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Allocation of school seats to students

Canonical case of allocation of resources without transfers (cf.
also refugee resettlement, teacher assignment, etc).

Australia, Chile, China, Finland, France, Ghana, Hungary,
Ireland, the Netherlands, Norway, Poland, Romania, Spain,
Taiwan, Turkey, US, UK, etc.

Allocation mechanisms rely on rankings of schools provided by
applicants.



The Contentious Choice of Mechanism
• Street protests in France and Taiwan.

• Frequent changes or discussed changes of mechanisms
(Chicago, Boston, NYC, New Orleans).

Literature proposing school choice mechanisms:

• Balinski and Sonmez (1999)
• Abdulkadriglu and Sonmez (2003)
• Abdulkadiroglu, Che, and Yasuda (2015)
• Kesten (2010), Morrill (2014), Hakimov and Kesten (2015),
Delacretaz, Kloosterman, and Troyan (2019)

• Pycia and Unver (2011)
• Budish, Che, Kojima, Milgrom (2013)
• Ashlagi and Shi (2014)
• He, Miralles, Pycia, and Yan (2018)
• Nguyen, Peivandi, and Vohra (2017)
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Puzzle: Many Mechanisms Nearly Identical in the Data
New Orleans statistics from Abdulkadiroglu, Che, Pathak, Roth and Tercieux
(2017):

TTC SD
1 772 777
2 126 121
3 46 44
4 18 17
5+ 11 8

Unassigned 222 228

Different mechanisms also give very similar standard statistics in:

• Amsterdam (de Haan, Gautier, Oosterbeek, and van der Klaauv 2015).
• Boston (Abdulkadiroglu, Che, Pathak, Roth and Tercieux 2017)
• New York (Abdulkadiroglu, Pathak, and Roth 2009, Abdulkadiroglu,
Agarwal, and Pathak 2015).

• Teacher Assignment in France (Combe, Tercieux, Terrier 2017).



Puzzle: Many Mechanisms Nearly Identical in the Data
New Orleans statistics from Abdulkadiroglu, Che, Pathak, Roth and Tercieux
(2017):

TTC SD
1 772 777
2 126 121
3 46 44
4 18 17
5+ 11 8

Unassigned 222 228

Different mechanisms also give very similar standard statistics in:

• Amsterdam (de Haan, Gautier, Oosterbeek, and van der Klaauv 2015).
• Boston (Abdulkadiroglu, Che, Pathak, Roth and Tercieux 2017)
• New York (Abdulkadiroglu, Pathak, and Roth 2009, Abdulkadiroglu,
Agarwal, and Pathak 2015).

• Teacher Assignment in France (Combe, Tercieux, Terrier 2017).



Not All Statistics Are Nearly the Same

• Improvements over reference mechanism
• Calsamiglia and Miralles 2012, He 2012, Agarwal and
Somaini 2016.

• Violations of stability
• Kesten 2010, Abdulkadiroglu, Che, Pathak, and Roth 2017.



Theory?

Symmetric Mechanisms

• Abdulkadiroglu and Sonmez (1998), Knuth (1996), Pathak
and Sethuraman (2011), Carroll (2014), Lee and
Sethuraman (2011)

• Che and Kojima (2010), Miralles (2008)
• Liu and Pycia (2016), Pycia (2011)
• Ashlagi, Kanoria, Leshno (2017)
• Pycia and Troyan (2019)

Asymptotic Population Mean Distribution of Expected Payoffs

• Che and Tercieux (2018)
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Preview of Findings

• Any anonymous statistics is asymptotically the same for
all standard Pareto-efficient mechanisms.

• An analogue holds true for stable constrained-efficient
mechanisms.

• Converse: the asymptotic equivalence requires at least
asymptotic anonymity of the statistics.

• Equivalence bounds in realistic size markets.
• The means and medians of anonymous statistics are
exactly identical when averaged over exchangeable
distributions of preferences (in any size market).
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Model

A – finite set of schools; each school a ∈ A has |a| > 0 seats.

N – finite set of agents; each agent i demands a single seat
and has a strict preference ranking ≻i over schools.

Θ – the set of preference rankings.

An allocation µ specifies the school µ (i) assigned to agents
i ∈ N .
µ is Pareto efficient = no other allocation is weakly better for all
and strictly better for at least one agent.

A mechanism ϕ maps profiles of rankings to allocations (or
lotteries over allocations);

strategy-proof = reporting true ranking is dominant.
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Example
Schools a, b, c; each school has n ∈ {1, 2, ...} seats.

3n agents 1, 2, ..., 3n; each ranks schools a ≻ b ≻ c.

Serial Dictatorship with an ordering of agents:

• assigns to the first agent his/her most preferred school,
• assigns to the second agent his/her most preferred school
with available seats, etc.

Anonymous statistics: What fraction of agents obtain their
most preferred outcome?

• 1
3 under any ordering.

Non-anonymous statistics: What fraction of agents strictly
improve over the outcome under the ordering 1, 2, ..., 3n?

