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Abstract

Simulation-based matching methods are commonly used to estimate structural pa-

rameters through auxiliary statistics that summarize key features of the data and model

implications. This paper develops a general procedure for inference with auxiliary statis-

tics neither assuming identification of parameters of interest nor a one-to-one binding

function. Specifically, the conditions underlying asymptotic validity of our simulators in

conjunction with appropriate bootstraps are characterized beyond the strict and exact

calibration of Dridi, Guay and Renault (2007).

Such settings include impulse-response (IR) matching for DSGE models, which we

analyse in a laboratory environment and a variant of the DSGE model of Del Negro and

Schorfheide (2008). In addition to usual Wald-type statistics that combine structural or

reduced form IRs (Christiano, Eichenbaum and Evans (2005), Inoue and Killian (2013),

Guerron-Quintana, Inoue and Killian (2017)), we analyze local projections (Jordà (2005),

Jordà and Kozicki (2011)) through a factor-analytic measure of distance adapted from

Bai (2013) which eschews the need to define a weighting matrix. We study exact and mis-

calibrated cases. Overall, our simulations illustrate the superiority of our proposed factor-

analytic local projection approach to IR matching and associated asymptotic framework

by documenting useful testable directions robust-to-calibration.
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1 Introduction

Simulation-based matching methods are commonly used to estimate structural parameters

through auxiliary statistics that summarize key features of the data and/or model implica-

tions. This paper develops a general procedure for inference using auxiliary statistics without

assuming identification of parameters of interest nor a one-to-one binding function. Specifically,

our procedure relies on matching the chosen vector of auxiliary statistics to its counterpart ob-

tained by simulation. Our simulator refers to a user-chosen (fully) parametric model which is

used to simulate data compatible with the observables. It is generally misspecified as it depends

on additional parameters that need to be calibrated. However, it is not assumed to coincide

with the true model: we rather have in mind a parametric model that is not too far from our

structural model of interest.

Our contributions are both methodological and practical. On the theoretical side, the condi-

tions underlying the asymptotic validity of our inference procedure - and associated simulators

in conjunction with double or triple bootstraps - extend the Partial Indirect Inference (PII

hereafter) of Dridi, Guay and Renault (2007) in several important directions: (i) our auxiliary

statistic (binding function) is not one-to-one; (ii) our inference procedure is identification-

robust; (iii) our inference procedure remains valid beyond a strict (and exact) calibration of the

additional parameters of the simulator. This allows us to consider environments where these

additional (nuisance) parameters are incorrectly calibrated, so-called miscalibration. As such,

our approach is also related to the issue of testing under misspecified alternatives as studied by

Davidson and MacKinnon (1987), Saikkonen (1989), Bera and Yoon (1993), and more recently

by Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018).

On the practical side, we focus on impulse-response (IR) matching for DSGE models. We

first consider Wald-type statistics that combine structural or reduced form IRs as done in Chris-

tiano, Eichenbaum and Evans (2005), Inoue and Killian (2013), Guerron-Quintana, Inoue and

Killian (2017). In addition, we analyze impulse responses obtained by local projections (see

Jordà (2005), Jordà and Kozicki (2011)) through a factor-analytic measure of distance adapted

from Bai (2013) which has the advantage of circumventing the need for a weighting matrix.

In a laboratory environment, we consider a variant of the small-scale DSGE model of Del Negro

and Schorfheide (2008) and study both exact and miscalibrated cases; such cases of miscalibra-

tion are particularly relevant for empirical macroeconomic policy analysis. Despite inevitable

identification and sensitivity concerns, our results clearly document useful testable directions

that remain robust to calibration. Overall, our simulations illustrate the superiority of our

proposed factor-analytic local projection approach to IR matching and associated asymptotic

framework.

The rest of the paper is organized as follows. Section 2 introduces our general framework and

motivates our inference strategy through the structural (multivariate) linear regression model.
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In sections 3 and 4, we present our new simulation-based inference procedure: respectively

under a convenient simplified framework, and under a more realistic one. In section 5, we

detail its practical implementation. In section 6, the relevance of our inference procedure is

illustrated in a simulation study of a variant of the DSGE model of Del Negro and Schorheide

(2008). Section 7 concludes. Graphs and tables of results as well as the proofs of our theoretical

results are gathered in the Appendix.

2 Framework and Motivation

We start by introducing our general framework and motivating our inference strategy through

the structural (multivariate) linear regression model.

