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Abstract

This paper studies a New Keynesian model with a banking system. The central bank
targets the interest rate on short safe bonds that are held by banks to back inside money
and hence earn convenience yield for their safety or liquidity. Central bank operating
procedures matter. In a floor system, the reserve rate and the quantity of reserves are
independent policy tools that affect banks’ cost of safety. In a corridor system, increasing
the interbank rate by making reserves scarce increases banks’ cost of liquidity and generates
strong pass-through to other rates of return, output and inflation. In either system, policy
rules that do not respond aggressively to inflation – such as an interest rate peg – need not
lead to self-fulfilling fluctuations. The stabilizing effect from an endogenous convenience
yield is stronger when there are more nominal rigidities in bank balance sheets.
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1 Introduction

Models of monetary policy typically assume that the central bank sets the nominal interest
rate on household savings. In the presence of nominal rigidities, the central bank then has a
powerful lever to affect households’ stochastic discount factor and hence intertemporal deci-
sions such as savings and investment. In practice, however, central banks target interest rates
on short safe bonds that are predominantly held by intermediaries. At the same time, the be-
havior of such interest rates is not well accounted for by asset pricing models that fit expected
returns on other assets such as long terms bonds or stocks: this "short rate disconnect" has
been attributed to a convenience yield on short safe bonds.1

This paper studies a New Keynesian model with a banking system that is consistent with
key facts on holdings and pricing of short safe bonds. A short rate disconnect arises because
short safe bonds are held by banks to back inside money. As a result, the "plumbing" of the
economy, that is, the structure of the banking system, bank liquidity management, and central
bank operating procedures matter for the transmission of policy. In particular, in a corridor
system with scarce reserves, interest rate policy generates stronger pass-through from the
policy rate to other rates of return and the real economy. In a floor system, interest rate policy
is weaker, but the quantity of reserves serves as an independent policy instrument. The short
rate disconnect further implies that policy need not respond aggressively to inflation, without
inviting self-fulfilling fluctuations.

Our results follow from three familiar assumptions. First, inside money issued by banks
earns a convenience yield for its liquidity, measured by the spread between the interest rate
on savings and the interest rate on money, that is, households’ cost of liquidity. Second, banks
face leverage constraints: inside money must be backed by collateral. Short safe bonds are
good collateral and earn a convenience yield for their safety, measured by the spread between
the interest rate on household savings and the interest rate on short safe bonds held by banks,
that is, banks’ cost of safety.2 Finally, pass-through from the policy rate to other rates occurs
because total risk-adjusted expected returns – pecuniary expected returns plus convenience
yields – on all assets are equated in equilibrium.

To see how an endogenous convenience yield affects the transmission of interest rate policy,
suppose the central bank raises the interest rate on short safe bonds held by banks: it raises

1The short rate disconnect has been a stylized fact in the empirical literature on the term structure of interest
rates since Duffee (1996). Lenel, Piazzesi and Schneider (2019) provide evidence of its connection to bank balance
sheets.

2Both spreads are distinct from banks’ cost of liquidity, measured by the spread between the interbank rate
and the interest rate on reserves. In particular, both spreads typically remain positive in floor systems when
banks’ cost of liquidity is essentially zero.
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the target for the interbank rate in a corridor system, or the interest rate on reserves in a floor
system. Standard New Keynesian logic says that sticky prices imply a higher real short rate
and lower nominal spending. However, lower nominal spending lowers the convenience yield
on inside money and hence on short safe bonds that back inside money, be they interbank loans
or reserves. In other words, the central bank lowers banks’ cost of safety. As a consequence,
the overall return on safe short bonds does not increase as much as the policy rate itself,
so there is less upward pressure on the risk-adjusted expected returns on other assets. The
response of the convenience yield to spending thus dampens the policy impact on output and
inflation. This effect works through banks’ cost of safety, and is thus present in both floor and
corridor systems.

A corridor system differs from a floor system in how banks manage liquidity. Our model
assumes that banks face liquidity shocks and leverage constraints that limit overnight bor-
rowing. Reserves are more useful for handling liquidity shocks than other assets: if they are
sufficiently scarce, they earn a higher convenience yield than other short safe bonds. The
central bank can thus choose to implement a corridor system with scarce reserves: it targets
a positive spread between the interbank rate and the reserve rate, and elastically supplies
reserves to achieve that spread. Since the central bank effectively targets two interest rates,
the quantity of reserves is not an independent policy instrument. If the central bank raises
the interbank rate but keeps the same reserves rate, banks face a higher cost of liquidity and
supply less inside money, which increases the convenience yield on money and banks’ cost of
safety.

The alternative is a floor system with abundant reserves: the central bank sets the interest
rate on reserves and supplies enough reserves so that banks can manage liquidity without bor-
rowing reserves overnight from other banks. The overnight interbank credit market ceases to
operate and banks’ cost of liquidity is constant at zero. Since reserves are no longer supplied
elastically to target two interest rates, their quantity becomes an independent policy instru-
ment: it affects the supply of safe collateral available to banks. In a floor system, both interest
rate policy and the supply of reserves matter for banks’ cost of safety. The supply of reserves
is not a technicality handled by a trading desk that implements an interest rate spread. Even if
the central bank chooses to formulate interest rate policy, agents’ expectations about the future
path of reserves are relevant.

Interest rate policy is more powerful in a corridor system. This is because an increase in
the policy rate also increases banks’ cost of liquidity. As liquidity management becomes more
costly, banks lower the supply of inside money which increases households’ cost of liquidity.
In a floor system, in contrast, a higher reserve rate only lowers banks’ cost of safety and
thus always lowers households’ cost of liquidity. In other words, the convenience yields on
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money and short bonds fall by less in a corridor system, and may in fact increase if liquidity
management is sufficiently important for bank costs. In a corridor system, there is therefore
stronger pass through from the policy rate to other rates of return. We show that the difference
can be quantitatively relevant, especially when the model allows for a simple "cost channel" –
inside money and consumption are complements in utility.

While a discussion of the "plumbing" requires a model with an explicit banking sector, it is
interesting to ask whether a simpler model without banks can still serve as a useful guide to
policy. We argue that it is misleading to use the standard model to think about a floor system:
that model cannot capture the role of the quantity of reserves as a policy tool and that a higher
policy rate lowers the cost of liquidity. We propose instead a simple setup where the central
bank directly sets the interest rate on money. One interpretation is that the central bank issues
a central bank digital currency (CBDC), for which it controls both the quantity and the interest
rate. The CBDC model shares key features of our model that capture policy transmission in
a floor system. At the same time, our results suggest that the standard model captures quite
well how policy works in a corridor system. At relevant parameters, our model of the corridor
system shares the feature of the standard model that households’ cost of liquidity increases
with the policy rate.

We emphasize nevertheless that the model with a corridor system does not reduce to the
standard model even though reserves are supplied elastically to implement the target rate.
This is because reserves are only one type of collateral used by banks to back inside money.
A corridor system makes the supply of inside money more elastic, but it does not make
it perfectly elastic. In particular, the quality and denomination of bank assets matters for the
creation of inside money and hence for output and inflation. A negative shock to bank balance
sheets – for example, a sudden reduction in the quality of existing loans – lowers the supply
of inside money and hence increases its convenience yield. It raises the expected real rate of
return on other assets and is contractionary.

In contrast to the standard model, our model says that interest rate rules that do not
aggressively respond to inflation need not make the economy susceptible to self-fulfilling
fluctuations. Consider for example an interest rate peg. Can there be a self-fulfilling recession?
If agents believe that output is temporarily low, inflation slows as firms anticipate lower cost.
With a pegged nominal rate, the real rate increases. In the standard model, the expected real
return on all assets increases: lower demand makes the recessionary belief self-fulfilling. In
our model, in contrast, lower spending lowers the convenience yield, which in turn keeps the
expected real return on other assets low. Put differently, the Taylor principle – lower inflation
should lead to a lower real interest rate – can hold for the interest rate on savings, even if it does
not hold for the policy rate of the central bank. Endogenous adjustment of the convenience
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yield substitutes for policy as a stabilizing force.

Endogenous convenience yields move more when there are nominal rigidities in bank bal-
ance sheets. As a simple example, suppose the central bank runs a floor system and commits
to a path for reserves. The quantity of reserves then works like a nominal anchor for the
economy. An increase in the reserve rate lowers convenience yields not only by reducing real
output, but also by lowering the price level and hence increasing the real quantity of reserves.
As a result, conditions for local determinacy tend to be weaker when there is a nominal an-
chor. At the same time, our comparison of rules for the policy rate and reserve supply shows
that a nominal anchor is not necessary for determinacy. The key force we emphasize is the
endogenous convenience yield, which happens to move more when there is a nominal anchor.

Our paper adds to a growing literature on New Keynesian models with financial frictions,
dating back to Bernanke, Gertler and Gilchrist (1999). Recent work has focused on finan-
cial frictions in the banking system; see for example Cúrdia and Woodford (2010), Gertler
and Karadi (2011), Gertler et al. (2012), Christiano, Motto and Rostagno 2012, Ireland (2014),
Del Negro et al. (2017), Brunnermeier and Koby (2018) or Wang (2019). In these models, bank-
ing also matters for transmission and there can be imperfect pass-through from the policy rate
to deposit or loan rates. These papers nevertheless share the feature of the standard model
that there is direct pass-through from the policy rate to the short rate, and so the households’
nominal stochastic discount factor. They do not speak to the short rate disconnect, the key fact
that motivates our analysis.3

Diba and Loisel (2019) study the determinacy properties of a New Keynesian model with
banks at the zero lower bound. In their setup, reserves are an input into bank lending, and the
government commits to a nominal path of reserves. They establish local determinacy under
the assumption that reserves remain scarce at the zero lower bound. In our model, in contrast,
determinacy properties follow from the convenience yield of bank liabilities. It is not essential
that reserves are scarce, that the government commits to a nominal path of reserves or that
the policy rate is the reserve rate. In fact, our comparison of operating procedures focuses on
times away from the zero lower bound when either (i) reserves are scarce and the central bank
targets an interbank rate – the US policy regime before the financial crisis – or (ii) reserves are
abundant and the central bank sets the reserve rate – the US regime after the crisis.

There is recent work on New Keynesian models with convenience yields on other assets.

3Much recent work on New Keynesian models has been motivated by the zero lower bound on interest rates,
and various "puzzles" such as large fiscal multipliers or strong impact of forward guidance. In this paper, we do
not focus on a lower bound. Instead, our goal is to extend the New Keynesian model in a way that is consistent
with data on interest rates as well as holdings of short safe bonds. From this perspective, 2008 is a watershed
because the Fed adopted a floor system that made liquidity cheap for banks. That decision is still relevant now
that the level of interest rates has risen again.
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In particular, Hagedorn (2018) studies a HANK model with uninsurable income risk and a
riskfree asset. Some consumers are not on their intertemporal Euler equation, so that their
marginal rate of substitution is not equated to the interest rate. Michaillat and Saez (2018)
assume that wealth is a separate argument in utility, in addition to consumption. In both
cases, a convenience yield is priced into assets that serve as a store of value for households.
Our perspective here is different: we emphasize the convenience yield on assets held by banks
that drives a wedge between the policy rate and the rate at which households save, as we
see in the data. Our mechanism is thus complementary to the above effects. For example, a
HANK model with banks might feature weak pass-through from the policy rate to the rate on
household savings.

More generally, our model builds on a long tradition of asset pricing with investors who
face liquidity or collateral constraints, dating back at least to Lucas (1990), Kiyotaki and Moore
(1997) and Geanakoplos (2003). Recent work has emphasized the role of constrained inter-
mediaries, see for example Brunnermeier and Pedersen (2009), He and Krishnamurthy (2013),
Brunnermeier and Sannikov (2016) or Bocola (2016), as well as, in monetary economies, Drech-
sler, Savov and Schnabl (2018), Brunnermeier and Sannikov (2016) or Di Tella and Kurlat
(2018). Our model also features "intermediary asset pricing" but differs from much of the
literature in that banks are firms that maximize shareholder value and can costlessly recapi-
talize. The mechanism we emphasize does not require frictions in equity markets, and does
not rely on financial accelerator dynamics.

A convenience yield on short bonds is often captured by making bonds an argument in
utility, see for example Bansal and Coleman (1996), Krishnamurthy and Vissing-Jorgensen
(2012) or Nagel (2016). Williamson (2012) derives a convenience yield in a model of decen-
tralized exchange. Lenel, Piazzesi and Schneider (2019) take a closer look at the quantitative
asset pricing implications of the approach we follow here. They show that bank optimization
implies an observable pricing kernel based on bank balance sheet ratios that accounts well for
the short rate disconnect, especially at business cycle frequencies.

We also build on a growing literature that studies macroeconomic effects of the structure of
the banking system. In particular, several authors have emphasized the importance of market
power in deposits markets; see for example Yankov (2014), Driscoll and Judson (2013), Duffie
and Krishnamurthy (1996), Egan, Hortacsu and Matvos (2017), Drechsler et al. (2018) or Corbae
and D’Erasmo (2013). In addition, there has been recent interest in bank liquidity management,
for example Bianchi and Bigio (2014), De Fiore, Hoerova and Uhlig (2018) or Piazzesi and
Schneider (2018). Both features matter for the quantitative relevance of our mechanism; our
results suggest that studying them further is important for understanding the transmission of
monetary policy.
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A key feature of our model is the distinction between several payment instruments and
their potential scarcity, in our case, reserves and deposits. The link between scarcity of pay-
ment instruments and convenience yields is well established in monetary theory. In partic-
ular, Williamson (2019) and Venkateswaran and Wright (2014) have shown how assets that
back payment instruments can inherit their convenience yields, an effect that is also central
to our mechanism. The literature has typically studied the coexistence of multiple payments
used by households, for example currency and various types of deposits; see also Rocheteau,
Wright and Xiao (2018), Andolfatto and Williamson (2015), Lucas and Nicolini (2015) and
Ennis (2018)). We abstract from currency and emphasize instead a layered payment system
in which households only pay with inside money, and only banks pay with outside money
directly issued by the government.

Our focus on macro outcomes leads us to abstract from several institutional details. In
particular, we do not explicitly distinguish between banks and money market mutual funds.
From our perspective, the key feature of money market funds is that they are also payment
intermediaries: unlike plain vanilla mutual funds, they provide payment services – this is why
their shares are included in broad measures of money.4 Williamson (2015) and Begenau and
Landvoigt (2018) have studied models where banks and shadow banks compete in the market
for payment instruments. Moreover, bank heterogeneity in our model is stark and serves only
to create an aggregate demand for liquidity. Whitesell (2006), Keister et al. (2008), Afonso and
Lagos (2015) and Afonso et al. (2018) provide more detailed data and modeling on its role
under scarce and abundant reserves. Our results suggest that these details should inform the
transmission of monetary policy.

Our results show that the nature of nominal assets in the economy is important for the
transmission of policy. Our setup shares this feature with the fiscal theory of the price level.
In particular, Sims (2013) and Cochrane (2018) have studied the role of the maturity structure
of government debt. A key difference between our approach and the fiscal theory is that the
nominal assets that matter for us are those available to banks in order to back inside money.
While government debt can be part of those assets, private contracts such as loans are also
relevant, and their payoffs can affect the transmission of policy. Moreover, our results do not
assume a non-Ricardian fiscal regime.

The paper is structured as follows. Section 2 presents the simple model of central bank
digital currency to introduce the key effects. Section 3 studies banks under a floor system.
Section 4 considers banks under a corridor system. Proofs and derivations are collected in the

4In order to provide payment services, money market funds contract with their custodian banks to gain access
to interbank payments arrangements. Our model can be viewed as consolidating money market funds with their
custodian banks.
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Appendix.

2 Monetary policy with a convenience yield: a minimal model

In this section we study a minimal model of a central bank targeting an instrument with a
convenience yield: money earns a convenience yield because it enters the utility function.
Households and firms solve the same problems as in textbook treatments of the New Keyne-
sian model. The only difference is that the central bank sets the quantity as well as the interest
rate on money, as opposed to the short rate of the representative agent’s stochastic discount
factor. A special case of the setup is thus a New Keynesian model with a money growth rule.
The model is more general, however, because it explores a larger set of rules for both interest
rates and the money supply.

Our interpretation is that there is a central bank digital currency (CBDC): everyone has
deposit accounts at the central bank, which controls both the nominal quantity and the interest
rate. The short rate, like nominal rates of return on all other assets, adjusts to clear markets.
Our interest in this model stems from its formal similarity to the banking models in Sections 3
and 4. We will show that the same mechanisms are at work both when the central bank makes
reserves abundant – hence controlling their price and quantity – and when the central bank
elastically supplies reserves to hit a fed funds rate target. Details of the banking system can
be understood as altering the coefficients of policy rules in the model of this section.

