

Machine Learning-powered Iterative Combinatorial Auctions

Sven Seuken, University of Zurich

Preliminary version of this paper has previously appeared as:

Combinatorial Auctions via Machine Learning-based Preference Elicitation (*IJCAI-ECAI 2018*). Joint work with: Gianluca Brero (University of Zurich) and Benjamin Lubin (Boston University)

October 18, 2019 NBER Market Design Working Group Meeting

Spectrum Auctions

- Governments are auctioning off multiple indivisible licenses (4G, 5G) among mobile network operators
- Bidders have value for **bundles of licenses**
- Licenses can be **substitutes** as well as **complements**

→ Direct revelation mechanisms (e.g., VCG) are infeasible
 → Need a mechanism with smart preference elicitation

Example: 2014 Canadian Spectrum Auction

- 10 bidders
- 98 different licenses
- Spread across 14 regions
- \rightarrow 2⁹⁸ bundles of licenses!

Iterative VCG Mechanisms (Mishra & Parkes'07; de Vries et al.'07)

Features:

- Interact with bidders over multiple rounds
- Elicit "enough" information to implement VCG outcome
- Straightforward truthful bidding is ex-post Nash equilibrium

However: Impossibility result by Nisan and Segal'06:

- To guarantee efficiency, we need exponential communication in the worst case

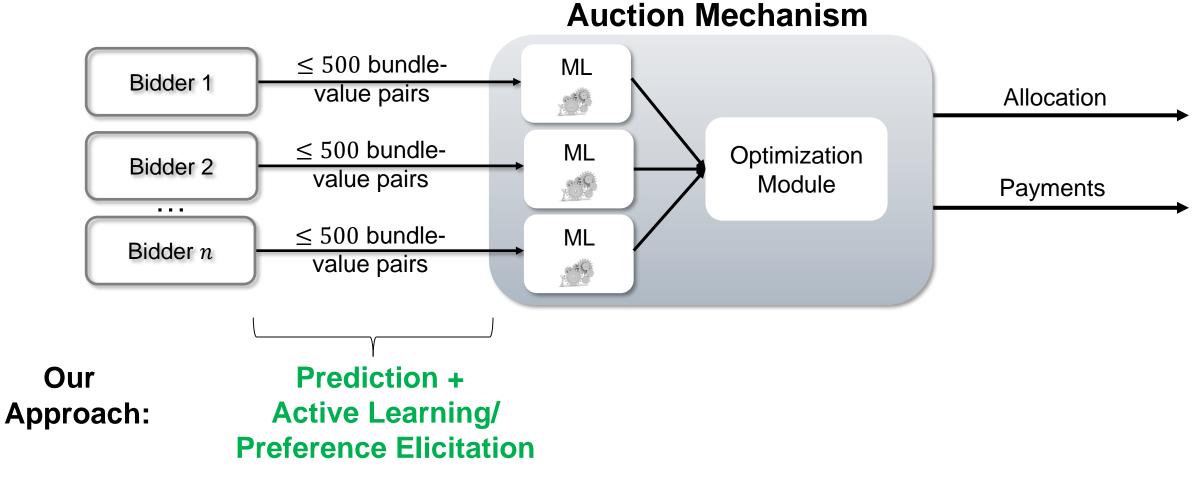
→ Practical auction designs (in domains with general valuations) cannot provide efficiency guarantees! → need to limit the amount of information exchanged

Combinatorial Clock Auction (CCA) (Ausubel, Cramton, Milgrom, 2006)

- Practical auction design:
 - Used in Switzerland, UK, Australia, **Canada**, etc. \rightarrow more than \$20 Billion in revenue
 - Informally: combines an "ascending-price phase" followed by a "combinatorial sealed-bid phase"
- Design features (that limit the amount of information exchanged):
 - Linear prices in the clock phase
 - Discrete price updates to keep the number of rounds small
 - At most 500 bids in the supplementary round
- Inefficiencies of the CCA:
 - Lab experiments \rightarrow efficiencies of 89%-96% (Scheffel et al., 2013; Bichler et al., 2014)

1%-2% efficiency loss \rightarrow can be ~\$100 Million of welfare losses per auction!

