Testing for multiplicity of equilibria in a low interest rate environment

Guido Ascari and Sophocles Mavroeidis University of Oxford

October 5, 2019

Ascari & Mavroeidis (Oxford)

Multiplicity and ZLB

October 5, 2019 1 / 39

Motivation

• In structural models with occasionally binding constraints

- an equilibrium may not exist (incoherency); or
- there may be multiple equilibria (incompleteness)
- Literature on the Zero Lower Bound (ZLB) often focuses on two equilibria: targeted inflation and liquidity trap, but there can be many more
- Coherency and Completeness (CC) requires restrictions on the structural parameters
- Incompleteness requires restrictions on the support of the shocks for coherency
- No theoretical results on CC for DSGE models
- We attempt to fill that gap

< □ > < □ > < □ > < □ > < □ > < □ >

Preview of results

- (It appears that) DSGE models with the ZLB are *generically* incomplete and they require restrictions on the support of the shocks to avoid incoherency
- We provide a solution method that is exact when the model is linear (except for the ZLB) and the distribution of the shocks is discrete with bounded support
- But it is computationally infeasible when the number of states is large
- So far have been unable to generalize it to continuous distributions
- In the special case of a SVAR, we can fully characterize incompleteness and develop likelihood tests for it

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

- 2 Discrete shocks
- 3 Continuous shocks

3

A D N A B N A B N A B N

A simple two-equation example

- From Aruoba et al. (2018) henceforth ACS
- Original ACS example consists of a consumption Euler equation

$$1 = E_t \left(M_{t+1} \frac{R_t}{\pi_{t+1}} \right) \tag{1}$$

and a (contemporaneous) Taylor rule

$$R_t = \max\left\{1, r\pi_* \left(\frac{\pi_t}{\pi_*}\right)^{\psi}\right\}.$$
 (2)

Steady states

• When $\psi > 1$ (active Taylor rule) the model

$$1 = E_t \left(M_{t+1} \frac{R_t}{\pi_{t+1}} \right)$$
$$R_t = \max\left\{ 1, r\pi_* \left(\frac{\pi_t}{\pi_*} \right)^{\psi} \right\}$$

has two steady states (Benhabib et al. (2001)):

- Targeted-inflation steady state: $\pi = \pi_*$, $R = r\pi_*$
- Deflation steady state: $\pi = 1/r$, R = 1
- (steady state of stoch disc factor M_t is 1/r)

• If $\psi < 1$, there is only the targeted-inflation steady state

< □ > < □ > < □ > < □ > < □ > < □ >

A simple example

Graphical illustration: two steady states

э

Graphical illustration: unique steady state

э

Steady states and (dynamic) equilibria

- Multiplicity of steady states often guides the characterization of equilibria
- E.g., ACS looked for two equilibria when $\psi > 1$
- In fact, there are typically many more than two equilibria
- And even when $\psi < 1$ there are multiple dynamic equilibria even though steady state is unique
- So, thinking about multiplicity of equilibria via multiplicity of steady states can be misleading

イロト 不得下 イヨト イヨト

Characterizing multiplicity

- We want to find the conditions for a unique equilibrium (CC)
- ullet They depend both on ψ and on the distribution of the shock
- If the CC condition is violated, we want to find the set of multiple equilibria
- We start with discrete distribution of shock
- Then move to continuous distribution which is a lot harder!

Outline

2 Discrete shocks

3

A D N A B N A B N A B N

Solving log-linearized model

• Log-linearizing around target inflation steady state π_* the model becomes

$$\hat{\pi}_{t+1|t} = \hat{R}_t + \hat{M}_{t+1|t} \tag{3}$$

$$\hat{R}_t = \max\left\{-\mu, \psi \hat{\pi}_t\right\}, \quad \mu := \log\left(r\pi_*\right). \tag{4}$$

$$\hat{\pi}_{t+1|t} = \max\left\{-\mu,\psi\hat{\pi}_t
ight\} + \hat{M}_{t+1|t}$$

- Assume \hat{M}_t is first-order Markovian as in ACS
- We now derive the CC condition and find multiple equilibria when the model is incomplete
- We first analyze a simple special case graphically

Ascari & Mavroeidis (Oxford)

Multiplicity and ZLB

2-state Markov chain with absorbing state

• Assume $\hat{M}_t = -r^L > 0$ (transitory) and $\hat{M}_t = 0$ (absorbing) with transition Kernel (n - 1 - n)

