The Price of Power: Costs of Political Corruption in Indian Electricity

Meera Mahadevan

University of California, Santa Barbara

October 11, 2019

 Localized effects of constituency alignment to the ruling party theoretically and empirically ambiguous

- Localized effects of constituency alignment to the ruling party theoretically and empirically ambiguous
 - Constituencies aligned with the ruling party receive certain policies:
 Brollo & Nannicini (2012), Asher & Novosad (2017) in India
 - Non-aligned constituencies receive more favorable policy: Callen, Gulzar
 Rezaee (2018), Bueno (2018)

- Localized effects of constituency alignment to the ruling party theoretically and empirically ambiguous
 - Constituencies aligned with the ruling party receive certain policies:
 Brollo & Nannicini (2012), Asher & Novosad (2017) in India
 - Non-aligned constituencies receive more favorable policy: Callen, Gulzar
 Rezaee (2018), Bueno (2018)
- Understudied: political capture of large public utilities
 - Electricity and water state operated, and not managed by politicians

- Localized effects of constituency alignment to the ruling party theoretically and empirically ambiguous
 - Constituencies aligned with the ruling party receive certain policies: Brollo & Nannicini (2012), Asher & Novosad (2017) in India
 - Non-aligned constituencies receive more favorable policy: Callen, Gulzar
 Rezaee (2018), Bueno (2018)
- Understudied: political capture of large public utilities
 - Electricity and water state operated, and not managed by politicians
- Welfare implications of political capture unclear who is targeted?
 - Are the benefits to targeted consumers justified by efficiency losses?

 Introduction
 Preview
 Background & Data
 Results
 Welfare Analysis
 Conclusion
 Extra

 0 ● 0
 0000000000
 0000000000
 000
 00000000000000

Are public utilities vulnerable to political capture?

West Bengal power sector illustrates the difficulties of power reform

Moneylife Digital Tean

No hike of power tariff in Bengal

Source : Business Standard By : Rajat Roy

Last Updated: Wed, Dec 05, 2012 03:50 hrs

Home > Jharkhand

Power theft jolt: Rs 3.9cr

The Washington Post

Asia & Pacific

Power thieves prosper in India's patronage-based democracy

The Telegraph

Home > West Bengal

Power officials assaulted at eatery

WBSEDCL suffered Rs 175.85-cr revenue loss in FY16: CAG

THE ECONOMIC TIMES

report

Press Trust of India | Kolkata Last Updated at March 8, 2018 18:35 IST Power utilities should be freed from political interference:West Bengal

Research Question

• How does alignment with the ruling party affect the political capture of a large public utility?

What are the welfare implications of political patronage?

• Close election RD: causal evidence of patronage towards constituencies aligned with the ruling party

- Close election RD: causal evidence of patronage towards constituencies aligned with the ruling party
- Ruling party subsidizes their constituents (near RD cutoff)

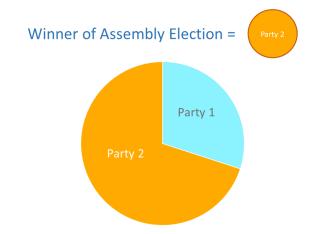
- Close election RD: causal evidence of patronage towards constituencies aligned with the ruling party
- Ruling party subsidizes their constituents (near RD cutoff)
 - Actual electricity consumption higher (satellite nighttime lights)
 - Reported consumption lower (confidential billing records)
 - Manipulate consumption data to lower bills

- Close election RD: causal evidence of patronage towards constituencies aligned with the ruling party
- Ruling party subsidizes their constituents (near RD cutoff)
 - Actual electricity consumption higher (satellite nighttime lights)
 - Reported consumption lower (confidential billing records)
 - Manipulate consumption data to lower bills
- Welfare Consequences of Patronage
 - Loss is producer surplus more than double gain in consumer surplus
 - Deadweight loss \rightarrow enough to power 3.7 million rural households
 - Producer loss → lower quality of electricity

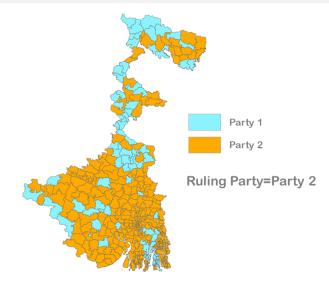
- Evidence of Political Patronage in Public Sector Enterprise
 - Mechanisms of corruption at micro-level

