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Spectrum Auctions

• Governments are auctioning off multiple indivisible 

licenses (4G, 5G) among mobile network operators

• Bidders have value for bundles of licenses

• Licenses can be substitutes as well as complements

$80M on British Columbia

$60M on Alberta

$200M on British Columbia + Alberta

1

2

3
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Example: 2014 Canadian

Spectrum Auction

• 10 bidders

• 98 different licenses

• Spread across 14 regions

→ 298 bundles of licenses!→ Direct revelation mechanisms (e.g., VCG) are infeasible

→ Need a mechanism with smart preference elicitation
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Iterative VCG Mechanisms (Mishra & Parkes’07; de Vries et al.’07)

Features:

– Interact with bidders over multiple rounds

– Elicit “enough” information to implement VCG outcome

– Straightforward truthful bidding is ex-post Nash equilibrium

However: Impossibility result by Nisan and Segal’06:

– To guarantee efficiency, we need exponential communication in the worst case

→ Practical auction designs (in domains with general valuations) cannot provide efficiency 

guarantees! → need to limit the amount of information exchanged
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Combinatorial Clock Auction (CCA) (Ausubel, Cramton, Milgrom, 2006)

• Practical auction design:

• Used in Switzerland, UK, Australia, Canada, etc. → more than $20 Billion in revenue

• Informally: combines an “ascending-price phase” followed by a “combinatorial sealed-bid phase”

• Design features (that limit the amount of information exchanged):

• Linear prices in the clock phase

• Discrete price updates to keep the number of rounds small

• At most 500 bids in the supplementary round

• Inefficiencies of the CCA:

• Lab experiments → efficiencies of 89%-96% (Scheffel et al., 2013; Bichler et al., 2014)

1%-2% efficiency loss → can be ~$100 Million of welfare losses per auction! 
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This Paper: A Machine Learning-powered Iterative Combinatorial Auction
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What do I mean by “learning” or “prediction”?
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• Bidders report (bundle, value)-pairs. For example:

• (A, $1); (B, $2); (C, $3); (AB, $5)

• ML algorithm predicts values for all bundles in bundle space: e.g., (ABC, ?) 

• For now, think: linear regression, with one coefficient per item

• ෤𝑣𝑖 𝑥 = 𝑤𝑖 ⋅ 𝑥

• Example: ෤𝑣𝑖 𝐴𝐵𝐶 = 𝑤𝐴 + 𝑤𝐵 + 𝑤𝐶 (Note: cannot capture complements or substitutes!)
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This Paper: A Machine Learning-powered Iterative Combinatorial Auction
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Related work: Combining ML and Mechanism Design

• Early connections between “ML queries” and “auction queries”

• Lahaie & Parkes (2004); Blum et  al. (2004)

• “Learning clearing prices” in iterative CAs to achieve a small number of rounds

• Lahaie (2011); Abernethy et al. (2016); Brero and Lahaie (2018); Brero, Lahaie, and Seuken (2019)

• Using ML to design better mechanisms (in the sense of “automated mechanism design”)

• Dütting et al. (2015); Dütting et al. (2019); Narasimhan et al. (2016); Feng et al. (2018)

This work: integrating the ML algorithm into the CA and learning the bidders’ value functions
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Outline

1. Motivation: Preference Elicitation in Combinatorial Spectrum Auctions

2. Our Machine Learning-powered Mechanism

3. Theoretical Analysis

4. Instantiating the ML Algorithm + Optimization Module

5. Experiments I: Choosing the best ML Algorithm

6. Experiments II: Comparing our mechanism against the CCA

7. Conclusion
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Our Machine Learning-powered ICA – High Level View

• Component #1: Query Module

• Component #2: The Mechanism

• Goal: collect the 500 best bundle-value reports from each bidder to maximize empirical efficiency at the end

• Final allocation: Take all elicited values and solve the winner determination problem (WDP) [IP → CPLEX]

