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Abstract

The rise of marketplaces for goods and services has led to changes in the

mechanisms used to ensure high quality. We analyze this phenomenon in the

Uber market, where the system of pre-screening that prevailed in the taxi indus-

try has been diminished in favor of (automated) quality measurement, reviews,

and incentives. This shift allows greater flexibility in the workforce but its net

effect on quality is unclear. Using telematics data as an objective quality out-

come, we show that UberX drivers provide better quality than UberTaxi drivers,

controlling for all observables of the ride. We then explore whether this differ-

ence is driven by incentives, nudges, and information. We show that riders’

preferences shape driving behavior. We also find that drivers respond to both

user preferences and nudges, such as notifications when ratings fall below a

threshold. Finally, we show that informing drivers about their past behavior

increases quality, especially for low-performing drivers.
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1 Introduction

Many industries have been transformed in the last few years with the arrival of
the gig economy. Travelers can book a room from an apartment owner on Airbnb,
commuters can get to their destination by ordering a ride from Uber, and people can
get a wide variety of tasks done by hiring someone on TaskRabbit. These platforms
allow small, independent providers to earn money by using their underutilized
time or goods (such as cars or housing), and they potentially reduce prices and
offer more variety and flexibility for consumers.

The mechanisms used by these platforms to ensure quality differ substantially
from what used to be the norm. Traditional companies screen their employees
beforehand to ensure they will comply with their standards. This is typically a
burdensome and lengthy process that results in a fixed pool of full time workers.
In contrast, a key feature of the gig economy is a streamlined screening process
that enables a flexible pool of independent contractors who work during their free
time and smooth their income during unemployment spans (Katz and Krueger,
2016; Chen et al., 2017; Angrist and Caldwell, 2017). New platforms thus rely on a
variety of new technological possibilities and market forces to ensure that service
providers are incentivized to provide high quality services.

For example, many platforms use rating systems extensively, allowing customers
to monitor the quality of service and share the information with other consumers.
Apps have simple interfaces that enable customers to rate service providers with lit-
tle effort. Such platform companies may combine ratings and other quality tracking
systems with incentive systems that remove individuals who violate quality stan-
dards and reward those who do well. Some companies, such as ride-hailing apps,
also collect objective measures of quality like telematics data collected in real time.
Platforms can share this individualized quality information with service providers
on their platform in the form of “nudges” that remind drivers to perform well.1

It is unclear whether shifting from ex-ante screening towards ex-post quality
control has led to higher or lower quality. Lower barriers to entry may allow some
service providers who provide low quality to join and work on a platform. With
ex-post quality control, low quality providers might not be detected until after a
period of observation, which can result in low quality service for a few unlucky
consumers. On the other hand, in more traditional industries with high upfront

1We define a nudge as “any aspect of the choice architecture that alters people’s behavior in a
predictable way without forbidding any options or significantly changing their economic incentives”
Thaler and Sunstein (2008).
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screening and entry barriers, there can be few incentives to provide good service
after passing the initial screening.

In this paper we analyze whether the shift to ex-post quality control has in-
creased or decreased quality in transportation services. We focus on UberX, Uber’s
main ride-hailing product, which provides an ideal setting for two reasons. First,
we observe telemetry measures like speed, acceleration, braking, and phone han-
dling, which means we have objective measures of quality. This is unusual; in most
other markets only subjective measures like ratings or reviews are available. Sec-
ond, Uber has a product called UberTaxi that allows riders to request standard taxis
licensed by the local government.2 This allows a direct comparison between UberX,
a service in which quality is largely controlled through ratings feedback, incentives,
and nudges, and UberTaxi, which relies on traditional screening through the licens-
ing process and is affected to a much lesser extent by Uber’s rating and incentive
systems.3

Our main finding is that UberX drivers perform better than UberTaxi drivers.
According to our main measure of driving quality—a score that summarizes riders’
preferences for driving metrics—UberX trips are 0.16 standard deviations better
than similar UberTaxi trips. Differences in quality control mechanisms most likely
do not account for this difference in its entirety. We do find, however, that the
performance of UberX drivers improves when incentives are stronger, when they
receive nudges about low ratings, and when Uber shares more detailed information
about past performance. This is evidence that the elements Uber has set up to
control quality are responsible, at least in part, for UberX providing a better service
than taxis.