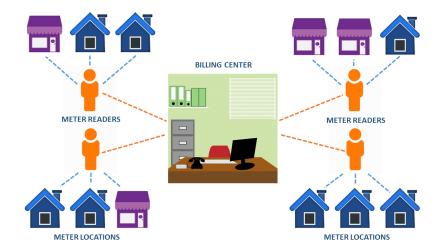
- Evidence of Political Patronage in Public Sector Enterprise
 - Mechanisms of corruption at micro-level
- Demand estimation
 - Develop method of demand estimation under data manipulation
 - More robust elasticities: micro-data important

- Evidence of Political Patronage in Public Sector Enterprise
 - Mechanisms of corruption at micro-level
- Demand estimation
 - Develop method of demand estimation under data manipulation
 - More robust elasticities: micro-data important
- Unintended Consequences of Patronage
 - Large efficiency losses due to poor targeting


Data and Descriptives

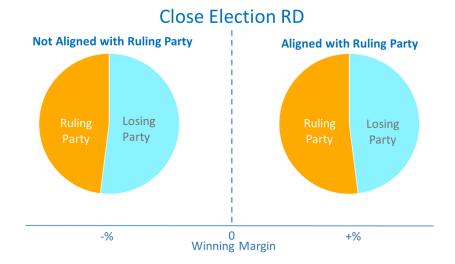
- Confidential billing data and administrative records:
 - Universe of accounts (17 mill) of large state utility in India
 - Quarterly, 2011-2017
 - Consumer categories: residential, commercial
- Satellite DMSP-OLS nighttime lights data 2000-2017
 - Proxy for electricity: Burlig & Preonas 2016, Min & Golden 2014
- Tariff data (2009-2017): updated every 1-2 years
- State elections data (2006, 2011, 2016): vote shares by party
- Indian Census 2011 Village level characteristics


State Elections in India


Assembly Election - Majority Party

State Election Winner - Simple Majority of Assemblies

Electricity Billing Practices



troduction Preview Background & Data Results Welfare Analysis Conclusion Extra

Electricity Billing Practices - Constituency level

Close Elections at Assembly Level

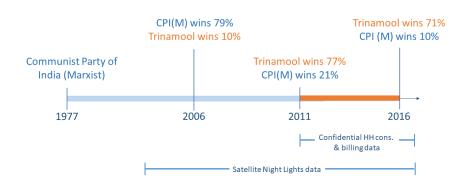
Identification Strategy - Close Election RD

• Close election RD: Causal impact of being in winning constituencies

Optimal bandwidth and binning procedure (Calonico et al. 2014)

Identification Strategy - Close Election RD

• Close election RD: Causal impact of being in winning constituencies


- Optimal bandwidth and binning procedure (Calonico et al. 2014)
- Areas similar in all respects but alignment to ruling party

Identification Strategy - Close Election RD

• Close election RD: Causal impact of being in winning constituencies

- Optimal bandwidth and binning procedure (Calonico et al. 2014)
- Areas similar in all respects but alignment to ruling party
- Running variable: winning margin percentage, robust to total votes

Timeline Leading up to 2011 Election

RD Baseline Tests for 2011 Election

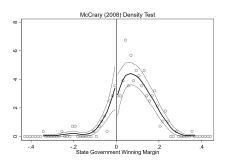
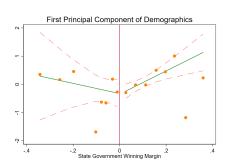
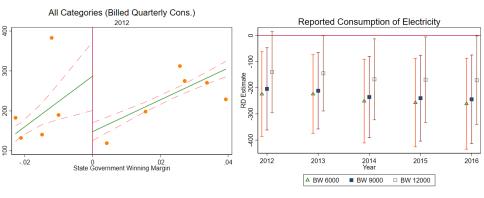
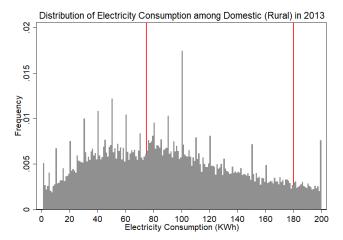


