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Abstract

We describe our experience with designing and running a matching market for the Israeli
“Mechinot” gap-year programs. The main conceptual challenge in the design of this market was
the rich set of diversity considerations, which necessitated the development of an appropriate
preference-specification language along with corresponding choice-function semantics, which we
also theoretically analyze to a certain extent. This market was run for the first time in Jan-
uary 2018 and matched 1,607 candidates (out of a total of 2,580 candidates) to 35 different
programs, and has been adopted by the Joint Council of the “Mechinot” gap-year programs for
the foreseeable future.

1 Background

Israeli youth typically graduate from high school at the approximate age of 18 and are then required
to enlist in the military for about two and a half years (currently a bit less for women and a
bit more for men). There are several institutions that offer high-school graduates a “gap year”
before starting their military service, mostly focusing on some combination of educational and
volunteering activities. It turns out that a significant number of youths, especially from higher socio-
economic statuses, are interested in taking such a gap year. In addition to the core educational
and volunteering activities, these gap years typically also help them become more mature and
independent, increase their self-confidence and their ability to get along with their peers, and build
up their character, strengthening them for the challenging military service that lies ahead.1 It seems
that the military also sees a benefit from these gap years, and hence it allows the participants to
postpone their mandatory military service until the end of the gap year.
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This manuscript discusses one of the most significant types of institutions that offer such gap
years, called in Hebrew “Mechinot Kedam Tseva’iyot” קְד¯ÊMצְבָאִיוֹת!) ,(מְכִינוֹת in short “Mechinot”
,(מְכִינוֹת!) and in English “Pre-Military Academies” (where “pre-military” is used in a strictly chrono-
logical sense), abbreviated PMAs in this paper. The PMAs, in general, focus more time on study
than on volunteering, with an emphasis on various issues related to Jewish thought and to Israeli
society, where the study is “for the sake of studying”: with no grades and no certificates. There are
over 50 different PMAs, and these are very heterogeneous: some are religious, some secular, and
some mixed; some are co-ed and some (mostly the religious ones) are single-gender; they have dif-
ferent mixes of activities, different focuses of studies, different philosophical and social approaches
(from purely religious orthodox to very progressive), and, one may comfortably say, quite different
political leanings. Each PMA is independent and is separately run and administered, but they
voluntarily cooperate with each other through “The Joint Council of Pre-Military Academies” (a
cooperation that can be considered quite remarkable considering the extreme range of social and
political leanings represented).2

Let us describe how the admissions process to the PMAs worked before 2018. During the fall
of their senior year of high school, candidates start considering which PMAs they may want to go
to in the following year (as well as several other options, including other types of gap years and
not taking a gap year at all). The most critical part of the admissions process is an actual visit of
the candidate to the PMA, usually spending a weekend there, participating in activities, getting
to know the place, and getting to be known by the PMA staff. These visits go on more or less
continuously during the months from October to January.

The PMAs see this inflow of candidates and build a group for the upcoming year: each PMA has
a target number of candidates that it wishes to accept for the upcoming year — usually between
25 and 100 — which is determined by various constraints, such as physical space and educational
agenda and, perhaps most significantly, by the number of “military-service deferments” granted
by the military (since each candidate must defer his or her service by a year). The considerations
employed by the PMAs are rather complicated and mirror their educational mission. On the
individual level the PMAs naturally desire the “standard qualities” such as willingness to learn
and volunteer, but they also value affinity to their own educational agenda and special character.
More interestingly, most PMAs view their educational agenda also on a societal level, and so see
being a meeting place for of the wide spectrum of the Israeli society a central part of their mission.
The PMAs then build their groups incrementally from October throughout January, accepting
candidates that they desire as these candidates visit the PMA, at each point in time taking into
account not only the candidate himself or herself, but also how he or she “fits into the group
built so far.” This allows each PMA in an online fashion to correct any current gender imbalance,
make sure not to create a concentration of too many candidates from a single high school or small
town, implicitly maintain a wide variety of balances according to different social criteria that the
PMA cares about, as well as various affirmative-action types of policies for various less or more
well-defined fragments of the Israeli society.

So, during the several months of this admissions process (as it ran before our involvement),
what transpired was a distributed online process where candidates continuously visit PMAs, and
then the PMAs continuously accept or reject candidates. This is a difficult distributed task and
indeed it had not been working well: since the PMAs build their group in an online fashion, they
need to know which of the candidates that they accepted so far actually intends to come. This has
led the PMAs to give “exploding offers” to the candidates, where a candidate often has to accept
an offer within days or forfeit his or her place. The candidates find it very difficult to reply to these

2See https://mechinot.org.il/en-us/.
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exploding offers as these come before they have even visited many of the other PMAs (indeed, it was
not uncommon for an attractive candidate to receive such an exploding offer from the first PMA
that they visited) so they do not yet even have a clear picture of where they would like to go. These
two conflicting constraints naturally led to much pressure, requests for extensions, strategic timing
decisions, and ex-post change of heart on all sides. This process has led to significant suboptimality
of the outcome both for the candidates who may need to reject an offer due to having previously
accepted an inferior one, and for the PMAs who need to make acceptance decisions before they
have even seen all of the candidates. If one adds to this the psychological burden since even a
successful candidate will naturally get many rejections and be under significant uncertainty for a
very long time, and additionally the unfortunate fact that there currently is a significant shortage
of slots and so a large number of candidates will not get accepted to any PMA, one can understand
the general dissatisfaction with this original system.

2 Our System

During the year 2017, the authors of this manuscript have approached the Joint Council of PMAs
and suggested switching to a centralized computerized admissions system. As it turned out that
the PMAs were well aware of the difficulties with the existing system, they were rather happy to
do so. However, it was critical that each PMA maintain full educational sovereignty, as well as
maintain an individual relationship with each candidate that they may accept. So the admissions
process for the 2018 PMAs (starting in the fall) was done using a computerized system that was
designed, built, and operated by the authors. This centralized matching excluded the religious
PMAs (that have somewhat different circumstances), as well as a few small PMAs that cater to
special segments of the population. Some of the PMAs offer more than a single “program” differing
in character or in geographic location, and these different programs were viewed as separate PMAs
by the matching system. Altogether the system handled 35 different such programs (administered
by 24 independent PMAs), with a total of 1,760 slots.