 $K = \begin{pmatrix} p & 1-p \\ 0 & 1 \end{pmatrix}$

 $(r^{L} < 0$ can be interpreted as negative real interest rate shock)

• We illustrate graphically that the CC condition holds iff

$\psi < p$

• CC does not depend on the support of \hat{M}_t , only on transition matrix K

Coherent and complete case: unique solution

A D N A B N A B N A B N

3

Incomplete case p < psi < 1: two equilibria

Ascari & Mavroeidis (Oxford)

October 5, 2019 13 / 39

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

Incomplete case psi > 1: up to four equilibria

э

A D N A B N A B N A B N

Incomplete case psi > 1: up to four equilibria

э

A D N A B N A B N A B N

Incomplete case psi > 1: up to four equilibria

- 20

イロト イポト イヨト イヨト

Incomplete case psi > 1: up to four equilibria

Ascari & Mavroeidis (Oxford)

э

A D N A B N A B N A B N

Incomplete case psi > 1: up to four equilibria

Incomplete case psi > 1: up to four equilibria

Analytical description of multiple equilibria

If $\psi > p$, we have

$$\hat{\pi}_{t} = \begin{cases} r^{L} \frac{p}{\psi - p}, & \text{if } \hat{M}_{t} = -r^{L} \in \left(0, \mu \frac{\psi - p}{\psi p}\right) \text{ (PIR)} \\ 0, & \text{if } \hat{M}_{t} = 0, & \text{(PIR)} \end{cases}$$

$$\hat{\pi}_{t} = \begin{cases} -r^{L} - \frac{\mu}{p}, & \text{if } \hat{M}_{t} = -r^{L} \in \left(0, \mu \frac{\psi - p}{\psi p}\right) \text{ (ZIR)} \\ 0, & \text{if } \hat{M}_{t} = 0. & \text{(PIR)} \end{cases}$$
(2)

If $\psi > 1$, we also get

$$\hat{\pi}_{t} = \begin{cases} \frac{pr^{L} - (1-p)\mu}{\psi - p}, & \text{if } \hat{M}_{t} = -r^{L} \in \left(0, \mu \frac{\psi - 1}{\psi}\right) \quad (\mathsf{PIR}) \\ -\mu, & \text{if } \hat{M}_{t} = 0, & (\mathsf{ZIR}) \end{cases}$$

$$\hat{\pi}_{t} = \begin{cases} -r^{L} - \mu, & \text{if } \hat{M}_{t} = -r^{L} \in \left(0, \mu \frac{\psi - 1}{\psi}\right) \quad (\mathsf{ZIR}) \\ -\mu, & \text{if } \hat{M}_{t} = 0. & (\mathsf{ZIR}) \end{cases}$$
(4)

Ascari & Mavroeidis (Oxford)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Sunspot equilibria

- The previous equilibria were solutions of the form $\hat{\pi}_t = g(\hat{M}_t)$
- There are possibly other equilibria
- E.g., ACS propose $\hat{\pi}_t = g\left(\hat{M}_t, s_t
 ight)$, where $s_t \in \{0, 1\}$ is sunspot
- These are in addition to the four equilibria above

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Distinguishing between complete and incomplete models

- In the present example, the CC condition is $\psi < p$
- Suppose we observed data on π_t and R_t
- The transition probability *p* is identified
- But ψ is not identified
- So how can we tell whether the CC condition is satisfied in the data?
- In the specific example above, this is trivial because the distribution of the data (the support points) differs for each equilibrium
- But this is not the case in general

Observationally equivalent models

Complete model

- $\hat{M}_t \in \{m_1, m_2\}$, with transition kernel $K = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}$ and $\psi (CC condition)$
- If you choose $m_1 < m_2$ appropriately, the unique equilibrium oscillates between $\hat{R}_t > 0$ if $\hat{M}_t = m_1$ ('good' state) and $\hat{R}_t = 0$ if $\hat{M}_t = m_2$ ('bad' state)

Incomplete model with sunspot

- $\hat{M}_t = m$ always, $\psi > 1$ and sunspot process $s_t \in \{0, 1\}$, with transition kernel K.
- There exists sunspot equilibrium such $\hat{R}_t > 0$ if $s_t = 0$ and $\hat{R}_t = 0$ if $s_t = 1$ (ZLB state)
- We can find m_1, m_2 and m such that the distribution of the data is identical for both models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Moving beyond 2 states

- Our goal is to characterize CC and incompleteness in a model with continuous support
- We don't know how to do that
- So we first look at k states...

