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Spectrum Auctions

« Governments are auctioning off multiple indivisible
licenses (4G, 5G) among mobile network operators

- Bidders have value for bundles of licenses
« Licenses can be substitutes as well as complements

‘! $80M on British Columbia '
Q $60M on Alberta '
Q $200M on British Columbia + Alberta '

—> Direct revelation mechanisms (e.g., VCG) are infeasible
- Need a mechanism with smart preference elicitation

Sven Seuken - University of Zurich
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Example: 2014 Canadian
Spectrum Auction

10 bidders
« 98 different licenses
« Spread across 14 regions

> 298 pundles of licenses!
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Iterative VCG Mechanisms (Mishra & Parkes’07; de Vries et al.’07)

Features:

— Interact with bidders over multiple rounds

— Elicit “enough” information to implement VCG outcome

— Straightforward truthful bidding is ex-post Nash equilibrium

However: Impossibility result by Nisan and Segal’06:
— To guarantee efficiency, we need exponential communication in the worst case

-> Practical auction designs (in domains with general valuations) cannot provide efficiency
guarantees! = need to limit the amount of information exchanged
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Combinatorial Clock Auction (CCA) (Ausubel, Cramton, Milgrom, 2006)

« Practical auction design:

« Used in Switzerland, UK, Australia, Canada, etc. - more than $20 Billion in revenue

« Informally: combines an “ascending-price phase” followed by a “combinatorial sealed-bid phase”
« Design features (that limit the amount of information exchanged):

» Linear prices in the clock phase

« Discrete price updates to keep the number of rounds small

» At most 500 bids in the supplementary round
* Inefficiencies of the CCA:

« Lab experiments - efficiencies of 89%-96% (Scheffel et al., 2013; Bichler et al., 2014)

1%-2% efficiency loss = can be ~$100 Million of welfare losses per auction!
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This Paper: A Machine Learning-powered Iterative Combinatorial Auction

Auction Mechanism
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What do | mean by “learning” or “prediction”?

Auction Mechanism

European Research Council
Established by the European Commission

< 500 Values ML

Biader 1 Allocation
3
Bidder 2 < 500 Values Optimization
Module Payments
< 500 Val
Bidder n = —
| —
| )
Y
Our Prediction +
Solution: Active Learning/

Preference Elicitation

» Bidders report (bundle, value)-pairs. For example:
* (A $1); (B, $2); (C, $3); (AB, $5)
« ML algorithm predicts values for all bundles in bundle space: e.g., (ABC, ?)
* For now, think: linear regression, with one coefficient per item
e Ti(x)=w;-x
 Example: 7;(ABC) = w, + wg + w.  (Note: cannot capture complements or substitutes!)
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This Paper: A Machine Learning-powered Iterative Combinatorial Auction

Auction Mechanism
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Approach: Active Learning/ (with ML predictions) Pseudo-VCG Payments

Preference Elicitation
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Related work: Combining ML and Mechanism Design

« Early connections between “ML queries” and “auction queries”
« Lahaie & Parkes (2004); Blum et al. (2004)

« “Learning clearing prices” in iterative CAs to achieve a small number of rounds
« Lahaie (2011); Abernethy et al. (2016); Brero and Lahaie (2018); Brero, Lahaie, and Seuken (2019)

» Using ML to design better mechanisms (in the sense of “automated mechanism design”)
« Ditting et al. (2015); Dutting et al. (2019); Narasimhan et al. (2016); Feng et al. (2018)

This work: integrating the ML algorithm into the CA and learning the bidders’ value functions
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1. Motivation: Preference Elicitation in Combinatorial Spectrum Auctions

2. Our Machine Learning-powered Mechanism

3. Theoretical Analysis

4. Instantiating the ML Algorithm + Optimization Module

5. Experiments |: Choosing the best ML Algorithm

6. Experiments Il: Comparing our mechanism against the CCA

7. Conclusion
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Our Machine Learning-powered ICA — High Level View

Mechanism
— 1 <500 bundle- ‘ Allocation a = (a4, 57 an)
\ Bidder 1 J value pairs . v Query -
Module
) _ Payments p = (py, ..., Pn)
Bddern, = 500 bundle . - ey
| J value pairs

« Component #1: Query Module
« Component #2: The Mechanism
« Goal: collect the 500 best bundle-value reports from each bidder to maximize empirical efficiency at the end
» Final allocation: Take all elicited values and solve the winner determination problem (WDP) [IP - CPLEX]
a’ = argmax, z v;(a;)
i