2.1 Setup with central bank digital currency

Every period, the representative household chooses consumption goods Ct, nominal money
balances Dt and labor Nt. Preferences are time separable with discount factor β and felicity

1
1− 1

σ

(
C

1− 1
η

t + ω (Dt/Pt)
1− 1

η

) 1− 1
σ

1− 1
η − ψ

1 + ϕ
N1+ϕ

t , (1)

where Pt is the price level, that is, the price of consumption goods in terms of money. More-
over, η is the intratemporal elasticity of substitution between consumption and real balances
and σ is the intertemporal elasticity of substitution between bundles at different dates. If
σ = η, utility is separable in consumption and real balances.

The New Keynesian model is usually derived by assuming separable utility. Most of our
theoretical results – in particular on determinacy and the dampening of policy effects – already
obtain in this case. We nevertheless develop the model for general nonseparable utility. We
then emphasize below the case σ > η, where consumption and real balances are complements
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(that is, the cross partial derivative of the utility function is strictly positive). Complementarity
helps fit the response of velocity to interest rates in the data. Moreover, it introduces a "cost
channel" – marginal cost increases with the opportunity cost of money – which has interesting
theoretical effects, as discussed in Section 2.3 below.5

Money is provided by the central bank which issues a digital currency that pays the nomi-
nal interest rate iD

t . The household can also invest in other short safe assets that pay the nom-
inal interest rate iS

t . The cost of liquidity iS
t − iD

t is the convenience yield on digital currency.
We refrain from calling iS

t the interest rate on short bonds. The banking models below intro-
duce short bonds explicitly; in equilibrium, they are held by banks whose valuation pushes
the bond rate below iS

t . Instead we refer to iS
t as the shadow rate. It represents the (nominal)

short rate in the household’s stochastic discount factor and hence the first-order term in the
nominal rate of return on any asset held directly by households. Since we linearize the model be-
low and abstract from higher order terms, iS

t is the relevant rate of return for all intertemporal
decisions, as well as for the valuation of firms by shareholders.

The household budget constraint at date t is

PtCt + Dt + St = WtNt + Tt + Πt + Dt−1(1 + iD
t−1) + St−1(1 + iS

t−1). (2)

Income on the right-hand side consists of labor income at the nominal wage Wt, government
transfers Tt, profits Πt from firms, as well as payoffs from money and other assets that earn
the rate iS

t−1. The income is spent on consumption expenditure on the left-hand side and a
new portfolio of money and other assets. Our timing convention is that money chosen at date
t provides liquidity services at that date – that is, it facilitates shopping for consumption Ct.

First order conditions. Households’ optimal choices for consumption, money and bonds
satisfy the standard Euler equations. First, the marginal rate of substitution of consumption
for real balances must be equal to the relative price of liquidity services provided by money, or
the opportunity cost of money. This intratemporal Euler equation describes a "money demand"
relationship often studied in the empirical literature:

Dt = PtCt ωη

(
iS
t − iD

t

1 + iS
t

)−η

. (3)

Since utility is homogenous of degree one in consumption and money, households hold money
in proportion to nominal spending. Moreover, money holdings are decreasing in the opportu-

5We focus on utility that is homogeneous of degree one in consumption and money in order to obtain a unitary
income elasticity of money demand. Some derivations of the standard model instead work with separable utility
that allows for different curvature parameters. It will become clear below how to extend our results to this case.
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nity cost of money, here the spread between other assets and money iS
t − iD

t . The elasticity of
substitution η works like an interest elasticity of money demand.

When consumption and money are complements, an increase in the opportunity cost of
money lowers the marginal utility of consumption. To clarify the effect on labor supply as well
as savings, we write the ideal price index for a bundle of consumption and liquidity services
from money as

Qt :=

1 + ωη

(
iS
t − iD

t

1 + iS
t

)1−η
 1

1−η

. (4)

This ideal price index is measured in units of consumption. Since the household cares about
bundles, as opposed to only consumption goods, labor supply depends on the real wage
measured in units of bundles, Wt/PtQt. A higher spread iS

t − iD
t thus not only increases the

price of liquidity services, but also lowers the price of leisure. At the same time, it affects the
household’s savings decision by increasing the real return on assets in units of bundles, that
is, (1 + iS

t )PtQt/Pt+1Qt+1: future consumption bundles become relatively cheaper.

When consumption and money are complements, an increase in the opportunity cost of
money lowers labor supply relative to consumption. Indeed, the first-order conditions imply
a second intratemporal Euler equation that links the marginal rate of substitution of labor for
consumption to the real wage:

Q1− η
σ

t C
1
σ
t ψNϕ

t =
Wt

Pt
. (5)

In the separable case, the optimal choice of labor relative to consumption depends only on the
relative price between these two goods: the real wage in units of consumption. When money
and consumption are complements, in contrast, an increase in the opportunity cost of money
makes consumption less attractive and leads households to take more leisure. Relative to the
standard model, there is a "labor wedge" that is increasing in the opportunity cost of money.6

This cost channel was emphasized in early flexible price DSGE models, but has received less
attention in the new Keynesian literature.

The intertemporal Euler equation for the shadow rate relates the marginal utilities of con-

6With elasticities below one (η < σ ≤ 1), competing income effects determine the labor wedge. These income
effects dominate both the choice between consumption and liquidity services, and the choice between bundles
and labor. A higher spread today makes liquidity services more expensive and, with a strong income effect,
reduces consumption. A higher price for liquidity services also makes leisure cheaper and, with a strong income
effect, increases demand for the bundle which includes more consumption. With separable utility, the two forces
exactly cancel, and we obtain the Euler equation for labor from the standard model. Complementarity between
money and consumption (η < σ) makes the income effect from the cost of liquidity stronger: a higher spread
today thus leads the agent to consume relatively less and take relatively more leisure.
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sumption at different dates to interest rates:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iS

t

)
= 1. (6)

Optimal savings implies that the discounted gross rate of return on assets is equal to one. In
the nonseparable case, discounting by the marginal rate of substitution reflects the expected
change in the opportunity cost of money. In particular, when money and consumption are
complements the household acts as if he discounts the future more when the opportunity cost
of money is temporarily lower: cheap liquidity today encourages consumption today.

Combining (3) and (6), we can write an analogous intertemporal Euler equation for money.
It clarifies that money is valued not only for its payoff, but also earns a convenience yield:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iD

t

)
+ ω

(
PtCt

Dt

) 1
η

= 1. (7)

The total return on money on the left hand side now consists not only of the pecuniary rate of
return (again appropriately discounted) but also adds a nonpecuniary benefit that is increasing
in the velocity of money Vt := PtCt/Dt: if spending is high relative to money, shopping is more
of a hassle and the convenience yield – the marginal benefit of additional money – is higher.
The response of the convenience yield to velocity is stronger if the interest rate elasticity of
money demand η is lower.

Firms. The supply side of the model is standard. Competitive firms make the consumption
good from a continuum of intermediate goods; their production function is CES with elasticity
of substitution ε. Monopolistically competitive firms make intermediate goods from labor
using the linear production function Yt = Nt. We assume Calvo price setting: the opportunity
for an intermediate goods firm to reset its nominal price is an i.i.d. event that occurs with
probability 1− ζ. The firm commits to satisfy demand at its posted price every period.

Government. The government has two policy tools: the interest rate on money iD
t and the

money supply Dt , the total size of the household’s digital currency account. Below, we allow
policy to either use feedback rules or fix exogenous paths for these instruments. In either case,
we consolidate the central bank and Treasury, and assume that the government levies lump
sum taxes Tt to satisfy its budget constraint Dt + PtTt = (1 + iD

t−1)Dt−1. An equilibrium then
consists of sequences for consumption, labor, lump sum taxes, output of the various goods
as well as the nominal interest rates iS

t , iD
t , the wage and the price level such that households

and firms optimize, the government budget constraint and policy rules are satisfied, and the
markets for goods, labor and money clear.
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We consider Taylor rules for the interest rate, that is, iD
t is a function of current inflation

and output.7 For the money supply, we consider rules of the form

Dt = µtDt−1 + PtGt. (8)

Mechanically, at date t, the government increases or shrinks the nominal money supply by a
factor 1− µt, and then issues new currency worth Gt consumption goods. A simple special
case is commitment to a path for the nominal money supply (that is, Gt = 0). The government
then provides a "nominal anchor" for the economy.

More generally, we allow for rules that do not provide a nominal anchor. For example,
suppose that µt = 0 and Gt > 0. The government then commits to a path for real balances.
A motivation could be that the government desires a certain size of the balance sheet of the
central bank relative to, say, long run output of the economy. An intermediate case obtains
for µ ∈ (0, 1): the government gradually moves real balances by retiring a share 1 − µ of
the nominal money supply and adding money worth Gt goods. The transition law for real
balances becomes

Dt

Pt
= µ

Dt−1

Pt−1

Pt−1

Pt
+ Gt. (9)

We can view µ as a measure of nominal rigidity in the money supply process: inflation erodes
real balances more with higher µ. This perspective will be useful below to discuss the role of
nominal rigidities on bank balance sheets.

Equilibrium. Regardless of the details of the policy rule, characterization of equilibrium is
routine and relegated to Appendix A.2. The equilibrium paths of output, the shadow rate iS

t ,
and the price level satisfy a system of difference equations: a New Keynesian Phillips curve –
derived from firms’ optimal price setting – together with the intertemporal Euler equation (6)
and money market equilibrium (3). A convenient way to describe equilibrium dynamics is to
linearize the difference equations around a steady state – this is how we proceed below.

Steady state. To obtain an equilibrium with constant real quantities and rates of return, we
assume that the government chooses constant policy parameters µ, G and iD. Let π denote
the steady state rate of inflation, which must equal the rate of nominal money growth. From
the Euler equation (6), the steady state shadow rate is iS = δ + π, where δ = 1/β− 1 is the
household’s discount rate. The real rate of return on money is rD = iD − π. Both the velocity
of money and the price index for a bundle of consumption and liquidity services are constant

7We are particularly interested in this case because in the banking models of Sections 3 and 4, a Taylor rule
on short bonds held by banks – as currently used by many central banks – will work effectively like a Taylor rule
for iD

t .
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in steady state:

V = ω−η

(
δ + π − iD

1 + δ + π

)η

; Q =

(
1 + ωη

(
δ + π − iD

1 + δ + π

)1−η
) 1

1−η

. (10)

Long run output is also constant at

Y =

(
ε− 1

ε

1
ψ

Q−(1−
η
σ )

) 1
ϕ+ 1

σ . (11)

In the separable case, η = σ, firms’ marginal cost does not depend on the cost of liquidity, but
only on the disutility of labor and the markup. When money and consumption are comple-
ments, η < σ, in contrast, cheaper liquidity lowers firms’ marginal cost and hence increases
output. If it were costless to produce real balances, then it would be optimal to drive the
cost of liquidity to zero. In this paper, we are interested in the response of the economy with
standard preferences and interest rate policies. We thus maintain preferences that preclude
the possibility of satiation with money.

What determines steady state inflation? There are two cases. With a nominal anchor, that
is, if the government commits to a nominal path of money, then we simply have π = µ− 1. If
instead G > 0, we can solve for steady state real balances from (9) and express velocity as

V =

(
1− µ

1 + π

)
Y
G

. (12)

Inflation, output, the price index Q and velocity are then jointly determined by (10)-(12).
Moreover, for any given inflation rate π, and any policy parameters iD < δ + π and µ < 1+ π,
there is a G such that steady state inflation is indeed π.

What about the steady state price level? If the government commits to a path for nominal
money, the quantity equation determines the price level. Without a nominal anchor, in con-
trast, the price level is indeterminate. Indeed, for µ < 1, the policy parameters G and iD only
determine inflation and the long run level of real balances. For any price level, agents believe
that the government supplies nominal money so that the long run level of real balances is met.
From (10), fixing G and iD is the same as fixing iS and iD. In the long run, the economy thus
behaves as if the government pegs both the interest rate on money and the interest rate iS.

Linearized model To study the dynamics of the model, we follow the standard approach
of log-linearizing around a steady state with zero inflation. The inflation rate is ∆pt =

log Pt/Pt−1 = pt − pt−1. We indicate log deviations from steady state by hats. We arrive
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at a system of linear difference equations for output, the interest rate and the price level.
Derivations are provided in Appendix A.2. In particular, the New Keynesian Phillips Curve
and Euler equation take the standard form

∆ p̂t = β∆ p̂t+1 + λ

((
ϕ +

1
σ

)
ŷt +

(
1− η

σ

) χ

δ− rD

(
iS
t − δ− (iD

t − rD)
))

, (13a)

ŷt = Etŷt+1 − σ
(

iS
t − ∆ p̂t+1 − δ

)
+ (σ− η)

χ

δ− rD

(
∆iS

t+1 − ∆iD
t+1

)
. (13b)

In the separable case, η = σ, the last term in both equations is zero and we arrive at the
standard three equation model. As usual, the parameter λ = (1− ζ)(1− βζ)/ζ measures the
response of inflation to marginal cost.

With complementarity, η < σ, there is a cost channel: a temporarily higher cost of liquidity
iS
t − iD

t increases firm’s marginal cost and lowers output. The strength of the cost channel
depends on the parameter χ, the elasticity of the price of a bundle of consumption and money
(4) with respect to the cost of liquidity:

χ =

(
1 + ω−η

(
δ− rD

1 + rD

)η−1)−1

. (14)

The elasticity χ is positive and increasing in households’ preference for liquidity as captured
by the utility weight ω. In the relevant case of a strong income effect (η < 1), it is also
increasing in the steady state price of liquidity chosen by the central bank: a higher price of
liquidity increases the expenditure share on liquidity.

Equilibrium in the money market is summarized by the intratemporal Euler equation (3)

iS
t − δ = iD

t − rD +
δ− rD

η

(
p̂t + ŷt − d̂t

)
. (15)

The general principle here is that, to first order, expected returns on all assets are equated.
The return on money has a pecuniary component, the interest rate iD

t on money, as well as a
convenience yield. The coefficient in front of velocity is the inverse semielasticity of money
demand with respect to the cost of liquidity. It depends both on the elasticity η and on the
steady state spread δ− rD. If money demand is less elastic, then fluctuations in velocity have
a stronger effect on the return on money.

We can now define equilibria for different policy regimes. If policy is specified as an
exogenous path for both the nominal quantity of money and the interest rate on money, an
equilibrium corresponds to a solution (yt, iS

t , pt) to the system of linear difference equations
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given by (13) and (15). In this system, the price level is an endogenous state variable. A special
case has the interest rate on money pegged at zero – this version is discussed in the literature as
the New Keynesian model with a money supply rule. We allow instead for general exogenous
paths for the interest rate on money.

If interest rate policy is specified as a Taylor rule, we add the equation

iD
t = rD + φπ ∆ p̂t + φy ŷt + ut, (16)

where ut is a monetary policy shock. The interest rate iD
t now also becomes an endogenous

variable of the system comprised of (13), (15) and (16). We do not claim that this policy rule
is optimal or otherwise desirable for the rate on a CBDC. We are interested in it only because
it is a simple rule that has been widely studied. Our goal is to describe what happens if the
central bank targets an asset with a convenience yield in this way. The bank models below
will show that this is a useful way to think of postwar monetary policy.

If the money supply is specified by the feedback rule (9) with µ < 1, the local dynamics of
money are

d̂t − p̂t = µ
(

d̂t−1 − p̂t−1 − ∆ p̂t

)
. (17)

With endogenous money, it is helpful to work with real balances as a state variable rather than
the price level. For a fixed path for the interest rate on money, an equilibrium now consists of
sequences for inflation, the shadow rate iS

t , output and real balances d̂t − p̂t that satisfy (13),
(15) and (17). Given such sequences and some initial steady state level of prices (together with
an associated initial money supply), we also obtain paths for the money supply and the price
level. We can again accommodate a Taylor rule by making iD

t endogenous and adding (16).

2.2 The separable case

In this section, we study the CBDC model when utility is separable in consumption and
money. The behavior of the private sector is then exactly the same as in the standard three
equation New Keynesian model: the New Keynesian Phillips curve and Euler equation are
given by (13) with η = σ. Moreover, money market equilibrium (15) is the same here as in the
derivation of the standard model in Woodford (2003) and Gali (2008).

The only difference between the CBDC model and the standard New Keynesian model is
in the specification of policy. The standard model adds an interest rate rule for the shadow
rate iS

t and sets the interest rate iD
t to zero. Since the central bank targets two interest rates,

there cannot be an exogenous path or rule for the money supply. Instead, money is elastically
supplied to achieve the desired interest rates iS

t and iD
t . The CBDC model, in contrast, does
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not impose a policy rule for the shadow rate, and it replaces the peg of iD
t at zero with a policy

path or rule for iD
t . Since it drops one equation, it has to add one as well: this is the path of

feedback rule for money which thus becomes a policy instrument together with iD
t . Next, we

consider the implications of this change for price level determinacy as well as the transmission
of policy.