4 E N

э

Three states

- With two states the CC condition was found to be $\psi < p$
- Suppose there are two transitory and one absorbing state, with

$$\mathcal{K} = \left(\begin{array}{rrrr} p_{11} & p_{12} & 1 - p_{11} - p_{12} \\ p_{21} & p_{22} & 1 - p_{21} - p_{22} \\ 0 & 0 & 1 \end{array}\right)$$

• Now CC condition becomes more stringent: if $p_{11}p_{22} > p_{12}p_{21}$,

$$\psi < \min \left(\begin{array}{c} p_{11} - \frac{p_{12}p_{21}}{p_{22}}, \\ p_{22} - \frac{p_{12}p_{21}}{p_{11}}, \\ \frac{p_{11} + p_{22} - \sqrt{(p_{11} - p_{22})^2 + 4p_{12}p_{21}}}{2} \end{array} \right)$$

Intuition

- CC requires RHS (red line) to be flatter than LHS (blue line)
- When we go from 2 to 3 states, the LHS of

 $\hat{\pi}_{t+1|t} = \max\{-\mu, \psi \hat{\pi}_t\} + \hat{M}_{t+1|t}$

becomes flatter, hence CC condition tightens

- This suggests CC condition tightens as # of states increases
- We explore that numerically using a very useful result from Gourieroux et al. (1980) henceforth GLM

< □ > < 同 > < 三 > < 三 >

A general solution method with k states

The model to solve is

$$\hat{\pi}_{t+1|t} = \hat{M}_{t+1|t} + \max(-\mu, \psi \hat{\pi}_t)$$
 (1)

- If \hat{M}_t is MC with support $m \in \Re^k$ and transition kernel $K \in \Re^{k \times k}$ and if solution is of the form $\hat{\pi}_t = f(\hat{M}_t)$ (msv)
- Then $\hat{\pi}_t$ is MC with support π and kernel K and (1) becomes

$$Ky = b + \max(0, \psi y) \tag{2}$$

with $y := \pi + \frac{\mu}{\psi}\iota$, $b := Km + \frac{(1-\psi)\mu}{\psi}\iota$, ι is k-vector of ones

• (2) is a piecewise linear function in each of the orthants of \Re^k

CC condition using GLM

- Let C_i denote the *i*th orthant of \Re^k , $i = 1, ..., 2^k$
- $Ky = b + \max(0, \psi y)$ can be written as

$$f(y) = b$$
, $f := \sum_{i=1}^{2^{k}} (A_{i} 1_{\{y \in C_{i}\}}) y$

- E.g., if $C_1 = \{y \in \Re^k : y_j \ge 0 \text{ for all } j\}$, then $A_1 = K \psi I_k$ • if $C_2 = \{y \in \Re^k : y_j < 0 \text{ for all } j\}$, then $A_2 = K$, etc.
- Using GLM Theorem 1, we find that CC holds (*f* is invertible) iff

det A_i has the same sign $\forall i = 1, ..., 2^k$

- Straightforward to program, but quickly becomes infeasible
 - finding CC with k = 29 took 9 hours, k = 50 would take 2 millennia

(日)

Specific example: M follows AR(1)

- Use Rouwenhorst method to obtain k-state MC with $\hat{M}_{t+1|t} = \rho \hat{M}_t$
- Let $\overline{\psi}_k$ be cutoff such that CC satisfied for $\psi < \overline{\psi}_k$
 - e.g., $\overline{\psi}_2 = \rho$ (analytically)
- We establish numerically that $\overline{\psi}_k\searrow$ as $k\nearrow$

• So we conjecture that $\overline{\psi}_k \to 0$ as $k \to \infty$

Incompleteness: many many equilibria

- Rouwenhorst AR(1): $\hat{M}_t \in \{-\overline{m}, ..., \overline{m}\}$, K such that $Km = \rho m$
- If $\psi > \overline{\psi}_k$ (violation of CC) and \overline{m} sufficiently small (support restriction), we have incompleteness
- There are $n \leq 2^k$ equilibria of the form $\hat{\pi}_t = g_i(\hat{M}_t)$, i = 1, ..., n.
- Next slide plots equilibria in specific example k = 3, $\overline{m} = \sigma \sqrt{\frac{k-1}{1-\rho^2}}$, matching ACS's calibration ($\sigma = 0.0007$, $\rho = 0.9$, $\psi = 1.5$)
- With these values, there are exactly 8 equilibria without sunspots