• 0 if we stick to this ordering;
• 1

3 if we use the ordering 3n, 3n− 1, ..., 1.
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Outcome Statistics

K = {1, ..., k} set of codes; k ≥ 2.

f : N ×Θ×A→ K coding function.

Aggregate statistics F : (Θ×A)i∈N → [0, 1]K is an empirical
distribution of f .

F is anonymous iff f (i,≻, a) = f (j,≻, a) for all i, j,≻, a.

Examples:

• How many students obtain their top outcome, their two
top outcomes, etc.

• The empirical distribution of ranks.
• How many students are assigned to school A, school B,
etc.
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Positive Equivalence: Bounds
M = Fixed-Endowment Hierarchical Exchange for School Choice
(Papai 2000, Abdulkadiroglu and Sonmez 2003, Pycia and Unver
2011).

P: a distribution on preference profiles that is iid across agents.

Theorem. If ϕ, ψ ∈ M and statistics F is anonymous then:

P (|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| ≤ ϵ) ≥ 1−8 exp
(
− ϵ2N

4|A|2

)
, ∀ℓ ∈ K.

P

 |K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| ≤ ϵ

 ≥ 1−8 exp
(
− ϵ2N

16|A|2

)
.

Similar bounds for:

• Hierarchical Exchange for School Choice (not only fixed
endowment),

• Pareto efficient and Li’s 2017 OSP mechanisms.
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Example: University of California

• 9 campuses admit undergraduates.
• 221,788 applicants in 2017.
• For any coding category of any anonymous statistics,
mechanisms from M differ by less than 10% for at least

1− 8 exp
(
− .1

2 ∗ 221788
4 ∗ 92

)
≈ .991

of possible preference profiles.



Example: Refugees

749′487 refugees and asylum-seekers officially registered in
Germany in 2015.

Suppose we elicit their preferences over Germany’s 16 lands
and run the matching by a mechanism from M.

The choice of the mechanism would impact the coding
categories of any anonymous statistics by less than 10% for at
least

1− 8 exp
(
− .1

2 ∗ 749487
4 ∗ 162

)
≈ .995

of possible preference profiles.



Robustness

A mechanism is robust with ratio c > 0 if changing the report of
one agent affects the allocations of at most c agents.

The following mechanisms are robust with c = |A|:

• Serial Dictatorships
• Abdulkadiroglu and Sonmez (2003) Top Trading Cycles for
School Choice

• Pycia and Unver’s (2011) Fixed-Endowment Trading
Cycles for School Choice.
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Positive Equivalence: Asymptotics

Theorem. ∀ϵ, c > 0 ∃n∗ ∀ |N | ≥ n∗ and F anonymous:

If mechanisms ϕ and ψ are Pareto, strategy-proof, and
c-robust, then:

|K|∑
ℓ=1

∣∣∣Fℓ (≻, ϕ(≻ϕ
))

− Fℓ

(
≻, ψ

(
≻ψ

))∣∣∣ < ϵ.

for at least fraction 1− ϵ of all preference profiles.



Converse

• Asymptotic Positive Equivalence: suffices that a sequence
of aggregate statistics is asymptotically anonymous on
relevant Pareto-efficient allocations.

• If a sequence of statistics FN fails this weaker anonymity
assumption, then the analogue of the Asymptotic Positive
Equivalence fails.
∃ ϵ > 0 ∀ n∗ ∃ N (|N | > n∗) and Pareto and strategy-proof
mechanisms ϕ and ψ such that

|K|∑
ℓ=1

∣∣FNℓ (≻N , ϕ (≻N ))− FNℓ (≻N , ψ (≻N ))
∣∣ > ϵ

for least 1− ϵ fraction of all preference profiles ≻.
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Proof Strategy

1. Prove a normative equivalence of ϕ and ψ.
2. Use concentration theory.



Exchangeable Distributions

A distribution on ΘN is exchangeable if the probability of θN is
the same as the probability of θσ(N) for any permutation
σ : N → N .

Examples

• IID distributions.
• Distributions that are IID conditional on an aggregate
shock.

Exchangeability of preference profile distributions assumed
throughout.
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Normative Equivalence for Standard Mechanisms

Theorem. The population mean and median of any
anonymous statistic do not vary on M.

Proof: builds on a new equivalence result for symmetric
mechanisms (next slide).



Symmetric Mechanisms

A random mechanism L is symmetric if

τ−1 ◦ L ◦ τ = L

for any transposition τ .

Theorem. The distribution over matchings is the same for any
symmetric lottery over mechanisms from M.

For marginal distributions the analogue of this theorem obtains
for all school choice hierarchical exchange mechanisms.

Analogous results for |a| = 1 at all schools: Abdulkadirglu and
Sonmez 1998, Knuth 1996, Pathak and Sethuraman 2011,
Carroll 2014, Lee and Sethuraman 2011, Pycia and Troyan
2019.