Price level determinacy. When interest rate policy is specified as a path for the shadow rate iS,
the standard model is known to permit multiple equilibria, even when attention is restricted
only to bounded paths for output and inflation. It is helpful to recall the intuition for this
result. We focus on the case where the central bank pegs the nominal shadow rate iS to
some fixed number. One equilibrium is always that inflation and output are constant at their
steady state values, so the price level remains at its initial condition. However, there are other
equilibria with self-fulfilling booms and inflation.

To construct such an alternative equilibrium, suppose agents believe that output is high
today and gradually falls back towards the steady state. According to the New Keynesian
Phillips curve, paths of high output imply paths of marginal cost above steady state, and hence
inflation. However, with a nominal interest rate peg for iS, a path with high inflation is a path
of low real expected returns on savings. According to the Euler equation, agents respond to
low expected returns by intertemporally substituting consumption toward the present. High
demand for goods in turn calls for high equilibrium output: the initial belief in high output is
thus self-fulfilling.

A Taylor rule with a high coefficient on inflation breaks the argument: in response to
high inflation, the central bank aggressively raises the nominal shadow rate and hence the
real return on savings. It thereby discourages consumption today – this is what rules out a
self-fulfilling inflationary boom. The central bank can achieve a similar stabilizing effect if it
increases the nominal rate in response to high output. Both features of policy implement the
Taylor principle: the response of the nominal return on savings to inflation should be larger
than one.

In the CBDC model, the Taylor principle can be satisfied even if the central bank pegs the
policy rate. This is because the nominal return on savings is not controlled by the central
bank but moves endogenously with the convenience yield. The movement is stabilizing: for
example, an inflationary boom implies higher spending and hence a higher convenience yield.
It thus also raises the shadow rate as returns are equated in equilibrium according to (15).
It remains to assess when the convenience yield effect is strong enough to rule out multiple
equilibria. The key issue is whether an increase in spending generated by an inflation boom
sufficiently increases velocity.
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We say that equilibrium is locally determinate if the relevant difference equation describing
it has a unique bounded solution for any initial condition. We characterize local determinacy
with feedback rules for the policy rate and the money supply by

Proposition 2.1: Suppose utility is separable in consumption and money (σ = η). If µ = 1, the system
of difference equations (13) and (15) -(17) has a unique bounded solution for any initial level of real
balances (d̂−1 − p̂−1). For µ < 1, the system has a unique bounded solution if and only if

LR(iS, ∆p) :=
δ− rD

η

(
µ

1− µ
+

1− β

λ(ϕ + σ−1)

)
+ φπ + φy

1− β

λ(ϕ + σ−1)
> 1. (18)

The proof is in Appendix A.1. It is not essential for the argument that policy follows feed-
back rules; the condition also covers the case of a peg φπ = φy = 0 and a constant money
supply µ = 1. It thus extends to any bounded exogenous interest rate or money supply paths
because it relies only on the eigenvalues of the homogenous part of the difference equation.
The condition formally generalizes the Taylor principle to the case of an endogenous conve-
nience yield: it ensures that the long run response LR(iS, ∆ p̂) of the shadow rate to inflation
is larger than one. Without a convenience yield, the first term is zero and the condition re-
duces to that from Bullard and Mitra (2002): a sufficiently strong reaction of the central bank
to either inflation or output is necessary and sufficient to stabilize the economy. The term
multiplying φy is the long run response of output to inflation: according to the Phillips curve,
higher inflation must be driven by higher cost and hence requires higher output.

The new element here is that the return on savings (15) reflects the convenience yield.
Higher inflation goes along with a higher convenience yield for two reasons. First, higher
output, or higher real spending, increases velocity as captured by the second term in the first
bracket. With some rigidity in the money supply, µ > 0, high inflation further increases the
convenience yield by decreasing real balances. As money becomes more scarce in real terms,
its convenience yield rises. From (17), the long run response of real balances to inflation
is −µ/(1 − µ). The convenience yield effect is thus overwhelming with a nominal anchor,
µ = 1. In that case, the long run response of the interest rate to inflation is infinite and local
determinacy is guaranteed regardless of the other parameters of the economy.

At the same time, the convenience yield effect reduces the scope for multiple equilibria
even in the extreme opposite case of fixed real balances, µ = 0. It now works only through
changes in output – its strength thus depends on the slope of the Phillips curve. In particular,
there is less scope for multiple equilibria if prices are less flexible or preferences over labor
and consumption are such that marginal cost responds less to output. In either case, lower
inflation implies a larger long run drop in output and hence in the convenience yield and
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the return on savings. From (15), the strength of the convenience yield effect also increases
with the inverse semielasticity of money demand (δ− rD)/η, which determines by how much
lower output lowers the convenience yield.

More generally, the proposition clarifies that nominal rigidities in money supply are a
stabilizing force. For µ ∈ (0, 1), the government does not commit to a path for money going
forward. However, there is always a legacy amount of nominal money in the economy. If the
price level falls, then this legacy money is revalued and the convenience yield declines. As
in part (a), we then have a stronger stabilizing force as the convenience yield responds to the
price level. We view this case as especially relevant since it suggests that simply the use of
nominal money as a medium of exchange induces a stabilizing force. In other words, what
matters is only that the money supply is partly predetermined from the past; it is not essential
that it will not respond to future inflation.

Monetary policy transmission. We emphasize two differences between policy transmission in
the CBDC model versus the standard New Keynesian model. Consider first the role of money.
In the standard model, there is a strong sense in which money doesn’t matter: for a given
interest rate rule, money demand shocks have no effect on inflation, output and the shadow
rate. Formally, the result follows because a system consisting of (13) with η = σ, (15) and a
Taylor rule for iS is block recursive: we can solve for output, inflation and the shadow rate
independently of the parameters and any shifters of the money market equilibrium condition.
The latter only determines how much money needs to be endogenously supplied in order to
achieve the target interest rate iS.

In the CBDC model with a policy rule for the interest rate on money, money matters even if
utility is separable. Indeed, the system consisting of (13) with η = σ, (15) and (16) is not block
recursive. A shock to money demand, such as a change in the weight on money in utility,
would enter as an additive shock in (15). If the central bank sticks to its interest rate rule, such
a shock affects the shadow rate iS

t and hence the allocation. At the same time, a change in
the exogenous quantity of digital currency supplied by the central bank has real effects for a
given interest rate rule. In the banking models studied below, this property carries over to the
quantity and quality of collateral assets used by banks to back inside money.

Second, consider interest rate policy. In the CBDC model, changes in the policy rate have
weaker real effects than in the standard New Keynesian model. The reason is the imperfect
pass-through from the policy rate to the shadow rate, and hence to intertemporal decisions,
as described by (15). Indeed, consider a positive monetary policy shock, say, that increases the
nominal rate on money. With sluggish price adjustment, the real rate on money also increases,
which entails lower output and lower inflation on impact, as in the standard model. However,
lower spending also reduces the convenience yield on money. As returns on all assets are
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equated according to (15), the effect of the policy shock on the shadow rate iS is lower than
in the standard model. In this sense, interest rate policy is weaker. We quantify the effect in
Section 2.4.

2.3 Nonseparable utility and the cost channel

In the CBDC model, the pass-through (15) from the policy rate to the shadow rate depends
importantly on the elasticity of money demand η. Since standard estimates of η are lower than
conventional numbers for the intertemporal elasticity of substitution σ, the separable case is
overly restrictive. In this section, we thus explore the nonseparable case with η < σ, where
money and consumption are complements in utility. A key new feature is then that the cost
channel terms in the Phillips curve and Euler equation become relevant: a temporarily higher
cost of liquidity for households iS

t − iD
t increases firms’ marginal cost and hence inflation; at

the same time, it makes consumption more expensive and hence lowers output.

The introduction of a cost channel accentuates the difference between interest rate policy
in the CBDC model versus the standard model. To see this, consider again an increase in the
policy rate in the CBDC model. A drop in spending and hence a lower convenience yield now
feeds back to output and inflation: a lower cost of liquidity amplifies the fall in inflation but
further dampens the fall in output. Interestingly, the cost channel effects here are the opposite
of those in the standard model: if the central bank can increase the shadow rate holding fixed
the rate on money, the cost of liquidity for households increases. In the standard model, the
cost channel thus dampens the fall in inflation and amplifies the fall in output.

The presence of a cost channel in the CBDC model also introduces a new source of fragility
if the central bank responds too strongly to output. Indeed, suppose that agents believe in
a path of high expenditure by households on bundles of consumption goods and liquidity.
Along such a path, cost is high for firms which translates into high inflation. With a low
enough return on savings, the path is self-fulfilling. The new feature is that such a path need
not exhibit high output. Instead, spending by household and firms’ cost could be high because
liquidity is expensive, while output is actually below steady state. We thus have self-fulfilling
stagflation.

With a strong cost channel, an interest rate policy that responds positively to output can
be destabilizing. To rule out multiplicity, we would like to follow the Taylor principle and
increase the nominal return on savings when inflation is high. However, with a threat of
stagflation, it does not help to lower the policy rate when output falls. If interest rate policy
responds too strongly to output, then the above dynamics can be explosive and no bounded
equilibrium exists even if there is a nominal anchor. To rule out this case, we assume in what
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follows that

φy

(
1
η
− 1

σ

)
χ

ϕ + 1
σ

<
η

δ− rD . (19)

The condition is always satisfied if φy = 0 or there is no cost channel. More generally, it
restricts the product of φy and the long run effect of the policy rate on output.

The key to local determinacy is again the long run response of the return on savings to
inflation. With a cost channel, it becomes

LR(iS, ∆ p̂) =
δ− rD

η

(
µ

1− µ
+

1− β

λ(ϕ + σ−1)

)
+ φπ + φy

1− β

λ(ϕ + σ−1)

+

(
1
η
− 1

σ

)
χ

ϕ + 1
σ

(
φπ − 1− φy

µ

1− µ

)
.

The first line takes the same form as in the separable case (18), although now we have η <

σ. The second line shows that, with a cost channel, an aggressive interest rate response to
inflation still helps avoid multiplicity, whereas an aggressive response to output now hurts.
A peg leaves more room for multiplicity since the effect of inflation on output is weaker and
hence the convenience yield effect is reduced. Finally, (19) implies that more nominal rigidity
(higher µ) contributes to stability as before.

The determinacy properties with feedback rules are summarized by:

Proposition 2.2: Suppose consumption and money are complements in utility (η < σ) and (19) holds.
If µ = 1, then the system of difference equations (13) and (15)-(17) has a unique bounded solution for
any initial level of real balances (d̂−1 − p̂−1). If µ < 1, the system has a unique bounded solution for
any initial condition if and only if LR(iS, ∆p) > 1.

The proof is in Appendix A.1.

2.4 Numerical example

In this section, we present a numerical example to show that the differences between the
standard model and the CBDC model can be quantitatively large. Throughout we focus on a
version of the CBDC model with constant money supply. Moreover, we use a version of the
standard model where money pays a constant interest rate rD. This nonstandard assumption
has no effect on dynamics. It permits a cleaner model comparison in the sense that the average
interest rate on money and the average cost of liquidity for households are the same across
the two models.

Calibration. The model period is a quarter. We select a standard parameter for the discount
factor, β = 0.99, which implies a 4 percent discount rate δ per year. To calibrate the discount
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rate and the opportunity cost of money, we need measures of the interest rate on money as well
as the shadow rate in the households’ stochastic discount factor. For the former, we choose the
interest rate on Money of Zero Maturity (MZM), a broad measure of money constructed by the
St. Louis Fed. For the latter, we want a short rate that is not contaminated by the convenience
yield effects we study in our bank models below. We thus use the 3 month rate of the yield
curve constructed by Gurkaynak, Sack and Wright (2007) using only Treasury bonds, leaving
out T-bills that are predominantly held by payment intermediaries. The resulting average
deposit spread is 2.4% per year, so we work with an average deposit rate rD = .004.

We follow standard practice to identify the elasticity of money demand η from the time
series relationship between the velocity of money and its opportunity cost. In particular, we
find the semielasticity η/

(
δ− rD) by regressing log velocity of MZM on the spread between

the 3 month T-bill rate and the MZM own rate – the average rate on instruments in MZM. The
coefficient on the spread is 8.1 which implies an elasticity of η = .22. This number is similar to
what has been used in past studies. We identify the final preference parameter ω = 0.14, the
weight on money in utility from (10), to match an average velocity of 1/2.

Other parameters take standard values from the New Keynesian literature. We set both
the intertemporal elasticity of substitution σ and the Frisch elasticity ϕ equal to one. The
probability of resetting prices is 1− ζ = .75, so the response of inflation to marginal cost is
λ = .085. Without a cost channel, this response only consists of the response of inflation to
output, given by λ (ϕ + 1/σ) = .17. The strength of the cost channel is then measured by the
parameter χ = .0118; in other words, a one percentage point increase in the cost of liquidity
has about the same effect on inflation as a 70bp increase in output.

Dampening. We now study contractionary monetary policy shocks that increase the policy
rate by 25bps, or 1 percentage point per year. Figure 1 displays responses to an unanticipated
one time shock when the central bank follows a Taylor rule with a coefficient of inflation
φπ = 1.5 and no weight on output. The top three panels report percentage deviations from
steady state in the price level, output and nominal money. The bottom three panels report
percentage point deviations from steady state in inflation, the policy rate and households’ cost
of liquidity, that is, the spread between the shadow rate and the deposit rate. In all panels,
light gray and black lines represent the standard New Keynesian model and the CBDC models,
respectively.

The impact effects illustrate the dampening of interest rate policy when the policy instru-
ment earns a convenience yield. While contractionary policy causes a recession and deflation
in both models, output and inflation responses in the CBDC model are only about half the
size of those in the standard model. There are two reasons, illustrated in the bottom right
panel. First, pass-through is imperfect in the CBDC model: the spread between the policy rate
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Figure 1: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation only. Top three panels: percent deviations from steady state; bottom
three panels: percentage point deviations from steady state. Spreads are differences between
shadow rate and policy rate.

and the shadow rate declines. This effect is quantitatively relatively small. Second, the cost of
liquidity in the standard model moves in the opposite direction from the CBDC model. This
is an important force that makes output fall much more in the standard model.

The figure also shows that the CBDC model features internal propagation, whereas the
standard model does not. Indeed, after the deflationary impact effect, the price level in the
CBDC model gradually returns to the original steady state. Inflation thus turns positive after
the initial shock. Output also turns positive, although the effect is very small. The result
follows because the central bank in the CBDC model with constant money supply is effectively
targeting the price level. We can see this when we substitute the Taylor rule for the rate on
money (16) into the money market equilibrium equation (15). The resulting policy rule for the
shadow rate iS

t effectively engages in a version of nominal income targeting, and hence price
level targeting. In contrast, the price level in the standard model jumps to a new steady state
right away and inflation is back at its steady state rate of zero from the second period on.

As a complementary way to think about propagation, consider the evolution of money.
Since the money supply in the CBDC model is constant, the initial price level decline increases
real balances. After the initial shock, households thus find themselves in a world with too
much money: the economy works as if there had been an unanticipated increase in the money
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supply. With sticky prices, output and inflation rise and gradually return to the steady state.
In the standard model, in contrast, the central bank withdraws money on impact in order to
return the economy to steady state immediately in the second period.

Figure 2 considers a Taylor rule with interest rate smoothing: the current policy rate de-
pends not only on inflation but also on the last policy rate. Most estimations in the literature
find some persistence. The CBDC Taylor rule is

iD
t = .5iD

t−1 + 1.5πt + vt. (20)

The results are qualitatively quite similar to those in Figure 1, but more gradual because of
interest-rate smoothing. Comparing magnitudes across figures further shows that smoothing
leads to stronger inflation responses in both models, making those responses more similar.
However, the output response in the CBDC model is still about half its standard size. We
conclude that for common policy rules, responses differ significantly across the two models.
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Figure 2: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate.
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3 Banking with abundant reserves

In this section, we study banking when the central bank operates a floor system with abundant
reserves. We consider a model with banks that issue inside money, labeled "deposits", and
face a leverage constraint. To back deposits, banks can invest in high quality assets called
"reserves" or in "other assets" that are of lower quality. From the perspective of the bank, the
only difference between reserves and other assets is collateral quality. In particular, reserves
play no special role in managing liquidity. We can therefore think of reserves broadly as short
safe bonds, including Treasury bills. Other bank assets are subject to credit or interest rate risk:
they include loans, longer term government bonds, as well as mortgage backed securities.