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Various equilibria

Ascari & Mavroeidis (Oxford)

October 5, 2019 26 / 39

Continuous support

- We have not been able to find a general solution of this model when the distribution of \hat{M}_t is continuous
- If we treat the k-state MC as an approximation to a continuous distribution, then we *conjecture* the CC condition is $\psi \leq 0$
 - (model is trivially complete at $\psi = 0$)
- In the case where $\hat{M}_{t+1} = \rho \hat{M}_t + \varepsilon_{t+1}$ and ε_{t+1} is continuously distributed, we can show that the model is incomplete when $\psi > \rho$
 - We can find two specific equilibria, one always at ZLB and one always above ZLB, provided $\varepsilon_{t+1} < \frac{\psi-1}{\psi} \mu \rho \hat{M}_t$
 - So $\psi < \rho$ is necessary but not sufficient for CC
- Note:
 - Support of \hat{M}_t depends on past shocks, so not Markovian
 - Would depend on current value of other shocks if there were any, so shocks cannot be orthogonal (more on this later)

イロト 不良 トイヨト イヨト

Outline

- 2 Discrete shocks
- 3 Continuous shocks

æ

A D N A B N A B N A B N

Looking under the street light

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Forward looking Taylor rule

• Consider a modified version of the ACS model with a FL Taylor rule

$$\hat{\pi}_{t+1|t} = \hat{R}_t + \hat{M}_{t+1|t} \tag{1}$$

$$\hat{R}_t = \max\left\{-\mu, \psi \hat{\pi}_{t+1|t}\right\},\tag{2}$$

$$\hat{M}_{t} = \rho \hat{M}_{t-1} + \sigma \epsilon_{t}, \quad E_{t-1} \left(\epsilon_{t} \right) = 0$$
(3)

• Substituting for $\hat{\pi}_{t+1|t}$ in (2) using (1) yields

$$\hat{R}_t = \max\left\{-\mu, \psi \hat{R}_t + \psi \rho \hat{M}_t\right\}$$
(4)

- The CC condition for this model is $\psi < 1$
- (Incidentally, steady state and dynamic CC conditions coincide)

Ascari & Mavroeidis (Oxford)

A D F A B F A B F A B

Coherent and Complete solution

- We need to solve $\hat{R}_t = \max\left\{-\mu,\psi\hat{R}_t+\psi\rho\hat{M}_t
 ight\}$
- Notice there are no expectations of the endogenous variables in this
- This makes the solution a lot simpler
- The problem fits into the framework of "Censored and Kinked SVAR" model introduced by Mavroeidis (2019) "Identification at the ZLB"
- There I show that if the CC condition holds, and the error ϵ_t is Gaussian, the reduced form can be written as a Tobit

$$y_t = \max(0, y_t^*)$$
(1)
$$y_t^* = (1 - \rho) \mu + \rho y_{t-1}^* + \tau \epsilon_t,$$
(2)

where $y_t = \log R_t = \hat{R}_t + \mu$, and $\tau = \frac{\psi \rho \sigma}{1 - \psi}$

< 日 > < 同 > < 三 > < 三 >

Incomplete solutions

When CC fails, we have generically 0 or 2 solutions

Ascari & Mavroeidis (Oxford)

Multiplicity and ZLB

October 5, 2019 31 / 39

Incompleteness condition

October 5, 2019 32 / 39

3

Sunspot equilibria

• The set of equilibria is (recall $\mu = \log (r\pi_*)$, net nominal rate in TI steady state)

$$\hat{R}_{t} = -\mu D_{t} + (1 - D_{t}) \frac{\psi \hat{M}_{t+1|t}}{1 - \psi}, \quad \frac{\psi \hat{M}_{t+1|t}}{1 - \psi} > -\mu, \quad (1)$$

where D_t is an indicator ($D_t = 1$ means at ZLB) with arbitrary distribution

• Wlog, we can set

 $D_t = 1_{\{s_t > 0\}}$

where s_t is a 'sunspot' process that may or may not depend on $\hat{M}_{t+1|t}$ • E.g., D_t is a purely exogenous Markov chain can be characterized by