Figure: McCrary Test – density of winning margins at cutoff

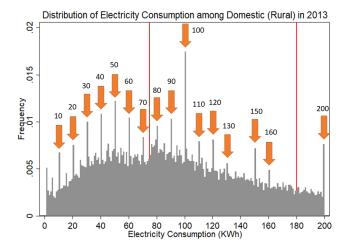



Figure: Balance on PCA of age, gender and caste

Lower Reported Consumption in Aligned Areas

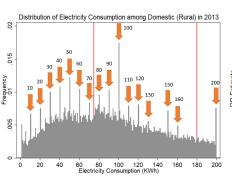

- Optimal binning: >20,000 observations
- Reported consumption 40% lower in ruling party constituencies

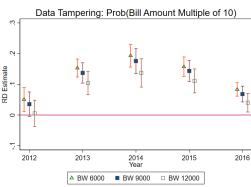
RD results by consumer category Other billing items Model


Spiky Consumption Distribution- Multiple Modes

Red lines indicate kink points in the price schedule

Spiky Consumption Distribution- Multiple Modes

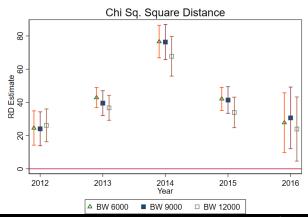

• Red lines indicate kink points in the price schedule



troduction Preview Background & Data Results Welfare Analysis Conclusion Extra

Greater Data Manipulation in Winning Areas

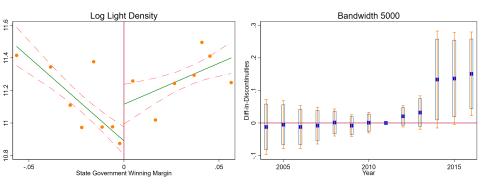
• Probability of bills ending in '0' higher in winning constituencies



Greater Data Manipulation in Winning Areas

- Benford's Law (1938): Dist. for 1st digit of naturally occurring nos.
- Manipulation: deviation of observed from expected distribution

Greater Data Manipulation in Winning Areas


- Benford's Law (1938): Dist. for 1st digit of naturally occurring nos.
- Manipulation: deviation of observed from expected distribution
- Higher manipulation in winning constituencies

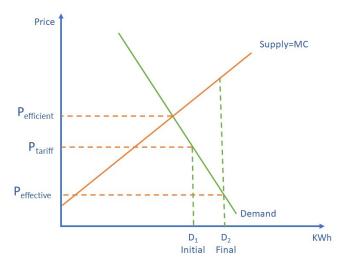
Higher Actual Consumption in Aligned Areas

- Contradicts result from billing data
- Optimal binning: 5-6 assemblies per bin

Regression Discontinuity specifications Mapping light density Falsification Test

Mechanisms of Patronage

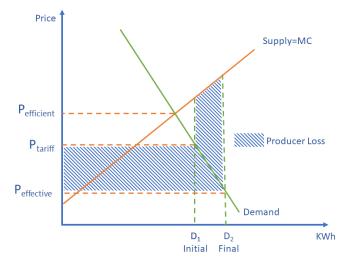
- Under-reporting of bills via local consumer care offices
 - Billing centers vulnerable to politicians (Gulati & Rao 2007)
 - Meter inspectors do not go on rounds every billing cycle (Rains & Abraham '18)


Mechanisms of Patronage

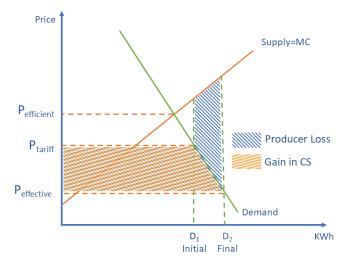
- Under-reporting of bills via local consumer care offices
 - Billing centers vulnerable to politicians (Gulati & Rao 2007)
 - Meter inspectors do not go on rounds every billing cycle (Rains & Abraham '18)

- Selective energy theft in winning assemblies
 - Utilities obstructed by MLAs (Times of India '17, Washington Post '12)

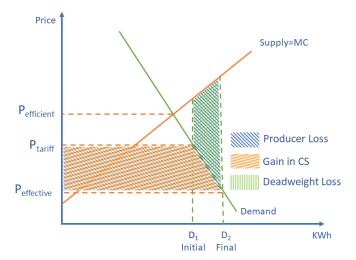
Welfare Analysis - Indirect Electricity Subsidy