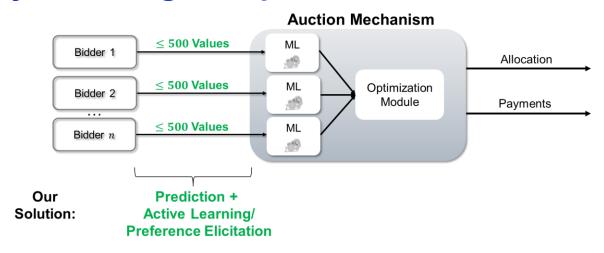
This Paper: A Machine Learning-powered Iterative Combinatorial Auction



Sven Seuken - University of Zurich

Established by the European Commissi

What do I mean by "learning" or "prediction"?

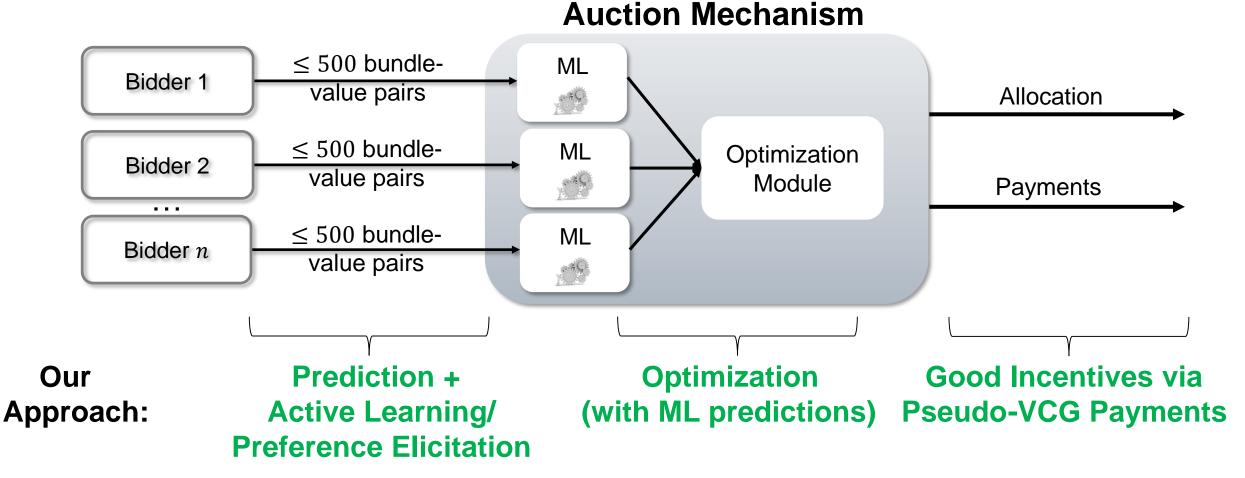


- Bidders report (bundle, value)-pairs. For example:
 - (A, \$1); (B, \$2); (C, \$3); (AB, \$5)
- ML algorithm predicts values for all bundles in bundle space: e.g., (ABC, ?)
- For now, think: linear regression, with one coefficient per item
 - $\tilde{v}_i(x) = w_i \cdot x$
 - Example: $\tilde{v}_i(ABC) = w_A + w_B + w_C$ (Note: cannot capture complements or substitutes!)

Sven Seuken - University of Zurich

Page 6

This Paper: A Machine Learning-powered Iterative Combinatorial Auction



Established by the European Commission

Related work: Combining ML and Mechanism Design

- Early connections between "ML queries" and "auction queries"
 - Lahaie & Parkes (2004); Blum et al. (2004)
- "Learning clearing prices" in iterative CAs to achieve a small number of rounds
 - Lahaie (2011); Abernethy et al. (2016); Brero and Lahaie (2018); Brero, Lahaie, and Seuken (2019)
- Using ML to design better mechanisms (in the sense of "automated mechanism design")
 - Dütting et al. (2015); Dütting et al. (2019); Narasimhan et al. (2016); Feng et al. (2018)

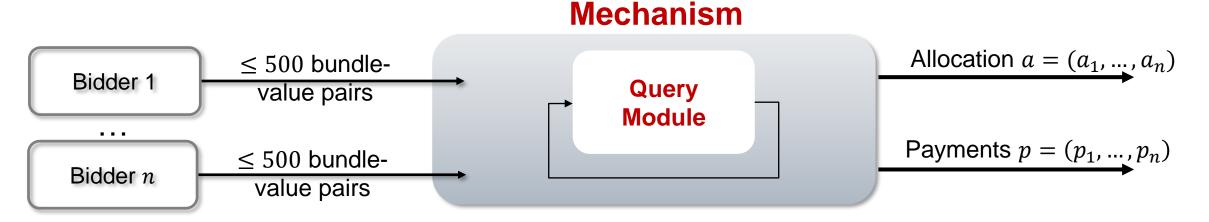
This work: integrating the ML algorithm *into* the CA and learning the bidders' value functions