Let θ1 be a p1-vector of structural parameters of interest. We propose a test of H0 : θ1 = θ1,0

(with θ1,0 known vector of size p1) with the objective of inverting this test for inference on θ1

or some known function of θ1 to be defined below. θ1 is our parameter of interest in the sense

that it is freely varying, and we have in mind two cases of interest: (i) a parametric model

where θ1 is a subvector of the full vector of structural parameters; (ii) a partially parametric

model where θ1 may be defined through a set of identifying restrictions. In any case, our test

relies on a (chosen) q-vector of auxiliary statistics denoted ĝ(YT ) where YT = (y1, · · · , yT ) is

the sample of observables of size T ; and, more specifically, on matching the above vector of

auxiliary statistics to its counterpart obtained by simulation. Our simulator refers to a user-

chosen (fully) parametric model which is used to simulate data compatible with (i) or (ii). It is

important to mention that our simulator is not assumed to coincide with the true model: we

rather have in mind a parametric model that is not too far from our main model. For example,

our simulator can be obtained as

• a parametric approximation - such as Quasi-maximum Likelihood - of the semi-parametric

model of interest;

• an approximation - such as a linearization - of the main (nonlinear) model;

• as a reduced form model of our main structural model.

Definition 1 below formally introduces our simulator as a fully parametric model that can

be simulated - but remains agnostic on the formal links between the chosen simulator and

our underlying DGP. In the above-mentioned parametric case (i), our simulator requires p2

additional parameters θ2, whereas in the partially parametric case (ii), it may also require

additional assumptions on the law of motion of the data. Hereafter, we denote the full vector

of p structural parameters θ = (θ′1, θ
′

2)
′ (with p = p1 + p2).

Definition 1 (Simulator)

Our simulator is defined as the statistical model (Ỹ, Pθ). For a fixed vector θ of size p, we can
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simulate an analogue of the observables YT . The h-th simulated counterpart of a sample of size

T is denoted ỸT,h(θ).

Given the simulated path ỸT,h(θ), the associated counterpart of the statistic ĝ(YT ) is defined

as ĝ(ỸT,h(θ)) and denoted g̃T,h(θ). Averaging over H simulations yields

g̃T,H(θ) =
1

H

H
∑

h=1

g̃T,h(θ) . (1)

Our testing strategy relies on matching ĝ(YT ) with its simulated counterpart g̃T,H(θ) through

a criterion function Q(.). We consider inference procedures associated with different objective

functions Q(.) such as

• Wald or Score-type inference associated with some standardized squared norm of the

difference between ĝ(YT ) and g̃T,H(θ).

• Likelihood Ratio-type inference associated with some ratio of ĝ(YT ) and g̃T,H(θ).

Several comments are worth pointing out. First, it is important to mention that we could, al-

ternatively, focus on testing directly restrictions on the population analogue of ĝ(YT ). However,

this would require the definition of such population analogue, which is not always clear or well-

defined in practice1. In addition, it would also yield an unrestricted and often non-structural

interpretation of the parameter θ which may not be relevant in practice.

Second, the above simulator requires the knowledge of the entire vector θ, and not only the

p1 components that we are interested in testing. Correspondingly, we will distinguish between

two null hypotheses: the full null HF
0 that tests the whole parameter θ,

HF
0 : θ = θ0 . (2)

Inference on the p1-subvector of interest θ1 will be obtained in a second stage by using projection

techniques. Even though such setting is simple enough to provide intuition on our inference

strategy, it is often undesirable and cumbersome in practice. This is why we will also consider

a (partial) null hypothesis that solely focuses on θ1,

H0 : θ1 = θ1,0 . (3)

Our framework under the partial null will be combined with a calibration of the remaining

parameters θ2. Calibration is used a lot in the macro models that we have in mind.

Third, the above simulator is in general misspecified with respect to (i) or (ii) (see e.g. Dridi,

Guay and Renault (2007)). The validity of our inference strategy relies on the adequacy between

the data-based statistic and its simulation-based counterpart as formalized in Assumption ??

1See for example the DSGE model considered in our simulation study in section 6.
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below.