 $s_{t} = \delta_{0} + \delta_{1}D_{t-1} + \zeta_{t}, \quad \zeta_{t} \sim iidN(0,1), \quad \zeta_{t} \perp \perp \hat{M}_{t+1|t} \quad (2)$

イロト 不得下 イヨト イヨト 二日

Observational equivalence with CC model

• We can set the distribution of the sunspot such that the equilibrium is observationally equivalent to the CC model

$$\begin{aligned} \hat{R}_t &= -\mu + \max\left(0, y_t^*\right) \\ y_t^* &= (1 - \rho) \, \mu + \rho y_{t-1}^* + \tau \epsilon_t \end{aligned}$$

• This is achieved if we set:

$$s_t = y_t^* \tag{3}$$

Testing incompleteness

• We can nest 'pure sunspot' and OE-to-CC cases using

$$s_t = \delta_0 + \delta_1 D_{t-1} + \delta_2 y_{t-1}^* + \vartheta \zeta_t - \sqrt{1 - \vartheta^2} \epsilon_t$$
(1)

- (this bears some similarity to Lubik and Schorfheide (2004) characterization of indeterminacy)
- Even though ψ is not identified, we can test for multiplicity by testing if data comes from a dynamic Tobit model
- This corresponds to the parametric restriction on (1)

 $H_0: \delta_1 = \vartheta = 0$ against $H_1:$ not H_0

- Rejection of the H_0 provides unambiguous evidence of incompleteness
- The converse is not true because data consistent with both CC and incomplete models
 - (bears some similarity to Mavroeidis (2010))

Adding a monetary policy shock

- The above analysis showed that, in the case $\psi > 1$, existence of an equilibrium requires strange restrictions on the distribution of the real interest rate shock (path-dependent support, non-Markovian dynamics)
- If we add a monetary policy shock, we can relax the above restrictions on the real shock
- But existence (coherency) requires that the policy shock *cannot be independent* of the real shock
- The math: if Taylor rule becomes

$$\hat{R}_t = \max\left\{-\mu,\psi\hat{\pi}_{t+1|t}+
u_t
ight\}, \quad \psi>1$$

then support restriction becomes

$$\nu_t < -\psi\rho\sigma\epsilon_t - \psi\rho^2\hat{M}_{t-1} - (1-\psi)\,\mu\tag{2}$$

CKSVAR

- The above approach generalizes to the CKSVAR of Mavroeidis (2019)
- Mavroeidis (2019) showed that in a completely unrestricted CKSVAR (that incorporates various forms of unconventional monetary policy, including forward guidance), the CC condition depends on a parameter κ that is not identified
 - CC condition is $\kappa > 0$, where κ is a function of the SVAR coefficients
 - in the present example, $\kappa = 1 \psi$, so CC requires $\psi < 1$
- Mavroeidis (2019) focused on the CC case
- Here we show how to handle the incomplete case and test for incompleteness

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

- DSGE models subject to a ZLB constraint have many equilibria (even if we rule out sunspots)
- But existence of multiple equilibria requires 'strange' restrictions on the distribution of the shocks
 - Support cannot be unbounded
 - Shocks cannot be orthogonal
- Simple method to characterize existence and uniqueness of equilibria with discrete shocks
- But computationally too expensive to be useful for empirical application
- In SVAR models, we can characterize and test for multiplicity of equilibria

< □ > < □ > < □ > < □ > < □ > < □ >

References

- Aruoba, S. B., P. Cuba-Borda, and F. Schorfheide (2018). Macroeconomic dynamics near the zlb: A tale of two countries. *The Review of Economic Studies* 85(1), 87–118.
- Benhabib, J., S. Schmitt-Grohé, and M. Uribe (2001). Monetary policy and multiple equilibria. *American Economic Review 91*(1), 167–186.
- Gourieroux, C., J. Laffont, and A. Monfort (1980). Coherency conditions in simultaneous linear equation models with endogenous switching regimes. *Econometrica*, 675–695.
- Lubik, T. A. and F. Schorfheide (2004). Testing for indeterminacy: An application to U.S. Monetary Policy. *American Economic Review 94*(1), 190–216.
- Mavroeidis, S. (2010). Monetary Policy Rules and Macroeconomic Stability: Some New Evidence. *American Economic Review 100*(1), 491–503.

Mavroeidis, S. (2019). Identification at the Zero Lower Bound. mimeo.

Ascari & Mavroeidis (Oxford)