We start by analyzing riders’ preferences for driving behavior using trip rating
as a measure of satisfaction. At the end of each trip, riders get the chance to rate
the driver on a scale between one and five stars. After controlling for driver fixed
effects, origin, destination, and time of the week, we find that riders give higher
ratings on trips with fewer strong brakes and accelerations. They also prefer trips

2To drive a taxi in Chicago the driver must at minimum be 21 years of age; possess an active,
permanent driver’s license in good standing; pass a national background check; pass a two-week
public chauffeur course and licensing exam; have an authorized debt clearance or payment plan;
and be in good standing with court-order child support payments. To drive on UberX, a driver must
be at least 21; have valid driver’s license, vehicle registration, and insurance; and pass an online
background check that reviews driving record and criminal history.

3Although some elements of Uber’s rating and incentive systems are also present for UberTaxi
trips, there is no process to take drivers out of the platform. Furthermore, only a small share of
UberTaxi drivers’ trips come from the Uber app, which means those incentives play a much smaller
role for them.
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where the driver does not handle their cell phone. These results are consistent with
riders preferring safer trips. Riders also give higher ratings when drivers drive at
a steady, intermediate speed, suggesting that there is some tension between safety
and arriving soon to the destination.

We build a score that aggregates driving metrics into a one dimensional measure
of driving quality according to our predictive model. We then use it to compare
UberX and UberTaxi trips. UberX drivers perform significantly better: the score is
on average 0.16 standard deviations higher than for UberTaxi trips that are similar
in terms of origin, destination, and time of the week. Looking at individual metrics,
UberX drivers have fewer hard brakes and accelerations, and they are much more
likely to mount their phone. They drive somewhat slower, but they tend to drive at
a steadier speed. However, they are more likely to handle their phone, which is not
surprising given that they need to interact more with the Uber app.

These results are consistent with UberX drivers responding to ratings, incentives,
and nudges. There are, however, several alternative explanations that might account
for them. An UberX trip might be a more personal experience than an UberTaxi
trip, which might result in intrinsic motivation in drivers. Monetary incentives are
also somewhat different: UberX drivers typically own their car, whereas a large
fraction of UberTaxi drivers do not, and fare structures are slightly different. We
are not able to fully decompose the gap between UberX and Uber Taxi into all these
possible channels. Instead, we focus on the role of Uber’s quality control systems.
The rest of our paper presents a variety of empirical evidence that sheds light on
the role of Uber’s ratings, incentives, and nudges.

We first examine the extent to which riders’ preferences affect drivers’ behavior.
We find correlation in driving behavior for trips within the same rider, suggesting
that drivers respond to what riders want. We also find that, relative to UberTaxi
trips, UberX trips are faster and have more hard brakes and accelerations during
rush hour, when riders are more likely to be in a hurry. This is consistent with
UberX providing stronger incentives to cater to riders’ preferences.

The incentives and information provided through ratings might also play an
important role. When drivers’ ratings fall below certain thresholds, drivers get
notifications with the aim of improving their behavior, and if their ratings keep de-
creasing, drivers are eventually taken off the platform. We find that the difference
between UberX and UberTaxi behavior is greater for drivers that have a low rating
and are thus at a greater risk of being taken off the platform. We also see that
drivers’ quality improves substantially after they receive notifications. This effect is
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strong even for the first notification, which occurs far away from the threshold at
which they are kicked off the platform. Thus, we conclude that, besides direct eco-
nomic incentives, ratings and notifications work as behavioral nudges that induce
better driving behavior.

Giving drivers feedback about their past behavior also plays a role. At the time,
Uber sent a weekly report to drivers summarizing how they performed according to
telematics metrics. During our period of analysis, Uber conducted a large scale ran-
domized experiment that introduced a significant upgrade to these reports. Treated
drivers gained access to a dashboard within the Uber app where they could analyze
their driving behavior for individual trips. We find an improvement in the behavior
of treated drivers, which is mainly driven by drivers who performed in the bottom
10th percentile before the experiment started.

There are additional ways in which Uber’s ratings and incentives can contribute
to higher quality. For instance, the rating system ensures that drivers that pro-
vide low quality are weeded out of the system. Another example concerns the
stronger incentives provided by a centralized platform that takes complaints more
seriously than a city government. These channels only underscore our main point:
Despite much simpler screening, UberX drivers provide better driving quality than
UberTaxi drivers, and part of the difference can be attributed to ratings, incentives,
nudges, and information. However, we are not able to precisely quantify the relative
contribution of the different components.

