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Abstract

Structural models with multiple solutions are incomplete. Incompleteness de-

pends on the structural parameters and requires restrictions on the support of

the distribution of the structural shocks. We develop likelihood-based methods

for testing for incompleteness in dynamic macro models with occasionally binding

constraints. We provide a general characterization of equilibrium dynamics under

incompleteness, and a test for the presence of sunspots.
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1 Introduction

It is well-known that in structural models with occasionally binding constraints, equi-

libria may not exist (incoherency) or there may be multiple equilibria (incompleteness).

It is plausible to assume away incoherency when data is actually observed, but incom-

pleteness may not be ruled out a priori. In fact, several papers in the literature on
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the zero lower bound (ZLB) on interest rates have used models with multiple equilibria

and associated steady states, e.g., Benhabib et al. (2001a,b), Fernández-Villaverde et al.

(2015) and Aruoba et al. (2017), henceforth ACS.

In this paper, we show that the hypothesis of multiple equilibria (incompleteness)

is testable, and develop appropriate tests for it. In doing so, we characterize the set

of solutions to the model using arbitrary equilibrium selection mechanisms that may or

may not include sunspots, and can depend on the structural shocks of the model. In

fact, one of our proposed tests of incompleteness is based on the idea of testing for the

presence of sunspots, that must be absent in a complete model. Therefore, rejection of

the hypothesis of no sunspots implies multiplicity of equilibria though the converse is

not true, as one cannot rule out sunspotless multiplicity.

Our analysis concerns global multiplicity of equilibria, not local indeterminacy as in

the literature of Clarida et al. (2000). A well-known example of multiple equilibria in

the ZLB literature comes from the Taylor rule. As shown in Benhabib et al. (2001a,b),

Fernández-Villaverde et al. (2015) and ACS, active Taylor rules result in incompleteness

(two steady states), while passive rules cause completeness. However, the fact that

presence of sunspot dynamics can help distinguish between the two situations bears

some similarity to the local indeterminacy literature, where (different type of) sunspot

dynamics where found to be useful in distinguishing between active and passive policy

rules, see Lubik and Schorfheide (2004); Mavroeidis (2010).

On a technical note, we also demonstrate that in incomplete models, the structural

shocks cannot be independent and identically distributed over time since the support

of their distribution must be bounded, and the bounds will generally be time-varying.

In models with multiple shocks, the support of their distribution cannot be rectangu-

lar in the incomplete case, so the assumption of orthogonality of structural shocks is

incompatible with multiple equilibria. The intuition is that with rectangular support

we cannot rule out the possibility of incoherency, i.e., shocks that are sufficiently big

to destroy the equilibrium completely. Thus, a further contribution of this paper is the

characterization of the requisite restrictions on the support of the distribution of the
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shocks in the incomplete case. This allows us to derive an accurate representation of

the likelihood function over the region of the parameter space that is associated with

multiple equilibria.

2 A two-equation example

We start with a two-equation DSGE model based on ACS. The model consists of a

consumption Euler equation

1 = Et

(
Mt+1

Rt
πt+1

)
(1)

and a forward-looking Taylor rule

Rt = max

{
1, rπ∗

(
Etπt+1

π∗

)ψ}
, ψ ≥ 0, (2)

where r is the steady-state gross real interest rate, Rt is the gross nominal interest

rate, πt is the gross inflation rate, π∗ is the target of the central bank for the gross

inflation rate, and Mt+1 is the stochastic discount factor. Equation (2) differs from

the Taylor rule in ACS which has the policy maker react to πt instead of Etπt+1. The

reason for considering the forward-looking rule is because it makes the solution of the

model analytically tractable. This comes with the unfortunate side-effect of making πt

indeterminate, since the system of equations (1) and (2) can only pin down Etπt+1. This

restriction will be relaxed in the more general model later. Another difference from ACS

is that we do not impose a priori the restriction ψ > 1 that leads to incompleteness,

because our primary objective is to develop a test of that hypothesis.

To keep the example simple, we follow ACS and model the stochastic discount factor

Mt+1 as an exogenous stationary AR(1) process in logs, i.e.,

log

(
Mt+1

m

)
= ρ log

(
Mt

m

)
+ σεt+1, εt ∼ iidN (0, 1) ,
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where m = 1/r is the steady state of the stochastic discount factor.

Loglinearizing around πt = π∗, Mt = 1/r, Rt = rπ∗, and using the notation X̂t =

log (Xt/x), and X̂t+1|t := EtX̂t+1 yields

π̂t+1|t = R̂t + M̂t+1|t (3)

R̂t = max
{
− log (rπ∗) , ψπ̂t+1|t

}
, (4)

M̂t+1|t = ρM̂t|t−1 + ρσεt. (5)

This model fits in the framework of Mavroeidis (2019), and can be seen as a kinked

simultaneous equations model in the two endogenous variables π̂t+1|t and R̂t, subject to

a lower bound R̂t ≥ − log (rπ∗) , and driven a single exogenous process M̂t+1|t.