Established by the European Commi

Outline

- 1. Motivation: Preference Elicitation in Combinatorial Spectrum Auctions
- 2. Our Machine Learning-powered Mechanism
- 3. Theoretical Analysis
- 4. Instantiating the ML Algorithm + Optimization Module
- 5. Experiments I: Choosing the best ML Algorithm
- 6. Experiments II: Comparing our mechanism against the CCA
- 7. Conclusion

Our Machine Learning-powered ICA – High Level View



- Component #1: Query Module
- Component #2: The Mechanism
- Goal: collect the 500 best bundle-value reports from each bidder to maximize empirical efficiency at the end
- Final allocation: Take all elicited values and solve the **winner determination problem (WDP)** [IP → CPLEX]

$$a^* = argmax_a \sum_i \widehat{\nu_i}(a_i)$$

s.t.
$$\sum_{i} a_{ij} \le 1 \quad \forall j \in [m]$$
 $a_{ij} \in \{0,1\} \quad \forall i, j \in \{0,1\}$

Sven Seuken - University of Zurich

Page 10

The Machine Learning-powered Query Module – Schematic View

 \widetilde{v}_i = inferred value function for bidder *i*

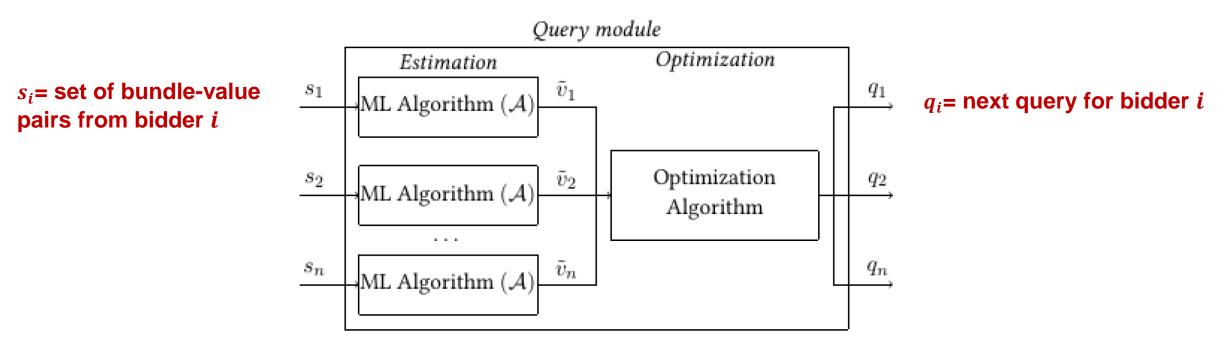


Figure 1: Schematic representation of how the query module works.

Established by the European Commission

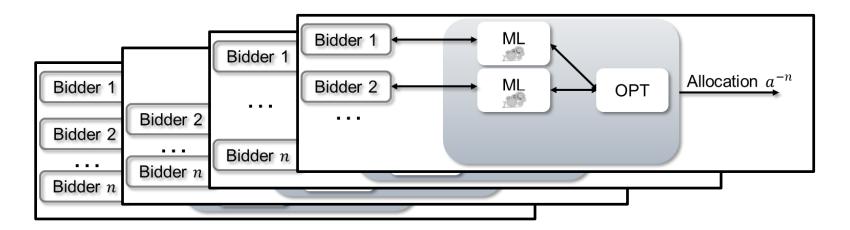
The Machine Learning-powered Query Module – Details

Algorithm 1: Machine Learning-powered Query Module 1 function NextQuery(\mathcal{A}, s); **Inputs:** ML algorithm \mathcal{A} ; Vector of sets of bundle-value pairs $s = (s_1, ..., s_k)$; 2 foreach bidder $i \in [k]$ do **Estimation Step:** infer valuation for each bidder using ML algorithm $\tilde{v}_i = \mathcal{A}(s_i);$ 3 4 end 5 Determine $\tilde{a} \in \arg \max_{a \in \mathcal{F}} \sum_{i \in [k]} \tilde{v}_i(a);$ **Optimization Step** (based on inferred valuations) 6 foreach bidder $i \in [k]$ do if $\tilde{a}_i \not\in s_i$ then 7 $q_i = \tilde{a}_i$; 8 else 9 $\mathcal{F}_i = \{ a \in \mathcal{F} : \forall x \in s_i, \, a_i \neq x \};$ 10 Determine $\tilde{a}' \in \arg \max_{a \in \mathcal{F}_i} \sum_{i \in [k]} \tilde{v}_i(a);$ **Optimization Step** (with restrictions) 11 $q_i = \tilde{a}'_i;$ 12 end 13 14 end 15 Output vector of queries $q = (q_1, ..., q_k)$;