• Under-reporting billed consumption: average price subsidy

roduction Preview Background & Data Results Welfare Analysis Conclusion Extra


Welfare Analysis - Indirect Electricity Subsidy

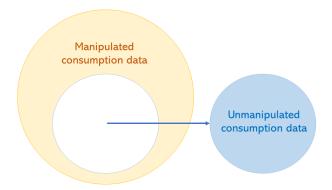
Producer Loss: RD estimates of under-reporting X consumer base


Welfare Analysis - Indirect Electricity Subsidy

• Consumer surplus calculation: Need price elasticities of demand

Welfare Analysis - Indirect Electricity Subsidy

• Consumer surplus calculation: Need price elasticities of demand



- Step 1: Select assemblies with no data manipulation
- Step 2: Elasticities for selected assemblies: IV strategy
- Step 3: Build prediction model: census village characteristics
- Step 4: Predict elasticities for out-of-sample assemblies
- Step 5: Welfare estimates producer & consumer surplus

- Step 1: Select assemblies with no data manipulation
 - Distance from chi-sq. distribution keep at 99% confidence

- Step 1: Select assemblies with no data manipulation
 - Distance from chi-sq. distribution keep at 99% confidence

- Step 1: Select assemblies with no data manipulation
- Step 2: Elasticities for selected assemblies: IV strategy
- Step 3: Build prediction model: census village characteristics
- Step 4: Predict elasticities for out-of-sample assemblies
- Step 5: Welfare estimates producer & consumer surplus

STEP 2: Demand Estimation - IV Methodology

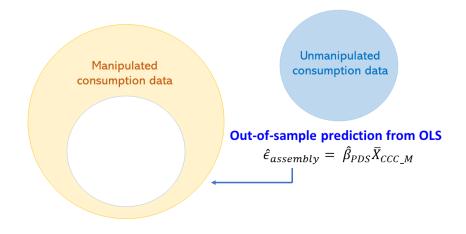
Identification Strategy

• OLS: price endogenous to consumption

$$\log (\textit{Consumption}) = \delta \log (\textit{MarginalPrice}) + \epsilon$$
 (1)

- Similar identification strategy to Ito (2015): Instrumental Variable
- IV- Policy-led changes in electricity tariffs: $\Delta \log (MarginalPrice)$
- Variation: tariff changes 5 years X 5 price tiers X 4 categories

- Step 1: Select assemblies with no data manipulation
- Step 2: Demand elasticities for selected assemblies: IV strategy
- Step 3: Build model for prediction: census village characteristics
 - Two iterations of LASSO: penalizes irrelevant variables
 - Post-double-selection OLS (Ahrens et al. 2018) PDS Model
- Step 4: Predict elasticities for out-of-sample assemblies
- Step 5: Welfare estimates producer & consumer surplus

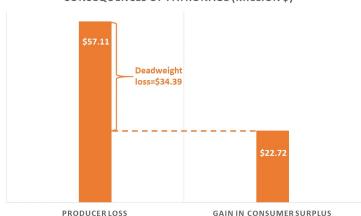

STEP 3: Predictive Model for elasticities

Unmanipulated consumption data

- Building predictive model
- OLS: Biased or overfit
- Method: Post-double-selection OLS
 - Two steps of LASSO
 - OLS on selected model (unbiased β)
- Better for prediction

- Step 1: Select assemblies with no data manipulation
- Step 2: Demand elasticities for selected assemblies: IV strategy
- Step 3: Build prediction model: census village characteristics
- Step 4: Predict elasticities for out-of-sample assemblies
- Step 5: Welfare estimates producer & consumer surplus

STEP 4: Demand Estimation - Projecting Elasticities



- Step 1: Select assemblies with no data manipulation
- Step 2: Demand elasticities for selected assemblies: IV strategy
- Step 3: Build prediction model: census village characteristics
- Step 4: Predict elasticities for out-of-sample assemblies
- Step 5: Welfare estimates producer & consumer surplus

STEP 5: Welfare Implications

CONSEQUENCES OF PATRONAGE (MILLION \$)