We conclude this section by focusing our attention on the following structural linear model,

AYt = BXt + Ut with t = 1, · · · , T , (4)

where the observable dependent variable Yt is (n, 1), the observable explanatory variable Xt is

(k, 1) (and may contains lags of the dependent variables), A and B are matrices of unknown

(structural) parameters of size (n, n) and (n, k), and the unknown error term Ut is (n, 1). In

such model, the matrix A cannot be estimated, and it is natural and standard to consider

instead the following reduced form model,

Yt = Γ′Xt + Vt with t = 1, · · · , T , (5)

where Yt and Xt are the same observables as above, while Γ is the (new) matrix of unknown

parameters of size (k, n) and Vt is the unknown error term of size (n, 1). Our inference procedure

requires three main ingredients:

(i) the auxiliary statistic using to summarize the information contained in the observables;

(ii) the simulator used to simulate data analogues;

(iii) the criterion function usd to compared the auxiliary statistic computed using the observ-

ables and the simulated data.

We now detail possible choices for each ingredient.

(i) The auxiliary statistic:

The auxiliary statistic is chosen as a convenient way to ”summarize” some key features of the

available information of the observables, ZT = {(Yt, Xt), t = 1, · · · , T}: for example, one may

focus on the OLS estimator of parameter Γ, that is

Γ̂T = (X ′X)−1X ′Y ≡ ĝT (ZT )

with Y the (T, n) matrix with t-th row Y ′

t and X the (T, k) matrix with t-th row X ′

t. Alterna-

tively, other estimators may be considered, as well as other auxiliary statistics that may focus

on different features of the observables such as the variance-covariance of the error term, or

some impulse-response functions to only name a few.

(ii) The simulator:

The simulator is chosen as a parametric model that can be used to simulate an analogue of

ZT . For example, when Xt does not contain lags of Yt, one may choose to condition on X ,

and then for given θ = vec(A,B,Σu), we can generate Z̃T,h(θ) = {(Ỹt,h, Xt), t = 1, · · · , T} for

h = 1, · · · , H ,

AỸt,h = BXt + Ut , Ut ∼ N (0,Σu) with t = 1, · · · , T . (6)
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The auxiliary statistic computed over each simulated path Z̃T,h is

Γ̃T,h = (X ′X)−1X ′Ỹh = ĝT (Z̃T,h(θ)) ≡ g̃T,h(θ) .

(iii) The criterion function:

The criterion function Q(.) compares the auxiliary statistic computed over the observed data

and the simulated one, respectively ĝT (ZT ) and g̃T,H(θ). For example, we may consider LR-type

inference using the Wilks distance,

QLR(ĝT (ZT ), g̃T,H(θ)) = QLR(Γ̂T , Γ̃T,H) =
det

[

(Y −XΓ̃T,H)
′(Y −XΓ̃T,H)

]

det
[

(Y −XΓ̂T )′(Y −XΓ̂T )
]

Alternatively, we may consider Wald-type inference using

QW (ĝT (ZT ), g̃T,H(θ)) = T
[

ĝT (ZT )− g̃T,H(θ)
]′

Σ̂−1

T

[

ĝT (ZT )− g̃T,H(θ)
]

where Σ̂T is an estimator of the (asymptotic) variance covariance matrix of [ĝT (ZT )− g̃T,H(θ)]

which can be obtained by bootstrap as explained in the next section.

Many other criterion functions have been proposed in the literature, and we do not provide an

exhaustive review of them in this paper.

3 Simulation-based matching inference under HF
0

To be completed

4 Simulation-based matching inference under H0

To be completed

5 Inference procedures

To be completed

6 Simulation study

We illustrate the reliability and the applicability of our proposed approach via various sim-

ulations performed in the context of the stylized DSGE model used in Fernandez-Villaverde,

Rubio-Ramirez and Schorfheide (2016). The model consists of several sectors including house-

holds, intermediate and final goods producers, and a monetary authority. A Calvo assumption
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is used to introduce nominal rigidity in prices, and firms that at a given time cannot re-optimize

their prices adjust these by the steady-state inflation rate.

Denoting the log deviation of a variable wt from its steady-state by ŵ, the log-linearized

equilibrium conditions of the model for output, Xt, labor share, lsht, inflation, πt and the

interest rate, Rt, are given by:

x̂t = Et+1[x̂t+1]− (R̂t − E[π̂t+1]) + Et[zt+1], (7)

ˆlsht = x̂t + φt, (8)

π̂t = βEt[π̂t+1] +
(1− ζpβ)(1− ζp)

ζp
( ˆlsht + λt), (9)

R̂t =
1

β
π̂t + σRǫR,t. (10)

In the above equations, β is the stochastic discount rate and the probability with which a

given firm is unable to re-optimize its price is given by ζp. In addition, four exogenous shocks

influence the dynamics of the variables. These include a technology shock, zt, a price markup

shock, λt, a shock that affects the preference for leisure, φt, and a monetary policy shock, ǫt.