The setup of this section is designed to capture the policy environment in the United
States since late 2008, when the initial round of quantitative easing made reserves abundant.
As reserves lost their liquidity benefit, the spread between reserves and T-bills declined to
essentially zero, and the fed funds market for borrowing and lending reserves between banks
disappeared. The observed negative spread between the fed funds and reserve rate has been
traced to a peculiarity of US money markets, namely that institutions such as GSEs have
reserve accounts but are not legally banks who earn interest on reserves. We abstract from
this feature here since we view it as minor and gradually eliminated by the Fed via the reverse
repo program.

We emphasize that, in a layered payment system, abundance of reserves is not the same as
interest rates reaching the zero lower bound. Indeed, while banks’ cost of liquidity – measured
by the spread between the Fed funds rate and the reserve rate – is zero with abundant reserves,
households’ cost of liquidity – measured by the difference between the shadow rate iS

t and the
deposit rate – remains positive. At the same time, reserves can be abundant both at and away
from the zero lower bound. Recent tightening by the Fed has increased the reserve rate as the
key policy rate, while maintaining the floor system with abundant reserves.

3.1 Setup

Banks hold reserves Mt, outside money issued by the government that earns the nominal
interest rate iM

t . They issue deposits Dt, inside money held by households that earns the
interest rate iD

t . The balance sheet of the typical bank is

Assets Liabilities
M Reserves Money D
A Other assets Equity

Other assets At available to banks earn the nominal interest rate iA
t . Banks maximize
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shareholder value. We assume that bank equity can be adjusted every period at no cost. In
this section, we further assume perfect competition among banks; market power in deposit
markets is introduced below.

Bank i’s nominal cash flow at date t reflects changes in deposits, reserves, and other asset
positions as well as interest on those positions:

Mi
t−1

(
1 + iM

t−1

)
−Mi

t − Di
t−1

(
1 + iD

t−1

)
+ Di

t + Ai
t−1

(
1 + iA

t−1

)
− Ai

t.

An individual bank maximizes the present value of cash flow, discounted at the shadow rate
iS
t . Since the model is deterministic, iS

t represents the household stochastic discount factor and
hence the banks’ cost of capital, or the required rate of return on bank equity. It is convenient
to work with nominal cash flows discounted by nominal rates to avoid extra notation.

Banks can issue deposits only if they have sufficient collateral to back them, as described
by the leverage constraint

Di
t ≤ `

(
Mi

t + ρA Ai
t

)
, (21)

where ` ≤ 1 and ρA < 1. The parameter ρA captures the idea that reserves are better collateral
than other assets. The parameter ` serves as a bound on leverage, defined as the ratio of debt
to quality-weighted assets. One interpretation of the constraint is as a capital requirement:
required equity must be higher if assets are lower quality. Even without regulation, a leverage
constraint can be viewed as a simple way to model an increasing marginal cost of debt.8

We focus on the case of a positive deposit spread iS
t − iD

t > 0. We already know from the
household Euler equation (3) that deposits provide a convenience yield whenever the supply
of real balances is finite. It follows that, from the perspective of the bank, deposits represent
a source of funding that is strictly cheaper than equity, which must earn the shadow rate iS

t .
Without a leverage constraint, it would be optimal to fund the bank entirely with deposits.
The leverage constraint will thus bind in equilibrium. A limited quantity of collateral implies
a limited quantity of deposits, which in turn justifies a positive deposit spread.9

Consider a bank’s first-order conditions. Given the linear objective, a bank holds an asset
(or issues a liability) if and only if its rate of return is equal to the cost of capital iS

t . Here

8In a more general model, such costs might be derived from deadweight costs of bankruptcy. Collateral quality
can then be derived from the riskiness of bank assets. While the resulting tradeoffs that determine leverage are
similar to the ones here, adding portfolio choice under risk yields additional testable predictions on balance sheet
ratios, explored for example in Lenel, Piazzesi and Schneider (2019).

9A hard leverage constraint simplifies the analysis, but is not essential for our results. In Piazzesi and Schnei-
der (2018), optimal leverage follows from a smooth tradeoff between the marginal cost of leverage and the
liquidity benefit of deposits. The key point both here and in that model is that the liquidity benefit works like the
tax advantage of debt in the standard tradeoff theory of capital structure – combined with an increasing marginal
cost of debt, it generates a determinate optimal leverage ratio.
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the appropriate "rate of return" incorporates both the pecuniary return – that is, the interest
rate – and a nonpecuniary component introduced by the Lagrange multiplier on the leverage
constraint. We focus on banks who hold both reserves and other assets and who issue deposits.
The first order conditions are then

iS
t = iM

t + `γi
t

(
1 + iS

t

)
,

iS
t = iA

t + ρA`γi
t

(
1 + iS

t

)
,

iS
t = iD

t + γi
t

(
1 + iS

t

)
.

A binding leverage constraint induces spreads between the interest on banks’ assets and
liabilities versus their cost of capital. Mechanically, the presence of the leverage constraint
implies that interest rates on reserves, loans and deposits are all below the cost of capital. For
example, on the asset side, the reserve spread iS

t − iM
t indicates that banks value reserves not

only for their interest rate, but also for their collateral value that allows them to issue more
cheap deposits. At the same time, the spread on other assets iS

t − iA
t is lower than the reserve

spread since the collateral quality of loans (measured by ρA < 1) is lower than that of reserves.
Similarly, on the liability side, banks pay depositors a lower rate of return than shareholders
because issuing deposits incurs an additional leverage cost.

Combining a bank’s first-order conditions clarifies the pricing of liquidity in a layered
payment system

iS
t − iD

t =
Mi

t

Di
t

(
iS
t − iM

t

)
+

Ai
t

Di
t

(
iS
t − iA

t

)
= `−1

(
iS
t − iM

t

)
. (22)

The cost of liquidity for households, captured by the deposit spread, reflects a weighted aver-
age of spreads on the two collateral assets used to back deposits. Since the bank can substitute
freely between reserves and other assets, the deposit spread is proportional to the reserve
spread. From the bank’s perspective the formula describes marginal cost pricing of household
liquidity: leverage makes the deposit spread higher than the reserve spread. Put differently,
competition between banks for collateral assets implies that those assets inherit part of the
liquidity benefit conveyed by deposits.

To close the model, we describe policy and the supply of assets. In contrast to the digital
currency model of Section 2, government policy now controls reserves, while the creation
and valuation of deposits is endogenous. The government thus sets paths for the quantity
of reserves Mt and the interest rate on reserves iM

t . We further assume that the real supply
of other assets is given by an exogenous path Ar

t , so in equilibrium At = Pt Ar
t . Concretely,
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we can think of firms or the government issuing a fixed amount of debt in real terms. The
only other element of the model that is affected is profits in the household budget constraint,
which add up firm and bank profits. Since households and firms operate in frictionless equity
markets, their marginal conditions are unaffected.10

In equilibrium, all banks choose the same balance sheet ratios, so we can directly aggre-
gate. An equilibrium consists of prices and quantities such that households, firms and banks
optimize and asset and goods markets clear. In the system of difference equations charac-
terizing equilibrium, the equations characterizing nonbank private sector are unchanged: we
still have a New Keynesian Phillips curve, an Euler equation, and a market clearing condi-
tion for deposits. There are three new equations: the binding leverage constraint (21) and the
pricing of deposits and other assets (22). These three equations help determine the three new
endogenous variables Dt, iD

t and iA
t .

3.2 Linearized model

Equilibrium with banks is characterized by a system of linear difference equations that has
the same structure as that for the digital currency model in Section 2. Indeed, the nonbank
private sector equations (13) and (15) continue to hold. What is new is that the deposit spread
depends on policy via the pricing equation (22). The cost channel coefficient χ defined in (14)
thus depends on the policy rate and bank leverage via steady state deposit pricing. Moreover,
we can substitute for the deposit spread in (15) to arrive at a new equation for pass-through
from the policy rate iM

t to the shadow rate:

iS
t − δ = iM

t − rM +
δ− rM

η

(
p̂t + ŷt − d̂t

)
. (23)

The second term on the right hand side is the convenience yield on reserves: just like the
convenience yield on deposits in (15), it moves with the velocity of deposits. The bank model
here differs from the CBDC model in that the policy rate is no longer the rate on money
itself, but instead the rate on a collateral asset used by banks to back money. Nevertheless,
competition by banks for collateral assets implies that pass-through works the same way.
In particular, as in the CBDC model, households’ elasticity of money demand η is a key
determinant of variation in the convenience yield and hence the strength of pass-through.

To complete the linear system, we add equations for the endogenous production and pric-

10A richer model would make the demand for bank loans endogenous, and possibly responsive to the state
of the economy. We choose to work with exogenous rules to maximize transparency. Fixed debt is a baseline
scenario motivated by the fact that bank assets tend to adjust slowly to shocks. We discuss other assumptions on
both policy and the supply of loans below.
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ing of real deposits by banks as well as a feedback rule for reserves:

d̂t − p̂t = αm(m̂t − p̂t) + (1− αm)âr
t , (24a)

iS
t − iD

t = `−1
(

iS
t − iM

t

)
, (24b)

m̂t − p̂t = µ(m̂t−1 − p̂t−1 − ∆ p̂t), (24c)

where αm := M/(M + ρAPAr) is the steady state quality-weighted share of reserves on banks’
balance sheets. The first row is the loglinearized leverage constraint: it relates the quantity of
deposits to the quantity of collateral. It implies in particular that velocity in (23) is the ratio
of spending to an exogenous nominal quantity, as in (15). The second row shows that again
households’ cost of liquidity is proportional to the spread between the shadow rate and the
policy rate. The final row applies (17) to reserves.

A key difference between the bank model and the CBDC model is that the private sector
cost of liquidity iS

t − iD
t is no longer the same as the spread between the shadow rate and the

policy rate. Instead, it includes a markup determined by bank leverage, as shown in (24b).
Since the policy spread is lower than the deposit spread, fluctuations in velocity have a smaller
effect on the short interest rate in the bank model – in other words, pass-through from the
policy rate to the shadow rate becomes stronger. Intuitively, reserves inherit the convenience
yield from deposits because they serve as collateral. If banks are not very levered, the effect is
weaker. A drop in spending that lowers the convenience yield on deposits then has a smaller
effect on the yield on reserves.

Nevertheless, we conclude that the bank model differs from the standard New Keynesian
model in the same way as the CBDC model: there is imperfect pass-through and the cost of
liquidity is decreasing in the policy rate. In fact, with separable utility, the bank model is
formally equivalent to a CBDC model with a higher semielasticity of money demand. With
nonseparable utility, this is not true, however: the strength of the cost channel as captured by
the coefficient χ continues to reflect only the average cost of liquidity for households δ− rD. For
the cost channel, it is not relevant how money is produced and what policy rate banks face;
all that matters is the private sector cost of liquidity.

The formal similarities between the CBDC and bank model clarify the equivalence of super-
ficially distinct institutional features. In particular, in an environment with abundant reserves,
monetary tightening makes liquidity cheaper. Indeed, raising the reserve rate reduces the tax
imposed by the government on the production of inside money. Its impact is thus analogous
to an increase in the deposit rate in the CBDC model. It is not the same as raising the shadow
rate in the household stochastic discount factor. In order to understand policy with abundant
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reserves, the CBDC model is thus a better reduced form analogy than the standard model.

Determinacy of equilibrium. An equilibrium is a solution to the system of difference equa-
tions consisting of (13), (23) and (24). Appendix A.1 shows that Propositions 2.1 and 2.2 also
hold for this system. The general condition for determinacy is again that the long run response
of the nominal shadow rate to inflation is larger than one. Here, that response is

LR(iS, ∆ p̂) =
δ− rM

η

(
αmµ

1− µ
+

1− β

λ(ϕ + σ−1)

)
+ φπ + φy

1− β

λ(ϕ + σ−1)

+

(
1
η
− 1

σ

)
χ

ϕ + 1
σ

(
φπ − 1− φy

αmµ

1− µ

)
.

There are two notable differences relative to the CBDC case. First, the parameter χ defined in
(14) is higher for a given policy spread, δ − rM, since it incorporates banks’ markup, which
strengthens the cost channel. If policy sets a peg, markups thus increase the scope for multi-
plicity; they further make a response to inflation more effective and a response to output less
effective.

A second difference is that nominal rigidities in the money supply rule are now relevant
only to the extent that banks hold reserves on the balance sheet: with low αm, the stabilizing
effect of the convenience yield is reduced. The more general point here is that any nominal
rigidity can contribute to stability. For example, we have assumed so far that all bank assets are
real and exogenous. If instead bank loans or government debt held by banks, say, are nominal
assets that follow a rule similar to our money supply rule, then the scope for multiplicity
would be reduced further. In the stark case where the entire asset supply happens to follow
the same rule as the reserve supply, we would have αm = 1.

Bank assets and loan shocks. Consider a shock to the supply of other assets – say because
bank borrowers become more constrained – works like a contraction of the money supply. It
increases the convenience yield on money, and thereby also the convenience yield on reserves:
as other assets become more scarce, reserves become more valuable as collateral to back broad
money. From (23), pass-through increases the shadow rate even if the central bank does not
change the policy rate. Negative loan shocks thus generate a recession with deflation. While
we have varied only the quantity of other assets At here, an exogenous change in their quality
as measured by ρA would work in much the same way. For example, an announcement
that ratings of bank assets are worse than expected, would reduce quality-adjusted collateral
supply, thereby reducing deposit supply and so increasing the convenience yield on money.

Quantitative easing. We can also use the model to think about QE, or more generally un-
conventional balance sheet policies of the central bank. Consider two examples. First, a swap
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of high quality reserves for other nominal assets of lower quality on bank balance sheets is
described by dA = −dM and hence ât = − (M/A) m̂t so the change in the money supply
from (24) is

d̂t = αmm̂t − (1− αm)
M
A

m̂t = (1− ρA) αmm̂t.

The substitution of good for bad collateral thus increases the money supply and stimulates
the economy, and more so if the collateral purchased by the central bank is of worse quality.

As a second example, consider a central bank purchase of assets not held by banks. In
terms of our model, such bonds are held directly by households. The purchase of such bonds
thus works mechanically like a "helicopter drop" of reserves: there is an increase in M not
accompanied by a drop in other bank assets A. The central bank intervention effectively in-
creases the collateral available to back inside money. The policy thus stimulates the economy
even more than a purchase of assets held by banks. We recognize that to draw stronger con-
clusions here requires a more explicit model of why some assets are held within the banking
system while others are not.11 We can already see however, that even in a richer model a key
determinant of the power of unconventional policy is in how it changes bank collateral assets
and their convenience yield.

Bank market power. Before calibrating the model, we provide a simple extension to bank
market power in deposit markets. For tractability, we assume monopolistically competitive
banks that offer varieties of deposits. We thus modify preferences so households care about a
CES aggregate of different varieties Di

t, each produced by a different bank i:

Dt =

(∫ (
Di

t

)1− 1
ηb

) 1
1− 1

ηb ,

where ηb measures the elasticity of substitution between varieties. One interpretation is that
the household sector works like a large "family" with members in different regions, and for
historical reasons banks exert local market power. The key effect we are after is that deposits
are a cheap funding source for banks not only because of their liquidity benefit to households,
but also because of market power.

Consider deposit demand faced by an individual bank. Bank i supplies liquidity to house-
holds at the price (iS − iD,i

t )/(1 + iS
t ), where iD,i

t is the deposit rate promised by bank i. CES
preferences imply an ideal price index that aggregates the individual liquidity prices. We de-

11Such a model might add additional institutions or intermediaries such as pension funds, insurance compa-
nies, or foreign central banks that value certain assets more than banks, and hence bid down their prices, making
them unattractive as collateral to back inside money. The unconventional policy provides a way to circumvent a
situation with endogenously segmented markets.
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fine the average deposit rate iD
t such that the spread (iS− iD,i

t )/(1+ iS
t ) achieves that aggregate

price of liquidity. We can then write deposit demand as

Di
t =

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb

Dt. (25)

The derivation is familiar from monopolistic competition in the goods market and relegated
to Appendix A.3. The only unusual feature is that prices take the form of spreads since the
relevant good is liquidity.

In equilibrium, individual banks maximize profits, taking as given aggregate deposit de-
mand. The quantity of nominal deposits still follows from banks’ binding leverage constraint.
However, market power increases the price of liquidity by a constant markup:

iS
t − iD

t =
ηb

ηb − 1
`−1

(
iS
t − iM

t

)
. (26)

Since liquidity is more expensive with market power, households reduce demand and the
equilibrium real quantity of deposits is lower. With given nominal collateral, this is achieved
by a higher average price level. The overall scale of the banking system is thus smaller the
higher is market power.

The dynamics of the model are qualitatively unchanged once market power is introduced.
There are however two key changes to the system of difference equations. First, the cost
channel coefficient χ now incorporates the markup via the steady state version of (26) Second,
we replace (24b) by (26). With separable utility, these changes affect only the deposit rate –
there is no direct effect on the dynamics of the convenience yield on reserves. More generally,
when a cost channel is present (η < σ), then a larger markup increases the sensitivity of firms’
marginal cost to households’ cost of liquidity. It follows that market power accentuates the
difference between interest rate policy in our bank model versus the standard New Keynesian
model.