• Totals for electoral term

Politicians in a position to benefit poor consumers

Credit:Wall Street Journal

Unintended consequences of targeting aligned constituencies

SAKTI	GARH	Scheduled	Sep 23, 2018 09:00 AM	Sep 23, 2018 02:00 PM	05:00 Hours	太	1. WBSEDO KRISHNAN THANA	CL - SANTIPUR IAGAR	
CHALK 11		Scheduled	Sep 22, 2018 09:00 AM	Sep 22, 2018 02:00 PM	05:00 Hours		Jan 14, 201	19 9:00:00 AM 2019 4:00:00 PM	

Conclusion

Conclusion

- New evidence of political patronage in public sector Enterprise
 - Mechanisms of corruption at micro-level
 - Requires combination of different datasets to detect

Conclusion

- New evidence of political patronage in public sector Enterprise
 - Mechanisms of corruption at micro-level
 - Requires combination of different datasets to detect
- Welfare implications
 - Develop method of demand estimation under data manipulation
 - More robust elasticities: micro-data important
 - Deadweight loss exceeds gains to consumers

Conclusion

- New evidence of political patronage in public sector Enterprise
 - Mechanisms of corruption at micro-level
 - Requires combination of different datasets to detect
- Welfare implications
 - Develop method of demand estimation under data manipulation
 - More robust elasticities: micro-data important
 - Deadweight loss exceeds gains to consumers
- Unintended consequences of patronage
 - May harm the same constituents that politicians were favoring
 - Opportunity cost of using tax-payer funds

Comments welcome! meeram@ucsb.edu

- Follow Dixit and Londregan (1996), Stromberg (2004)
- Consumers:
 - Consume electricity given prices and subsidies
 - Have preferences over political parties
 - Reward parties for cheaper electricity

$$U_{ia} = v(z_{ia}) + c \equiv \frac{\exp^{\beta x_{ia}}}{1 - \epsilon} z_{ia}^{1 - \epsilon} + c$$
 (2)

 z_{ia} : amt of electricity, x_{ia} vector of consumer characteristics like amenities, infrastructure and regional income distributions,

 $\epsilon > 0$: affects elasticity, p_{ia} "effective" electricity price, assembly a, political party i

- Follow Dixit and Londregan (1996), Stromberg (2004)
- Consumers:
 - Consume electricity given prices and subsidies
 - Have preferences over political parties
 - Reward parties for cheaper electricity

$$U_{ia} = v(z_{ia}) + c \equiv \frac{exp^{\beta x_{ia}}}{1 - \epsilon} z_{ia}^{1 - \epsilon} + c$$
 (2)

 z_{ia} : amt of electricity, x_{ia} vector of consumer characteristics like amenities, infrastructure and regional income distributions,

 $\epsilon >$ 0: affects elasticity, p_{ia} "effective" electricity price, assembly a, political party i

Demand Curve:
$$\log z_{ia} = \frac{\beta}{\epsilon} x_{ia} - \frac{1}{\epsilon} \log p_{ia}$$
 (3)

- Political parties: Model of patronage
 - Want more votes
 - Exert effort (subject to resource constraint) to provide cheaper electricity

$$vote = \begin{cases} 1 & \text{if } exp^{\gamma D_{ia}} v(z_{ia}^*) > \eta_{ija} \\ 0 & \text{otherwise} \end{cases}$$
 (4)

- Political parties: Model of patronage
 - Want more votes
 - Exert effort (subject to resource constraint) to provide cheaper electricity

$$vote = \begin{cases} 1 & \text{if } exp^{\gamma D_{ia}} v(z_{ia}^*) > \eta_{ija} \\ 0 & \text{otherwise} \end{cases}$$
 (4)

• Exert effort (subj. to resource constraint) to provide cheaper elec

$$e_{ia} = p_{ia}^{-\alpha} \tag{5}$$

Consumer utility rises with greater effort by party

$$v_{ia} = \frac{\left(exp^{\beta x_{ia}}\right)^{1+\frac{1}{\epsilon}}}{1-\epsilon} p_{ia}^{\frac{-(1-\epsilon)}{\epsilon}} = \frac{\left(exp^{\beta x_{ia}}\right)^{1+\frac{1}{\epsilon}}}{1-\epsilon} e_{ia}^{\frac{\alpha(1-\epsilon)}{\epsilon}}$$
(6)