This paper is organized as follows. Section 2 describes the Uber market and
the data we use in our analysis. Section 3 analyzes riders’ preferences over driving
metrics in order to construct a one dimensional rating score. We then use all metrics
and our rating score to compare the behavior of UberX and UberTaxi drivers in
Section 4. In Section 5 we decompose driving behavior into trip, driver, and rider
characteristics. In Section 6 we analyze ratings, incentives, and behavioral nudges
and how they affect driving behavior, and we conclude in Section 7.

Related Work

In a paper that is closely related to ours, Liu et al. (2018) find that Uber drivers
are less likely than taxi drivers to take detours from airport trips. The main im-
plication is that Uber’s incentive systems are effective in eliminating this kind of
moral hazard. In contrast to their work, we analyze driving behavior, a different
type of incentive problem, and we explore the mechanisms through which incentive
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systems affect drivers’ behavior.
Our work, as well as the work by Liu et al., is part of a broader literature that an-

alyzes rating and review systems in the digital economy (Dellarocas, 2006; Tadelis,
2016). In an early work on eBay, Resnick and Zeckhauser (2002) find that buyers re-
view very often despite the incentive to free-ride. There is evidence that consumers
respond to ratings and reviews, in the context of online bookstores (Chevalier and
Mayzlin, 2006) and restaurants (Luca, 2011). Most of this work focuses on the be-
havior of consumers when they rank providers (Filippas et al., 2017; Nosko and
Tadelis, 2015) and on how consumers respond to ratings and rankings. In contrast,
we focus on provider behavior and how it is influenced by rating behavior, as in
Mayzlin et al. (2014), where the authors find evidence that hotel owners post posi-
tive reviews for themselves and negative reviews for neighboring hotels. In contrast
to this paper, we study the quality of the service provided and how it responds to
information and incentives.

Many works analyze how nudges and information affect agents’ behavior, be-
yond incentives they might provide (Leonard, 2008; Allcott and Kessler, 2017). They
may affect behavior through intrinsic motivation and reoptimization in response
to new information (Kolstad, 2013). Other papers provide evidence that nudges
have consequences beyond what would have been expected from rational agents
in different contexts, such as with energy consumption (Allcott and Rogers, 2014),
savings (Buessing and Soto, 2006), taking medicine (Macharia et al., 1992), voting
(Gerber et al., 2003), and charitable donations (Shang and Croson, 2009; Frey and
Meier, 2004; Edwards and List, 2014). More generally, some works analyze how
to incentivize people, emphasizing how forming habits results in persistent effects
even after incentives cease (Charness and Gneezy, 2009; Acland and Levy, 2015).

A growing literature analyzes several aspects of Uber and ride-hailing markets.
Our work most closely relates to several papers that analyze the labor supply side
(Hall and Krueger, 2016; Chen and Sheldon, 2015; Hall et al., 2017; Cook et al.,
2018). A recurring theme is the value of labor flexibility introduced by ride hailing
platforms (Angrist and Caldwell, 2017; Chen et al., 2017). This kind of flexibility
could in principle be accompanied by a reduction in quality; the evidence in our
paper establishes that this potential cost is not borne out in practice and explores
the reasons why this is possible thanks to the shift in quality assurance mechanisms
we analyze.
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2 Uber, telematics, and ratings

We analyze the Uber market in Chicago during the first half of 2017. The definition
used by Uber for the Chicago market includes regions more than 100 km away from
downtown Chicago, so we limit our analysis to a smaller region that excludes most
suburbs of Chicago but which is large enough to include Midway and O’Hare, the
main airports in the region. Figure 2.1 shows a map of the region of analysis.

Figure 2.1: Region of analysis (from Google Maps)

We focus on two of Uber’s products. The first one is UberX, Uber’s main ride-
hailing option and its largest product as measured by number of rides. Drivers
typically own their cars, and entry requirements are far less than a traditional pro-
fessional license: a driver’s license, vehicle registration and insurance, and passing
an online screening that reviews driving record and criminal history. The second
product is UberTaxi, which matches riders to taxis licensed by the City of Chicago.
Taxi drivers must be Chicago public chauffeurs, which involves a lengthy licens-
ing process. There are two common ownership models for taxis in Chicago. Some
drivers are independent operators and own both the taxi and the medallion. Most
other drivers lease both the taxi and the medallion for 12 hour shifts at a flat fee
and retain all earnings from working during the shift.