The process worked as follows: from October 2017 through January 2018, the candidates visited
the PMAs and “interviewed” there as before in a distributed online manner. However, the PMAs
did not accept or reject any candidate during this period, but rather only noted an evaluation of
the candidate as well as any special attributes that they may care about when “building a group”
(e.g., city of residence, gender, being religious, etc.) Similarly, the candidates did not need to
accept or reject any PMA, but simply noted to themselves how they evaluate each PMA that they
visited. During the first half of January 2018, each candidate had to login into a system that we
deployed and enter his or her ranking of the visited PMAs. Similarly, by mid-January, every PMA
had to enter its preferences into the system using a specially formatted Excel spreadsheet, which
we describe below. Figure 1 shows a screenshot of the candidates’ graphical user interface that
allows them to create a ranking of PMAs by dragging and dropping their icons into an ordered
list.3 Figure 2 shows an example of a spreadsheet by which PMAs describe their preferences. Once
the preferences of all of the candidates and PMAs were in the system, a variant of the Deferred
Acceptance (DA) algorithm of Gale and Shapley (1962) was used to compute an assignment of
candidates to PMAs.

The main new ingredient that our system had to handle was the large set of “diversity” con-
straints that guide the PMAs when “building a group.” There is a significant literature that
attempts to deal with various types of “quotas” and diversity or affirmative-action-type constraints

3The candidates’ graphical user interface was adapted from a similar system used for the Israeli Psychology
Master’s Match (Hassidim et al., 2017b).
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Figure 1: The graphical user interface by which a candidates specifies his or her preferences

in Gale-Shapley-like matching markets. A very popular line of work considers quotas on institutions
or on groups of institutions. This includes minimum quotas for specific institutions (e.g., Biró et al.,
2010; Fragiadakis et al., 2016) as well as quotas on groups of institutions (e.g., Biró et al., 2010;
Kamada and Kojima, 2015, 2018, and the references therein). In contrast, we are concerned not
with inter-institution constraints on the number of applicants allowed in a set of institutions, but
rather with intra-institution constraints for the number of applicants of a specific population within
a specific institution. Such constraints in the form of minimum and maximum quotas were studied
by Huang (2010) and subsequently Fleiner and Kamiyama (2012). Both of these papers consider
a model with hard maximum and minimum quotas for every population in every institution. Such
hard minimum quotas mean that invariably, in their model, no stable matching necessarily exists
and so they focus on the study of whether a stable matching exists. Our problem differs from
theirs since having had to actually build a matching mechanism, we had to output a matching
even when no stable matching that perfectly matches all constraints exists. Considering affirmative
action scenarios with two disjoint and complementing populations — the “majority students” and
the “minority students,” Kojima (2012) use maximum quotas on the “majority students” pop-
ulation to effectively reserve seats for the “minority students” without explicitly using minimum
quotas, thus avoiding such impossibilities. A more subtle approach to the two-population majority-
minority model, which avoids some inefficiencies (such as unallocated slots) that manifest in this
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Number of Slots

PopulationMinimum TargetMaximum Quota

(a) Populations input sheet

Titles generated according to
populations defined in sheet above

NameIDRanking

(b) Candidate input sheet

Figure 2: A spreadsheet by which a PMA describes its preferences (with titles translated to English)

maximum-quotas approach, is taken by Hafalir et al. (2013): their approach is for each school to
give priority for any minority student until the school’s “minority reserve” is filled, and beyond
that to not prioritize based on populations. The requirements of the PMAs, though, involve far
more than only two populations, and also involved intersecting populations. It indeed seems that
the richness of the balance requirements that the PMAs desire does go significantly beyond previ-
ous analysis. A survey of the above and other approaches for handling “quotas” and diversity or
affirmative-action-type constraints in stable matching markets can be found in a recent paper by
Nguyen and Vohra (2017).4

Our approach is the following: we devise a “language” that allows the PMAs to express their
concerns when choosing among a group of candidates. In our system, all quota, balance, diversity,
and affirmative-action constraints are expressed within the preferences of each of the PMAs sepa-
rately (in the terminology of Nguyen and Vohra, 2017 this is the “modifying priorities” approach).
As is common for such “bidding languages” (see, e.g., Nisan, 2006), the language must strike a
compromise between different concerns: being expressive enough as to handle the real preferences
of the PMAs on the one hand, and being simple enough to be handled well on the other hand. This
simplicity in our case has a triple meaning: algorithmic simplicity of running the match; strategic

4See also the very recent paper of Ágoston et al. (2018) for an alternative approach based on Integer Programming.
While the objective that their algorithm solves for is very clear and flexible, our algorithm enjoys incentive properties
(see Theorem 4 below) that were crucial in our case, and our algorithm is also somehow more transparent in its
ability to answer questions along the lines of “why did candidate c not end up at PMA m?” — questions that due
to being managed independently of each other, many PMAs demanded answers to immediately following the match.
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simplicity of handling the incentives induced; and cognitive simplicity so that the humans running
the PMAs can actually use it well.

Our language, encoded in the excel spreadsheet format used by the PMAs depicted in Figure 2,
is the following: each PMA defines a set of “populations” that it cares about (e.g., “gender,”
“religiousness,” “city”). For each population the PMA is allowed to define a maximum quota as
well as minimum target. In addition to ranking the candidates individually, the set of populations to
which each candidate belongs is specified.5 Now, the interpretation of such a preference, which could
be considered a significant generalization of the above-mentioned “minority reserves” approach of
Hafalir et al. (2013) (in the two-population majority-minority model), is the following: choose the
top candidates according to their individual ranking, subject to the hard constraint that the set of
candidates from any given population never exceeds the population’s maximum quota, and strictly
preferring (in a way that overrides individual ranking) candidates that belong to any population
whose minimum target has not been reached. There are several issues that need be specified before
this becomes fully formal, and these are specified in Algorithm 1. It is worthwhile to mention
though that in terms of cognitive simplicity, virtually none of the PMAs showed any desire to dig
into these issues beyond this (non-algorithmic) general verbal interpretation, and were happy with
the stability objective phrased in terms of that choice function.