Model Implications

Maximize prob. of winning, subj. to effort constraint

$$\max_{e_{i1},\dots e_{iA}} \sum_{a} Pr\left(exp^{\gamma D_{ia}}v(z_{ia}^*) > \eta_{ija}\right) \quad s.t. \quad \sum_{a} e_{ia} \leq E_i$$
 (7)

Model Implications

Maximize prob. of winning, subj. to effort constraint

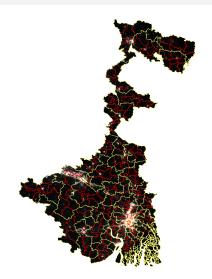
$$\max_{e_{i1},\dots e_{iA}} \sum_{a} Pr\left(exp^{\gamma D_{ia}} v(z_{ia}^*) > \eta_{ija}\right) \quad s.t. \quad \sum_{a} e_{ia} \leq E_i$$
 (7)

Political parties target:

Proposition 1: Swing areas where in power

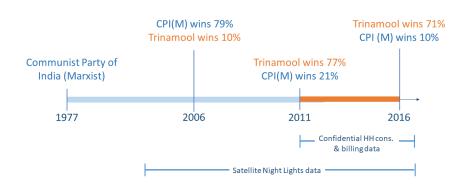
Proposition 2: Consumer categories with inelastic demand

Proposition 3: Consumers with access to better infrastructure

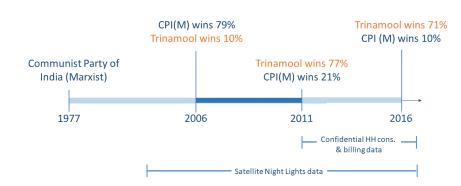


Summary Statistics for Outcomes in Legislative Assemblies

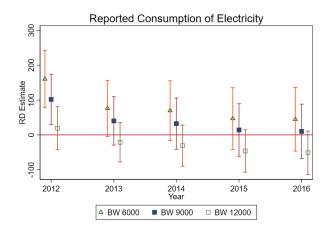
	2012		20	16
	Winning	Losing	Winning	Losing
Number of Constituencies	184	42	184	42
Chi-Sq. Square Distance	26.59	11.85	34.42	32.33
Fraction of consumers with whole numbered KWH	0.15	0.16	0.13	0.13
Reported consumption (KWh)	260.55	174.39	270.96	181.27
Sum of all bill components (Rs.)	1533.27	979.10	1754.30	1117.91
Sum of all arrears (Rs.)	90.14	48.79	56.43	33.78
Average energy price per KWH (Rs.)	3.89	3.52	5.45	4.93
Average arrear per KWH (Rs.)	0.42	0.29	0.50	0.45
Total subsidies in Bill (Rs.)	-153.56	-104.56	-109.25	-79.19
Connected Load (KVA)	1.08	0.81	1.13	0.81



Mapping Nighttime Lights to Assemblies



Timeline Leading up to 2011 Election



Swing constituencies from 2006 Election

Validity Check: Placebo Test Using 2006 Election

- Results using assembly winning margins from 2006
- No clear evidence of under-reporting with 2006 close-elections

	Log(Cor	Log(Consumption Kwh/Quarter)				
	IV 2SLS	IV 2SLS	OLS	IV 2SLS		
	Unmanipulated	Manipulated	Unmanipulated	Aggregated		
	Sample	Sample	Sample	to AC Level		
Log Marginal Price	-0.240	0.388*	1.609***	-0.137		
Residential Rural	(0.293)	(0.228)	(0.0596)	(0.0972)		
Log Marginal Price	-0.666**	0.175	1.395***	-0.019		
Residential Urban	(0.310)	(0.220)	(0.0574)	(0.0916)		
Log Marginal Price	-3.158***	-1.364**	0.583***	0.0628		
Commercial Rural	(0.585)	(0.535)	(0.130)	(0.155)		
Log Marginal Price	-3.490***	-1.800***	0.595***	-0.206		
Commercial Urban	(0.588)	(0.460)	(0.111)	(0.136)		
Observations	83,787	120,087	106,937	13,943		
R-squared	0.424	0.475	0.450	0.946		
No. of Customers	21,581	30,906	21,980			
Fixed Effects	Month-Class	Month-Class	Month-Class	AC-Month		
	Tier-Acc.	Tier-Acc.	Tier-Acc.	Tier-Class		
IV F-stat	579.8	704.2		414.6		