Symmetric Mechanisms

A random mechanism L is symmetric if

τ−1 ◦ L ◦ τ = L

for any transposition τ .

Theorem. The distribution over matchings is the same for any
symmetric lottery over mechanisms from M.

For marginal distributions the analogue of this theorem obtains
for all school choice hierarchical exchange mechanisms.

Analogous results for |a| = 1 at all schools: Abdulkadirglu and
Sonmez 1998, Knuth 1996, Pathak and Sethuraman 2011,
Carroll 2014, Lee and Sethuraman 2011, Pycia and Troyan
2019.



Symmetric Mechanisms

A random mechanism L is symmetric if

τ−1 ◦ L ◦ τ = L

for any transposition τ .

Theorem. The distribution over matchings is the same for any
symmetric lottery over mechanisms from M.

For marginal distributions the analogue of this theorem obtains
for all school choice hierarchical exchange mechanisms.

Analogous results for |a| = 1 at all schools: Abdulkadirglu and
Sonmez 1998, Knuth 1996, Pathak and Sethuraman 2011,
Carroll 2014, Lee and Sethuraman 2011, Pycia and Troyan
2019.



Symmetric Mechanisms

A random mechanism L is symmetric if

τ−1 ◦ L ◦ τ = L

for any transposition τ .

Theorem. The distribution over matchings is the same for any
symmetric lottery over mechanisms from M.

For marginal distributions the analogue of this theorem obtains
for all school choice hierarchical exchange mechanisms.

Analogous results for |a| = 1 at all schools: Abdulkadirglu and
Sonmez 1998, Knuth 1996, Pathak and Sethuraman 2011,
Carroll 2014, Lee and Sethuraman 2011, Pycia and Troyan
2019.



Normative Equivalence in Large Markets
Theorem. ∀ϵ, c > 0 ∃n∗ ∀ |N | ≥ n∗ and F anonymous:
If mechanisms ϕ and ψ are Pareto, strategy-proof, and
c-robust then:

E
|K|∑
ℓ=1

|Fℓ (≻N , ϕ (≻N ))− Fℓ (≻N , ψ (≻N ))| < ϵ,

where the expectation is over the iid uniform distribution on all
preference profiles.

For sufficiently large N and for any δ > 0, the same obtains for
any exchangeable distribution P such that

P ({≻N : (∀ ≻) |{i ∈ N :≻i=≻}| > δ |N |}) ≥ 1− ϵ

3
.

Proof: builds on the asymptotic equivalence of symmetric
mechanisms proven by Liu and Pycia 2011.
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Population-Symmetry Duality
ϕ (i,≻) (a)=probability that i obtains a in random mechanism ϕ.

The symmetrization ϕS of mechanism ϕ is given by

ϕS (i,≻) (a) =
∑

σ:N
1−1→ N

1

|N |!
ϕ (σ (i) ,≻σ) (a) .

Duality Lemma. For any exchangeable distribution Λ over
preference profiles ≻, the following are equivalent:

• ∀ anonymous statistics F : EF (≻, ϕ (≻)) = EF (≻, ψ (≻));
• ∀ ≻ in support of Λ, ∀i, a: ϕS (i,≻) (a) = ψS (i,≻) (a).

Analogous dualities for approximate and asymptotic
statements.

Related result for medians of statistics.
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Random Mechanisms

The results extend to:

• random mechanisms;
• asymptotic strategy-proofness.



Priorities: Model

• A finite set T of global priority types
• Priority ranking of two agents is strict iff they have different
priority type.

• An allocation is stable if no pair of agents i and j such that
i has higher priority at the school j is assigned and i
prefers this school over his or her assignment. (For brevity,
no unacceptable schools).



Priorities: Result

Theorem. ∀ϵ, c > 0 ∃n∗ ∀F anonymous:

If there are at least n∗ agents in each priority group and
mechanisms ϕ, ψ are stable, constrained-Pareto, &
strategy-proof then

|K|∑
ℓ=1

|Fℓ (≻, ϕ (≻))− Fℓ (≻, ψ (≻))| < ϵ

for at least 1− ϵ fraction of all preference profiles at which ϕ
and ψ are c-robust.

Notice: local robustness assumption.
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Implications for Market Design

• Non-Anonymous Statistics
• Improving non-anonymous statistics is possible.
• No (or little) adverse effect on anonymous statistics when
we design for non-anonymous ones.

• Anonymous Statistics
• Improving anonymous statistics calls for relaxing the
equivalence assumptions and e.g. eliciting preference
intensity (Hylland and Zeckhauser 1979) or using
observable correlates of agents’ utilility (Leshno and Lo
2018).
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Summary

• Anonymous vs non-anonymous statistics have
qualitatively different properties.

• Any two Pareto-efficient, strategy-proof, and robust
mechanisms generate asymptotically the same
anonymous statistics for asymptotically almost all
preference profiles.

• Normative exact equivalence and meaningful bounds in
positive results.

• Converse: the equivalence requires at least asymptotic
anonymity of the statistics.