2.1 Coherency and completeness

From Mavroeidis (2019, Prop. 1) it follows that, without any restrictions on the support

of the exogenous process M̂t+1|t, the above model given in equations (3) and (4) is

coherent and complete if and only if ψ < 1. In other words, there will exist a unique

equilibrium if and only if the Taylor rule is passive.

The coherent and complete solution can be obtained from Mavroeidis (2019, Prop.

2), but in this simple case, it is straightforward to derive directly. Substituting for π̂t+1|t

in (4) using (3), we can write the model as

R̂t = max
{
− log (rπ∗) , ψR̂t + ψM̂t+1|t

}
, (6)

and we can easily verify that the solution will be

R̂t = max

{
− log (rπ∗) ,

ψM̂t+1|t

1− ψ

}
. (7)

The univariate model given in equation (7) can be estimated using data on short-term

nominal interest rates Rt. To simplify the exposition, define the net nominal interest rate
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as yt := logRt, and let y∗t be a latent process (which can be thought of as a shadow rate)

such that yt = y∗t if yt > b, where b is a lower bound on the nominal interest rates that

may be different from zero (this is a slight generalization of the previous setup that is

useful when we bring the model to the actual data). With these definitions, and using

the law of motion for M̂t+1|t in eq. (5), the reduced-form (7) can be written as

yt = max (b, y∗t ) (8)

y∗t = c0 + ρy∗t−1 + τεt, εt ∼ iidN (0, 1) , (9)

where c0 = (1− ρ) log (rπ∗) , and τ = ψρσ
1−ψ . This is a dynamic Tobit model of the type

studied by Lee (1999). It is a univariate version of the models studied in Mavroeidis

(2019), where the alternative algorithms for the computation of the likelihood can be

found.

2.2 Incompleteness

We now look at what happens when the coherency and completeness condition ψ < 1 is

violated. First, note that the case ψ = 1 is non-generic and it can be ruled out a.s. when

there are any unconstrained observations. This is because at ψ = 1, the two structural

equations (3) and (4) have exactly the same slope above the constraint, so there is either

a unique solution at the boundary R̂t = − log (rπ∗), infinite solutions R̂t ≥ − log (rπ∗)

when the two equations fall on top of each other (an event that occurs with probability

zero) or no solution if the two equations do not intersect. The last case is incoherency,

which we can rule out with restrictions on the support of the distribution of the errors.

These are the same as in the generic case ψ > 1, so we do not need to discuss them

separately here. See Figure 1 for an illustration.

So, we move directly to the case ψ > 1, where the model may be incoherent (nonex-

istence) or incomplete (two solutions) a.s.1 First, we need to derive restrictions on the

1There is a nongeneric case where the two structural equations intersect exactly at the kink, where,
provided ψ > 1, the two distinct solutions will coincide, so in that sense the model becomes complete.
But this is an event of measure zero when the random variable M̂t+1|t is continuous.

5



support of the distribution of the exogenous variable to rule out incoherency. We will

call this the incompleteness condition. The problem is illustrated in Figure 1, where it

can be seen that the necessary condition for incompleteness is

ψ > 1, and M̂t+1|t < −
1− ψ
ψ

log (rπ∗) (10)

When this holds, the two distinct solutions of (6) are given by − log (rπ∗) and
ψM̂t+1|t
1−ψ .

Condition (10) has important implications for the structural model that are sometimes

overlooked. It says that M̂t+1|t cannot follow a Gaussian AR(1) process as was originally

assumed. In fact, the shock to the stochastic discount factor cannot even be an innovation

processes, since, by the fact that the support of its distribution depends on past M̂t+1|t,

and hence, past εt, the process εt must necessarily not be i.i.d., and will therefore be

predictable. This finding becomes more pertinent when we move to a model with multiple

shocks, such as a monetary policy shock, because it will mean that the shocks cannot be

independent of each other, since the support of their distribution cannot be rectangular.

2.3 Characterization of incomplete equilibria – sunspots

When (10) holds, the distribution of the regime indicator Dt is completely unrestricted,

i.e., it is not determined by the exogenous variable M̂t+1|t. Specifically, the incomplete

solutions are given by

R̂t = Dt (− log (rπ∗)) + (1−Dt)
ψM̂t+1|t

1− ψ
,

ψM̂t+1|t

1− ψ
> − log (rπ∗) , (11)

and an equation determining Dt. Without loss of generality we can model Dt as

Dt = 1{st<0}, (12)
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Figure 1: Illustration of the incompleteness restriction on the support of M̂t+1|t,

M̂t+1|t < −1−ψ
ψ log (rπ∗) in the model given by the intersection of f

(
R̂t

)
=

max
{
− log (rπ∗) , ψR̂t + ψM̂t+1|t

}
and g

(
R̂t

)
= R̂t. r = 1.02, π∗ = 1.02, ψ = 1.5

(except for the last plot).
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for some new process st that may or may not depend on M̂t+1|t. For example, the special

case that Dt is a purely exogenous Markov chain can be characterized by

st = δ0 + δ1Dt−1 + ζt, ζt ∼ iidN (0, 1) , ζt⊥⊥M̂t+1|t (13)

so that, e.g., Pr (Dt = 1|Dt−1 = 0) = Φ (−δ0) . One can think of this as a pure sunspot

shock in the terminology of ACS. In fact, this is exactly the approach followed by ACS.2

With this specification, the solution under incompleteness (11) differs from the coherent

and complete solution (7), which took the form of a dynamic Tobit model, see (8).