S.t. Zi Ajj <1 Vj € [m] aij € {0,1} Vi,j
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The Machine Learning-powered Query Module — Schematic View

v;= inferred value function for bidder i

Query module

Estimation Optimization
si= Set of bu_ndle—v_alue L Algorithm (.A) . f q;= next query for bidder i
pairs from bidder i
89 . N T Optimization ‘ 42
ML Algorithm (.4) Algorithm ‘ .
Sy . R T 4
LML Algorithm (A)|—" o,

Figure 1: Schematic representation of how the query module works.
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The Machine Learning-powered Query Module — Detalls
Algorithm 1: Machine Learning-powered Query Module

1 function NextQuery(A, s);
Inputs: ML algorithm A; Vector of sets of bundle-value pairs s = (s, ..., 5, );
2 foreach bidder ¢ € [k] do
3 ‘ v; = A(s;);  \\Estimation Step: infer valuation for each bidder using ML algorithm
4 end
5 Determine @ € argmax ez > ;cp Ui(a);  \\Optimization Step (based on inferred valuations)
¢ foreach bidder i € [k] do
7 if a; ¢ s; then
8 qi = @i ;
9 else
10 Fi={aecF  Voes. a #al;
11 Determine @' € arg max,cz, Y ;i i(a);  \\Optimization Step (with restrictions)

1 P
13 end

14 end
15 Output vector of queries ¢ = (q1, ..., q.);

Sven Seuken - University of Zurich Page 12
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The Pseudo-VCG Machine Learning-based (PVML) Mechanism

Two main design features:

1. Allow bidders to “push” bundle-value pairs in an initial round of the auction (e.g., 50-100)

2. Charge “VCG-style” payments at the end, by eliciting bundle-value pairs separately in:
1. The “main economy” (with all n bidders)

2. In each “marginal economy” of bidder i (where bidder i is excluded from the auction)

Bidder 1 ML
Bidder 1

4

Bidder 2 IVIL OPT Allocation a:‘”

" Bidder 1

h
Bidder 2 LBidder 3 -
o Wl Bidder n

Bidder n
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The PVML Mechanism — Detalls

Algorithm 2: Pseudo-VCG Machine Learning-based (PVML) Mechanism

Parameters: ML algorithm .A; maximum # of queries per bidder () .y; # of initial queries Qy < Quax;

1 Each bidder 7 submits up to Qf“'ﬁh < Qo self-chosen bundle-value pairs s!;

2 Ask each bidder i to report his value for Qo — Q7" randomly chosen bundles and add them to sY;
Let s' = (s!,...,5") denote the initial reports for the main economys;

w

For each bidder i, let s"(~7) = (s{,...,s" |, 5% 1. ..., s) be the initial reports for i’s marginal economy;
Initialize round counter: t = (;

while max; |s!| < Qunax — n do

b=t+ 1

Generate queries for the main economy: NextQuery(A, s' 1) ;

(=2 o - W) B

9 Generate queries for each bidder i’s marginal economy: NextQuery(A, s'~(=7));
10 Send generated queries to bidders and ask for corresponding values; |
1 Let s’ denote all reported bundle-value pairs obtained in Step 10 and let s’ = s/~ ' U s/;

12 Let s'(~%) denote the reported bundle-value pairs obtained in Step 10 for bidder i’s marginal

economy and let st(79) = gt~ 1= g/(=1),
13 end

14 Determine allocation a”""! = a*,, where 0* = 0.
15 Charge each bidder ¢ payment

pﬁ-)“”l = Z 'ff‘g-_i)(a(_")) - i';(a.’”"m’), where (=" = ¢, (_,) and a7 = aiyn;  (3)
i i

16 Output allocation a”"™ and payments p?*"';

Sven Seuken - University of Zurich Page 14
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Theoretical Analysis

Relationship between learning error and performance of PVML
Good Incentives in Practice

Individual Rationality

No-deficit

A

Sven Seuken - University of Zurich Page 15
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Bounding the Efficiency Loss

« Learning error in bundle x for bidder i: |7;(x) — v;(x)]

Proposition 1. Let v be an inferred valuation profile. Let a® be an efficient allocation w.r.t. to v, and let a}; be
an efficient allocation w.r.t. the true valuation profile. Assume that the learning errors in the bundles of these two
allocations are bounded as follows: for each bidder i, |v;(a%) — vi(ak)| < 01 and |vi(a)) — vi(al)| < 6, for
01,02 € R. Then the following bound on the efficiency loss in a’ holds:

Viay) —Vi(a:) _ n(d1 + 02)
V) = Vi) 4)

v

-> Provides motivation for the iterative design of the Query Module (reduce learning error)
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Imputing Prices in PVML

 PVML does not use prices to communicate with bidders!