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎෍

𝑖

ෝ𝑣𝑖(𝑎𝑖)

s.t. σ𝑖 𝑎𝑖𝑗 ≤ 1 ∀𝑗 ∈ [𝑚] 𝑎𝑖𝑗 ∈ 0,1 ∀𝑖, 𝑗
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The Machine Learning-powered Query Module – Schematic View
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𝒔𝒊= set of bundle-value

pairs from bidder 𝒊

෥𝒗𝒊= inferred value function for bidder 𝒊

𝒒𝒊= next query for bidder 𝒊
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The Machine Learning-powered Query Module – Details
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The Pseudo-VCG Machine Learning-based (PVML) Mechanism

Two main design features:

1. Allow bidders to “push” bundle-value pairs in an initial round of the auction (e.g., 50-100)

2. Charge “VCG-style” payments at the end, by eliciting bundle-value pairs separately in:

1. The “main economy” (with all n bidders)

2. In each “marginal economy” of bidder i (where bidder i is excluded from the auction)
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The PVML Mechanism – Details
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Theoretical Analysis

1. Relationship between learning error and performance of PVML

2. Good Incentives in Practice

3. Individual Rationality

4. No-deficit
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Bounding the Efficiency Loss

• Learning error in bundle x for bidder i: | ෤𝑣𝑖(𝑥) − 𝑣𝑖 𝑥 |

→ Provides motivation for the iterative design of the Query Module (reduce learning error)
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Imputing Prices in PVML

• PVML does not use prices to communicate with bidders!

• But: we can impute prices to gain insight into how PVML “implicitly prices bundles” throughout

the auction

• Let 𝜋 = (𝜋1, … , 𝜋𝑛) be a general price function profile (allowing for non-anonymous bundle prices)
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Approximate Competitive Equilibrium Prices in PVML

• Proposition 2 provides a measure of the quality of the prices 𝜋 = ෤𝑣

• Implicit price structure depends on ML algorithm used → prices will, in general, be non-

anonymous bundle prices → thus, more powerful than anonymous linear prices

• Connection to Lahaie & Parkes’04

• Propose an elicitation algorithm similar to ours; guarantees finding a CE

• However, in each round, they communicate (exponentially-sized) ask prices to bidders
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Consider imputed prices 𝝅 = ෥𝒗
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Incentives: Social Welfare Alignment and “Bidder Push”

• PVML is manipulable (dynamic strategies and no efficiency guarantees)

• Theorem: If other bidders are truthful, then PVM aligns incentives with efficiency

• Proof Sketch: Utility of bidder 𝑖 under PVM:        𝑢𝑖 = 𝑣𝑖 𝑎
𝑝𝑣𝑚 − 𝑝𝑖

𝑝𝑣𝑚

= 𝑣𝑖 𝑎
𝑝𝑣𝑚 + σ𝑗≠𝑖 ො𝑣𝑗 𝑎𝑝𝑣𝑚 − σ𝑗 ො𝑣𝑗(𝑎

−𝑖)

→ If bidder finds a beneficial manipulation, this will maximize welfare w.r.t. to true values.

→ Good incentives in practice: together with “bidder-push”, this provides incentives to:

• (a) Push the bundles you believe will be part of an efficient allocation

• (b) Only submit truthful value reports
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Welfare w.r.t. bidder 𝑖’s 

true valuation
Independent of 

bidder 𝑖’s report 
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Which Machine Learning Algorithm to Use?

Sven Seuken - University of Zurich Page 20

Need ML algorithm with two properties:

1. Good from economic perspective (predicting non-linear values) and works with small amount of data

2. Good from computational perspective (integrate ML into optimization and remain computationally feasible)

→ Start with linear regression (to explain the concept) and then move on to SVRs with non-linear kernels
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Machine Learning: Linear Regression

• Input: ℓ reported bundle-value pairs 𝑥1, 𝑣1 , 𝑥2, 𝑣2 , … , 𝑥ℓ, 𝑣ℓ

• Goal: predict value function ෥𝑣𝑖(𝑥)

• Standard linear regression:

• ෤𝑣𝑖 𝑥 = 𝑤𝑖 ⋅ 𝑥, where 𝑤𝑖 ⋅ 𝑥 = σ𝑗𝑤𝑖𝑗𝑥𝑗 [𝑤𝑖𝑗 is bidder 𝑖’s predicted value for item 𝑗]

• →find coefficient vector 𝑤𝑖 such that ෤𝑣𝑖 𝑥 is as accurate as possible on reported values:

min෍

𝑘=1

𝑙

𝐿(𝑣𝑖𝑘 , 𝑤𝑖 ⋅ 𝑥𝑘)

• In linear regression, we typically use the squared loss function: 𝐿2 𝑦, ෤𝑦 = 𝑦 − ෤𝑦 2

• Regularized linear regression: avoid overfitting → introduce a regularization term (min. magnitude of 𝑤𝑖)

min 𝑤𝑖
2
+ 𝐶෍

𝑘=1

𝑙

𝐿(𝑣𝑖𝑘 , 𝑤𝑖 ⋅ 𝑥𝑘)
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Winner Determination (using Linear Regression)

max
𝑎

෍

𝑖=1

𝑛

෍

𝑗=1

𝑚

𝑤𝑖𝑗 𝑎𝑖𝑗

s.t. σ𝑖 𝑎𝑖𝑗 ≤ 1 ∀𝑗 ∈ [𝑚] (feasibility constraint)

• 𝑎𝑖𝑗 ∈ {0,1} are the decision variables (does bidder i get item j) 

• 𝑤𝑖𝑗 are the learned coefficients from the linear regression (constants here)

Computational difficulty:

• Winner determination is NP-hard

• This Integer Program (IP) has 𝑛 ⋅ 𝑚 Boolean variables and 𝑚 constraints

• Using CPLEX (branch and bound) we can solve large instances (10 bidders, 98 items) in seconds

→ Limitation of linear regression-based approach: cannot capture complements or substitutes!
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Support Vector Regression (SVR)

• From linear to non-linear models:

• Linear model: ෤𝑣𝑖 𝑥 = 𝑤𝑖 ⋅ 𝑥

• Non-linear model: ෥𝑣𝑖 𝑥 = 𝑤𝑖 ⋅ 𝜑 𝑥

• SVR: min 𝑤𝑖
2
+ 𝐶 σ𝑘=1

𝑙 𝐿𝜀(𝑣𝑖𝑘, 𝑤𝑖 ⋅ 𝜑 𝑥𝑘 ) [𝐿𝜀 = max 𝑦 − ෤𝑦 − 𝜀, 0 ]

• Winner determination (primal): argmax𝑎 σ𝑖𝑤𝑖 𝜑(𝑎𝑖) (size depends on 𝜑, i.e., number of features)

• For low-dimensional feature spaces: easy to minimize 𝑤𝑖, but not for high-dimensional spaces

• SVRs with non-linear kernels:

• Use the “kernel trick”: find a 𝜅() such that 𝜑 𝑥 ⋅ 𝜑 𝑥′ = 𝜅 𝑥, 𝑥′

• Predicted valuation: ෥𝑣𝑖 𝑥 = σ𝑘=1
ℓ 𝛽𝑖𝑘 𝜅 𝑥𝑖𝑘 , 𝑥 , where the 𝑥𝑖𝑘 are bundles evaluated by bidder 𝑖

• Winner determination (dual): argmax𝑎 σ𝑖σ𝑘=1
𝑙 𝛽𝑖𝑘 𝜅 𝑥𝑖𝑘 , 𝑎𝑖 (size depends on # of reported values)

→ Need to choose a “good” kernel function 𝜅!
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(do linear regression 

in feature space)
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Choosing a Kernel Function

Page 24Sven Seuken - University of Zurich

Linear Kernel

𝜅 𝑥, 𝑥′ = 𝑥 ⋅ 𝑥′
Quadratic Kernel

𝜅 𝑥, 𝑥′ = 𝑥 ⋅ 𝑥′ + 𝜆 𝑥 ⋅ 𝑥′ 2
Exponential Kernel

𝜅 𝑥, 𝑥′ = exp(𝑥 ⋅ 𝑥′)
Gaussian Kernel

𝜅 𝑥, 𝑥′ = exp(− 𝑥 − 𝑥′
2
)