Of note in Algorithm 1 is our design decision to give the same “promotion” in the preferences of a
PMA to candidates that belong to any (positive) number of populations whose minimum target has
not been reached, regardless of the (positive) number of such populations to which such a candidate
belongs. This decision was guided by the desire to prevent a systematic phenomenon where each of
only a handful of candidates “fill up” many affirmative action slots, which could have resulted in a
matching system biased toward having as few candidates as possible benefit from such slots. This
design decision required some care, though: most PMAs had a separate pool of slots for men and for
women; some of these PMAs initially expressed their gender-population preferences as, e.g., “Male”
population with minimum target = maximum quota = 25, and “Female” population with minimum
target = maximum quota = 25. The problem with expressing their gender-population preferences
this way is that its effect is to completely ignore the minimum targets of all populations, as any
candidate who does not violate any maximum quota (and specifically, who does not violate their
gender-population maximum quota) would have been given promotion since its gender minimum
target would not have yet been met. For this reason, we advised these PMAs to drop the minimum
targets that they set for each of the gender populations, leaving only the maximum quotas in place
and resulting in proper promotion of candidates who help with “real” minimum targets.6 (For an
alternative choice function that does more significantly promote candidates that belong to a higher
number of populations whose minimum target has not been reached, see Algorithm 2.)

5As can be seen in Figure 2b, populations can be either “binary” (e.g., “Male” or “Musician”) or “multiple-
valued” (e.g., “School” or “Region”). For the latter, the minimum target and maximum quota are applied to each
“value” (e.g., specific school or region) separately. So, a multiple-valued population with, say, 10 possible values, is
no more than a shorthand for 10 disjoint binary populations. The ability to have multiple-valued populations is an
example of a feature which, despite not extending the expressiveness of the bidding language from a computer-science
perspective, makes the language much easier to use for the humans who input the data (and is less error-prone in
terms of, e.g., accidentally skipping a line), and in fact is a feature that we added following the request of several
PMAs while the system was already operational.

6In proof: for the matching of the following year, which is planned to take place in January 2019, we tweaked
Algorithm 1 to distinguish gender populations from all other populations, so that specifically a candidate that only
helps with a minimum target for a gender population is given less promotion than a candidate who helps with a
minimum target for any other population, but more promotion than a candidate who helps with no minimum target.
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input : Set C of candidates to choose from
output: Set Ĉ of candidates chosen from C
// Initialization

Ĉ ← ∅; // Chosen candidates

// First pass: give higher priority to candidates who help reach minimum

targets

foreach candidate c ∈ C, from highest-ranked to lowest-ranked do

if c is in some population whose minimum quota is not met by Ĉ then

if adding c to Ĉ does not violate any maximum quota then

Ĉ ← Ĉ ∪ {c};
end

end

end
// Second pass: all other candidates

foreach candidate c ∈ C \ Ĉ, from highest-ranked to lowest-ranked do

if adding c to Ĉ does not violate any maximum quota then

Ĉ ← Ĉ ∪ {c};
end

end

Algorithm 1: The choice function of a PMA, specifying for each set C of candidates, which
subset Ĉ ⊆ C of these candidates were to be chosen by the PMA (according to the preferences
declared in its Excel spreadsheet) if that PMA had free choice from C (and only from
C). When traversing over candidates from highest-ranked to lowest-ranked, ties are broken
randomly but consistently across schools (i.e., single tie-breaking, see Abdulkadiroğlu et al.,
2009).

2.1 Algorithm and Theoretical Barriers

As mentioned above, our matching algorithm was a variant of the DA algorithm of Gale and Shapley
(1962) that uses the choice function defined in Algorithm 1, and is described in Algorithm 3. This
was motivated by the common view that stability of the mechanism is essential for its success and
survival (see, e.g., Roth, 2002). Furthermore, when preferences are “well-behaved” (for example,
responsive or substitutable), DA is strategyproof for the proposing side (Dubins and Freedman,
1981; Roth, 1982).7 The preferences of the candidates (who are the proposing side in our implemen-
tation) fit exactly the scenario of Gale and Shapley (1962): a simple preference order on (a subset
of) the PMAs. The preferences of the PMAs, however, are significantly more complex: beyond a
preference order on the candidates, they also have maximum quotas and/or minimum targets on
various populations. Notably, these preferences do not necessarily satisfy substitutability (Hatfield
and Milgrom, 2005)8, nor can they be described as slot-specific priorities (Kominers and Sönmez,
2016). Can the desirable theoretic guarantees of the DA algorithm be extended to this scenario as
well?

7Of course, that does not mean that people report their preferences truthfully, see Hassidim et al. (2017a) and
references therein.

8Nor of course do they satisfy unilateral substitutability (Hatfield and Kojima, 2010) or substitutable completabil-
ity (Hatfield and Kominers, 2015), as both of these coincide with substitutability for matching markets without
contracts, such as the PMAs market.
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input : Set C of candidates to choose from
output: Set Ĉ of candidates chosen from C
// Initialization

Ĉ ← ∅; // Chosen candidates

R̂← ∅; // Rejected candidates

while Ĉ ∪ R̂ 6= C do

foreach candidate c ∈ C \ {Ĉ ∪ R̂} do

nc ← the number of populations of c whose minimum target is not met by Ĉ;
end
c← the highest-ranked candidate in the set arg maxc∈C\{Ĉ∪R̂}{qc};
if adding c to Ĉ does not violate any maximum quota then

Ĉ ← Ĉ ∪ {c};
else

R̂← R̂ ∪ {c};
end

end

Algorithm 2: An alternative choice function for a PMA, which gives higher priority to can-
didates that belong to a higher number of populations whose minimum target has not been
reached. (In the interest of readability, we avoided any computational speedups such as
updating the values of nc in every iteration of the while loop instead of recalculating them,
keeping the candidates sorted and updating their order whenever any nc value changes, etc..)