We focus on trips over a several month period in early 2017. The number of
UberTaxi trips is much smaller than the number of UberX trips, but this is true
for all cities; we chose Chicago as our region of analysis because it is the market
with the largest number of UberTaxi trips. Our main dataset includes 7,849,896
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UberX trips and 164,288 UberTaxi trips after filtering out trips in which any driving
metrics, which we describe below, are missing.

Uber collects telematics data measured through the GPS on drivers’ smart-
phones every two seconds while the Uber app is open. The raw data includes
location, speed, and acceleration.4 Our analysis focuses on six trip-level metrics,
whose distributions are shown in Figure 2.2. Our accelerations metric is the fraction
of acceleration events where acceleration went above 2 m/s2.5 Our brakes metric is
defined similarly.

Uber developed two classifiers based on accelerometer data that tell whether
a driver’s cell phone was mounted and whether the driver was handling the cell
phone (i.e., moving it while holding it with his hands). Based on these classifiers, we
define the handling and mounted metrics as the average of these classifiers over the
two middle time quartiles of a trip (i.e., we do not take into account what happens
at the beginning and at the end of a trip). We focus on the middle quartiles to
make our measures easier to compare across UberX and UberTaxi trips, since Uber
drivers are especially likely to use their phone at the beginning and end of a trip,
but often in a way that does not necessarily interfere with safety.

Our main metrics for speed are based on a model developed by Uber to con-
struct contextualized speeds for each segment of a trip (which roughly corresponds
to a block). The value of the contextualized speed is the percentile within the dis-
tribution of speeds for other UberX trips that went through that segment. We focus
on two metrics at the trip level. Speed high is the 80th percentile of all contextual-
ized speeds on a trip. It is a measure of how fast the driver was going during the
fastest segments relative to other traffic. Speed low is the 10th percentile of contextu-
alized speeds in a trip, and it measures how fast he was driving during the slowest
segments on the trip relative to other traffic.

One potential concern is that speed might be highly correlated with trip time.
Additionally, as pointed out by Liu et al. (2018), riders may have preferences over
the route. In order to account for this, we define two additional measures, which
we use in part of our analysis, for distance and duration: the log of the ratio of
actual distance to estimated distance, and the log of the ratio of actual duration to
estimated duration. A major limitation of these two metrics is that Uber does not
compute estimated distances and durations for UberTaxi trips, so we cannot use

4The telematics data may be less accurate when the phone is not mounted, though this problem
is mitigated by using telematics from the GPS instead of the accelerometer.

5An acceleration event takes place when speed increases during two consecutive 2 second inter-
vals. A braking event is defined similarly.
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Figure 2.2: Histograms of the safety metrics for UberX trips.

these for our main purpose of comparing UberX and UberTaxi.
There are a large number of alternative metrics we could have used to measure

brakes, accelerations, and speed. For instance, we could have used thresholds other
than 2 m/s2 to measure brakes, or we could have used different contextualized
speed percentiles. We selected our main variables based on a lasso model to predict
a trip’s rating based on all these variables and their squares. We chose the variables
that dropped out last as the penalty increased. The details of this procedure are in
Appendix A. Our main results, however, do not change when we choose alternative
metrics.

Uber uses a rating system in which each passenger can give a one to five star
rating to the driver after each trip. 29.8% of the trips in our sample were rated.6

Figure 2.3a shows the distribution of ratings. The majority of trips receive five stars,
which means that trips typically get five stars unless there was some problem. We
also see that UberTaxi trips tends to get a larger fraction of 4 star ratings. Uber uses

6This fraction is typical for the new app interface introduced in late 2016. Previous interfaces
showed a rating screen after every trip, which resulted in around 60% of trips being rated.
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the app rating, the average of the last 500 trips, as its main measure of driver quality;
drivers can see their app rating in the app, and it is shown to passengers upon
being matched to a driver before pickup. Figure 2.3b shows its distribution. Uber
stops giving trips to UberX drivers (“deactivation" of a driver) when ratings drop
below certain thresholds, but only after a process that involves giving notifications
to drivers when their ratings approach the deactivation threshold. The full details
of the process are described in Section 6.
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Figure 2.3: Distribution of ratings for UberX and UberTaxi