The opposite case is arguably a situation in which the two solutions are observationally

equivalent. This can be obtained by setting

ψM̂t+1|t

1− ψ
=

 y∗t − log (rπ∗) , if y∗t > 0

wt > − log (rπ∗) otherwise

where y∗t is the latent process defined in (9), and wt is an arbitrary random variable

(which will not affect the solution), and

st = y∗t = c0 + ρy∗t−1 + τεt. (14)

In that case, the incomplete solution (11) becomes observationally equivalent to (7).

Suppose think of the lagged shadow rate y∗t−1 and ut as state variables. Then, since

this solution does not involve any additional state variables, such as a sunspot shock, or

lagged values of the stochastic discount factor M̂t+1|t in periods when it is not observed,

we can think of it as the analog of the ‘Minimum State Variable’ (msv) solution of linear

indeterminate rational expectations models in (Lubik and Schorfheide, 2004, p. 195).

Finally, we can nest the two special cases, the pure sunspot case (13) and the msv

2ACS (footnote 6) also commented on the possibility of endogenizing Dt in this simple model, but
they did not extend that to the more general implementation of their method for computational reasons.

8



solution (14) into the nesting model

st = δ0 + δ1Dt−1 + δ2y
∗
t−1 +$t, (15)

where

$t = ϑζt −
√

1− ϑ2εt,

so that var ($t) is normalized to 1 as it is not identified.3 As in Lubik and Schorfheide

(2004), the absence of a sunspot shock per se, ϑ = 0, does not suffice to obtain the msv

solution (14).

2.4 Testing for incompleteness

In this univariate model, the parameter ψ is not identified, so we cannot test incom-

pleteness directly. It will be shown below that ψ is identified in more general models.

However, even in situations in which the structural model is underidentified, as in the

present example, we can still partially test the incompleteness hypothesis. Specifically,

we can test whether the dynamics of logRt differ significantly from the dynamic Tobit

model in (8), which corresponds to the coherent and complete solution. Rejection of the

dynamic Tobit model provides unambiguous evidence of incompleteness and multiplicity

of equilibria (conditional on the model’s assumptions). The converse is not true, because

(8) also gives the msv solution under incompleteness.

2.5 Adding a monetary policy shock

Consider a variant of the Taylor rule (2)

Rt = max

{
1, rπ∗

(
Etπt+1

π∗

)ψ
eνt

}
, ψ ≥ 0, (16)

that includes a monetary policy shock νt. The coherency and completeness condition

is obviously unaffected by the presence of any additional exogenous variables, i.e., it

3This is because (15) is a Probit regression which is only identified up to scale.
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remains ψ < 1. However, the incompleteness condition (10) now becomes

νt < −ψρσεt − ψρM̂t|t−1 − (1− ψ) log (rπ∗) , and ψ > 1. (17)

Equation (17) has important implications for the model. It says that the monetary

policy shock cannot be too high relative to the discount factor shock εt, i.e., their support

cannot be rectangular. Therefore, the two shocks cannot be independent of each other if

we are to rule out incoherency. In fact, in the present example, the support will also be

time-varying conditional on the past states,4 and so not only does the monetary policy

shock νt need to depend on the demand shock εt, but it also needs to depend on the

past, so it has to be predictable. That is, it cannot be an innovation process.

The solution of the model can be written generically as:

π̂t+1|t =
M̂t+1|t + νt

1− ψ
−Dt

(
ψM̂t+1|t + νt

1− ψ
+ log (rπ∗)

)
(18)

R̂t = Dt (− log (rπ∗)) + (1−Dt)
ψM̂t+1|t + νt

1− ψ

M̂t+1|t = π̂t+1|t − R̂t = ρM̂t|t−1 + ρσεt

where the distributions of Dt and νt, εt depend on the value ψ, as well as any assumptions

on the dependence of νt over time. In the coherent and complete case ψ < 1, the

distribution of the shocks is unrestricted, so if we assume νt is serially uncorrelated and

independent of the real shock εt, we can write

νt = σνet, (et, εt) ∼ iidN (0, I)

Dt = 1{ψM̂t+1|t+νt
1−ψ >− log(rπ∗)

},

If we had data on inflation expectations, πt+1|t, then the model could be seen as a

restricted KSVAR in Yt =
(
πt+1|t, logRt

)′
in the terminology of Mavroeidis (2019).

From that paper, it follows that the parameter ψ is (over-)identified, so inference on

4This wouldn’t be the case if we had modelled M̂t as MA(1) instead of AR(1).
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completeness can be obtained by testing the hypothesis ψ < 1. In a frequentist approach,

this can be done by inverting the Likelihood ratio test for H0 : ψ = ψ0 to compute a

confidence set on ψ and checking whether it includes only values ψ0 < 1. The Bayesian

counterpart will involve the odds ratio of the posteriors over the regions ψ < 1 and

ψ > 1.
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