Except for the monetary policy shock, which is assumed to be independently and identically

normally distributed, with mean zero and variance 1, the remaining shocks are assumed to

follow autoregressive processes. Thus, for each shock i = z, λ, φ, the autoregression coefficient

is ρi and the standard deviation is σi.

The unknown structural parameters of the model are collected in the vector

θ = [β, γ, λ, π∗, ζp, ρφ, ρλ, ρz, σφ, σλ, σz, σR]
′ ,

where γ is the growth rate of technology, λ is the steady-state markup charged by the inter-

mediate goods producers, and π∗ is the steady-state inflation rate. The steady-states for the

interest rate and for the labor share can be obtained from the expressions R̄ = π∗γ/β, and,
¯lsh = 1/(1 + λ), respectively.

To simplify the exposition, and without loss of generality, in our simulations we will focus

on estimating only one parameter of the model, namely ζp. We calibrate the remaining struc-

tural parameters to values taken from Fernadez-Villaverde et al. (2016) and Del Negro and

Schorfheide (2008); see Table 1.

As explained above, our approach allows us to make use of different functions of the model

parameters. In this section, we focus on three such functions:

(i) VAR-based reduced-form impulse response functions (RIRF),

(ii) VAR-based Cholesky-orthogonalized structural impulse response functions (SIRF),

(iii) impulse responses based on Jorda’s local projection method.
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Table 1: Calibrated Parameter Values

Parameter Value

stochastic discount rate β0 = 0.98

growth rate of technology γ0 = 1.005

steady-state intermediate goods markup λ0 = 0.15

steady-state inflation rate π0
∗ = 1.005

ρz ρz,0 = 0.13

ρλ ρλ,0 = 0.88

ρφ ρφ,0 = 0.30

σz σz,0 = 1.50

σλ σλ,0 = 0.50

σφ σφ,0 = 3.00

σR σR,0 = 1.00

In each case, we consider the dynamic impacts up to four quarters of a 1-unit increase in the

monetary policy shock jointly on the four endogenous variables of our model. To examine the

distances between data and population, several methods are available. In the case of the impulse

responses, these hinge on the choice of the weighting matrix; we consider population weights

(diagonal and non-diagonal), as well as non-parametric non-diagonal bootstrap weights. For

the local projection approach of Jorda (2005), we consider statistics proposed for the SURE

setting, including the likelihood ratio (LR), a statistic adapted from Bai (2013), as well as

the maximum root statistic. In addition, we consider the simple average of LR and Bai’s

statistic and a scenario where the moving average errors are corrected by recursively including

the residuals.

6.1 Simulation results on Changing Nulls

We first present simulation results where we test θ = θ0 when, for one parameter of the model,

the null is different than its ”true” value.

6.1.1 Monte Carlo Test for ρφ

We focus first on the autoregression parameter of the process that describes the dynamics of

the shock to leisure. While the true value is 0.30, we compute the size of the test when testing

a null hypothesis for ρφ when it takes a different value in a grid (0.1 to 0.99). Figure 1 shows
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the results for different DGPs for ρφ equals 0, 0.1, 0.2, ..., up to 0.9 when Bai’s statistics is

used along with Jorda’s local projection in SURE form, whereas Figures 2 and 3 show the

corresponding results with SIRF and RIRF matching respectively, using the WALD statistic

with the non-diagonal population weight applying the Monte Carlo (MC) test method.

The results indicate that the test has the most power with Bai’s statistic when Jorda’s

method is used, and that this power is present primarily when the null posits a parameter value

that is larger than the true one.

6.1.2 The Impact of Miscalibrations

Typically, several DSGE parameters are calibrated, drawing on values available in other studies

in the literature. Since several alternatives may be available to calibrate the value of a particular

parameter, it is important to examine the impact of using the wrong calibrated value on the

properties of the test. We consider, in turn, miscalibration in several parameters of our model.