The Pseudo-VCG Machine Learning-based (PVML) Mechanism

Two main design features:

- 1. Allow bidders to "push" bundle-value pairs in an initial round of the auction (e.g., 50-100)
- 2. Charge "VCG-style" payments at the end, by eliciting bundle-value pairs separately in:
 - 1. The "main economy" (with all n bidders)
 - 2. In each "marginal economy" of bidder i (where bidder i is excluded from the auction)



European Research Counc

Established by the European Com

The PVML Mechanism – Details

Algorithm 2: Pseudo-VCG Machine Learning-based (PVML) Mechanism **Parameters:** ML algorithm \mathcal{A} ; maximum # of queries per bidder Q_{max} ; # of initial queries $Q_0 \leq Q_{\text{max}}$; 1 Each bidder *i* submits up to $Q_i^{push} \leq Q_0$ self-chosen bundle-value pairs s_i^0 ; ² Ask each bidder *i* to report his value for $Q_0 - Q_i^{push}$ randomly chosen bundles and add them to s_i^0 ; 3 Let $s^0 = (s_1^0, ..., s_n^0)$ denote the initial reports for the main economy; 4 For each bidder *i*, let $s^{0,(-i)} = (s_1^0, ..., s_{i-1}^0, s_{i+1}^0, ..., s_n^0)$ be the initial reports for *i*'s marginal economy; 5 Initialize round counter: t = 0; 6 while $\max_i |s_i^t| \leq Q_{\max} - n$ do t = t + 1: Generate queries for the main economy: *NextQuery*(\mathcal{A}, s^{t-1}); 8 Generate queries for each bidder *i*'s marginal economy: $NextQuery(\mathcal{A}, s^{t-1,(-i)})$; 9 Send generated queries to bidders and ask for corresponding values; 10 Let s' denote all reported bundle-value pairs obtained in Step 10 and let $s^t = s^{t-1} \cup s'$; 11 Let $s'^{(-i)}$ denote the reported bundle-value pairs obtained in Step 10 for bidder *i*'s marginal 12 economy and let $s^{t,(-i)} = s^{t-1,(-i)} \cup s'^{(-i)}$: 13 end 14 Determine allocation $a^{pvml} = a^*_{\hat{v}^\star}$, where $\hat{v}^\star = \hat{v}_{s^t}$; 15 Charge each bidder *i* payment $p_i^{pvml} = \sum_{j \neq i} \hat{v}_j^{(-i)}(a^{(-i)}) - \sum_{j \neq i} \hat{v}_j^{\star}(a^{pvml}), \qquad \text{ where } \hat{v}^{(-i)} = \hat{v}_{s^{t,(-i)}} \text{ and } a^{(-i)} = a_{\hat{v}^{(-i)}}^{\star};$ (3) 16 Output allocation a^{pvml} and payments p^{pvml} ;

Sven Seuken - University of Zurich

European Research Council Established by the European Commission

Theoretical Analysis

- 1. Relationship between learning error and performance of PVML
- 2. Good Incentives in Practice
- 3. Individual Rationality
- 4. No-deficit

Established by the Europ

Bounding the Efficiency Loss

• Learning error in bundle x for bidder i: $|\tilde{v}_i(x) - v_i(x)|$

Proposition 1. Let \tilde{v} be an inferred valuation profile. Let $a_{\tilde{v}}^*$ be an efficient allocation w.r.t. to \tilde{v} , and let a_v^* be an efficient allocation w.r.t. the true valuation profile. Assume that the learning errors in the bundles of these two allocations are bounded as follows: for each bidder i, $|\tilde{v}_i(a_{\tilde{v}}^*) - v_i(a_{\tilde{v}}^*)| \leq \delta_1$ and $|\tilde{v}_i(a_v^*) - v_i(a_v^*)| \leq \delta_2$, for $\delta_1, \delta_2 \in \mathbb{R}$. Then the following bound on the efficiency loss in $a_{\tilde{v}}^*$ holds:

$$\frac{V(a_v^*) - V(a_{\tilde{v}}^*)}{V(a_v^*)} \le \frac{n(\delta_1 + \delta_2)}{V(a_v^*)}.$$
(4)