As noted above, Huang (2010) studies similar constraints, however in that paper the minimum
constraints are hard and binding. In the absence of (positive) minimum targets/quotas, however,
our model/choice function coincides with that of that paper. That paper focuses on whether or not
a stable matching exists, and as that paper observes, this turns out to depend on the structure of
overlap of the different populations. If the class of populations for each institution is laminar (i.e.,
every two populations are either disjoint or one contains the other), then that paper shows that in
the absence of minimum quotas (and so, equivalently, in the absence of minimum targets in our
model), a stable matching always exists. Furthermore, that paper shows that in the presence of
minimum quotas, while laminarity obviously cannot guarantee the existence of a stable matching,
laminarity does give rise to a polynomial-time algorithm for deciding whether a stable matching
exists. In the absence of laminarity, as they show, such a decision turns out to be NP-hard. As
noted above, we consider “soft” minimum targets rather than their “hard” minimum quotas. We
show for the choice function defined in Algorithm 1 that laminarity of the populations, in addition
to a certain condition on the structure of those populations that also have minimum targets (and
not merely maximum quotas), guarantees that “everything works”: a stable matching exists, and
can be efficiently found in a strategyproof manner.

Theorem 1. If the set of populations of each of the PMAs (separately) is laminar, and furthermore
for each PMA the populations that have (positive) minimum targets are pairwise disjoint, then
Algorithm 3 (with Algorithm 1 as the choice function of the PMAs) produces a stable matching
(with respect to Algorithm 1) and is strategyproof for the candidates.

Theorem 1 can be seen as significantly generalizing aspects of the “minority reserves” approach
of Hafalir et al., 2013, where there are only two disjoint populations, only one of which has a
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input : Set M of PMAs with preferences, set C of candidates with preferences
output: A feasible matching of (a subset of) C to (slots of) M
repeat

// A single deferred-acceptance round

foreach candidate c ∈ C do
c applies to the PMA that c ranks highest of those who have not (yet) rejected c;

end
foreach PMA m do

C ← the set of candidates that applied to m in this round;

Ĉ ← the set of candidates chosen from C via m’s choice function (Algorithm 1);

m rejects all candidates in C \ Ĉ;

end

until no candidate was rejected in this round ;
// Match according to the last round above

foreach candidate c ∈ C do
Match c with the PMA to which it applied in the last round above;

end

Algorithm 3: Deferred-Acceptance using the choice function defined in Algorithm 1.

minimum target (and so in this case the population structure is laminar and in a trivial sense the
populations that have positive minimum targets are pairwise disjoint). Theorem 1 and the other
theorems stated in this section are proved in Section 3. Theorem 1 is in fact a corollary of a more
general theorem that we prove, which shows that for the choice function defined in Algorithm 2
(rather than that defined in Algorithm 1), a weaker condition on the structure of the populations
that have minimum targets suffices.

Theorem 2. If the set of populations of each of the PMAs (separately) is laminar, and furthermore
for each PMA the set of populations that have (positive) minimum targets is a union of pairwise-
disjoint chains,9 then Algorithm 3 with Algorithm 2 in lieu of Algorithm 1 as the choice function
of the PMAs produces a stable matching with respect to Algorithm 2 and is strategyproof for the
candidates.

The key idea behind the proof of Theorem 2 (and hence Theorem 1) is to show that the choice
function defined by Algorithm 1, under the assumed population structure, is substitutable and
satisfies the law of aggregate demand. With these two properties in hand, Theorem 2 (as well as
Theorem 1) follows from the analysis of Hatfield and Milgrom (2005). In fact, in the absence of
minimum quotas (in which case Algorithm 1 and Algorithm 2 coincide with each other and with the
choice function of Huang, 2010) the beginning of our proof of Theorem 2 constitutes not only a full
concise alternative proof of the theorem of Huang (2010) that in the absence of any minimum quotas
a stable matching exists, but also a proof that the choice function is substitutable and satisfies the
law of aggregate demand, which imply many additional desirable properties (Roth, 1984; Hatfield
and Milgrom, 2005) including that DA is strategyproof.10 To see that Theorem 1 indeed follows
from Theorem 2, observe that a pairwise-disjoint set is a special case of a union of pairwise-disjoint

9Equivalently, if a population p has a (positive) minimum quota and contains two populations q ( p and r ( p
that are incomparable (i.e., q \ r 6= ∅ and r \ q 6= ∅), then it is not the case that both q and r have (positive) minimum
quotas.

10One of these additional properties is also the existence of a lattice structure for the set of stable matchings. See
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chains, and that when all minimum-target populations are pairwise disjoint, Algorithms 1 and 2
coincide. As neither condition on the structure of the minimum-target populations is actually fully
satisfied by the PMAs’s populations, as noted above we opted to implement Algorithm 1 as the
choice function despite its slightly worse theoretical properties demonstrated above. The very few
individual PMAs that did inquire more about the details of the choice function were very content
with the selection of choice function, and in particular from it potentially allowing more candidates
to benefit from the priority slots that they allocated.11

Unfortunately, in our setting neither are the populations in any sense laminar as in Theorem 1
or Theorem 2, not do the minimum-target populations satisfy the respective structural properties.
For example, a “geographic population” and a “religion population” typically neither are disjoint
nor have one containing the other. As noted above, Huang (2010) has shown that even without any
minimum targets/quotas, for nonlaminar populations it is possible that no stable matching exists.
In this spirit, we show that dropping the condition on the structure of populations with minimum
targets similarly destroys the desired theoretical properties:

Theorem 3. If each PMA has laminar populations, however its minimum-target populations can
intersect, then it is possible that no stable matching (with respect to the choice function defined in
Algorithm 1) exists. Furthermore, this holds even if the set of minimum-target populations of each
PMA is guaranteed to be a union of pairwise-disjoint chains.