First, suppose that ρλ, the autoregression parameter of the markup-cost shock process, is

miscalibrated. We consider two types of miscalibrations:

• Case 1 (high persistence): the true value of ρλ is 0.88 and we mistakenly calibrate it to

another value;

• Case 2 (low persistence): the true value of ρλ is 0.1 and we mistakenly calibrate it to

another value.

Figure 4 displays the results for Case 1 using MC method. We can see that the MC method

is very sensitive to miscalibrations, but such sensitivity is very asymmetric. If the truth is

ρλ = 0.88, the ”left-hand-side” mistakes are very costly. For example, the black and red curves

show that when ρλ is mistakenly calibrated to 0, 0.2, 0.4 or 0.6, then the associated rejection

frequencies are equal to 1. As a result, the true parameter value ρφ = 0.30 is always rejected!

However, the ”right-hand-side” mistakes are less costly: e.g. if ρλ is mistakenly set to 0.90,

then the size of the test is maintained. Finally, the green curve shows that mistake of the unit

root type is costly as well.

Next, we consider miscalibration in ρφ. Figure 5 considers Case 1 with miscalibrated ρφ

with SIRF matching using the WALD statistic (with the non-diagonal population weights).

Figure 6 considers Case 1 with miscalibrated ρφ with RIRF matching using the WALD statistic

(with the non-diagonal population weight). We find that both SIRF and RIRF matching with

WALD are not sensitive to miscalibration.

Given that both ρφ and ρλ are none-structural, it would be interesting to also study the effect

of miscalibration on a structural parameter. We thus focus next on ζp, the Calvo parameter.

Figure 9 considers Case 1 for ζp using the MC method, while Figure 10 considers Case 2 for ζp

using MC method. We find that the outcomes are quite comparable to those pertaining to the

previous two non-structural parameters.
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Finally, we consider the impact of miscalibration on the variance of one of our model shocks.

Figure 11 shows the rejection frequencies for ζp with miscalibration on σλ at the 5% significance

level for small samples using the MC method. Once again, we observe similar outcomes.

6.1.3 Non-parametric Bootstrap P value for ρφ

In a second stage of the Monte Carlo Test, we construct simulated statistics based on the

non-parametric bootstrap (the number of replications is 999). We resample the data with

replacement from the true DGP. The black dashed/solid lines in Figure 8 show severe over-

rejections with and without misspecification when the sample size T = 100. As the sample size

increases to 500, the size stabilizes to 0.05. Again, we find that the non-parametric bootstrap

method is not sensitive to miscalibrations.

6.2 Simulation results with Fixed Null and Changing Alternative

We next consider simulation results where the null fixes all the calibrated parameters to their

(correct) calibrated values as displayed in Table 1, and where the ”true” ζp is assumed to be

0.65. We then vary the value of one of the parameters under the alternative hypothesis and

study rejection frequencies at the 5% significance level with the above-described methods. The

sample size is set to T = 100. Figure 12 plots these rejection frequencies for different options

for the parameter that is allowed to vary under the alternative. Thus, for instance, the top

left-hand-side graph in the plot depicts the rejection frequencies when ζp is varied under the

alternative while its null value is 0.65 (and where all the other parameters are fixed at their

calibrated null values).

All methods are size-corrected (by simulation), implying that the power results are formally

comparable. We find that, among the considered auxiliary statistics, the following by far

outperforms all others: SURE local projection regression estimates, where the distance between

data and population is assessed using the measure adapted from Bai (2013; yellow line in Figure

12). One reason for this success may be that while its basis is multivariate, the method is not

a Wald-type measure of distance, and it thus eschews the need to define a weighting matrix.

We find, in particular, that the method has the power to discriminate against Calvo pa-

rameter values that are lower than the assumed true value. In other words, the method has

the power to shed light on the extent of nominal rigidity that is present in the data which is

still the subject of some debate in the literature. Similarly, the method is informative on the

parameters driving the technology shock (that is, both on the autoregressive parameter and

the variance of the shock).

The above simulation studies demonstrate that Bai’s statistic with Jorda’s projection method

generally outperforms the other considered options. In addition, the method is sensitive to

several miscalibrated parameters of the model, although this sensitivity is asymmetric and con-
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siderably more present when calibrating at higher values than the truth. Since a considerable

amount of dynamics is injected into DSGE models via its ’external’ sources, namely the model’s

shock processes, our simulation studies indicate the importance of properly pinning down the

parameter values of these processes for testing θ (which, in our simplified case, consists here on

the the Calvo parameter ζp). Indeed, if the latter are to be calibrated, they should be fixed at

the highest values economically-acceptable so that the test has the most power.