« But: we can impute prices to gain insight into how PVML “implicitly prices bundles” throughout
the auction

 Letm = (my,..,m,) be a general price function profile (allowing for non-anonymous bundle prices)

Definition 2 (Competitive equilibrium). Given prices 7, we define each bidder i’s demand set dT as the set of
bundles that maximize her utility at 7: df = argmax .y vi(x) — m;(x). Similarly, we can define the seller’s
supply set s™ as the set of allocations that are most profitable at w: s™ = argmax,cr > . m;(a;). We say that
prices ™ and allocation a are in competitive equilibrium if a € s™ and, for each bidder i, a; € dI.

Sven Seuken - University of Zurich Page 17
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Approximate Competitive Equilibrium Prices in PVML

Consider imputed prices Tt =7v

Proposition 2. Let v be an inferred valuation profile and a}, be an efficient allocation. Assume that the learning
errors are bounded as follows: for each bidder i, max,cx |v;(x) — v;(x)| < 61 and |v;(a)) —vi(a})| < 2. Then,
we need to inject at most n(d; + d9) into the market to induce the bidders and the seller to trade the allocation
al at prices m = v, i.e., v is a n(dy + d2)-approximate competitive equilibrium price profile.

« Proposition 2 provides a measure of the quality of the prices T = ¥

« Implicit price structure depends on ML algorithm used - prices will, in general, be non-
anonymous bundle prices = thus, more powerful than anonymous linear prices

« Connection to Lahaie & Parkes’04
* Propose an elicitation algorithm similar to ours; guarantees finding a CE

« However, in each round, they communicate (exponentially-sized) ask prices to bidders

Sven Seuken - University of Zurich Page 18
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Incentives: Social Welfare Alignment and “Bidder Push”

« PVML is manipulable (dynamic strategies and no efficiency guarantees)
« Theorem: If other bidders are truthful, then PVM aligns incentives with efficiency

- Proof Sketch: Utility of bidder i under PVM:  w; = v;(aP"™) — pP"™
= v, (apvm) + quti ﬁj (apvm) _ Zj 9]_ (a—i)
\ J | }
| |
Welfare w.r.t. bidder i’s Independent of
true valuation bidder i’s report

—> If bidder finds a beneficial manipulation, this will maximize welfare w.r.t. to true values.

-> Good incentives in practice: together with “bidder-push”, this provides incentives to:
« (a) Push the bundles you believe will be part of an efficient allocation

* (b) Only submit truthful value reports

Sven Seuken - University of Zurich Page 19
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Which Machine Learning Algorithm to Use?

Auction Mechanism
R

Bidder 1
— —
.\

Bidder 2
— —
< 500 Values

Bidder n >

< 500 Values

Allocation

v

< 500 Values Optimization

Module Payments

\ J \ J \ )
I ! |

Our | #1 Prediction + I #3 Optimization #2 Good Incentives via
Solution: Active Learning (with ML predictions)] Pseudo-VCG Payments

Need ML algorithm with two properties:
1. Good from economic perspective (predicting non-linear values) and works with small amount of data
2. Good from computational perspective (integrate ML into optimization and remain computationally feasible)

—> Start with linear regression (to explain the concept) and then move on to SVRs with non-linear kernels

Sven Seuken - University of Zurich Page 20
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Machine Learning: Linear Regression

* Input: ¢ reported bundle-value pairs {(x1, 1), (x5, v5), ..., (xp,Vp)}
« Goal: predict value function 7;(x)
« Standard linear regression:
* Di(x) = w; - x, where w; - x = Y ;w;;x; [w;; is bidder i’s predicted value for item j]

« —>find coefficient vector w; such that 7;(x) is as accurate as possible on reported values:
l
min z L(vik' Wi - Xk)
k=1

 In linear regression, we typically use the squared loss function: L,(y,7) = (y — 7)?
 Regqgularized linear regression: avoid overfitting - introduce a regularization term (min. magnitude of w;)

l
) 2
min |lw;||” + C z L(vi, w; - x)
k=1

Sven Seuken - University of Zurich Page 21
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Winner Determination (using Linear Regression)

max

m
a

n
S wiy
i=1j=1
st.Y;a;;<1Vj€E[m (feasibility constraint)
a;; € {0,1} are the decision variables (does bidder i get item j)

w;; are the learned coefficients from the linear regression (constants here)

Computational difficulty:
*  Winner determination is NP-hard
« This Integer Program (IP) has n - m Boolean variables and m constraints

« Using CPLEX (branch and bound) we can solve large instances (10 bidders, 98 items) in seconds

—> Limitation of linear regression-based approach: cannot capture complements or substitutes!