3.3 Numerical example

Our numerical example is again designed to show that deviations from the standard model
can be potentially significant. We assume that the central bank runs a Taylor rule with interest
rate smoothing (20) with a coefficient 1.5 on inflation and .5 on the last interest rate. We also
assume that other bank assets are real and constant; this means that the only relevant new
equations are (23) and (26). We thus need to pick two new parameters: the average spread
δ − rM between the policy rate and the shadow rate, and the markup factor that links the
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reserve and deposit spreads.

We assume that the average short term rate targeted by the central bank is the same as the
historical average of the policy rate of 4.6% per year. As before, we identify the shadow rate
with the average short rate from Gurkaynak, Sack and Wright (2007) which is 4.9% per year,
so the average spread δ− rM is 30 basis points. With an MZM own rate of 2.5% per year, the
markup factor ηb/ [(ηb − 1)`] is about 8. In the current exercise, we cannot identify the extent
to which the markup is due to market power as opposed to leverage, but it is plausible that `
is relatively close to one, so that a large component must be due to bank market power.
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Figure 3: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate (solid lines) and difference between policy
rate and deposit rate (dotted line).

Figure 3 shows responses to a one time contractionary monetary policy shock that increases
the policy rate by 25bps. The panels look essentially the same as those for the CBDC model
in Figure 1. This is even though the pass-through coefficient in (23) is much smaller in size.
The reason is that the strength of the cost channel has not changed: it continues to be driven
by households’ cost of liquidity. The smaller policy spread is therefore not important for
magnitudes. As long as the policy spread is positive, the convenience yield channel is active
and the dampening effects explained above are relevant.
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4 Banking with scarce reserves

In this section we study banking when the central bank operates a corridor system with scarce
reserves. We extend the simple banking model of the previous section by adding liquidity
shocks, thus creating a motive for banks to hold reserves even if they earn a lower rate than
the rate on other short safe assets. We abstract entirely from reserve requirements: reserve
holdings in the model correspond to excess reserves in the data. Our mechanism thus re-
mains relevant today where reserve requirements have essentially disappeared. Indeed, when
we integrate the banking system of this section with the New Keynesian model, we go to a
"reserveless limit" where the quantity of reserves is negligible on bank balance sheets.

Corridor systems typically work with three rates: a lower bound at which banks can de-
posit funds at the central bank, an upper bound at which banks can borrow from the central
bank, and a target for the interbank overnight rate within the corridor. Since the market for
overnight interbank loans is an over-the-counter market, the target is typically an average of
recorded trades, such as the US federal funds rate. The trading desk of the central bank can
steer the overnight rate towards the target by changing the supply of reserves via open market
policy that alters the scarcity of reserves. In addition to the three overnight rates, systems
with scarce reserves often allow for intraday credit from the central bank, such as the Fed’s
overdraft facility in the US.

Our model focuses on two features of corridor systems that distinguish them from floor
systems. First, liquidity is costly for banks in the sense that the interest rate on reserves is
below the interest rate on overnight loans as well as other short bonds. Second, reserves
are supplied elastically by the central bank in order to meet the interest rate target. We can
capture both features by assuming that (i) there is a perfectly competitive overnight interbank
market, and (ii) overnight interbank loans are slightly worse collateral to back inside money
than reserves. Assumption (ii) generates an incentive for banks to economize on reserves,
and assumption (i) allows for the central bank to elastically supply reserves to set the spread
between overnight and reserve rates. While a richer model might generate more detailed
predictions of interbank interactions, our goal is to highlight two features that shape the impact
of policy, and distinguish corridor and floor systems in that regard.

4.1 Setup

We start from the bank model with market power in deposit markets from Section 3. To gen-
erate a liquidity benefit for reserves, we now introduce bank level liquidity shocks, motivated
by banks’ provision of liquid deposits. Formally, suppose every period has two subperiods.
In the first subperiod, bank i selects a portfolio of reserves Mi

t and other assets Ai
t and issues
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deposits Di
t. In the second subperiod an individual bank must transfer λ̃i

tD
i
t funds to other

banks. If λ̃i
t is negative, then the bank receives funds and thus increases its debt. We assume

that the shocks are iid across banks with a continuous cdf G
(
λ̃
)

that is strictly increasing on
the interval [−λ̄, λ̄]. We also assume that the shocks have mean zero. With a continuum of
identical banks, this means that all flows in the second subperiod remain within the banking
system.

Once liquidity shocks have been realized, a fed funds market opens. Interbank loans are
traded competitively at the rate iF

t ; they are repaid in the first subperiod of the subsqeuent
period. Markets for deposits, other assets or equity remain closed. The bank budget constraint
in the second subperiod is therefore

Mi
t − λ̃i

tD
i
t = M̃i

t + Fi+
t − Fi−

t ,

where M̃i
t denotes reserves held overnight (carried over to period t + 1), while Fi+

t and Fi−
t are

funds lent and borrowed in the fed funds market, respectively.

The bank leverage constraint must now hold after the second subperiod; it is given by

Fi−
t + Di

t

(
1− λ̃i

t

)
≤ `

(
M̃i

t + ρFFi+
t + ρA Ai

t

)
.

Bank debt issued on the left-hand side now consists of both interbank borrowing plus deposits.
At the same time, bank collateral on the right-hand side includes not only reserves and other
assets A, but also interbank lending. Since interbank loans are private, we assume that they
are worse collateral than reserves: the weight ρF is less than one. This assumption makes it
worthwhile for banks to hold reserves even if the fed funds rate iF

t is above the reserve rate.

Optimal liquidity management. A bank’s problem in the second subperiod is to choose
M̃i

t, Fi+
t and Fi−

t to maximize next period’s cash

M̃i
t

(
1 + iM

t

)
+
(

1 + iF
t

) (
Fi+

t − Fi−
t

)
,

subject to the budget and collateral constraints as well as nonnegativity constraints on all three
variables. If iF

t = iM
t , then banks are indifferent between holding reserves or lending them out,

and the optimal policy is indeterminate. The interesting case is that of "scarce reserves" when
the fed funds rate is strictly above the reserve rate:

Proposition 4.1. Suppose iF
t > iM

t and a bank’s optimal policy
(

Mi
t, Ai

t, Di
t
)

in the first subperiod
satisfies (

1 + λ̄ (1− `)
)

Di
t ≤ `Mi + `ρA Ai. (27)
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The bank’s optimal reserve holdings in the second subperiod are then

M̃i
t = max

{
λi∗

t − λ̃i
t, 0
} 1− ρF`

` (1− ρF)
Di

t, where λi∗
t :=

Di
t − ρF`Mi

t − ρA`Ai
t

(1− ρF`) Di
t

. (28)

When the fed funds rate is higher than the reserve rate, banks strictly prefer to lend out
reserves. However, counterparty risk in the fed funds market, captured by the assumption
ρF < 1, implies that lent out reserves are worse collateral than reserves held directly with the
Fed. As a result, banks that receive a sufficiently large inflow of deposits – that is, they must
end the day with particularly high leverage – do not have enough other collateral to lend out
all reserves. Instead, they keep some reserves, which are the highest quality collateral, on their
balance sheets.

Banks’ optimal response to liquidity shocks in the second subperiod depends on their
initial balance sheet composition. Condition (27) says that a bank that experiences the largest
possible deposit inflow λ̃ = −λ̄ can satisfy its collateral constraint if it keeps all its reserves
on the balance sheet. It thus represents a constraint on banks’ choice problem in the first
subperiod. If banks’ initial portfolio does not satisfy this condition, then there are shocks in
the second subperiod such that the bank cannot continue to operate.

Bank portfolios and capital structure. Consider now a bank’s portfolio and capital structure
choice in the first subperiod. The objective function is

E[
(

1 + iA
t

)
Ai

t −
(

1 + iD,i
t

)
Di

t +
(

1 + iF
t

) (
Mt − λ̃tDi

t

)
−
(

iF
t − iM

t

) 1− ρF`

` (1− ρF)

∫ λ∗t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)
]Di

t

−
(

Ai
t + Mi

t − Di
t

) (
1 + iS

t

)
, (29)

where expectations are taken over liquidity shocks λ̃i
t and the threshold shock λi∗

t is given by
(28). Banks anticipate that they will typically trade liquid funds at the rate iF

t , either borrowing
or lending in the fed funds market. For liquidity shocks below λ∗, however, they will hold
reserves overnight. If either iF

t = iM
t or there are no liquidity shocks (λ̄ is zero), the problem

reduces to that of Section 3.

Banks maximize (29) subject to the leverage constraint (27) and the demand function (25).
They take as given aggregate deposits and rates charged by other banks, as well as the Fed
funds rate that will prevail in the second subperiod – since there is no aggregate shock, they
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can perfectly foresee that rate. The FOC for reserves and other assets A are

iS
t = iF

t −
(

iF
t − iM

t

)
G
(

λi∗
t

)
+

{(
iF
t − iM

t

) 1
1− ρF

G
(

λi∗
t

)
+ `γi

t

}
, (30a)

iS
t = iA

t + ρA

{(
iF
t − iM

t

) 1
(1− ρF)

G
(

λi∗
t

)
+ `γι

t

}
, (30b)

where γi
t is the Lagrange multiplier on (27).

The structure of the first order conditions is analogous to the case of abundant reserves:
banks value assets not only for their pecuniary payoffs but also for their convenience yield.
The pecuniary return on reserves is now stochastic. With probability 1− G (λ∗), the bank is
unconstrained so that the rate of return is the fed funds rate iF

t . With probability G (λ∗),
the collateral constraint binds and the bank must hold reserves overnight at iM

t . The term in
braces is the marginal collateral benefit from an extra unit of reserves. The collateral benefit
from other assets is a share ρA of that from reserves, due to the lower collateral quality of
other assets.

The marginal collateral benefit of reserves has two parts. More reserves (i) imply that the
collateral constraint binds less often and more reserves that flow in can be lent out, and (ii)
may relax the worst case constraint (27). The collateral benefit from reserves is larger when
Fed funds are better collateral (higher ρF). The spread between the shadow rate and the fed
funds rate can be written as

iS
t − iF

t = ρF

(
iS
t −

[
iF
t −

(
iF
t − iM

t

)
G
(

λi∗
t

)])
+ (1− ρF) `γi

t.

If the worst case constraint does not bind, banks are on the margin between fed funds and
reserves, and the spread on fed funds differs from that on reserves only because of the col-
lateral quality. We further have from (30) that iS

t − iA
t = ρA

ρF

(
iS
t − iF

t
)

– as in Section (3) bank
optimization implies that the spread on the policy rate is proportional to the rate on other
bank collateral.

The bank’s first order condition for deposits is

iS
t − iD,i

t =
ηb

ηb − 1

{
iF
t − iM

t
` (1− ρF)

(
(1− ρF`)

∫ λi∗
t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)
+ G

(
λi∗

t

)(
ρF`

Mi
t

Di
t
+ ρA`

Li
t

Di
t

))
+γi

t
(
1 + λ̄ (1− `)

)}
. (31)

As in (26), banks price liquidity at a markup over marginal cost, which now depends on
conditions for liquidity management, in particular the spread between the fed funds rate and
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the reserve rate as well as the distribution of liquidity shocks. If banks have stronger balance
sheets and liquidity is cheaper for banks (lower iF

t − iM
t ) then deposits are cheaper to produce

and the deposit spread is lower.

Equilibrium. Banks are ex ante identical and face a choice problem with constant returns to
scale: at given interest rates, they all choose the same ratios Mt/Dt and At/Dt. In equilibrium,
the supply of reserves provided by the central bank to implement its interest rate target must
satisfy the demand of banks with shocks below λ∗:

1− ρF`

` (1− ρF)

∫ λ∗t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)
=

Mt

Dt
. (32)

By Walras’ law, this "reserve market clearing" condition implies that the Fed funds market also
clears. It says that the money multiplier is negatively related to the threshold shock λ∗ and
hence the probability that banks have to hold cash overnight. Indeed, the derivative of the
bracket on the left hand side is G (λ∗) > 0. Intuitively, if banks hold fewer reserves relative to
deposits, then less cash is available for the sector overall to withstand liquidity shocks. As a
result, the equilibrium probability of holding cash overnight must decline.

We have now described a "banking module" that integrates easily into our New Keynesian
setup: bank optimization and reserve market clearing determine bank balance sheet ratios and
interest rates on bank instruments (deposits and other bank assets A) for given policy rates
targeted by the central bank. Mechanically, for given iF

t and iM
t , we can solve the five equations

(27)-(32) for the ratios Mt/Dt and At/Dt, the interest rates iA
t and iD

t as well as the multiplier
γt. With an exogenous path for the quantity of other assets as in Section 3, we then obtain an
endogenous quantity and interest rate on deposits. We show next that the role of banks can
again be summarized by equations for interest rate pass-through, deposit supply and the cost
of liquidity, as before. An important difference to the model with abundant reserves is that
reserves are supplied elastically by the government; we no longer have to specify a path or
feedback rule for reserves.

Steady state. Consider liquidity management in the steady state. The central bank fixes
interest rates rF and rM and supplies reserves elastically to achieve those rates. Given these
two policy rates as well as the shadow rate δ, the five equations (27)-(32) determine balance
sheet ratios, rates on bank instruments and a multiplier. It is helpful to distinguish two types
of equilibria. In an elastic supply equilibrium, banks’ worst case leverage constraint (27) does
not bind. In other words, banks choose initial leverage low enough that even the worst case
deposit inflow does not require holding all reserves overnight to satisfy the leverage constraint.
In an inelastic supply equilibrium, the worst case constraint does bind.
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The following proposition shows that the government can choose the type of equilibrium
by choosing banks’ cost of liquidity rF − rM:

Proposition 4.2. There is a threshold level rF∗ ∈
(
rM, δ

)
for the steady state federal funds rate such

that there is a unique elastic supply equilibrium if rF > rF∗ and there is a unique inelastic supply
equilibrium if rF ≤ rF∗.

If liquidity is more expensive – that is, rF − rM is high enough – banks choose lower
initial leverage ratios so the worst case constraint remains slack. In contrast, cheap liquidity
encourages leverage. An inelastic supply equilibrium works very much like an equilibrium
in the model with abundant reserves studied in Section 3 – in particular, balance sheet ratios
and rates are determined separately.12 In other words, once liquidity is sufficiently cheap, the
model behaves as if reserves are not scarce.

The purpose of this section is to study dynamics when the average share of reserves in
bank balance sheets is small and the average spread between the fed funds and reserve rates
is high, as was the case in the United States before 2007. We show now that this environment
can be described by an elastic supply equilibrium with "small" liquidity shocks. In particular,
for any target balance sheet ratios and interest rates, we can find a liquidity shock distribution
such that those calibration targets are met by an elastic supply equilibrium. Moreover, in
the relevant case where bank reserve shares are negligible, we can make liquidity shocks
arbitrarily small.

Proposition 4.3. (a) For any interest rates rF and rM and weight ρF such that rF > (1− ρF) δ +

ρFrM, and for any balance sheet ratios M/D and A/D such that (M + ρA A) /D > 1, there is a
leverage constraint parameter ` < 1 and a distribution of liquidity shocks G such that there exists a
steady state equilibrium with elastic supply.

(b) As the ratio of reserves to deposits goes to zero, we can choose the liquidity shock distribution
such that the support bound λ̄ also goes to zero.

4.2 The linearized model with elastic money supply

The key new effect in an elastic supply equilibrium is that interest rate policy affects bank
leverage and the money multiplier – the supply of real balances to households is interest

12Indeed, the ratios M/D and A/D follow from the binding worst case constraint together with market clear-
ing. In particular, the exogenous quantity of other assets directly pins down the quantity of deposits. The ratios
further imply λ∗ and the interest rate on other assets follows as

iS − iA = ρA

(
iS − iF + G (λ∗)

(
iF − iM

))
.