3 Riders’ preferences over driving behavior

In this section we explore what kind of driving behavior is preferred by riders. In
order to do so we use different methodologies to predict the rating a rider will give
to a trip based on our driving metrics. Simple regressions, or even nonparametric
regressions, of rating on driving metrics face a variety of problems. The main issue
is that different kinds of trips (at different times of the day, with different origin
and destination, downtown or on a highway) lead to different kinds of driving
behavior, such as slower trips downtown and in rush hour, some of which might be
intrinsically more satisfying for riders. Second, there are unobserved characteristics
that have an effect on satisfaction, such as the driver’s personality, which might be
correlated with driving behavior. We address both of these issues by controlling for
type of trip and driver. Our goal is to estimate how changes in driving metrics lead
to changes in consumer satisfaction.

To control for the type of trip, we divide our sample into 128 rectangles by origin
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coordinates. In order to size the rectangles to have similar numbers of trips, we first
divide the sample into two equally sized groups by origin latitude. Each group
is then subdivided into two equally sized groups by origin longitude. Then we
divide each group again by latitude, and repeat this process 6 times. We follow an
analogous process to divide the sample into 128 groups by destination coordinates.
Finally, we also divide our sample into 15 hour of the week intervals.7 This results
in 245,760 buckets as the cartesian product of all origin, destination, and hour of the
week divisions. We inevitably end up with some groups with zero or one trips, but
Figure 3.1 shows that the majority of trips in our sample are in groups with more
than five trips. Most of our regressions include fixed effects based on these groups,
which we call trip characteristics fixed effects.
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Figure 3.1: Fraction of trips in a group with each number of trips.

We start with simple linear regressions to show how metrics relate to ratings.
Our main estimating equation takes the form

yi = βmi + γXi + εi. (1)

Trips are indexed by i. The left hand side variable yi is a measure of trip ratings,
and mi is a vector of driving metrics. Xi is a set of fixed effect dummies. Table 3.1
shows estimates of this equation for our sample of UberX trips, including the six
metrics we focus on. In columns (3), (6), and (9) we also include routing metrics.

7The intervals are: 7:00-9:00 am Mon-Fri, 9:00-11:00 am Mon-Fri, 11:00 am-1:00 pm Mon-Fri, 1:00-
4:00 pm Mon-Fri, 4:00-6:00 pm Mon-Thu, 6:00-8:00 pm Mon-Thu, 8:00-10:00 pm Mon-Thu, 10:00
pm-1:00 am Mon-Thu, 4:00-8:00 pm Fri, 8:00 pm-midnight Fri-Sat, midnight-4:00 am Sat-Sun, 9:00
am-2:00 pm Sat-Sun, 2:00 pm-8:00 pm Sat, 2:00 pm-8:00 pm Sun, and all remaining times.
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All driving metrics are normalized, so coefficients measure how ratings change if
metrics change by one standard deviation.

Columns (1)-(6) show results for rating and for a dummy for the rating being
5, with consistent results. Riders dislike phone handling and hard brakes. Some
specifications show a weak preference for cell phones being mounted. Focusing on
regressions with driver fixed effects, we see that riders dislike hard accelerations.
These four metrics reflect preferences for safer trips; these trips may also provide
a more comfortable ride. Riders’ preferences for speed metrics are more nuanced.
They prefer higher low speeds and lower high speeds; in other words, riders prefer
it when drivers stay at an intermediate speed throughout the trip (recalling that all
speeds are expressed as a percentile of typical speeds on the route). This reflects a
compromise between a safe, smooth ride and getting quickly to the destination.

In columns (3) and (6) we also include routing metrics. Riders have strong pref-
erences for shorter trips, both in terms of distance and duration. Including these
variables somewhat changes the rest of the coefficients, but the main patterns re-
main the same. The dependent variable in columns (7)-(9) is a dummy for whether
trips were rated. We see that coefficients tend to have opposite signs relative to
previous columns (except for speed high and handling, the latter of which does not
have a significant coefficient). This suggests that riders are more likely to rate trips
when they are unsatisfied. This type of bias is one motivation for our approach;
by creating a score for the quality of the ride that can be evaluated whether or not
the ride was actually rated, we avoid the challenge of dealing with non-random
missing ratings.
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Table 3.1: Rating response to driving metrics