Independent Variables	Elasticity
Avg. no. of males under 6 yrs	-0.0122
9	(0.170)
Avg. no. of females under 6 yrs	-0.000569
,	(0.172)
Avg. no. of households	0.0106
	(0.0226)
Avg. no. of working males	-0.0126
	(0.0139)
Avg. no. of working females	0.0330**
	(0.0140)
Avg. no. of scheduled caste females	0.210**
	(0.0861)
Avg. no. of scheduled caste females	-0.197**
	(0.0814)
Avg. no. of scheduled tribe females	0.0153
	(0.0117)
Avg. no. of male cultivators	-0.0279*
	(0.0127)
Avg. no. of female cultivators	0.0339
	(0.0464)
Avg. no. of female workers (other)	0.00114
	(0.0416)
Avg. no. of literate females	-0.0156
	(0.0113)
Sq. of avg. no. of literate females	7.93e-06
	(4.80e-06
Constant	-50.99**
	(25.48)
Observations	43

Unit consumption in KWH

	Residential (Rural)					
Year	2012	2013	2014	2015	2016	
RD Estimate	-124.1***	-126.0***	-143.2***	-157.9***	-139.5***	
	(24.33)	(20.58)	(21.08)	(22.57)	(23.70)	
Observations	7,780	10,457	10,352	10,329	10,213	
		Resi	idential (Ur	ban)		
RD Estimate	-311.4***	-366.2***	-382.9***	-401.8***	-433.1***	
	(95.28)	(82.32)	(77.72)	(75.35)	(71.69)	
Observations	9,630	11,417	11,350	11,260	11,075	
	Commercial (Rural)					
RD Estimate	124.8	51.21	81.79	-16.16	107.4	
	(99.62)	(78.51)	(70.12)	(80.87)	(88.63)	
Observations	3,023	4,120	4,044	4,018	4,010	
		Com	mercial (U	ban)		
RD Estimate	-473.4*	-579.9**	-555.3**	-542.6**	-582.3**	
	(273.20)	(250.70)	(234.50)	(265.40)	(291.80)	
Observations	10,611	12,505	12,227	12,269	12,035	

STEP 4: Demand Elasticity Estimates for All Regions

Consumer Category	Elasticity of Electricity Demand
Residential (Rural)	-0.56
Residential (Urban)	-0.26
Commercial (Rural)	-2.94
Commercial (Urban)	-2.56

Counterfactual elasticities

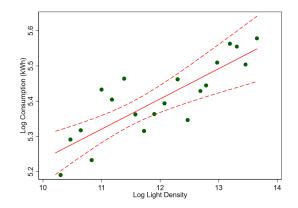
- Residential elasticities similar to previous work
- Commercial elasticities higher than previous work: -2.75 vs -0.65

STEP 4: Demand Elasticity Estimates for All Regions

Consumer Category	Elasticity of Electricity Demand
Residential (Rural)	-0.56
Residential (Urban)	-0.26
Commercial (Rural)	-2.94
Commercial (Urban)	-2.56

Counterfactual elasticities

- Residential elasticities similar to previous work
- Commercial elasticities higher than previous work: -2.75 vs -0.65
- More robust estimates than previous work
 - Agg. data conceals manipulation
 - Year level data misses consumption responses (and not well identified)
 - Micro-data: observe tariff-tier variation


Welfare Calculations

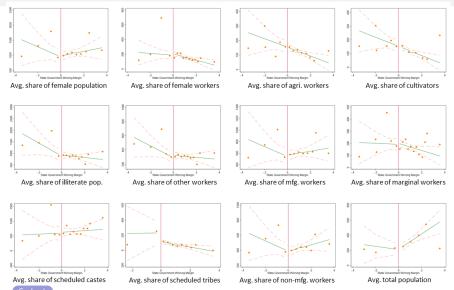
Consumer Class	Producer loss (Million Rs./year)	Gain in surplus (Million Rs./year)	
Residential (Rural)	₹295.84	₹101.27	
Residential (Urban)	₹323.77	₹177.80	
Commercial (Urban)	₹111.41	₹11.76	
Total (Million Rs./year)	₹731.01	₹290.83	
Total (Million Rs./year)	₹3660.05	₹2401.95	
Total (Million \$ for 5 years)	\$ 57.11	\$ 22.72	