Nevertheless, based on our understanding of the problem domain, as well as on computer
simulations, we believed that Algorithm 3 (with Algorithm 1 as the choice function of the PMAs)
would give rather good results in practice, and this is what we set on to implement. The big
question was to what extent can we evaluate the quality of this algorithm and support this belief.
We now turn to discuss this, while paying special attention exactly to the properties that Theorem 3
showed we cannot fully achieve: stability and strategyproofness.

2.2 Evaluating our Algorithm, and a Final Tweak

The level of strategyproofness is difficult to evaluate algorithmically, and an ex-post evaluation is
also less satisfying. For this we were able to formally prove that the two main types of manipulation
that our candidates were considering are not profitable. Informal conversations with candidates and
with parents of candidates while we were designing the system suggested that they only considered
or worried about the following two types of manipulation, each of which was brought up by quite
a few candidates/parents:

• Truncation: many candidates were worried that listing multiple PMAs in their preference list
may cause the system to match them to a less preferred option rather than a more preferred
one that they would have gotten had they not allowed the system to use the less preferred
option.

• Sure thing : many candidates knew that they have a “guaranteed slot” in a certain PMA, i.e.,
they were assured that the PMA did not rank above them more candidates than it has slots

Fleiner and Kamiyama (2012) for a proof, under strict minimum quotas in a generalization of the model of Huang
(2010), of this property in particular.

11This argument, which as noted above led us to choose Algorithm 1 as the choice function of the PMAs is indeed
somewhat less convincing in a context (unlike ours) in which the set of minimum-target populations is in fact a
union of pairwise-disjoint chains. Indeed, such a context it is not possible to have two intersecting minimum-target
populations p and q (say, each with a minimum target of one) and two candidates c and d such that c belongs to
p but not to q, and d belongs to q but not to p. Indeed, given such a population structure, if c belongs to p and d
belongs to q, invariably one of c and d belongs to both p and q.
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(for any population). Such candidates were often worried that they could lose the guaranteed
slot unless they ranked this certain PMA at the top even when they really preferred another
PMA.

We prove formally that neither of these two manipulations can ever be profitable.12

Theorem 4. Regardless of the population structure, Algorithm 3 has the following incentive prop-
erties for every candidate and every profile of preferences, regardless of whether we use Algorithm 1
or Algorithm 2 as the choice function of the PMAs:

a. If when specifying a certain preference list, the candidate is assigned to a certain PMA, then
the candidate will be assigned to the same PMA even if she extends her original preference
list by appending more PMAs to the end of the list.

b. If the candidate is guaranteed to be assigned to a certain PMA if the candidate ranks it first,
where “guaranteed” means that this would happen for any profile of preference lists of the
other candidates,13 then if the candidate specifies any preference list that contains this PMA,
the candidate is still guaranteed to either be assigned to that PMA or to one that the candidate
placed higher on her preference list.

To measure the extent of the lack of stability of an assignment (once such is reached), we
turned to the standard measure of blocking pairs: pairs of candidate c and PMA m such that
a) c prefers m over the PMA matched to c by the algorithm, and b) if m were to choose from
the set of all candidates matched to it and in addition c, then the choice of m would include c.
(We also used other related measures such as the number of candidates involved in blocking pairs).
In simulations with various natural distributions, we have found that typically there are very few
blocking pairs, which furthermore involve only a small number of candidates. (This was borne out
on the real data — see below.) This may be contrasted with the outcome of the Boston mechanism
(also known as the Immediate Acceptance algorithm, see Abdulkadiroğlu et al., 2005), which does
not attempt to achieve stability, and so typically results in at least an order of magnitude more
blocking pairs — giving a sneak peek into the next section, we note that on our real world data
the Boston algorithm would have resulted in 147 blocking pairs, while our algorithm resulted in 10.
One specific type of blocking pair that our simulations showed that Algorithm 3 produces deserves
special discussion: a blocking pair that can be resolved without harming any candidate. Such a
blocking pair involves a PMA m that has not fulfilled its quota and a candidate c (who may be
unmatched or matched to a PMA that he or she ranked below m) such that c can be matched
to m without rejecting any candidate currently matched to m (equivalently, the choice function
of m, when applied to the set that includes all candidates assigned to m as well as c, chooses
this entire set). Such a blocking pair can be easily resolved: simply transfer/assign c to m. Since
such a resolution of this blocking pair constitutes a Pareto improvement for all candidates, then
iteratively resolving any such pairs until no more such pairs exist cannot cause an infinite loop.
Observing this, we heuristically added a final stage to our algorithm: a Pareto-improvement stage
described in Algorithm 4. While we were able to contrive an example where Theorem 4(a) breaks
for Algorithm 4 due to the added Pareto-improvement stage (Theorem 4(b) continues to hold even
for Algorithm 4, though), we have decided to nonetheless add this stage as it seems that such
examples are delicate enough so that no candidate possesses enough information as to be able to
plan a successful truncation manipulation.

12For a formal and systematic treatment of a conceptually similar approach of ruling out “obvious manipulations,”
see the recent paper by Troyan and Morrill (2018).

13Specifically, if the choice function of that PMA always chooses this candidate from any set of candidates that
contains it.
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input : Set M of PMAs with preferences, set C of candidates with preferences
output: A feasible matching of (a subset of) C to (slots of) M
// Stage 1: Deferred acceptance

Compute a matching via Algorithm 3;
// Stage 2: Pareto improvement

while ∃ blocking pair (m, c) s.t. c can be matched to m without rejecting any candidate do
m← some PMA that is part of a blocking pair as defined above;
c← the candidate ranked highest by m s.t. (m, c) is a blocking pair as defined above;
Match c with m (breaking any previous match of c with another PMA, if existed);

end

Algorithm 4: The algorithm that we ran, consisting of deferred acceptance (Algorithm 3)
and an added Pareto-improvement stage.