→ Provides motivation for the iterative design of the Query Module (reduce learning error)

Imputing Prices in PVML

- PVML does *not* use prices to communicate with bidders!
- But: we can *impute prices* to gain insight into how PVML "implicitly prices bundles" throughout the auction
- Let $\pi = (\pi_1, ..., \pi_n)$ be a general price function profile (allowing for non-anonymous bundle prices)

Definition 2 (Competitive equilibrium). Given prices π , we define each bidder *i*'s demand set d_i^{π} as the set of bundles that maximize her utility at π : $d_i^{\pi} = \arg \max_{x \in \mathcal{X}} v_i(x) - \pi_i(x)$. Similarly, we can define the seller's supply set s^{π} as the set of allocations that are most profitable at π : $s^{\pi} = \arg \max_{a \in \mathcal{F}} \sum_i \pi_i(a_i)$. We say that prices π and allocation *a* are in competitive equilibrium if $a \in s^{\pi}$ and, for each bidder *i*, $a_i \in d_i^{\pi}$.

Approximate Competitive Equilibrium Prices in PVML

Consider imputed prices $\pi = \widetilde{v}$

Proposition 2. Let \tilde{v} be an inferred valuation profile and a_v^* be an efficient allocation. Assume that the learning errors are bounded as follows: for each bidder i, $\max_{x \in \mathcal{X}} |\tilde{v}_i(x) - v_i(x)| \le \delta_1$ and $|\tilde{v}_i(a_v^*) - v_i(a_v^*)| \le \delta_2$. Then, we need to inject at most $n(\delta_1 + \delta_2)$ into the market to induce the bidders and the seller to trade the allocation a_v^* at prices $\pi = \tilde{v}$, i.e., \tilde{v} is a $n(\delta_1 + \delta_2)$ -approximate competitive equilibrium price profile.

- Proposition 2 provides a measure of the quality of the prices $\pi = \tilde{v}$
- Implicit price structure depends on ML algorithm used → prices will, in general, be nonanonymous bundle prices → thus, more powerful than anonymous linear prices
- Connection to Lahaie & Parkes'04
 - Propose an elicitation algorithm similar to ours; guarantees finding a CE
 - However, in each round, they communicate (exponentially-sized) ask prices to bidders

Incentives: Social Welfare Alignment and "Bidder Push"

- **PVML is manipulable** (dynamic strategies and no efficiency guarantees)
- Theorem: If other bidders are truthful, then PVM aligns incentives with efficiency
- **Proof Sketch:** Utility of bidder *i* under PVM: $u_i = v_i(a^{pvm}) p_i^{pvm}$

$$= v_i(a^{pvm}) + \sum_{j \neq i} \hat{v}_j(a^{pvm}) - \sum_j \hat{v}_j(a^{-i})$$

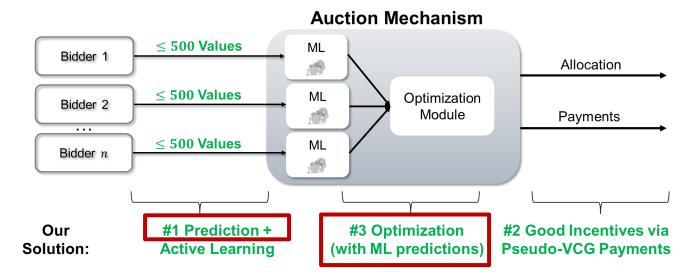
$$\bigvee$$
Welfare w.r.t. bidder *i*'s
true valuation
Independent of
bidder *i*'s report

- \rightarrow If bidder finds a beneficial manipulation, this will maximize welfare w.r.t. to true values.
- → Good incentives in practice: together with "bidder-push", this provides incentives to:
- (a) Push the bundles you believe will be part of an efficient allocation
- (b) Only submit truthful value reports

Sven Seuken - University of Zurich

European Research Council Established by the European Commission

Which Machine Learning Algorithm to Use?