Sven Seuken - University of Zurich Page 22
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Support Vector Regression (SVR)

* From linear to non-linear models:

(do linear regression
in feature space)

Linear model: ¥;(x) = w; - x

Non-linear model: 7;(x) = w; - @ (x)

. 2 x ‘.::)
SVR: min |[w;||” + € Xioy Le (i, w; - 9 (x)) [Le = max{|y — J| — ¢, 0}]

Winner determination (primal): argmax, Y.; w; ¢(a;) (Size depends on ¢, i.e., number of features)

For low-dimensional feature spaces: easy to minimize w;, but not for high-dimensional spaces
« SVRs with non-linear kernels:
» Use the “kernel trick”: find a k() such that ¢(x) - @(x") = k(x, x")
« Predicted valuation: #;(x) = ¥t _; Bix k(x;x, x), where the x;;, are bundles evaluated by bidder i
«  Winner determination (dual): argmax, ¥; & _1 Bix k(xix, a;) (Size depends on # of reported values)
- Need to choose a “good” kernel function !

Sven Seuken - University of Zurich Page 23
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Choosing a Kernel Function

Linear Kernel Quadratic Kernel
k(x,x)=x-x"  kl,x") = x")+Ax-x")?
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Exponential Kernel Gaussian Kernel
K(x; X’) — eXp(x . X,) K(X,X’) = exp(—“x — x’||2)

Sven Seuken - University of Zurich

|

Captures non-additivity
(complements and substitutes)
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Winner Determination Problem (using the Dual) with Quadratic Kernel

l

m;lxz z Bir (xirai) + v Pir (xia;)?

i k=1
s.t. X;a;; <1 Vj€ [m] (feasibility constraint)
* a;; € {0,1} are the decision variables (does bidder i get item )
* [;; are the learned coefficients (dual variables) from the SVR (constant here)
* Xx;; 1S bundle k reported by bidder i (support vector from the dual of the SVR)
« vy is the Kernel parameter
Computational difficulty:
« This is a Quadratic Integer Program (QIP)

« CPLEX can solve large instances (10 bidders, 98 items) within 1h within a relative MIP gap of <= 2%

Sven Seuken - University of Zurich Page 25
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Experiments: Measure Efficiency of Mechanisms

« 2014 Canadian auction is only one data point!

« > We use a data generator: “SATS: A Universal Spectrum Auction Test Suite”
(Weiss et al. ‘17)

« On demand, SATS can create thousand of (random) spectrum auction instances
 SATS has access to all bidders’ value functions - we can compute the efficient allocation

 We can use the value function to answer value queries and demand queries

« SATS contains many spectrum value models, we tested on three:
1. GSVM Model, 18 items, 7 bidders (Goeree and Holt, 2008)
2. LSVM Model, 18 items, 6 bidders (Scheffel et al., 2012)
3. 2014 Canadian Auction Model, 98 items, 10 bidders (Weiss et al., 2017)

Sven Seuken - University of Zurich Page 26
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Optimizing the ML Algorithm (= Choosing the Best Kernel)

Established by th

Kernel € Efficiency Learning Error || WD Solve Time || Optimality Gap
100 | 200 | 500 || 100 | 200 | 500 || 100 | 200 | 500 (|100| 200 | 500
Exponential| 0 |[83.0%|83.5%[69.8%]|[15.68|13.86(11.66{|60.00s [60.00s|60.00s}(2.40| 7.46/109.35
Exponential|16|[83.3%|83.5%|83.6%||18.58|16.21|13.86||20.04s|59.76s|60.00s||0.06| 0.89| 5.80
Exponential|32|(83.2%|83.7%|83.7%||24.07|22.28|20.82|| 1.39s[10.11s|60.00s{/0.00| 0.01| 1.22
Gaussian 01/66.3%(56.3%| - |{17.17|14.70] - {/60.00s(60.00s - 116.20]23.46 -
Gaussian  |32(|76.2%|78.1%|78.7%|27.15|24.53|21.88|58.47s|60.00s|60.00s|/0.34| 1.41| 4.89
Gaussian  |64(78.1%|81.8%(82.1%||38.32|36.24|34.44||11.79s|35.215|59.58s((0.00| 0.02| 0.43
Kernel Efficiency Learning Error || WD Solve Time ||Optimality Gap
100 | 200 | 500 || 100 | 200 | 500 || 100 | 200 | 500 || 100{200| 500
Linear 72.9%176.0%|74.8%||22.83]21.36|20.58|| 0.00s| 0.00s| 0.01s{{0.00{0.00{ 0.00
Quadratic {[88.8%(92.6%|93.2%||16.83|14.59(12.62|| 0.08s| 0.16s| 0.21s|{0.00]{0.00| 0.00
Exponential |[83.2%|83.7%|83.7%|(24.07|22.28|20.82|| 1.39s{10.11s|60.00s|{0.00{0.01| 1.22
Gaussian 78.1%|81.8%|82.1%||38.32|36.24|34.44|{11.795|35.215|59.585({0.00|0.02| 0.43