2.3 Epilogue

This market was run (using Algorithm 4) for the first time in January 2018. A total number of
35 different programs (administered by 24 independent PMAs) offered a cumulative 1,760 slots
over which 2,580 candidates competed. The incentive properties of Theorem 4 were explained
to the candidates before ranking, using a video that we prepared,14 and in a survey conducted
following the match, 92% of candidates reported that they indeed ranked truthfully. Our system
matched 1,607 candidates (to 91% of available slots), 85% of whom were matched to their top
choice. (Furthermore, preliminary results suggest that many of the remaining slots were quickly
filled in a distributed manner following the main run of the algorithm.) The Pareto-improvement
stage resolved one blocking pair: a candidate who would have been unassigned were it not for
this stage was assigned to a PMA that previously rejected him or her. Following this stage, out
of the 2580 × 35 possible candidate-PMA pairs, only 10 were blocking. Out of these 10, one was
only theoretically problematic as it was only blocking according to our randomized tie-breaking
rather than with respect to the real reported (weak) preferences. The 9 remaining blocking pairs
all involved the same PMA and the same “eviction candidate” (the candidate that is to be evicted
from this PMA for this blocking pair to be resolved), and all of these pairs were blocking due
to one population of that PMA being one candidate short of meeting its minimum target. The
candidates in all 9 of these blocking pairs were ranked by that PMA at least 2 tiers below the
“eviction candidate” who was ranked at the highest tier, and so since the minimum target of the
relevant population was somewhat of a soft target (“at least 10 slots for a certain type of geographic
population,” of which 9 were allocated), it is very likely that the PMA would have decided to not
resolve any of these blocking pairs even if it could have. The Joint Council of PMAs decided to
adopt our system for the foreseeable future.

3 Proofs

Proof of Theorem 2. We will show that for the assumed population structure, the choice function
from Algorithm 2 is substitutable and satisfies the law of aggregate demand. By the analysis of
Hatfield and Milgrom (2005), this will imply the theorem. More specifically, we will show that for
every candidate set C and for every c ∈ C, if we denote by Ĉ the set chosen from C by a given

14See timestamps 1:17–3:04 in https://www.youtube.com/watch?v=xt4B2Xu3FvE.
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input : Set C of candidates to choose from
output: Set Ĉ of candidates chosen from C
// Initialization

Ĉ ← ∅; // Chosen candidates

n← the number of populations with a (positive) minimum target;
for i← n to 0 by descending order do

foreach candidate c ∈ C, from highest-ranked to lowest-ranked do

if c is in n populations whose minimum quota is not met by Ĉ then

if adding c to Ĉ does not violate any maximum quota then

Ĉ ← Ĉ ∪ {c};
end

end

end

end

Algorithm 5: Equivalent implementation of Algorithm 2 (along the lines of the implementa-
tion of Algorithm 1) that is traced, in parallel for two input candidate sets, in the proof of
Theorem 2.

PMA and by Ĉ ′ the set chosen from C \ {c} by the same PMA (with the same preferences), then
either Ĉ ′ = Ĉ \ {c} or Ĉ ′ = (Ĉ \ {c}) ∪ {d} for some d ∈ C. This will in particular imply that
Ĉ \ {c} ⊆ Ĉ ′ (substitutability) and that |Ĉ ′| ≤ |Ĉ| (law of aggregate demand).

In this proof we will trace the invocation of Algorithm 2, in parallel both for the input C, which
we will call the “original run” of the algorithm, and for the input C \ {c}, which we will call the
“new run” of the algorithm. To be more specific, we consider the equivalent implementation of
Algorithm 2 that is given in Algorithm 5, and trace the corresponding iterations of the double-loop
in both runs. We will refer to a single iteration of the inner loop as a step of the algorithm. These
two runs have the same candidates chosen at the same steps up until candidate c is considered and
chosen in the conditional in the original run. At that point in the original run candidate c is chosen,
while in the new run it is not chosen (as it is not considered, since it is not in the set of candidates
to choose from). From that point onward, as long as the same candidates are chosen in both runs
and in the same steps, for any population the number of chosen candidates from this population in
the new run is less than or equal to the same number in the old run. Therefore, either both runs
accept the exact same candidates, in which case Ĉ ′ = Ĉ \{c}, or the chronologically next difference
in chosen candidates between both runs is that some candidate d is chosen in the new run but not
in the corresponding step in the original run. We will continue the proof by induction over the
number of candidates chosen (say, in the new run) until the step in which d is chosen, where the
induction is in decreasing order (so formally, the induction is over |C| minus this number).

Since in the original run d is not chosen at the same step in which she is chosen in the new
run, this is either because she violates the maximum quota of a population to which c belongs,
or she does not receive as high a promotion in the new run because adding c satisfies a minimum
target for some population to which d belongs. Let us first consider the former case. In this
case, adding d in the new run causes the number of chosen candidates from that maximum-quota
population p to equal its maximum quota (as adding c does in the original run). So, after the step
in which d is added in the new run, in neither run will candidates from population p be chosen.
We claim therefore that the same candidates are chosen at the same steps in both runs from that
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point onward. This can be seen by induction: for any candidate not from p (as no more candidates
from p are chosen) considered at any time after d is chosen in the new run, we claim that for each
population q to which this candidate belongs, the same number of candidates from q are chosen in
both runs by that time. Indeed, since this candidate is not from p, by laminarity either population
q is disjoint from p or it contains p, so, since by the induction hypothesis the only difference between
the sets of chosen candidates in both runs by that time is that c is chosen in the original run while
d is chosen in the new run, then the same number of candidates from q have been chosen in either
run, so the candidate at that time is either chosen in both runs or chosen in neither run. Therefore,
in this case Ĉ ′ = (Ĉ \ {c}) ∪ {d} and we are done.15 In the rest of this proof we will therefore
consider the case in which d is not chosen in the original run at the same step in which she is
chosen in the new run because adding c satisfies a minimum target for some population to which
d belongs. In particular, we note that in this case c and d share a minimum-target population.