Finally, the deposit interest rate follows from (31).
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elastic. Indeed, suppose the central bank tightens by increasing the fed funds rate. As banks
face a higher liquidity cost, they reduce deposits so as to become constrained less often – the
threshold shock λ∗t declines. The reduction in deposits allows banks to economize on reserves,
which carry a high opportunity cost. The central bank thus reduces the supply of reserves in
order to implement the higher fed funds rate. In fact, a decline in the threshold λ∗ lowers the
ratio of reserves to deposits and increases the ratio of other assets to deposits – banks become
less liquid and better collateralized.13

To clarify the response of deposit supply to interest rates, we linearize the first order con-
dition for reserves (30a), substitute for λ∗ from its definition and for the endogenous reserve
deposit ratio from market clearing. The dynamics of the ratio of deposit to other assets is
given by

d̂t − ât = ε

(
iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM

)
; ε :=

(1− ρF`) D
ρA A

(1− ρF + ρFG (λ∗))

1− ρF

G (λ∗)

g (λ∗)
, (33)

where the parameter ε can be interpreted as an interest elasticity of deposit supply. Banks
respond both to the cost of collateral and to the cost of liquidity: a higher spread between the
shadow rate and the fed funds rate means that collateral is more costly, which leads banks to
increase leverage. At the same time, a higher spread between the fed funds and reserve rates
means that liquidity management is more costly, which lowers leverage. Both forces imply
that a higher fed funds rate – other things equal – lowers the supply of deposits.14

In addition to the quantity of deposits, the banking module determines the interest rate
on deposits. To first order, bank optimization and reserve market clearing imply a pricing
equation analogous to (22):

ηb − 1
ηb

(
iS
t − iD

t

)
=
(

iS
t − iM

t

) M
D

+
(

iS
t − iA

t

) A
D

=
ρF M + ρA A

ρFD

{
iS
t − iF

t + α̃m

(
iF
t − iM

t

)}
; α̃m =

ρF M
ρF M + ρA A

. (34)

As in the case of abundant reserves, the deposit spread reflects the weighted spreads on
collateral used to back deposits. Moreover, it can again be written as a simple markup over a
"policy spread". The difference is that liquidity management changes the relevant concept of
leverage as well as the relevant policy rate, which is now a weighted average between the fed

13Formally, the optimal threshold λ∗ is determined from (30) with γt = 0. For the market to clear, (32) requires
that the ratio M/D declines. From the definition of λ∗, A/D must increase in order for λ∗ and M/D to both
decline.

14The elasticity ε depends on steady state balance sheet ratios and hence ultimately on steady state policy rates.
Indeed, at a higher average fed funds rate rF, both λ∗ and D/A are lower and the money supply is less elastic.
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funds and reserve rates.15

We can now combine (34) and (15) to derive an interest rate pass-through equation for the
model with scarce reserves:

iS
t − δ = iF

t − rF − α̃m

(
iF
t − rF −

(
iM
t − rM

))
+

δ− rF + α̃m
(
rF − rM)

η
v̂t. (35)

The structure of the equation is the same as in (15): the shadow rate in households’ stochastic
discount factor equals a policy rate plus a convenience yield on the policy instrument "inher-
ited" from the liquidity benefit of deposits.

The reserveless limit. In the typical policy environment with scarce reserves, the share of
excess reserves on bank balance sheets is negligible. For example, excess reserves at US banks
before 2007 averaged less than one basis point of total bank assets. In what follows we simplify
formulas by setting α̃m = 0. This approximation considerably simplifies the notation and is
accurate for the relevant episode we want to study. We have shown in Proposition 3.3 that for
any small target ratio M/D, there is an elastic supply equilibrium that gives rise to that target
ratio.

The dynamics of the model in the "reserveless limit" are given by three equations for pass-
through, deposits and the cost of liquidity that are analogous to (23)-(24).

iS
t − δ = iF

t − rF +
δ− rF

η

(
p̂t + ŷt − d̂t

)
, (36a)

d̂t − p̂t =
η

η + ε
âr

t +
ε

η + ε

(
ŷt −

η

rF − rM

((
iF
t − iM

t

)
− (rF − rM)

))
, (36b)

iS
t − iD

t =
ηb

ηb − 1
ρA A
ρFD

(
iS
t − iF

t

)
. (36c)

The structure of the pass-through and liquidity cost equations is exactly the same as with
abundant reserves: the shadow rate equals the policy rate plus a convenience yield propor-
tional to velocity, and the deposit spread – households’ cost of liquidity – is proportional to
the policy spread.

The equilibrium quantity of deposits now reflects the response of deposit supply to interest
rates. For very small ε = 0, real balances are effectively pinned down by real collateral. With
large ε however, the role of collateral is weaker, and real deposits increase with output (the
first term in the bracket) and decrease with banks’ cost of liquidity (the second term). Since
a decline in spending is associated with a drop in nominal deposit supply, it entails a smaller

15The weight α̃m depends on the endogenous supply of reserves and hence on steady state policy rates. In
particular, a higher fed funds rate implies a lower ratio M/A and a lower α̃m.
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increase in the convenience yield of the policy instrument. The direct impact of banks’ cost
of liquidity further implies that the convenience yield can in principle increase with the policy
rate.

The deposit equation describes equilibrium in the deposit market. With ε = 0, interest
elastic household demand meets inelastic bank supply: a drop in spending that lowers money
demand has no effect on quantities and is met only by price adjustment, that is, a lower
convenience yield on deposits and hence also on the policy instrument. With positive ε, (33)
shows that a lower convenience yield on the policy instrument reduces bank leverage and
deposit supply. As ε becomes very large, lower spending is eventually met by a one-for-one
reduction in deposits.

Substituting for velocity in the pass-through equation, we can view pass-through alterna-
tively as

iS
t − δ = iF

t − rF +
δ− rF

η + ε
(ŷt − âr

t) +
ε

η + ε

δ− rF

rF − rM

(
iF
t − iM

t − (rF − rM)
)

.

This equation shows that, for given demand elasticity η, the elasticity of deposit supply ε

locates the model somewhere on a spectrum between the model with abundant reserves of
Section 3 and the standard New Keynesian model. Indeed, if ε is close to zero, then the model
reduces to the model with abundant reserves. In contrast, as ε becomes large, we have that the
government directly controls the short rate in the household stochastic discount factor.

Determinacy of equilibrium and interest rate policy. Equilibrium with a Taylor rule is a
solution

(
p̂t, ŷt, iD

t , iS
t , iF

t
)

to the system of difference equations consisting of (13) and (36) as
well as the Taylor rule for iF

t . The only modification to (13) is that the cost channel coefficient
χ defined in (14) now depends on exogenous parameters through steady state deposit pricing,
as in (36c). The structure of the system is the same as that of the bank model in the previous
section. Appendix A.1 shows that Propositions 2.1 and 2.2. for the case µ = 0 carry through
to the model of this section: we have determinacy if and only if the long run response of the
shadow rate to inflation is larger than one. The response here is

LR(iS, ∆ p̂) =
δ− rF

η + ε

1− β

λ(ϕ + σ−1)
+

(
φπ + φy

1− β

λ(ϕ + σ−1)

)(
1 +

δ− rF

η + ε

ε

δ− rM

)
+

(
1
η
− 1

σ

)
χ

ϕ + σ−1
η

η + ε

(
φπ − 1− φy

ε

δ− rM

)
.

Since we have assumed that bank assets are real, there is no stabilizing effect from nominal

41



rigidities in bank balance sheets.16 Nevertheless, the convenience yield effect is active and
alters the condition for determinacy. Consider the case of separable utility shown in the first
line. There are two forces. First, inflation increases real spending and hence the convenience
yield and the shadow rate. Second, if inflation pushes the central bank to increase the Fed
funds rate, this reduces deposits and further increases the convenience yield and the shadow
rate. In a corridor system, the convenience yield effect thus makes central bank policy more
effective at preventing instability.

4.3 Numerical example

We provide a numerical example to show that a model with a corridor system is quantita-
tively closer to the standard New Keynesian model than the model with a floor system of the
previous section. We again assume that the central bank runs a Taylor rule with interest rate
smoothing (20) with a coefficient 1.5 on inflation and .5 on the last interest rate. We also as-
sume that other bank nominal assets At are constant. This no longer implies constant nominal
deposits, since reserves are endogenous and deposit supply is elastic. The new equations (36)
contain three new parameters: the average spread δ− rF between the interbank rate and the
shadow rate, the markup factor that links the interbank and deposit spreads and the elasticity
of deposit supply ε.

We set the policy spread δ− rF to 30 basis points per year, so the average difference between
the shadow rate and the policy rate is the same as in the previous section. The idea is that
the central bank is always interested in achieving the same average level of the policy rate; it
just uses different operating procedures, setting rF with scarce reserves and rM with abundant
reserves. The reserve rate in this section is set to zero. Banks’ cost of liquidity rF − rM is thus
equal to the average policy rate of 4.6% per year. We maintain a deposit rate of 2.5% per year.
The calibration is consistent with the fact that banks’ cost of liquidity was typically above
households’ cost of liquidity of δ − rD of 2.4% per year in the regime with scarce reserves
before 2007.

We choose the markup to capture the same ratio of deposit spread to policy spread as in
the previous section. Again we do not need to take a stand on whether it is due to market
power, leverage, or here the collateral quality of federal funds – all that matters for dynamics is
the composite coefficient in (36). Finally, the elasticity ε cannot be identified from steady state
moments alone. We choose the value ε = .24 based on the properties of the impulse response:
we require that a one percent increase in the policy rate goes along with a 50bp increase in the

16Appendix A.1 actually also covers the case in which all assets are nominal and evolve according to a feedback
rule analogous to (9). It serves to show that nominal rigidity in the stock of non-reserve government debt or even
private nominal debt can help ensure stability.
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deposit rate. This order of magnitude is consistent with the numbers reported by Drechsler,
Savov and Schnabel (2017).
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Figure 4: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate (solid lines) and difference between policy
rate and deposit rate (dotted line).

Figure 4 shows responses to a one time contractionary monetary policy shock that increases
the interbank rate by 25bps. Qualitatively, the shape of responses for output and inflation are
now hard to distinguish from those of the standard model. Moreover, the money response is
also similar as banks reduce deposits. The calibrated interest elasticity is thus high enough
so as to make bank liquidity cost important. At the same time, there is still some dampening
in the impulse response for output – the cost channel remains strong. The bottom left panel
reports the spreads iS − iD as a solid line as well as iF − iD as a dashed line. Due to the small
shadow spread, the two are almost identical. Calibrating to larger increases in the deposit
spread – that is, more inert behavior of the deposit rate – would increase ε and drive the
corridor model closer to the standard model.
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A Appendix

A.1 Determinacy properties

In this section we study a general system of difference equations that nests all versions of our
model. After introducing notation to write the system in matrix form, we state Proposition A.1
that nests Propositions 2.1 and 2.2 in the text, and also shows that Proposition 2.2 continues to
hold in the bank models of Section 3 and 4.

To set up the general system, we denote by v̂t the log deviation of velocity from the steady
state. We also write iP

t for a generic policy interest rate, iS
t for the shadow rate and n̂t for

exogenous nominal assets. We then consider the following system in (ŷt, v̂t, iP
t , iS

t , n̂t − p̂t):

∆ p̂t = βEt∆ p̂t+1 + λ

((
ϕ +

1
σ

)
ŷt +

(
1
η
− 1

σ

)
χv̂t

)
(A.1)

ŷt = Etŷt+1 − σ(iS
t − Et∆ p̂t+1 − δ) + σ

(
1
η
− 1

σ

)
χEt∆v̂t+1 (A.2)

iS
t − δ = iP

t − rP +
δ− rP

η
v̂t (A.3)

iP
t = rP + φyŷt + φπ∆ p̂t + ut (A.4)

n̂t − p̂t = µ (n̂t−1 − p̂t−1)− µα∆ p̂t (A.5)

v̂t =
η

η + ε
( p̂t + ŷt − n̂t) +

η

η + ε

ε

δ− rM

(
iP
t − rP

)
(A.6)

We are interested in bounded solutions given some initial condition for the real value of
nominal assets n̂−1 − p̂−1.

All models in the paper are special cases of this system. They differ in some of the coeffi-
cients as well as in what interest rate represents the policy rate and what quantity represents
exogenous nominal assets (if any). The bank models further describe other endogenous vari-
ables such as the deposit rate or the interest rate on other assets, but those variables are simple
functions of iS

t , p̂t and ŷt which are not important for characterizing determinacy.

In particular, the system of difference equations in the CBDC model, given by (13) and
(15)-(17), is a special case of the system (A.1) - (A.6), where the policy rate is the deposit rate
iP
t = iD

t , nominal assets are deposits n̂t = d̂t, and we have α = 1 and ε = 0. The system
of difference equations for the model with a floor system from Section 3, given by (13), (23)
and (24), is a special case with the policy rate is the reserve rate iP

t = iM
t , nominal assets are

deposits n̂t = d̂t, and we have α = αm and ε = 0. Finally, the system of difference equations
for the model with a corridor system from Section 4, given by (13), (16) and (36) is the special
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case where the policy rate is the interbank rate iP
t = iF

t , and the only nominal assets are loans
n̂t = l̂t and α = 1.

Substituting out for velocity v̂t and the two interest rates, we have a three equation system
for inflation, the real value of nominal assets, and output. In matrix notation, it isEt∆pt+1

Etŷt+1

n̂t − p̂t

 = A

 ∆pt

ŷt

n̂t−1 − p̂t−1

+ bt (A.7)

with initial condition n̂−1 − p̂−1 and where bt is a vector of exogenous variables.

To ease notation, we define the non-negative coefficients

B =

(
1
η
− 1

σ

)
χ, γ = δ− rP, κ = λ

(
ϕ +

1
σ

)
,

AV =
η

η + ε
, BV = AV

ε

δ− rM , Γ = β
(

σ−1 + BAV + BBVφy

)
.

We write Aij for the element in the ith row and jth column of A. We thus have A31 = −µα,
A32 = 0, A33 = µ, and the elements in the first two rows are:

A11 =

(
1− µαAVλB− λBBVφπ

β

)
, A12 = −

(
κ + BλAV + BλBVφy

β

)
, A13 =

µB̃AV

β
,

A21 =
β

Γ

[
φπ + BBVφπ +

γµα

η
AV +

γ

η
BVφπ + µα(1− µ)BAV

]
,

− β

Γ

[
(1 + µαBAV + BBVφπ)(

1− αµAV Bλ− BλBVφπ

β
)

]
,

A22 = 1 +
β

Γ

[
φy +

γ

η
AV +

γ

η
BVφy + (1 + µαBAV + BBVφπ)(

κ + AV Bλ + BλBVφy

β
)

]
,

A23 = −β

Γ

[
BAVµ(1− µ) +

µγ

η
AV + (1 + µαBAV + BBVφπ)(

µBλAV

β
)

]
.

To state the proposition, we define the long run responses to a change in inflation. From
the law of motion for the real value of nominal assets, we have

LR(n̂− p̂, ∆ p̂) = − µ

1− µ
∆ p̂
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From the Phillips curve, the response of output to inflation is

LR(ŷ, ∆ p̂) =

 (1− β)− B̃BVφπ − B̃AV

(
αµ

1−µ

)
κ + B̃AV + B̃BVφy

∆ p̂

Finally, using the Taylor rule, (A.4), and the pass-through equation, (A.3), we have that:

LR
(

iS, ∆ p̂
)
= LR(iP, ∆ p̂) + LR(iS − iP, ∆ p̂)

=

(
φπ + AV

γ

η

αµ

1− µ
+

γ

η
BVφπ

)
∆ p̂ +

(
φy +

γ

η
(AV + BVφy)

)
LR(ŷ, ∆ p̂).

We impose throughout (19), written in the notation here as

Condition 1: φyBλ < κγ/η.

Proposition A: Suppose Condition 1 holds. If µ = 1, the system of difference equations (A.1) - (A.6)
has a unique bounded solution for any initial condition (n̂−1− p̂−1). If µ < 1, the system has a unique
bounded solution for any initial condition if and only if

LR(iS, ∆ p̂)
∆ p̂

> 1. (A.8)

Proof. We define the condition

(1− µ)

(
LR(iS, ∆ p̂)

∆ p̂
− 1
)
> 0. (A.9)

Condition 1 is simply (A.9) evaluated at µ = 1. Otherwise, for µ < 1, (A.9) is equivalent to
(A.8). We will show that, for µ < 1, if the matrix A in (A.7) has exactly one eigenvalue inside
the unit circle, then (A.9) holds. We then show that for any µ ∈ [0, 1], (A.9) implies that A
has exactly one eigenvalue inside the unit circle. Finally, we check the rank condition on A in
Blanchard and Kahn (1980). It then follows that, for any µ ∈ [0, 1], (A.9) guarantees a unique
bounded solution to (A.7) for any µ. Since Condition 1 is the special case of (A.9) for µ = 1,
we have in particular that a unique bounded solution obtains for µ = 1.