Need ML algorithm with two properties:

- 1. Good from economic perspective (predicting non-linear values) and works with small amount of data
- 2. Good from computational perspective (integrate ML into optimization and remain computationally feasible)

→ Start with **linear regression** (to explain the concept) and then move on to **SVRs with non-linear kernels** Sven Seuken - University of Zurich Page 20

Machine Learning: Linear Regression

- Input: ℓ reported bundle-value pairs { $(x_1, v_1), (x_2, v_2), \dots, (x_\ell, v_\ell)$ }
- **Goal:** predict value function $\tilde{v}_i(x)$
- Standard linear regression:
 - $\tilde{v}_i(x) = w_i \cdot x$, where $w_i \cdot x = \sum_j w_{ij} x_j$ [w_{ij} is bidder *i*'s predicted value for item *j*]
 - \rightarrow find coefficient vector w_i such that $\tilde{v}_i(x)$ is as accurate as possible on reported values:

$$\min\sum_{k=1}^{l} L(v_{ik}, w_i \cdot x_k)$$

- In linear regression, we typically use the squared loss function: $L_2(y, \tilde{y}) = (y \tilde{y})^2$
- **Regularized linear regression**: avoid overfitting \rightarrow introduce a *regularization* term (min. magnitude of w_i)

min
$$||w_i||^2 + C \sum_{k=1}^l L(v_{ik}, w_i \cdot x_k)$$

Established by the European Com

Winner Determination (using Linear Regression)

 $\max_{a} \sum_{i=1} \sum_{i=1} w_{ij} a_{ij}$

s.t. $\sum_{i} a_{ij} \le 1 \quad \forall j \in [m]$ (feasibility constraint)

- $a_{ij} \in \{0,1\}$ are the decision variables (does bidder i get item j)
- w_{ii} are the learned coefficients from the linear regression (constants here)

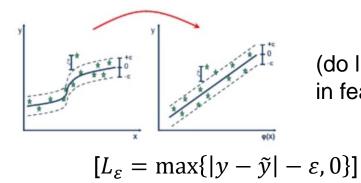
Computational difficulty:

- Winner determination is NP-hard
- This Integer Program (IP) has $n \cdot m$ Boolean variables and m constraints ٠
- Using CPLEX (branch and bound) we can solve large instances (10 bidders, 98 items) in seconds ٠

→ Limitation of linear regression-based approach: cannot capture complements or substitutes! Sven Seuken - University of Zurich

Support Vector Regression (SVR)

- From linear to non-linear models:
 - Linear model: $\tilde{v}_i(x) = w_i \cdot x$
 - Non-linear model: $\tilde{v}_i(x) = w_i \cdot \varphi(x)$
 - SVR: min $||w_i||^2 + C \sum_{k=1}^l L_{\varepsilon}(v_{ik}, w_i \cdot \varphi(x_k))$



(do linear regression in feature space)

- Winner determination (primal): $\operatorname{argmax}_a \sum_i w_i \varphi(a_i)$ (size depends on φ , i.e., number of features)
- For low-dimensional feature spaces: easy to minimize w_i , but not for high-dimensional spaces
- SVRs with non-linear kernels:
 - Use the "kernel trick": find a κ () such that $\varphi(x) \cdot \varphi(x') = \kappa(x, x')$
 - Predicted valuation: $\tilde{v}_i(x) = \sum_{k=1}^{\ell} \beta_{ik} \kappa(x_{ik}, x)$, where the x_{ik} are bundles evaluated by bidder *i*
 - Winner determination (dual): $\operatorname{argmax}_{a} \sum_{i} \sum_{k=1}^{l} \beta_{ik} \kappa(x_{ik}, a_{i})$ (size depends on # of reported values)
 - \rightarrow Need to choose a "good" kernel function κ !

Sven Seuken - University of Zurich

Choosing a Kernel Function

Linear KernelQuadratic KernelExponential KernelGaussian Kernel $\kappa(x,x') = x \cdot x'$ $\kappa(x,x') = (x \cdot x') + \lambda(x \cdot x')^2$ $\kappa(x,x') = \exp(x \cdot x')$ $\kappa(x,x') = \exp(-||x - x'||^2)$

Captures non-additivity (complements and substitutes)

Winner Determination Problem (using the Dual) with Quadratic Kernel

$$\max_{a} \sum_{i} \sum_{k=1}^{l} \beta_{ik} \left(x_{ik} a_i \right) + \gamma \beta_{ik} (x_{ik} a_i)^2$$

s.t. $\sum_{i} a_{ij} \le 1 \ \forall j \in [m]$ (feasibility constraint)