If Ĉ ′ = (Ĉ \ {c})∪{d}, then we are done. So, assume that this is not the case, and we will look
at the next chronological difference (which by this assumption must exist) in acceptances after the
step in which in the new run d is chosen. We reason by cases based on whether this difference is
for a candidate e to be chosen in the original run but not in the corresponding step in the new run,
or for a candidate e to be chosen in the new run but not in the corresponding step in the original
run.

Consider first the case in which a candidate e is chosen in the original run but not
(at the corresponding step at least) in the new run. Assume for contradiction that e 6= d.
Since in the new run e is not chosen in the step in which it is chosen in the original run, this is
either because it violates the maximum quota of a population to which d but not c belongs, or it did
not receive as high a promotion in the new run because adding d satisfies more minimum targets
for populations to which e belongs than adding c does. Either way, e shares a population with d to
which c does not belong. Therefore, by laminarity of the population structure, any population that
contains c and d also contains e, and any population that contains c and e also contains d. So, the
minimum-target population that we have shown that c and d share also contains e. Therefore, c, d,
and e share a minimum-target population, and so by the assumption on the structure of minimum-
target populations, these three candidates belong to the same minimum-target population chain.

We claim that in any step from the time at which c is chosen in the original run and until the
end of each run separately, d and e are in the exact same number of populations whose minimum
targets are at that step not yet met. Indeed, if at any step d (resp. e) were in more such populations
than e (resp. d), then since these two candidates belong to the same minimum-target population
chain, this means that d (resp. e) belongs to a deeper population in that chain than e (resp. d),
and that the minimum target of this “deeper” population is not yet met at that step. Since any
population that contains c and d also contains e (resp. since any population that contains c and e
also contains d), and since all three candidates belong to that minimum-target population chain,
this means that d (resp. e) belongs to a deeper population in that chain than also c, and that the
minimum target of this “deeper” population is not yet met at that step. Since the minimum target
of this “deeper” population is not yet met at that step, it is also not met at any previous step. In
particular, it is not met just before c is chosen in the original run (as the runs are identical before
c is added), and therefore in the beginning of that step d (resp. e) is in more populations whose

15As mentioned in Section 2.1, the proof of Theorem 2 up until this point, when applied in the absence of minimum
quotas (in which case Algorithm 1 and Algorithm 2 coincide with each other and with the choice function of Huang,
2010), constitutes not only a full concise alternative proof of the theorem of Huang (2010) that in the absence of
any minimum quotas a stable matching exists, but also a proof that the choice function is substitutable and satisfies
the law of aggregate demand, which implies many additional desirable properties (Roth, 1984; Hatfield and Milgrom,
2005) including that DA is strategyproof.
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minimum target is not yet met than c is, and so d (resp. e) should have been chosen even before
c, as choosing it would not have violated any maximum quotas, since d is chosen later in the new
run and added to a superset of the same chosen set of candidates without violating any maximum
quotas (resp. since e is later chosen in the original run). This is a contradiction, and so indeed
in any step from the time at which c is chosen in the original run and until the end of each run
separately, d and e are in the exact same number of populations whose minimum targets are at
that step not yet met.

Since adding e does not violate any maximum quotas when it is chosen in the original run,
adding it earlier in the original run, just before d is chosen in the new run, would not have violated
any maximum quotas either, and so, since in the corresponding step in the new run the set of
already-chosen agents is smaller, adding e in the new run at that step would not have violated any
maximum quotas either. Since at that step d and e are in the exact same number of populations
whose minimum targets are not yet met, and since d is chosen at that step and e is not added
before even though both additions are feasible in terms of not violating any maximum quotas, we
conclude that the given PMA prefers d to e.

Since e is chosen in the original run when d is not (yet) chosen, since at that step d and e
are in the exact same set of populations whose minimum targets are not yet met, and since the
given PMA prefers d to e, this means that choosing d at that step would have violated a maximum
quota for a population to which e does not belong. Since any population to which c and d belong
also contains e, this means that neither does c belong to this maximum-quota population, and so
choosing d at that step (of the original run) would have violated the same maximum quota even if
the set of already-chosen candidates at the time were the same set only with c removed, however
this set with c removed is precisely the set of already-chosen candidates in the corresponding step
in the new run, and d is chosen in that step in that run, so no maximum quotas are violated by
adding d to this set — a contradiction. So, e = d.

Immediately following the step in which e = d is chosen in the original run, the sets of chosen
candidates in both runs differ only by c being only chosen in the first run. At this point we are either
done if no more differences in acceptances between the two runs occur, or (by the same reasoning
as in the beginning of this proof, since for any population, the number of chosen candidates from
this population in the new run is less than or equal to the same number in the old run), the next
chronological difference is for a candidate d′ to be chosen in the new run but not in the old run. In
this case by the induction hypothesis we are also done.

We now consider the case in which a candidate e is chosen in the new run but not
(at that point at least) in the original run. We will complete the proof by showing that this
case leads to a contradiction. Since in the original run e is not chosen in the step in which it is
chosen in the new run, this is either because it violates the maximum quota of a population to
which c but not d belongs, or it does not receive as high a promotion in the original run because
adding c satisfies more minimum targets for populations to which e belongs than adding d does.
Either way, e shares a population with c to which d does not belong. Therefore, by laminarity of
the population structure, any population that contains c and d also contains e, and any population
that contains d and e also contains c. So, the minimum-target population that we have shown that
c and d share also contains e. Therefore, c, d, and e share a minimum-target population, and so by
the assumption on the structure of minimum-target populations, these three candidates belong to
the same minimum-target population chain.