Captures non-additivity

(complements and substitutes)
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Winner Determination Problem (using the Dual) with Quadratic Kernel

max
𝑎

෍

𝑖

෍

𝑘=1

𝑙

𝛽𝑖𝑘 (𝑥𝑖𝑘𝑎𝑖) + 𝛾𝛽𝑖𝑘 𝑥𝑖𝑘𝑎𝑖
2

s.t. σ𝑖 𝑎𝑖𝑗 ≤ 1 ∀𝑗 ∈ [𝑚] (feasibility constraint)

• 𝑎𝑖𝑗 ∈ {0,1} are the decision variables (does bidder i get item j)

• 𝛽𝑖𝑘 are the learned coefficients (dual variables) from the SVR (constant here)

• 𝑥𝑖𝑘 is bundle 𝑘 reported by bidder 𝑖 (support vector from the dual of the SVR)

• 𝛾 is the Kernel parameter

Computational difficulty:

• This is a Quadratic Integer Program (QIP)

• CPLEX can solve large instances (10 bidders, 98 items) within 1h within a relative MIP gap of <= 2%

Sven Seuken - University of Zurich Page 25



Department of Informatics

Experiments: Measure Efficiency of Mechanisms

• 2014 Canadian auction is only one data point!

• → We use a data generator: “SATS: A Universal Spectrum Auction Test Suite’’

(Weiss et al. ‘17)

• On demand, SATS can create thousand of (random) spectrum auction instances

• SATS has access to all bidders’ value functions → we can compute the efficient allocation

• We can use the value function to answer value queries and demand queries

• SATS contains many spectrum value models, we tested on three:

1. GSVM Model, 18 items, 7 bidders (Goeree and Holt, 2008)

2. LSVM Model, 18 items, 6 bidders (Scheffel et al., 2012)

3. 2014 Canadian Auction Model, 98 items, 10 bidders (Weiss et al., 2017)
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Optimizing the ML Algorithm (= Choosing the Best Kernel)
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The Quadratic Kernel lies on a Pareto Frontier of Learning Performance 

and Winner Determination Complexity (in our domains)
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Comparing PVML against CCA – Experimental Set-up

PVML:

• Quadratic kernel

• Maximum number of queries = {100, 200, 500}

• Initial number of queries between 50 and 90 (here: chosen uniformly at random from the bundle space)

CCA:

• 5% price update rule in the clock phase (starting at low, but reasonable reserve prices)

• We simulate bidders who answer demand queries perfectly 

• In the supplementary round, bidders submit {100, 200, 500} bids according to 3 different heuristics

Both mechanisms: simulate straightforward truthful bidding
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Comparison of PVML vs. CCA – in the GSVM Domain (7 Bidders, 18 Goods)
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Comparison of PVML vs. CCA – in the LSVM Domain (6 Bidders, 18 Goods)
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Domain: 18 items, 6 bidders

Value depends on “spatial proximity”
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Comparison of PVML vs. CCA – MRVM Domain (10 Bidders, 98 Goods)
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Conclusion and Outlook

• Design of an ML-powered Iterative Combinatorial Auction

1. Used ML to predict bidders’ value functions

2. Exploited properties of SVRs to find efficient allocation

3. Used “bidder push” and “Pseudo-VCG” payments to induce good incentives

4. Experimental results suggest better performance than CCA in large domains

• Future/Ongoing Work:

1. Bidders report upper/lower bounds instead of exact values

2. Other non-linear learning models (e.g., deep neural networks)

Thank you for your attention!
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Backup
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Deep Learning-powered Iterative Combinatorial Auctions

(with Jakob Weissteiner)

• Idea: Deep neural networks may have better learning performance than Quadratic kernels

• Challenge: Solve the optimization step (over DNNs) efficiently

• Approach: Formulate maximization step as MILP using ReLus: 𝜑 𝑠 = max(0, 𝑠)
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