- $a_{ij} \in \{0,1\}$ are the decision variables (does bidder i get item j)
- β_{ik} are the learned coefficients (dual variables) from the SVR (constant here)
- x_{ik} is bundle k reported by bidder i (support vector from the dual of the SVR)
- γ is the Kernel parameter

Computational difficulty:

- This is a Quadratic Integer Program (QIP)
- CPLEX can solve large instances (10 bidders, 98 items) within 1h within a relative MIP gap of <= 2%

Established by the European Commission

Experiments: Measure Efficiency of Mechanisms

- 2014 Canadian auction is only one data point!
- → We use a data generator: "SATS: A Universal Spectrum Auction Test Suite" (Weiss et al. '17)
 - On demand, SATS can create thousand of (random) spectrum auction instances
 - SATS has access to all bidders' value functions \rightarrow we can compute the efficient allocation
 - We can use the value function to answer value queries and demand queries
- SATS contains many spectrum value models, we tested on three:
 - 1. GSVM Model, 18 items, 7 bidders (Goeree and Holt, 2008)
 - 2. LSVM Model, 18 items, 6 bidders (Scheffel et al., 2012)
 - 3. 2014 Canadian Auction Model, 98 items, 10 bidders (Weiss et al., 2017)

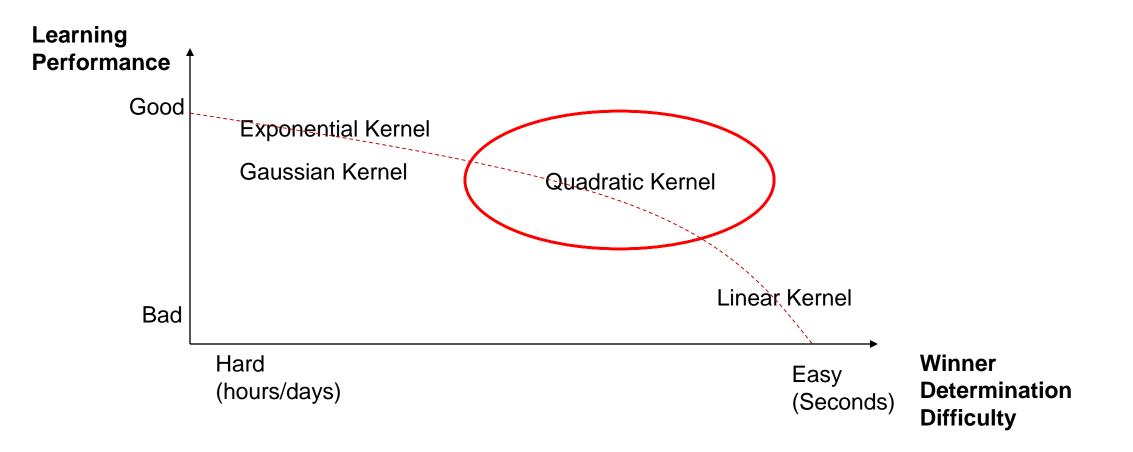
Sven Seuken - University of Zurich

Optimizing the ML Algorithm (= Choosing the Best Kernel)

Kernel	ϵ	Efficiency		Learning Error		WD Solve Time			Optimality Gap				
		100	200	500	100	200	500	100	200	500	100	200	500
Exponential	0	83.0%	83.5%	69.8%	15.68	13.86	11.66	60.00s	60.00s	60.00s	2.40	7.46	109.35
Exponential	16	83.3%	83.5%	83.6%	18.58	16.21	13.86	20.04s	59.76s	60.00s	0.06	0.89	5.80
Exponential	32	83.2%	83.7%	83.7%	24.07	22.28	20.82	1.39s	10.11s	60.00s	0.00	0.01	1.22
Gaussian	0	66.3%	56.3%	-	17.17	14.70	-	60.00s	60.00s	-	6.20	23.46	-
Gaussian	32	76.2%	78.1%	78.7%	27.15	24.53	21.88	58.47s	60.00s	60.00s	0.34	1.41	4.89
Gaussian	64	78.1%	81.8%	82.1%	38.32	36.24	34.44	11.79s	35.21s	59.58s	0.00	0.02	0.43
Kernel		Efficiency		Learning Error		WD Solve Time			Opti	mality	7 Gap		
		100	200	500	100	200	500	100	200	500	100	200	500