The characteristic polynomial of A

The eigenvalues of A are the roots of its characteristic polynomial

p(λ) = λ3 − a2λ2 + a1λ− a0
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where the coefficients take the form

a2 =

(
1 +

1
β
+ µ

)
+

(
1
Γ

) [
β

γ

η
AV + κ + BλAV(1 + µαφ)

]
+

(
φy

Γ

) [
β(1 +

γ

η
BV) + BλBV

]
+

(
φπ

Γ

)
BλBVφ > 2 (A.10)

a1 =
1 + µ + µβ

β
+

(
1
Γ

) [
(1 + µβ)

γ

η
AV + µκ(1 +

αγ

η
AV) + µAV Bλ(1 + αφ)

]
+

(
φy

Γ

) [
(1 + µβ)(1 +

γ

η
BV)− αµAV Bλ + µBλBV

]
+

(
φπ

Γ

) [
κ + κ

γ

η
BV + BλBV(1 + µ)φ + BλAV

]
(A.11)

a0 =
µ

β
+

µ

Γ

[
γ

η
AV

]
+

µφy

Γ

[
1 +

γ

η
BV

]
+

µφπ

Γ

[
κ(1 +

γ

η
BV) + BλAV + BλBVφ

]
(A.12)

We note that a2 > 2 and a0 ≥ 0, with strict inequality if and only if µ > 0. Moreover,
Condition 1 implies that a1 > 1. The characteristic polynomial thus has a root at zero if and
only if µ = 0. For µ > 0, Descartes’ rule of signs implies that the polynomial has either one or
three positive real roots and no negative real roots. We thus always have one positive real root.
In addition, there could be two more positive real roots, or there could be a pair of complex
conjugates.

We have p(0) = −a0 and the values of the polynomial at plus and minus one are:

p(−1) = − 2
β
(1 + µ)(1 + β)−

(
1
Γ

) [
γ

η
AV((1 + µ)(1 + β) + µκ) + κ(1 + µ) + BλAV(1 + µ + 2αµφ)

]
−
(

φy

Γ

) [
(1 +

γ

η
BV)(1 + µ)(1 + β) + BλBV(1 + µ)

]
−
(

φπ

Γ

) [
(1 + µ)(κ + BλAV) + κBV

γ

η
(1 + µ) + BλBVφ(2 + 2µ)

]
−
(

1
Γ

)
αµAV

(
κγ

η
− φyBλ

)

p(1) =
(

1
Γ

) [
(1− µ)(κ + BλAV + BVκ

γ

η
)(φπ − 1) + (1− µ)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1))

]
+

(
1
Γ

) [
(αµAV + (1− µ)BV)(κ

γ

η
− φyBλ)

]
Condition (A.9) is equivalent to p(1) > 0. It further implies that p(−1) < 0 for all µ.

Necessity of A.9 for µ < 1.
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We now establish necessity of (A.9). If the difference equation has a unique bounded
solution, exactly one eigenvalue of A is inside the unit circle. In other words, exactly one root
of p(λ) is inside the unit circle. We know that p(−1) < 0. If p(1) ≤ 0, then the polynomial
crosses the horizontal axis within (−1, 1) either twice or never. Thus, it is necessary that
p(1) > 0 i.e. (A.9) holds.

To establish sufficiency, we first show that (A.9) ensures a unique stable eigenvalue, that
is, the condition p(1) > 0 ensures exactly one root of p(λ) lies inside the unit circle. It is
convenient to do this part of the proof in two steps, first for µ = 0 and then for µ ∈ (0, 1].

(A.9) implies a unique stable eigenvalue for µ = 0.

The case µ = 0 is special because a0 = 0. The three roots (λ1, λ2, λ3) are

λ1 = 0; λ2 =
a2 −

√
a2

2 − 4a1

2
; λ3 =

a2 +
√

a2
2 − 4a1

2

The roots λ2, λ3 are either both real or both complex. If they are both complex or they are
real and equal, then both must lie outside the unit circle since a2 > 2. Assume instead they
are both real and distinct, with λ2 < λ3. We know that λ2 > 1 if and only if:

a2
2 − 4a1 < a2

2 − 4a2 + 4

i.e. 1− a2 + a1 > 0

If µ = 0, (A.9) can be written as p(1) = 1− a2 + a1 > 0. We therefore have λ2 > 1 and
hence also λ3 > 1. It follows that exactly one root, λ = 0, lies within the unit circle.

(A.9) implies a unique stable eigenvalue for µ > 0.

We show next that for any µ ∈ (0, 1], (A.9) also ensures that there is a unique root of p(λ)
inside the unit circle. We know that there can be either one or three roots inside the unit circle.
Indeed, p(1) > 0, given by (A.9), and p(0) < 0 imply that the polynomial has either one or
three real roots in the interval (0, 1). Moreover, if there is a pair of complex roots, those roots
have the same modulus. We thus want to rule out that there are three roots inside the unit
circle. The following result provides restrictions on a cubic polynomial that allows this case:

Lemma A1: Suppose p(λ) = λ3 − b2λ2 + b1λ− b0 is a cubic polynomial with strictly positive real-
valued coefficients b2, b1, b0 that satisfies p(1) > 0. If all roots lie within the unit circle, then the
coefficients satisfy
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(a) b0 < 1,

(b) b2
0 − b2b0 + b1 − 1 < 0,

(c) b2 < 2 + b0.

Proof.

Part (a): Denote the three roots by (λ1, λ2, λ3), where λ1 is the smallest real root, and
(λ2, λ3) are either both real roots or both complex roots. Since we can write the polynomial as
p(λ) = (λ− λ1)(λ− λ2)(λ− λ3), we have b0 = λ1λ2λ3. Suppose (λ2, λ3) are real roots. We
know they must both be positive. Since p(0) < 0 and p(1) > 0, we have λ2λ3 ∈ (0, 1) and
hence b0 < λ1 < 1. If instead (λ2, λ3) are complex roots, then λ2λ3 = |λ2|2 = |λ3|2 ∈ (0, 1)
and again b0 < λ1 < 1.

Part (b): We have

p(b0) = b3
0 − b2b2

0 + b1b0 − b0

= b0

(
b2

0 − b2b0 + b1 − 1
)

.

We show that p(b0) < 0. Since b0 > 0, Condition (b) then follows.

To show p(b0) < 0, suppose first that (λ2, λ3) are both real roots. then both turning points
of p(λ) must be larger than λ1. It follows that p(λ) < 0 for any λ < λ1. From the proof of
part (a), we have that b0 < λ1 and hence p(b0) < 0. If instead (λ2, λ3) are both complex roots,
p(λ) only crosses the horizontal axis once at λ = λ1. Since p(0) < 0, then p(λ) < 0 for any
λ ∈ (0, λ1). As b0 < λ1, again p(b0) < 0.

Part (c): We start from Condition (b) and use our assumption that p(1) = 1− b2 + b1− b0 >

0 to obtain

0 > b2
0 − b2a0 + b1 − 1 > b2

0 − b2a0 + (b2 + b0 − 1)− 1

= b2
0 − (b2 − 1)a0 + (b2 − 2)

= (1− b0)(b2 − 2− b0).

Condition (c) follows because Condition (a) ensures that b0 < 1.�

We now show that Condition 1 does not allow Conditions (a)-(c) of Lemma A1 to hold
jointly for our characteristic polynomial. It then follows that we cannot have three roots inside
the unit circle, and thus have exactly one root inside the unit circle. We first note that there
exists a threshold value µ̄ < β < 1 such that Condition (a) of Lemma A1 is violated for all
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µ > µ̄. Indeed, we can always find µ̄ such that a0 = 1. For the remaining case µ < µ̄, we have
the following Lemma:

Lemma A2: Assume that Condition 1 holds. Suppose the characteristic polynomial p(λ) = λ3 −
a2λ2 + a1λ− a0 with coefficients (A.10) - (A.12) satisfies Conditions (a) and (c) of Lemma A1. Then
Condition (b) of Lemma A1 does not hold.

Proof. Condition (c) of Lemma A1 applied to our characteristic polynomial is given by

− (1/β− 1)(1− µ)− 1
Γ

[
(β− µ)(

γ

η
AV + φy(1 +

γ

η
BV)) + BλAVαµφ + φπ(1− µ)BλBVφ

]
+

1
Γ

[
(κ + BλAV + κ

γ

η
BV)(µφπ − 1) + BV(κ

γ

η
− φyBλ)

]
> 0. (A.13)

To check Condition (b) of Lemma A1, we define the function g(µ) := a2
0 − a2a0 + a1 −

1, where dependence of the coefficients on µ is given by (A.10) - (A.12). In particular, the
coefficients are linear in µ, so the function g(µ) is quadratic in µ. We want to show that
g(µ) > 0 for all µ ∈ (0, µ̄], thus violating Condition (b).

We know from (A.10) - (A.12) that g(0) = a1 − 1 > 0. Since Condition (c) of Lemma A1 is
assumed to hold, we also know

g(µ̄) = a1 − a2

=
1
Γ
(1− µ̄)

[
(κ + BλAV + κ

γ

η
BV)(φπ − 1) + BV(κ

γ

η
− φyBλ)

]
+

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1)) + αµ̄AV(κ

γ

η
− φyBλ)

]
>

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1)) + αµ̄AV(κ

γ

η
− φyBλ)

]
> 0,

where the third line uses (A.13) and µ̄ < β, and the last line follows from Condition 1.

It remains to show that the function g(µ) is also positive in the interior of the interval
[0, µ̄]. Since g(µ) is quadratic, it is either concave or convex everywhere. If it is concave, then
g(0) > 0 and g(µ̄) > 0 imply that g(µ) is positive over the entire interval [0, µ̄]. Suppose
therefore that g(µ) is convex. If the derivative of g(µ) at µ̄ is negative, then g(µ) > g(µ̄) > 0
for all µ < µ̄. If instead the derivative of g(µ) at µ̄ is positive, then g(µ) is bounded below by
the function

h(µ) := g(µ̄) + (µ− µ̄)g′(µ̄).
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We proceed to show that h(µ) > 0 for all µ ∈ (0, µ̄), hence g(µ) > 0 for all µ ∈ (0, µ̄). As
g′(µ̄) > 0, then h′(µ) > 0, implying that if h(0) > 0, then h(µ) > 0 for all µ ∈ (0, µ̄). This is
what we show.

The derivative of g(µ) at the point µ̄ is

g′(µ̄) = −( 1
β
− 1)(

1
µ̄
− 1)

−
(

1
Γ

)(
1
µ̄
− 1
)(

β
γ

η
AV + κ + BλAV + φy(β(1 +

γ

η
BV) + BλBV) + φπBλBVφ

)
−
(

1
Γ

)(
αφy AV Bλ− ακ

γ

η
AV + αBλAVφ

)
<
(α

Γ

)
AV

(
κ

γ

η
− φyBλ

)
. (A.14)

Substituting into the definition of h, we have that:

h(0) = g(µ̄)− µ̄g′(µ̄)

> g(µ̄)− ᾱµ

Γ
AV

(
κ

γ

η
− φyBλ

)
>

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1)) + αµ̄AV(κ

γ

η
− φyBλ)

]
− αµ̄

Γ
AV

(
κ

γ

η
− φyBλ

)
=

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1))

]
> 0,

where the second line uses the bound from (A.14).�

Blanchard-Kahn Rank Condition

We have shown that (A.9) implies that the matrix A exhibits exactly one eigenvalue inside
the unit circle. By Blanchard and Kahn (1980), this implies a unique bounded solution to (A.7)
as long as a Rank Condition is satisfied. To check this rank condition, let B denote the matrix
of left eigenvectors of A, sorted by their modulus in ascending order. We want to show that
the block corresponding to the predetermined variables is nonsingular. In our context, this
means showing that the top left element of B is different from zero.

Suppose this were not true, that is, we have a left eigenvector (0, x, y) of A that satisfies:[
0 x y

]
= λ1

[
0 x y

]
,

where λ1 is the unique eigenvalue in (0, 1). Consider the second column of the equation. Since
A23 = 0, it reads xA22 = λ1. It cannot hold since A22 > 1 and λ1 < 1. �
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A.2 Characterization of equilibrium in the CBDC model

In this appendix, we collect derivations and proofs for the CBDC model of Section 2.

Household first-order conditions

The maximization problem of the household is:

max
{Ct,Dt,Nt,St}

∞

∑
t=0

βt 1
1− 1

σ

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1− 1
σ

1− 1
η

− ψ
N1+ϕ

t
1 + ϕ

s.t.
PtCt + Dt + St ≤WtNt + Tt + Πt + (1 + iD

t−1)Dt−1 + (1 + iS
t−1)St−1.

It is helpful to introduce notation for the bundle of consumption and liquidity services
consumed by the household; we define

Bt :=

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1
1− 1

η

.

Denoting the Lagrange multiplier on the budget constraint by λt, the household first-order
conditions for consumption, money, other assets and labor are

B
( 1

η−
1
σ )

t C
− 1

η

t = λtPt,

B
( 1

η−
1
σ )

t ω

(
Dt

Pt

)− 1
η

= λtPt − β(1 + iD
t )PtEt [λt+1] ,

λt = βEt

[
λt+1(1 + iS

t )
]

,

ϕNϕ
t = λtWt.

To obtain the money demand equation (3), we simplify the money FOC by substituting out
for Etλt+1 from the bond FOC and for λt from the consumption FOC:

Vt =
PtCt

Dt
=

(
1
ω

iS
t − iD

t

1 + iS
t

)η

. (A.15)

Substituting out for real balances Dt/Pt, we rewrite the bundle Bt of consumption and
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liquidity services as

Bt =

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1
1− 1

η

=

1 + ωη

(
iS
t − iD

t

1 + iS
t

)1−η
 1

1− 1
η

Ct

= Q−η
t Ct,

where Qt :=
[

1 + ωη
(

iS
t −iD

t
1+iS

t

)1−η
] 1

1−η

is the ideal price index for the bundle.

The consumption FOC can now be rewritten as

Q
η
σ−1
t C−

1
σ

t = λtPt. (A.16)

Household labor supply (5) now follows by combining the consumption and labor FOCs to
substitute out λt:

ϕQ1− η
σ

t C
1
σ
t Nϕ

t =
Wt

Pt
.

Similarly substituting out λt from (A.16) further delivers the intertemporal Euler equations
for other assets and money (6) and (7), respectively:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

]
(1 + iS

t ) = 1

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

]
(1 + iD

t ) + ω

(
PtCt

Dt

) 1
η

= 1.

Linearization. We follow the literature in writing log deviations from steady state in gross rates
of return as deviations from steady state in net returns. For example, the gross return on
money deposits is 1 + iD

t , and we write the log deviation from the steady state rate as

log
(

1 + iD
t

)
− log

(
1 + iD

)
≈ iD

t − iD.

This approximation is justified if rates of return are small, as is the case in our quarterly model
with riskfree assets.
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For money demand, we simplify notation by performing an additional approximation:

v̂t ≈ η
1 + rD

δ− rD (iS
t − iD

t − (δ− rD) ≈ η

δ− rD (iS
t − iD

t − (δ− rD). (A.17)

The first equality is justified by loglinearizing and expressing rates of return in net levels, as
explained above. The second equality is justified by recognizing that the small steady state
return rD multiplies small spreads iS

t − iD
t and so we treat the product as second order.

The derivation of the New Keynesian Phillips curve and Euler equation follow the textbook
treatment by Gali (2008). The Phillips curve relates the growth rate of the price level to future
price growth as well as marginal cost:

∆ p̂t = βEt∆ p̂t+1 + λm̂ct.

Since labor is the only factor of production and we abstract from the productivity shock,
marginal cost variation is only variation in wages, that is, m̂ct = ŵt.

To find the variation in wages, consider first the effect of the cost of liquidity on the price

of a bundle of consumption and liquidity. We write Zt =
iS
t −iD

t
1+iS

t
for the price of liquidity and

find

q̂t =
ωηZ1−η

1 + ωηZ1−η
ẑt

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

ẑt

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

η−1v̂t

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

1
δ− rD (iS

t − iD
t − (δ− rD)

=
χ

δ− rD (iS
t − iD

t − (δ− rD),

where the second and third line substitute for the steady state price Z and the log deviation ẑt,
respectively, from (A.15), the fourth line substitutes for v̂t from (A.17) and the fifth line defines
the parameter χ: it measures the response of the price of a bundle to the price of liquidity.
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The loglinearized FOC for labor is now

ŵt =
(

1− η

σ

)
q̂t +

1
σ

ŷt + ϕn̂t

=
(

1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD) +
1
σ

ŷt + ϕn̂t

=
(

1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD) +
1
σ

ŷt + ϕn̂t,

where the third line follows from the production function and the fact that we abstract from
productivity shocks, so ŷt = n̂t. Finally, substituting wages for marginal cost, the Phillips curve
takes the form in (13):

∆ p̂t = Et∆ p̂t+1 + λ

(
(ϕ +

1
σ
)ŷt +

(
1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD))

)
.

A.3 Derivations for the bank model with a floor system in Section 3

In this appendix we collect derivations for the bank model of Section 3 as well as the proof of
Proposition 3.1.

Bank market power

In the setup with monopolistic competition, bank i supplies liquidity to households at the
price Zi

t = (iS
t − iD,i

t )/(1 + iS
t ), where iD,i

t is the deposit rate promised by bank i. The spread
iS
t − iD,i

t is interest foregone by investing in deposits as opposed to the shadow rate, discounted
by (1 + iS

t ) as the interest is received next period.

