 < (F−1(µ)− ε)− (F−1(µ)− 1

ε
)≤ εδ

1− δ
G(F−1(µ))≤max

(
δ

1− δ
H(x)− c,0

)
,

so x cannot satisfy the fixed point equation (16) determining φ3. In the above, the second inequality holds

because for any ε ≤ ε0, δ ≥ δ(ε,0), the convexity of H implies H(v − ε2) ≤ ε2G(v − ε2) ≤ ε2G(F−1(µ)), so

δε
1−δG(F−1(µ)≥ 1

ε
− ε by the definition of δ(ε,0) in Equation (46). The third inequality holds because

max

(
δ

1− δ
H(x)− c,0

)
≥ δ

1− δ

∫ F−1(µ)

x

G(y)dy≥ εδ

1− δ
G(F−1(µ)).

�

F.10. Alternative Conditions for Costly Guaranteed Choice Targeting Dominating

Independent Lotteries

Theorem 6 b) implies that cost guaranteed choice targeting dominates independent lotteries when δ is

sufficiently high. Proposition 13 establishes the same comparison under alternative conditions.

Definition 16. The value distribution G is said to be light tailed if the conditional expectation Ev∼G[v−

x|v≥ x] is weakly decreasing in x∈ (−∞, v).41

Proposition 13. Any costly guaranteed choice outcome targeting dominates any equilibrium outcome of

independent lotteries and the waitlist without choice if either of the following conditions hold:

a) G is light tailed (Definition 16), or

b) c= 0 and µ is less than a threshold µ0 > 0 that depends on F , G and δ,

Proof of Proposition 13. Let α3 =H−1( 1−δ
δ
c). Note that πGCc(α) = 0≤ πILp(α) for any α > α3. By

Lemma 18, it suffices to prove the following.

Lemma 20. Fix F,G, δ. If either of the following hold:

a) G is light-tailed, or

b) c= 0 and µ< µ0 (a constant depending on F,G, δ),

then if c is the largest possible market clearing cost and p is an equilibrium success probability of independent

lotteries, we have πGCc(α)≥ πILp(α) for all α≤ α3 :=H−1( 1−δ
δ
c).

Part a) of Lemma 20 follows from the following two comparative statics.

i) When G is light-tailed, increasing the success probability p of independent lotteries causes all agents

to match at weakly higher rates. (Follows from Lemma 21, given below.)

41 A sufficient condition is that (1−G(v))/g(v) is weakly decreasing in the domain v ∈ (v, v).
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ii) When p = 1, increasing c to c causes all agents with α ≤ α3 to match at higher rates. (Follows from

Lemma 17.)

For part b) of Lemma 20, we construct the threshold µ0 > 0 as follows. Choose any c0 ∈ (0, δ
1−δH(α)).

Define

µ0 = min

(
min

c′∈[0,c0]
πGCc′ , (1− δ)πGC0πGC0(H−1(

1− δ
δ

c0))

)
. (67)

Note that both of the two minimands are strictly positive. The first is positive because by Proposition 2, for

any c′ ∈ [0, c0], agents with α<H−1( 1−δ
δ
c0) participate and match with positive probability under guaranteed

choice, and there is a positive measure of such agents since c0 <
δ

1−δH(α). Furthermore πGCc is continuous

in c so the minimum over the compact set [0, c0] is attained within the set. The second minimand is positive

because πGC0(α)> 0 for any α< v and H−1( 1−δ
δ
c0)< v since c0 > 0.

For any supply-demand ratio µ less than the threshold µ0, we have that c≥ c0, because otherwise πGCc ≥

µ0 >µ, which contradicts c being market clearing. This along with Lemma 22 (see below) implies

µ0 >µ=Eα∼F [πILp(α)]≥Eα∼F [pπGC0(α)] = pπGC0 . (68)

Therefore, for any α≤H−1( 1−δ
δ
c),

πILp(α)≤ p

1− δ
<

µ0

(1− δ)πGC0
≤ πGC0(H−1(

1− δ
δ

c0))≤ πGC0(H−1(
1− δ
δ

c))≤ πGC0(α)≤ πGCc(α).