7 Conclusion

To be completed
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[11] O. Jordà, Estimation and inference of impulse responses by local projections, American

Economic Review 95 (2005), 161–182.
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Figure 1: Changing Nulls rejection frequencies for ρφ at the 5% significance level for small

samples with MC method.

Note: Different DGPs for ρφ.Solid Black: ρφ=0.1; Dashed Black: ρφ=0.2; Black Crosses:

ρφ=0.3; Solid Red: ρφ=0.4; Dashed Red: ρφ=0.5; Red Crosses: ρφ=0.6 Solid Blue: ρφ=0.7;

Dashed Blue: ρφ=0.8; Blue Crosses: ρφ=0.9. Sample Size: T = 100.
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Figure 2: Changing Nulls rejection frequencies for ρφ at the 5% significance level for small sam-

ples with Structural IRF matching using the WALD statistic with the non-diagonal population

weight.

Note: Different DGPs for ρφ.Solid Black: ρφ=0.1; Dashed Black: ρφ=0.2; Black Crosses:

ρφ=0.3; Solid Red: ρφ=0.4; Dashed Red: ρφ=0.5; Red Crosses: ρφ=0.6 Solid Blue: ρφ=0.7;

Dashed Blue: ρφ=0.8; Blue Crosses: ρφ=0.9. Sample Size: T = 100.
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Figure 3: Changing Nulls rejection frequencies for ρφ at the 5% significance level for small sam-

ples with Reduced IRF matching using the WALD statistic with the non-diagonal population

weight.

Note: Different DGPs for ρφ.Solid Black: ρφ=0.1; Dashed Black: ρφ=0.2; Black Crosses:

ρφ=0.3; Solid Red: ρφ=0.4; Dashed Red: ρφ=0.5; Red Crosses: ρφ=0.6 Solid Blue: ρφ=0.7;

Dashed Blue: ρφ=0.8; Blue Crosses: ρφ=0.9. Sample Size: T = 100.
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Different Mis-specifications for rho_lambda (the truth is 0.88):

Solid Black: rho_lambda=0; Dashed Black: rho_lambda=0.2

Solid Red: rho_lambda=0.4; Dashed Red: rho_lambda=0.6

Solid Blue: rho_lambda=0.8; Dashed Blue: rho_lambda=0.9

Solid Green: rho_lambda=0.99

Figure 4: Misspecification Case 1 for ρφ at the 5% significance level for larger samples with the

MC method.

Note: Different Misspecifications for ρλ (the truth is 0.88): Solid Black: ρλ=0; Dashed Black:

ρλ=0.2; Solid Red: ρλ=0.4; Dashed Red: ρλ=0.6; Solid Blue: ρλ=0.8; Dashed Blue: ρλ=0.9;

Solid Green: ρλ=0.99. Sample Size: T = 200.
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Figure 5: Misspecification Case 1 for ρφ at the 5% significance level for small samples with the

Structural IRF matching using the WALD statistic with the non-diagonal population weight.

Note: Different Misspecifications for ρλ (the truth is 0.88): Solid Black: ρλ=0; Dashed Black:

ρλ=0.2; Solid Red: ρλ=0.4; Dashed Red: ρλ=0.6; Solid Blue: ρλ=0.8; Dashed Blue: ρλ=0.9;

Solid Green: ρλ=0.99. Sample Size: T = 100.
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Figure 6: Misspecification Case 1 for ρφ at the 5% significance level for small samples with the

Reduced IRF matching using the WALD statistic with the non-diagonal population weight.

Note: Different Misspecifications for ρλ (the truth is 0.88): Solid Black: ρλ=0; Dashed Black:

ρλ=0.2; Solid Red: ρλ=0.4; Dashed Red: ρλ=0.6; Solid Blue: ρλ=0.8; Dashed Blue: ρλ=0.9;

Solid Green: ρλ=0.99. Sample Size: T = 100.
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Different Mis-specifications for rho_lambda (the truth is 0.1):

Solid Black: rho_lambda=0; Dashed Black: rho_lambda=0.2

Solid Red: rho_lambda=0.4; Dashed Red: rho_lambda=0.6

Solid Blue: rho_lambda=0.8; Dashed Blue: rho_lambda=0.9

Solid Green: rho_lambda=0.99

Figure 7: Misspecification Case 2 for ρφ at the 5% significance level for small samples with the

MC method.