Households value different varieties of deposits according to a CES aggregator with elas-
ticity of substitution ηb. For given individual bank deposit rates iD,i

t and hence liquidity prices
Zi

t, let Zt denote the ideal CES price index that aggregates the individual bank liquidity prices
Zi

t. We then define the ideal average deposit rate iD
t by

iS
t − iD

t

1 + iS
t

= Zt.

Household maximization delivers bank i’s deposit demand function

Di
t =

(
Zi

t
Zt

)−ηb

Dt =

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb

Dt. (A.18)
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Bank cash flow is as before, except that bank i now pays the deposit rate iD,i
t−1 it has chosen:

Mi
t−1

(
1 + iM

t−1

)
−Mi

t − Di
t−1

(
1 + iD,i

t−1

)
+ Di

t + Ai
t−1

(
1 + iA

t−1

)
− Ai

t.

Bank i maximizes shareholder value by choosing Mi
t, Ai

t, and iD,i
t subject to (21) and (A.18).

Writing γt for the multiplier on the leverage constraint, the terms in the Lagrangian involv-
ing the date t deposit rate are

Di
t −

Di
t

1 + iS
t

(
1 + iD,i

t

)
− γtDi

t =
(

Zi
t − γt

)
Di

t.

Shareholder maximization thus works like profit maximization with constant marginal cost γt

via choice of a price Zi
t.

The first order conditions with respect to Zi
t take the standard form

(
Zi

t − γt

)
ηb

(
Zi

t

)−ηb−1 Dt

Z−ηb
t

+

(
Zi

t
Zt

)−ηb

Dt = 0,

ηb

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb−1
1

iS
t − iD

t

(
1− 1 + iD,i

t

1 + iS
t
− γt

)
Dt −

1
1 + iS

t
Di

t = 0.

A higher price of liquidity lowers profits by decreasing the quantity of deposits, but increases
profits by increasing revenue per dollar issued.

Substituting from the demand function and rearranging, we have

iS
t − iD,i

t =
ηb

ηb − 1

(
1 + iS

t

)
γt.

Bank i chooses a price that multiplies marginal cost by a constant markup.

Solving the bank problem results in the following first order conditions:

iS
t − iM

t = `γt(1 + iS
t ),

iS
t − iA

t = ρA`γt(1 + iS
t ),

iS
t − iD

t =

(
ηb

ηb − 1

)
γt(1 + iS

t ).

Combining the reserves and deposits first order condition, we arrive at equation (26):

13



iS
t − iD

t =
ηb

ηb − 1
`−1

(
iS
t − iM

t

)
.

Proof of Proposition 3.1

The bank model with a floor system is a special case of the general system (A.1) - (A.6),
studied in Appendix A.1. The special case takes the policy rate iP

t equal to the interest rate on
reserves, and sets n̂t = αmm̂t + (1− αm) ât and ε = 0. The coefficient χ is given by (??) together
with

δ− rD =
ηb

ηb − 1
`−1

(
δ− rM

)
. (A.19)

The necessary and sufficient condition for determinacy is therefore that of Proposition A in
Appendix A.1.�

A.4 Proofs of Proposition 4.1-4.3

In this appendix, we collect proofs for the propositions in Section 4. For easier notation we
drop superscripts indicating individual banks.

Proof of Proposition 4.1

A bank’s problem in the second subperiod is to choose M′, F+ and F− to maximize next
period cash

M′
(

1 + iM
)
+
(

1 + iF
) (

F+ − F−
)

,

subject to the budget and collateral constraints as well as nonnegativity constraints in all three
variables.

The first order conditions are

1 + iM + γ` = λ− νM′ ,

1 + iF + γρF` = λ− νF+ ,

1 + iF + γ = λ + νF− ,

where γ is the multiplier on the collateral constraint, λ is the multiplier on the budget con-
straint, and the νs are the multipliers on the three nonnegativity constraints.

We distinguish solutions with positive reserve holdings from those with zero reserves.
Suppose first a bank holds no reserves overnight, that is, M′ = 0. The optimal policy is then

F+ − F− = M− λ̀D

14



In order for the collateral constraint to be satisfied, we must have D−M < `ρA A. The precise
split into F+ and F− is not important in this case – only the net position is determinate.

Suppose instead a bank holds reserves overnight, that is, M′ > 0 and hence νM′ = 0. We
must have γ > 0: otherwise the fed funds lending and reserves FOC cannot jointly hold.
Indeed, these FOC imply

1 + iF + γρF` ≤ λ = 1 + iM + γ`,

which cannot hold for γ > 0 since we have assumed iF > iM. From the fed funds borrowing
FOC, we must then have νF− > 0 and hence F− = 0.

When the bank holds reserves, we can thus combine the binding collateral constraint and
the budget constraint to find optimal reserve holdings and fed funds lending

M′ =
(
1− λ̃ (1− ρF`)

)
D− ρF`M− ρA`A

` (1− ρF)
,

F+ = M− λ̃D−M′

=

(
M− λ̃D

)
` (1− ρF)−

(
1− λ̃ (1− ρF`)

)
D + ρF`M + ρA`A

` (1− ρF)

=
M`+ ρA`A− (1− λ̃ (1− `))D

` (1− ρF)

We need for this case that M′ is positive and F+ is nonnegative. The first condition is equiva-
lent to λ̃ < λ∗. The second condition is satisfied at any value of λ̃ as long as it is satisfied at
λ̃ = −λ̄. The condition assumed in the proposition says that the second condition is indeed
satisfied at λ̃ = −λ̄.�

Proof of Proposition 4.2

We first derive necessary and sufficient conditions for an elastic equilibrium to exist. Con-
sider the threshold liquidity shock λ∗ implicitly defined by the first order condition for re-
serves – the first equation in (30) – with γ = 0. Since the cdf G is strictly increasing, we can
define a function

f
(

rF
)

:= G−1
(

1− ρF

ρF

δ− rF

rF − rM

)
over the interval

[
(1− ρF) δ + ρFrM, δ

]
. The function f is strictly decreasing and we have that

f
(
(1− ρF) δ + ρFrM) = λ̄ and f (δ) = −λ̄. Any rF ∈

[
(1− ρF) δ + ρFrM, δ

]
thus implies a

liquidity threshold λ∗ ∈
[
−λ̄, λ̄

]
.

To satisfy the worst collateral constraint, the threshold liquidity shock must be sufficiently

15



small. We have

`
M
D

+ ρA`
A
D

= 1− (1− ρF`) λ∗ + (1− ρF) `
M
D

= 1− (1− ρF`) λ∗ + (1− ρF`)

(
λ∗G (λ∗)−

∫ λ∗

−λ̄
λ̃dG

(
λ̃
))

= 1− (1− ρF`)

(
λ∗ (1− G (λ∗)) +

∫ λ∗

−λ̄
λ̃dG

(
λ̃
))

=: h (λ∗)

where the first equality uses the definition of the threshold shocks λ∗ and the second uses fed
funds market clearing (32).

The function h is strictly decreasing: we have h′ (λ∗) = − (1− ρF`) (1− G (λ∗)) < 0. More-
over, we have h

(
−λ̄
)
= 1 + (1− ρF`) λ̄ and h

(
λ̄
)
= 1, the latter due to our assumption that

the mean of λ̃ is zero. We now consider the composite function h ◦ f and define the threshold
fed funds rate by

(h ◦ f )
(

rF∗
)
= 1 + λ̄ (1− `) .

The composite function is strictly increasing in rF with (h ◦ f )
(
(1− ρF) δ + ρFrM) = 1 and

(h ◦ f ) (δ) = 1 + (1− ρF`) λ̄ > 1 + λ̄ (1− `)

It follows that there is a unique threshold funds rate r∗ ∈
(
rM, δ

)
.

For given rF, an elastic equilibrium exists if and only if

(h ◦ f )
(

rF
)
> 1 + λ̄ (1− `) .

Indeed, in this case the threshold shock λ∗ implies balance sheet ratios that are sufficiently
large for (27) not to bind.

Moreover, an inelastic equilibrium exists if and only if the condition does not hold. Indeed,
in an inelastic equilibrium, we determine M/D and A/D from (27) and (32). The implied
ratio λ∗ is then given by h−1 ((1 + λ̄ (1− `)

))
, which is larger than the ratio f

(
rF) consistent

with γ = 0. Since G is strictly increasing, the multiplier γ is positive.�

Proof of Proposition 4.3
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Part (a). We need to choose a continuous cdf G that is restricted by

δ− rF

rF − rM =
ρF

1− ρF
G (λ∗) ,∫ λ∗

−λ̄
G (λ) dλ =

(1− ρF) `

1− ρF`

M
D

,

λ∗ =
1− ρF`

M
D − ρA`

A
D

1− ρF`
.

In addition, the parameters have to satisfy λ∗ ∈
[
−λ̄, λ̄

]
and the worst case leverage constraint

1 + λ̄ (1− `) ≤ `
M
D

+ `ρA
A
D

. (A.20)

By assumption on interest rates and the weight ρF, there exists a value G∗ := G (λ∗) <

1 satisfying the first equality. The integral on the left hand side in the second equation is
bounded above by

(
λ∗ + λ̄

)
G (λ∗) and bounded below by zero. Indeed, by choosing the

density g, we can go arbitrarily close to cdfs with mass points of G∗ at either −λ̄ or λ∗ – these
cases provide the upper and lower bounds, respectively.

It follows that we can find a suitable G that achieves the value G∗ at λ∗ as long as there
exists ξ ∈ (0, 1) such that

ξ
(
λ∗ + λ̄

)
G∗ =

(1− ρF) `

1− ρF`

M
D

(A.21)

The share ξ indicates the area described by the integral as a share of the maximally possible
rectangle described by a cdf with a mass point at −λ̄. Any cdf that distributes the mass below
λ∗ to achieve this share ξ will deliver the desired result.

Suppose now that ` = 1. By assumption on the balance sheet ratios, (A.20) is satisfied.
Moreover, for any λ̄ sufficiently large so λ∗ ∈

[
−λ̄, λ̄

]
, we can find ξ to satisfy (A.21). Since all

inequalities are strict and the conditions depend continuously on ` at ` = 1, we can also lower
` slightly below one to obtain the same result.

Part (b). Consider a sequence Mn that converges to zero such that the assumptions of the
proposition remain satisfied. Since (Mn + ρA A)/D > 1 for all Mn, we must have ρA A/D > 1.
We can therefore choose ` < 1 such that ρA`A/D = 1. Since ρF < 1, the sequence of thresholds
λ∗n is strictly positive and converges to zero from below. Fix ξ < 1 and choose λ̄n to satisfy
(A.21). Any such λ̄n satisfies λ∗n ∈

(
−λ̄n, λ̄n

)
since λ∗n is negative and the left hand side

of (A.21).must be positive. As n becomes large, both λ∗n and Mn/D converge to zero, and
therefore λ̄n converges to zero as well. �
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A.5 Linear approximation to the bank model with scarce reserves

In this appendix, we derive linear approximations to the equations of the bank model of
Section 4 as well as the proof of Proposition 4.4.

We show that the key linearized equations (33) and (34) hold in an elastic supply equilib-
rium. With a slack leverage constraint, we have γt = 0 in (30), which thus simplifies to

iS
t − iF

t =
(

iF
t − iM

t

) ρF

1− ρF
G (λ∗t ) ,

iS
t − iA

t =
ρA

ρF

(
iS
t − iF

t

)
. (A.22)

Given the two policy rates, the five equations (A.22), (31) with γt = 0, (32) and the definition
of the threshold shock

λ∗t =
1− ρF`

Mt
Dt
− ρA`

At
Dt

(1− ρF`)

determine five variables: the balance sheet ratios Mt/Dt and At/Dt, the threshold λ∗t and the
interest rates on bank instruments iA

t and iD
t .

To derive (33), we start by loglinearizing the definition of the threshold shock λ∗t and the
money market clearing condition:

λ∗λ̂∗t =
ρA`

1− ρF`

A
D

(
d̂t − ât

)
+

ρF`

1− ρF`

M
D

(
d̂t − m̂t

)
` (1− ρF)

1− ρF`

M
D

(
d̂t − m̂t

)
= −G (λ∗) λ∗λ̂∗t

We can substitute out the endogenous change in the ratio of reserves to deposits M
D

(
d̂− m̂

)
to obtain

1− ρF + ρFG (λ∗)

1− ρF
λ∗λ̂∗t =

ρA`

1− ρF`

A
D

(
d̂t − ât

)
(A.23)

Next, we loglinearize the first order condition for reserves – the first equation in (A.22) –
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to find

g(λ?)λ?

G(λ?)
λ̂?

t =
(1 + rF)(δ− rM)

(δ− rF)(rF − rM)

(
iS
t − iF

t

)
− 1 + rM

rF − rM

(
iS
t − iM

t

)
=

(
(1 + rF)(δ− rM)

(δ− rF)(rF − rM)
− 1 + rM

rF − rM

)(
iS
t − iF

t

)
−
(

1 + rM

rF − rM

)(
ıF
t − iM

t

)
=

1 + δ

δ− rF

(
iS
t − iF

t

)
− 1 + rM

rF − rM

(
iF
t − iM

t

)
Again assuming that net rates of return are small decimal numbers we obtain the approxi-

mation
g (λ∗) λ∗

G (λ∗)
λ̂∗t =

iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM .

Substituting for λ∗λ̂∗t from (A.23) now leads to

g (λ∗)
G (λ∗)

1− ρF

1− ρF + ρFG (λ∗)

ρA`

1− ρF`

A
D

(
d̂t − ât

)
=

iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM ,

and rearranging delivers the equation in the text.

To derive (34), we first rewrite (31) as

ηb − 1
ηb

(
iS
t − iD

t

)
=
(

iF
t − iM

t

) 1− ρF`

` (1− ρF)

∫ λ∗t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)

+
(

iF
t − iM

t

) 1
` (1− ρF)

G (λ∗t )

(
ρF`

Mt

Dt
+ ρA`

At

Dt

)
=
(

iF
t − iM

t

) Mt

Dt
+
(

iS
t − iF

t

)(Mt

Dt
+

ρA

ρF

At

Dt

)
=
(

iS
t − iM

t

) Mt

Dt
+
(

iS
t − iA

t

) At

Dt

Here the first equality follows by substituting for the first term on the right hand side from
(32) and substituting for the spread in the second term from (A.22).

Loglinearization around the steady state delivers

(1 + rM)

(
M?

D?

)(
iS
t − iM

t

)
+ (1 + rA)

(
A?

D?

)(
iS
t − iA

t

)
− (1 + rD)

(
iS
t − iD

t

)
+ Ẑt = 0
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where

Ẑt = (δ− rM)

(
M?

D?

)(
m̂t − d̂t

)
+
(

δ− rA
)(A?

D?

)(
ât − d̂t

)
= (δ− rM)

(
M?

D?

)(
m̂t − d̂t

)
− (δ− rA)

(
ρF

ρA

)(
M?

D?

)(
m̂t − d̂t

)
− (δ− rA)

(
1− ρF`

ρA`

)
λ?λ̂?

t

=

(
(δ− rM)− (δ− rL)(

ρF

ρA
)

)(
M?

D?

)(
m̂t − d̂t

)
− (δ− rA)

(
1− ρF

ρAG(λ?)

)(
M?

D?

)(
m̂t − d̂t

)
=

[
rF − rM − (δ− rF)

(
rF − rM

δ− rF

)](
M?

D?

)(
m̂t − d̂t

)
= 0

where the second and third equality use the log-linearized threshold shock and money market
clearing conditions, respectively, and the last three lines use the steady state versions of the
first order conditions for other assets and reserves. We end up with

ηb − 1
ηb

(
iS
t − iD

t

)
= (iS

t − iM
t )

1 + rM

1 + rD
M
D

+ (iS
t − iA

t )
1 + rA

1 + rD
A
D

Since the ratios of gross returns are close to one, we drop them and work with the simpler
approximate formula

ηb − 1
ηb

(
iS
t − iD

t

)
=
(

iS
t − iM

t

) M
D

+
(

iS
t − iA

t

) A
D

.

The second equation in the text follows by substituting for iS
t − iA

t from (A.22).

Proof of Proposition 4.4

For any interest elasticity of deposit supply ε > 0 and steady state ratio of other assets to
deposits A/D, an elastic equilibrium of the bank model with a corridor system and negligible
reserves on bank balance sheets is a special case of the general system (A.1) - (A.6) studied in
Appendix A.1. The special case takes the policy rate iP

t to be the federal funds rate iF
t and sets

n̂ = ât. The coefficient χ is determined by (??) and

δ− rD =
ηb

ηb − 1
`−1

(
δ− rF

)
.

The necessary and sufficient condition for determinacy is therefore that of Proposition A in
Appendix A.1.�
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