We claim that in any step from the time at which c is chosen in the original run and until the
end of each run separately, e is in at least as many populations whose minimum targets are at that
step not yet met as d is. Indeed, if at any step d were in more such populations than e, then since
they belong to the same minimum-target population chain, this means that d belongs to a deeper
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population in that chain than e, and that the minimum target of this “deeper” population is not
yet met at that step. Since any population that contains c and d also contains e, and since all three
candidates belong to that minimum-target population chain, this means that d belongs to a deeper
population in that chain than also c, and that the minimum target of this “deeper” population is
not yet met at that step. Since the minimum target of this “deeper” population is not met at that
step, it is also not met at any previous step. In particular, it is not met just before c is chosen in
the original run (as the runs are identical before c is added), and therefore in the beginning of that
step d is in more populations whose minimum target is not yet met than c is, and so d should have
been chosen even before c, as choosing it would not have violated any maximum quotas, since d is
chosen later in the new run and added to a superset of the same chosen set of candidates without
violating any maximum quotas. This is a contradiction, and so indeed in any step from the time
at which c is chosen in the original run and until the end of each run separately, e is in at least as
many populations whose minimum targets are at that step not yet met as d is.

Since e is chosen after d in the new run, adding it at any time before d is chosen would not
have violated any maximum quotas either. Since at that step e is in at least as many populations
whose minimum targets are not yet met as d, and since d is chosen at that step and e is not added
before even though both additions are feasible in terms of not violating any maximum quotas, we
conclude that the given PMA prefers d to e.

Since any population that contains c and d also contains e, and any population that contains d
and e also contains c, the set of populations that contain c and d is precisely the same as the set of
populations that contain d and e (as both of these are precisely the same as the set of populations
that contain c, d, and e).

Consider the original run in the step in which e is chosen in the new run. Adding e in this
step in the new run does not violate any maximum quotas. Therefore, adding d in the same step
in the original run would not have violated any maximum quotas, because any maximum quotas
violated by this would have still been violated even if the set of chosen candidates at the time were
the same set with c replaced by e (since the populations that contain c and d are the same as the
populations that contain d and e), however in the corresponding step in the new run, this set with
the addition of d is precisely the set of chosen candidates once e is chosen, and so no maximum
quotas are violated by it.

Still considering the step in the which e is chosen in the new run, we now claim that the number
of populations whose minimum targets are at that step in the original run not met and to which d
belongs, is the same as the number of populations whose minimum targets are at that step in the
new run not met and to which e belongs. To see this, we first note that any population that counts
toward the former number must have c in addition to d in it (otherwise d is deeper than c in the
chain of minimum-target populations to which they both belong, and furthermore the minimum
target of this population is not yet met also just before c is chosen in the original run, and so
d should have been chosen before that in that run), and any population that counts toward the
latter must have d in addition to e it (otherwise e is deeper than d in the chain of minimum-target
populations to which they both belong, and furthermore the minimum target of this population is
not yet met also just before d is chosen in the new run, and so e should have been chosen before
that in that run). Therefore, since the set of populations that contain c and d is precisely the same
as the set of populations that contain d and e, and both of these are precisely the same as the set
of populations that contain c, d, and e, only populations that contain c, d, and e count toward any
of these two numbers. Now, each of these populations can be tested to count toward the former
number by counting the number of chosen candidates at that step (in the original run), except for c,
that are in that population, adding one (since c is in that population), and checking if this satisfies
its minimum target. Similarly, each of these populations can be tested to count toward the latter
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number by counting the number of chosen candidates at that step (in the new run), except for d
(this is exactly the same as the chosen candidates at that step in the original run except for c!) that
are in that population, adding one (since d is in that population), and checking if this satisfies its
minimum target. Therefore, each of these populations either counts toward both of these numbers
or toward none of them, and so these numbers are indeed the same.

To sum up, in the step of the original run that corresponds to the step of the new run in which
e is chosen, adding d would not have violated any maximum quotas, and the number of populations
with unmet minimum targets at that step in the original run to which d belongs is such that d
at that step (and before) passes the minimum-target conditional of the iteration of the outer loop
of Algorithm 5 that contains that step. Since the given PMA prefers d to e, this means that d
should have in fact already been chosen in the original run at that point — a contradiction to the
assumption that the next difference between the two runs, following the addition of d in the new
run, is the addition of e in the new run.

Proof of Theorem 3. Consider a market with three candidates c, d, e, and two PMAs m and m′.
The preferences of the candidates are:

c : m′ � m d : m � m′ e : m � m′

The candidate ranking of PMA m is: c � d � e. The populations that m considers are {c,d,e} with
minimum target 1, {d,e} with maximum quota 2, and {e} with minimum target 1. The candidate
ranking of PMA m′ is: e � c � d. There are no populations for m′, and the overall maximum
quota of m′ is 1.

To see that no stable matching (with respect to the choice function defined in Algorithm 1)
exists in this market, we reason by cases based on whether or not candidate c is assigned to PMA m
in a proposed matching. If c is assigned to m, then since c prefers m′ over m, stability dictates
that m′ prefer the candidate assigned to it over c. So, e is assigned to m′. But then we have that
candidate e blocks with PMA m, since e prefers m over m′, and m chooses the pair {c, e} from any
candidate set that contains {c, e} (and c is already assigned to m).

If c is not assigned to m, then since d ranks m highest and since m chooses {d} from any
candidate set that contains d but does not contain c, by stability d is alone assigned to m. Therefore,
e is not assigned to m, and so by stability e is assigned to her next choice m′, since m′ ranks her
highest. Therefore, c is unassigned, but then we have that c blocks with m, since m chooses {c, d}
from {c, d} (and {d} is assigned to m).

Proof of Theorem 4. For Part a, note that since Algorithm 3 is a candidate-proposing deferred-
acceptance algorithm, a run of this algorithm with an extended preference list for the given candi-
date would be identical to the original run (without the extension), as the candidate will never be
rejected from the given PMA, and so the extension of the preference list will never be accessed.

For Part b, note that since Algorithm 3 is a candidate-proposing deferred-acceptance algorithm,
the given candidate will be assigned to a PMA that she placed lower than the given PMA on her
preference list only if the given PMA rejects her in some round (that is, does not choose her in some
round in which this candidate applies to it). As it is assumed that the given PMA always chooses
this candidate from any set of candidates that contains it, this cannot be, and so the candidate is
either assigned to the given PMA or to one that she has placed higher on her preference list.
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