Note: Different Misspecifications for ρλ (the truth is 0.1): Solid Black: ρλ=0; Dashed Black:

ρλ=0.2; Solid Red: ρλ=0.4; Dashed Red: ρλ=0.6; Solid Blue: ρλ=0.8; Dashed Blue: ρλ=0.9;

Solid Green: ρλ=0.99. Sample Size: T = 100.
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Figure 8: Misspecification Case 1 and non Misspecification combined figures for ρφ at the 5%

significance level with the NP Bootstrap method.

Note: The true value for ρλ is 0.88. Solid Black: no misspecification, T = 100; Dashed

Black: misspecification, ρλ is calibrated to 0.75, T = 100 ; Dash-dot Black: misspecification,

ρλ is calibrated to 0.95, T = 100 ; Solid Red: no misspecification, T = 500; Dashed Red:

misspecification, ρλ is calibrated to 0.75, T = 500; Dash-dot Red: misspecification, ρλ is

calibrated to 0.95, T = 500.
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Figure 9: Misspecification Case 1 for ζp at the 5% significance level for small samples with the

MC method.

Note: Different Misspecifications for ρλ (the truth is 0.88): Solid Black: ρλ=0; Dashed Black:

ρλ=0.05; Solid Red: ρλ=0.2; Dashed Red: ρλ=0.5; Solid Blue: ρλ=0.8; Dashed Blue: ρλ=0.9;

Solid Green: ρλ=0.95; Dashed Green: ρλ=0.99. Sample Size: T = 100.
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Figure 10: Misspecification Case 2 for ζp at the 5% significance level for small samples with the

MC method.

Note: Different Misspecifications for ρλ (the truth is 0.1): Solid Black: ρλ=0; Dashed Black:

ρλ=0.05; Solid Red: ρλ=0.2; Dashed Red: ρλ=0.5; Solid Blue: ρλ=0.8; Dashed Blue: ρλ=0.9;

Solid Green: ρλ=0.95; Dashed Green: ρλ=0.99. Sample Size: T = 100.
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Figure 11: Rejection frequencies for ζp with misspecification on σλ at the 5% significance level

for small samples with the MC method.

Note: Different Misspecifications for σλ (the truth is 0.50): Solid Black: σλ=0.05; Dashed

Black: σλ=0.2; Solid Red: σλ=0.25; Dashed Red: σλ=0.5; Solid Blue: σλ=0.55; Dashed Blue:

σλ=0.7; Solid Green: σλ=0.95; Dashed Green: σλ=0.99. Sample Size: T = 100.
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Black line: SIRF, Non-parametric Bootstrap Weight (Non-Diagonal) 

Red line: SIRF, Population Weight (Non-Diagonal)

Green line: SIRF, Population Weight (Diagonal)

Yellow line: Jorda's local projection, using Bai's statistic in SURE 

Blue line: Jorda's local projection, using LR statistic in SURE

Cyan line: RIRF, Population Weight

Magenta line: Jorda's local projection, using the simple average of LR and Bai's statistic in SURE 

Black dashed line: RIRF, Non-parametric Bootstrap Weight (Non-Diagonal)

Blue dashed line: Jorda's local projection, using Maximum Roots statistic in SURE

Red dashed line: Jorda's local projection, with MA error corrected by recursively including the residuals

Figure 12: Comparison of rejection frequencies for different methods at the 5% significance

level for T = 100.

Note: Horizon: 1-4; Black line: SIRF, Non-parametric Bootstrap Weight (Non-Diagonal);

Red line: SIRF, Population Weight (Non-Diagonal); Green line: SIRF, Population Weight

(Diagonal); Yellow line: Jorda’s local projection, using Bai’s statistic in SURE; Blue line:

Jorda’s local projection, using LR statistic in SURE; Cyan line: RIRF, Population Weight;

Magenta line: Jorda’s local projection, using the simple average of LR and Bai’s statistic

in SURE; Black dashed line: RIRF, Non-parametric Bootstrap Weight (Non-Diagonal); Blue

dashed line: Jorda’s local projection, using Maximum Roots statistic in SURE; Red dashed

line: Jorda’s local projection, with MA error corrected by recursively including the residuals.
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