The first inequality follows from Lemma 22 (see below); the second from (68); the third from the definition

of µ0; the fourth because both πGC0 and H−1 are weakly decreasing and c≥ c0; the fifth because πGC0 is

weakly decreasing; and the last from Lemma 17. �

Lemma 21. Suppose that G is light tailed, then the match probability for every agent under independent

lotteries is weakly increasing in the success probability p.

Proof of Lemma 21. We first prove that the lemma in the special case when c = 0. For α ≥ v, the

match probability is always zero, so is trivially weakly increasing in p. For α< v, we have by rearrangement

of (16) with c= 0,
pδ

1− δ
G(φ(α,p)) =

φ(α,p)−α
E[v−φ(α,p)|v≥ φ(α,p)]

.

By Proposition 4, φ(α,p) is weakly increasing in p, so the numerator is weakly increasing in p. For α< v, the

denominator is positive, and is weakly decreasing in p by G being light-tailed. Thus, the entire expression

above is weakly increasing in p. The desired result follows from the fact that the match probability π(α,p)

is equal to the above under the monotone transformation y= x
1+x

.

We now generalize the above result to the case with c > 0. Define ILcp to be independent lotteries outcome

with success probability p and participation cost c. We have by Proposition 2 the identity

ILcp =

{
IL0

p(α− c) for all α≤H−1
(

(1−δ)c
pδ

)
,

0 otherwise.
(69)

Let 0< p< p′ be two success probabilities. We have already established that IL0
p(α)≤ IL0

p′(α) for all α. For

any c > 0, note that H−1( (1−δ)c
pδ

)<H−1( (1−δ)c
p′δ

) since H−1 is strictly decreasing in the domain (0,∞). Hence,

the above identity implies that ILcp(α)≤ ILcp′(α), as desired. �



58

Lemma 22. Fix F,G, δ. For any p∈ (0,1), let πILp be the allocation function under independent lotteries

with success probability p and no participation cost, as defined in (23). Then

pπGC0(α)≤ πILp(α)≤ pδ

1− δ
.

Proof of Lemma 22. By Proposition 4, φ(α,p)≤ φ(α,1). Since G(x) is increasing and G(φ(α,p))≤ 1,

Proposition 2 implies the following:

πILp(α) =
δpG(φ(α,p))

1− δ+ δpG(φ(α,p))
≥ δpG(φ(α,1))

1− δ+ δpG(φ(α,1))
≥ p δG(φ(α,1))

1− δ+ δG(φ(α,1))
= pπGC0(α).

πILp(α) =
δpG(φ(α,p))

1− δ+ δpG(φ(α,p))
≤ pδ

1− δ+ pδ
≤ pδ

1− δ
.

�

F.11. Convergence of Independent Lotteries to Random Matching

Proof of Proposition 3 By Lemma 23 (stated after this proof), we can define a threshold µ0 > 0 such

that if µ< µ0, then for any equilibrium outcome of independent lotteries, the success probability p satisfies

pδ

1−δH(v)< v−α.

By Proposition 2, it suffices to show that φ(α,p)≤ v for all α≤ α, as then every agent would be accepting

every development and the outcome must be random matching. By Proposition 4 a), it suffices to show that

φ(α,p)≤ v. Suppose on the contrary that v < φ(α,p), then

pδ

1− δ
H(φ(α,p))≤ pδ

1− δ
H(v)< v−α<φ(α,p)−α,

which contradicts the fixed point equation (16). �

Lemma 23. If c= 0, then for every ε > 0, there exists a threshold µ0(ε)> 0 on the supply-demand ratio

such that whenever µ < µ0(ε), every equilibrium outcome of independent lotteries has success probability

p < ε.

Proof of Lemma 23 Define the function

h(p) = πILp =

∫ ∞
−∞

πILp(α)dF (α),

where πILp is as in (23). By Proposition 4 and the Dominated Convergence Theorem (since 0≤ πILp(α)≤

1), h(p) is continuous in p. Moreover, by Lemma 22 in Appendix F.10, h(p)≥ ph(1)> 0 for every p > 0. For

every ε > 0, define

µ0(ε) = min
p∈[ε,1]

h(p).

The minimum exists because h(p) is continuous and [ε,1] is compact. Moreover, µ0(ε)> 0 since h(p)> 0

throughout this interval. This µ0(ε) satisfies the condition of Lemma 23 by construction. �
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