Nighttime Lights & Billed Consumption

- Increase in lights density: 20%
- Increase in electricity consumption: 1.7%

RD Specification for Nighttime Light Density

• RD specification with differential linear fits on either side of the cutoff


$$Log(Lights)_a = \beta \ \mathbb{1}(votemargin > 0)_a + f(votemargin)_a + \epsilon_a$$

Specification for difference-in-discontinuities

$$Log(\mathit{Lights})_{\mathsf{at}} = \sum_{t} \beta_t (\mathbb{1}(\mathit{votemargin} > 0)_{\mathsf{a}} \times \gamma_t) + \gamma_t + f(\mathit{votemargin})_{\mathsf{a}} + \epsilon_{\mathsf{at}}$$

Balance Across RD Cutoff - Census Village-level Variables

Consumers Categories Targeted by Politicians

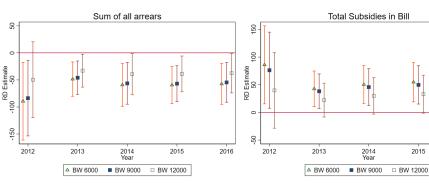
	Unit consumption in KWH						
Year	2012	2013	2014	2015	2016		
	All Residential Consumers						
RD_Estimate	-218.1**	-222.6**	-247.3***	-262.4***	-263.5***		
	(97.22)	(91.64)	(91.07)	(87.53)	(97.13)		
Observations	17,410	21,874	21,702	21,589	21,288		
		All Con	mercial Co	nsumers			
RD_Estimate	-109.3	-171.6	-151.8	-206.1	-130.0		
	(154.5)	(144.9)	(137.1)	(139.3)	(159.8)		
Observations	13,634	16,625	16,271	16,287	16,045		
		All F	Rural Consu	mers			
RD_Estimate	-66.64*	-85.49***	-87.04***	-123.9***	-76.80**		
	(35.80)	(33.00)	(28.16)	(34.10)	(34.00)		
Observations	10,803	14,577	14,396	14,347	14,223		
		All U	Irban Consu	ımers			
RD_Estimate	-355.0***	-432.2***	-434.4***	-446.3***	-474.7***		
	(116.8)	(106.9)	(97.21)	(106.7)	(107.9)		
Observations	20,241	23,922	23,577	23,529	23,110		

STEP 2: Demand Estimation - Identification Strategy

First Stage

$$\begin{split} \log \left(\textit{MarginalPrice} \right)_{\textit{iamtcy}} &= \sum_{\textit{a}} \gamma_{\textit{ac}} \Delta \log \left(\textit{PolicyTariff} \right)_{\textit{iamtcy}} \\ &+ \nu_{\textit{mtc}} + \zeta_{\textit{mac}} + \eta_{\textit{i}} + \varepsilon_{\textit{iamtcy}} \ \, \forall \ \, \textit{c} \in \textit{C} \end{split} \tag{8}$$

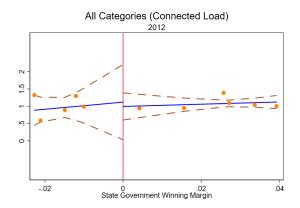
Second Stage


$$\log (\textit{Consumption})_{\textit{iamtcy}} = \sum_{\textit{a}} \beta_{\textit{ac}} \log (\textit{MarginalPrice})_{\textit{iamtcy}} + \tau_{\textit{mtc}} + \mu_{\textit{mac}} + \omega_{\textit{i}} + \epsilon_{\textit{iamtcy}} \ \forall \ \textit{c} \in \textit{C} \ (9)$$

i consumer, c assembly, m month, y year, a consumer category, t price tier

Patterns in Billing Items Consistent with Under-reporting

Go back


2015

2016

Patterns in Billing Items Consistent with Manipulation

• Connected load is the estimated amount of electricity demand that an account is registered for.

Go back

Political Targeting Patterns

Result 1: Party subsidizes swing areas where in power

- Manipulation in Reported Consumption
- Selectively allowing electricity theft

Result 2: Target more residential consumers

• Targeting low elasticity users (ϵ -0.41 vs -2.75)

RD table for targeting Model

Result 3: Target consumers in urban areas

• "Posh areas guilty of major power theft", The Times of India