Dependent variable:
Rating Rating is 5 Rated

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Mounted 0.0100∗∗∗ 0.0028∗ 0.0016 0.0047∗∗∗ 0.0014∗∗ 0.0009 −0.0001 −0.0013∗∗∗ −0.0010∗∗

(0.0009) (0.0015) (0.0015) (0.0004) (0.0007) (0.0007) (0.0002) (0.0005) (0.0005)

Handling −0.0039∗∗∗ −0.0082∗∗∗ −0.0056∗∗∗ −0.0012∗∗∗ −0.0026∗∗∗ −0.0019∗∗∗ 0.0005∗∗ −0.0002 −0.0002
(0.0008) (0.0010) (0.0010) (0.0004) (0.0004) (0.0005) (0.0002) (0.0003) (0.0003)

Brakes −0.0093∗∗∗ −0.0035∗∗∗ −0.0040∗∗∗ −0.0042∗∗∗ −0.0015∗∗∗ −0.0017∗∗∗ 0.0012∗∗∗ 0.0017∗∗∗ 0.0015∗∗∗

(0.0007) (0.0007) (0.0007) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

Accelerations 0.0016∗∗ −0.0040∗∗∗ −0.0044∗∗∗ 0.0009∗∗∗ −0.0017∗∗∗ −0.0019∗∗∗ 0.0018∗∗∗ 0.0018∗∗∗ 0.0016∗∗∗

(0.0007) (0.0007) (0.0007) (0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0002)

Speed low 0.0133∗∗∗ 0.0087∗∗∗ 0.0044∗∗∗ 0.0058∗∗∗ 0.0036∗∗∗ 0.0021∗∗∗ −0.0040∗∗∗ −0.0040∗∗∗ −0.0030∗∗∗

(0.0006) (0.0006) (0.0007) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

Speed high 0.0026∗∗∗ −0.0029∗∗∗ −0.0061∗∗∗ 0.0002 −0.0024∗∗∗ −0.0035∗∗∗ −0.0026∗∗∗ −0.0030∗∗∗ −0.0027∗∗∗

(0.0007) (0.0007) (0.0007) (0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0002)

Duration −0.0233∗∗∗ −0.0088∗∗∗ 0.0054∗∗∗

(0.0008) (0.0004) (0.0002)

Distance −0.0105∗∗∗ −0.0033∗∗∗ 0.0005∗∗

(0.0008) (0.0004) (0.0002)

Trip characteristics FE X X X X X X X X X
Driver FE X X X X X X

Observations 2,296,362 2,296,362 2,132,158 2,296,362 2,296,362 2,132,158 7,685,608 7,685,608 7,387,288

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
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We now explore how preferences change with the time of the week. We run
regressions similar to equation (1), but we interact our metrics with dummies for
whether the trip took place during the morning rush hour, the afternoon rush hour,
or during off-peak hours.8 Table 3.2 shows the results when we use rating as our
dependent variable. Every row corresponds to one metric, and every column rep-
resents one dummy for time of the week. The main difference across columns is
that riders have stronger preferences for faster trips during the morning rush hour,
consistent with people having to arrive at work on time.9

Table 3.2: Heterogeneous ratings response to driving metrics. The three columns
report coefficients for one single regression.

Dependent variable: Rating
Interaction of covariate with:

Off-peak AM rush PM rush
(1) (2) (3)

Mounted 0.0020 0.0035 0.0050∗∗

(0.0015) (0.0022) (0.0020)

Handling −0.0083∗∗∗ −0.0099∗∗∗ −0.0069∗∗∗

(0.0011) (0.0020) (0.0017)

Brakes −0.0034∗∗∗ −0.0042∗∗ −0.0040∗∗∗

(0.0008) (0.0017) (0.0015)

Accelerations −0.0042∗∗∗ −0.0038∗∗ −0.0034∗∗

(0.0008) (0.0017) (0.0015)

Speed low 0.0079∗∗∗ 0.0123∗∗∗ 0.0088∗∗∗

(0.0008) (0.0017) (0.0014)

Speed high −0.0031∗∗∗ 0.0005 −0.0048∗∗∗

(0.0008) (0.0018) (0.0017)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Obervations: 2,296,362

We now follow a more flexible approach to capture the dependence of rating as
a function of driving metrics. We estimate a regression of the following form:

yi = µd(i) + νc(i) + s(mi; θ) + εi, (2)

where d(i) indexes the driver and c(i) indexes the trip characteristics group.
The term s(mi; θ) is a flexible function of driving metrics. It is the sum of two

high order polynomials. The first one is the interaction of a quadratic function of

8Morning rush hour trips are those starting during weekdays between 6 am and 10 am. Afternoon
rush hour trips start between 5 pm and 9 pm on weekdays.