Kernel	Efficiency		Learning Error		WD Solve Time			Optimality Gap				
	100	200	500	100	200	500	100	200	500	100	200	500
Linear	72.9%	76.0%	74.8%	22.83	21.36	20.58	0.00s	0.00s	0.01s	0.00	0.00	0.00
Quadratic	88.8%	92.6%	93.2%	16.83	14.59	12.62	0.08s	0.16s	0.21s	0.00	0.00	0.00
Exponential	83.2%	83.7%	83.7%	24.07	22.28	20.82	1.39s	10.11s	60.00s	0.00	0.01	1.22
Gaussian	78.1%	81.8%	82.1%	38.32	36.24	34.44	11.79s	35.21s	59.58s	0.00	0.02	0.43

The Quadratic Kernel lies on a Pareto Frontier of Learning Performance and Winner Determination Complexity (in our domains)



Established by the European Commission

Comparing PVML against CCA – Experimental Set-up

PVML:

- Quadratic kernel
- Maximum number of queries = {100, 200, 500}
- Initial number of queries between 50 and 90 (here: chosen uniformly at random from the bundle space)

CCA:

- 5% price update rule in the clock phase (starting at low, but reasonable reserve prices)
- We simulate bidders who answer demand queries perfectly
- In the supplementary round, bidders submit {100, 200, 500} bids according to 3 different heuristics

Both mechanisms: simulate straightforward truthful bidding

Sven Seuken - University of Zurich

Comparison of PVML vs. CCA – in the GSVM Domain (7 Bidders, 18 Goods)

		Mechanism	Heuristic	Query Cap	Efficiency	Rounds
		VCG			100.0%	1
A, B C, D	M N		Clock Bids		94.2%	118
1,6 1,2	1,6 1,2		Clock Bids Raised		96.8%	118
K, L (5,6 7 2,3) E, F	$R\left< 5,6 2,3 \right> O$	CCA	Profit Max	100	99.2%	118
4,5 3,4	4,5 3,4		Profit Max	200	99.6%	118
I, J G, H	Q P		Profit Max	500	99.7%	118
National Circle	Regional Circle			100	100.0%	6
		PVML		200	100.0%	41
				500	100.0%	153

Comparison of PVML vs. CCA – in the LSVM Domain (6 Bidders, 18 Goods)

А	В	С	D	Е	F	
G	Η	Ι	J	Κ	L	CC
М	Ν	0	Р	Q^*	R	

Domain: 18 items, 6 bidders Value depends on "spatial proximity"

Mechanism	Heuristic	Query Cap	Efficiency	Rounds
VCG			100.0%	1
	Clock Bids		81.4%	124
	Clock Bids Raised		90.9%	124
CCA	Profit Max	100	99.4%	124
	Profit Max	200	99.8%	124
	Profit Max	500	99.9%	124
		100	98.6%	13
PVML		200	99.1%	37
		500	99.7%	113

Comparison of PVML vs. CCA – MRVM Domain (10 Bidders, 98 Goods)

-	Mechanism	Heuristic	Query Cap	Efficiency	Rounds
-	VCG			100.0%	1
-		Clock Bids		93.0%	140
		Clock Bids Raised		93.2%	140
	CCA	Profit Max	100	92.0%	140
		Profit Max	200	92.1%	140
		Profit Max	500	92.4%	140
-			100	91.5%	13
	PVML		200	93.3%	25
			500	94.6%	56

Established by the European Comm

Conclusion and Outlook

- Design of an ML-powered Iterative Combinatorial Auction
 - 1. Used ML to predict bidders' value functions
 - 2. Exploited properties of SVRs to find efficient allocation
 - 3. Used "bidder push" and "Pseudo-VCG" payments to induce good incentives
 - 4. Experimental results suggest better performance than CCA in large domains

• Future/Ongoing Work:

- 1. Bidders report upper/lower bounds instead of exact values
- 2. Other non-linear learning models (e.g., deep neural networks)

Thank you for your attention!



Department of Informatics

Backup

Established by the European Commission

Deep Learning-powered Iterative Combinatorial Auctions (with Jakob Weissteiner)

- Idea: Deep neural networks may have better learning performance than Quadratic kernels
- Challenge: Solve the optimization step (over DNNs) efficiently
- Approach: Formulate maximization step as MILP using ReLus: $\varphi(s) = \max(0, s)$