Sven Seuken - University of Zurich
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The Quadratic Kernel lies on a Pareto Frontier of Learning Performance
and Winner Determination Complexity (in our domains)

Learning
Performance |
Good|..
Exponential Kernel
Gaussian Kernel \\“‘Quad\r\gtic Kernel
Linear. Kernel
Bad
I—:}ard y Easy \éVl?ner_ .
(hours/days) (Seconds) etermination
Difficulty
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Comparing PVML against CCA — Experimental Set-up

PVML.:

* Quadratic kernel

« Maximum number of queries = {100, 200, 500}

« Initial number of queries between 50 and 90 (here: chosen uniformly at random from the bundle space)

CCA:

» 5% price update rule in the clock phase (starting at low, but reasonable reserve prices)

 We simulate bidders who answer demand queries perfectly

* In the supplementary round, bidders submit {100, 200, 500} bids according to 3 different heuristics

Both mechanisms: simulate straightforward truthful bidding

Sven Seuken - University of Zurich Page 29
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Comparison of PVML vs. CCA —in the GSVM Domain (7 Bidders, 18 Goods)

Mechanism Heuristic Query Cap||Efficiency/Rounds

VCG 100.0% 1

Clock Bids 94.2% 118

Clock Bids Raised 96.8% 118

CCA  |Profit Max 100 99.2% 118

Profit Max 200 99.6% 118

Profit Max 500 99.7% 118

National Crcle Reglonal Circle 100 100.0% 6
PVML 200 100.0% 41

500 100.0% 153

Sven Seuken - University of Zurich Page 30
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Comparison of PVML vs. CCA —in the LSVM Domain (6 Bidders, 18 Goods)

Mechanism Heuristic Query Cap||Efficiency |Rounds

VCG 100.0% 1

Clock Bids 81.4% 124

é Ili (;’ ? IE;' E Clock Bids Raised 90.9% 124

M| N|]O| P | Q*|R CCA Profit Max 100 99.4% 124
Domain: 18 items, 6 bidders Profit Max 200 09.8% 124
Value depends on “spatial proximity” Profit Max 500 99.9% 124
100 98.6% 13

PVML 200 99.1% 37

500 99.7% 113

Sven Seuken - University of Zurich Page 31
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Comparison of PVML vs. CCA — MRVM Domain (10 Bidders, 98 Goods)

Mechanism Heuristic Query Cap||Efficiency|Rounds
VCG 100.0% 1
Clock Bids 93.0% 140

Clock Bids Raised 93.2% 140

CCA Profit Max 100 92.0% 140
Profit Max 200 92.1% 140

Profit Max 500 92.4% 140

100 91.5% 13

PVML 200 93.3% 25
500 94.6% 56

Sven Seuken - University of Zurich Page 32
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Conclusion and Outlook

« Design of an ML-powered lterative Combinatorial Auction
1. Used ML to predict bidders’ value functions
2. Exploited properties of SVRs to find efficient allocation
3. Used “bidder push” and “Pseudo-VCG” payments to induce good incentives
4

Experimental results suggest better performance than CCA in large domains

« Future/Ongoing Work:

1. Bidders report upper/lower bounds instead of exact values

2. Other non-linear learning models (e.g., deep neural networks)

Thank you for your attention!
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Backup
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Deep Learning-powered Iterative Combinatorial Auctions
(with Jakob Weissteiner)

« ldea: Deep neural networks may have better learning performance than Quadratic kernels
« Challenge: Solve the optimization step (over DNNSs) efficiently
« Approach: Formulate maximization step as MILP using ReLus: ¢(s) = max(0, s)

]'1""‘“(-) + bi.() ‘.:[_-'i.'l(_) + pis1
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