9In some specifications we also included dummies for trips that start and end at airports, but we
did not find any noticeable difference with non-airport trips.
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handling and a quadratic function of mounting. The second one is the interaction
of a quadratic of brakes, a quadratic of accelerations, a quartic of high speed, and
a quartic of low speed.10 To avoid overfit—this specification for s(mi; θ) has 232
parameters—we regularize our model with a lasso penalty, where higher order
terms have higher penalties. We do not penalize fixed effects. We choose penalties
by cross validation (see Appendix B). Our final specification—which has lower out-
of-sample MSE than simple lasso—is a post-lasso linear regression that only keeps
those terms with a nonzero coefficient from the original lasso regression.

Figure 3.2 shows the functional form of our estimated s(mijkt; θ̂). In each sub-
figure we vary two of the metrics. At each point in these plots we compute the
average value of s(mijkt; θ̂) over the distribution of the metrics we are not varying.11

The color, as well as the contours, represent the value of s(mijkt; θ̂). More intense
colors represent areas with a high density of observations, and white represents
areas with no observations.

Figure 3.2a shows that riders have a bliss point for speed around (30,60). This
confirms that riders prefer trips that are neither too fast nor too slow. The region
with highest density is around (25,85), above and to the left of the bliss point, which
explains the negative coefficient for speed high and the positive coefficient for speed
low in Table 3.1.

Most observations (98% of trips) in Figure 3.2b are below (0.75, 0.75). There is
a clear pattern in that region: riders prefer few hard accelerations and hard brakes.
The somewhat unexpected patterns at the upper left and lower right corners are
driven by a very small number of observations. From Figure 3.2c, we can see that
riders prefer drivers to mount their phone and not to handle it. The behavior at
the upper right corner is somewhat unexpected, but it is also driven by very few
observations—only 1.5% of trips are above and to the right of (0.5,0.5)—reflecting
problems in the classifiers that generate the data: a driver should not be able to
handle a mounted phone.

Throughout the rest of our analysis we compare drivers’ behavior under differ-

10We include higher order terms of speed variables because we expect them to have more impor-
tant nonlinearities than the other four variables, which are defined as fractions. Fully interacting
both terms would result in a regression with 2025 terms, and it would not be feasible to estimate it
given our sample size. We thus separate the function additively into two terms, one for phone usage
and the second one for driving.

11The curse of dimensionality makes it hard to evaluate this average over a smooth distribution,
so we bin observations into the cartesian product of the quartiles of all variables we are not varying.
We then estimate s(mijkt; θ̂) at the midpoint of all observations within each bin. Each evaluation gets
a weight proportional to the number of observations in the bin.
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Figure 3.2: Effect of driving metrics on scores. Colors, as well as contours, represent
the magnitude of the effect. Stronger colors represent regions with a higher density
of observations.

ent circumstances. Although we can use individual driving metrics as outcomes,
our analysis shows that riders’ preferences over these metrics are nonlinear. In or-
der to summarize differences in quality across different settings, we define a driving
score sF

ijkt = s(mijkt; θ̂) which we call our full score or score F—since it is computed
from our full model. This score is measured in units of stars. More precisely, if we
compare two groups of rides, we will evaluate the difference by comparing the dif-
ference in the average score between the two groups, and interpret as the difference
in the average quality (as perceived by the riders in our training set, who are all
UberX riders).

In using this type of score as an outcome variable, we follow Athey et al. (2016).
They propose constructing a surrogate index, an outcome variable in settings where
the true outcome of interest may be missing in the relevant timeframe—because it is
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a long term outcome, for instance, or because it is not systematically available in an
experiment. The surrogate index is defined as the predicted value of the outcome
conditional on a set of intermediate outcomes, the surrogates. It can be estimated in
a dataset that differs from the one used to evaluate the impact of a treatment.

The surrogates in our case are the driving metrics, and the outcome that is
sometimes missing is the star rating (taxi trips are rated substantially less often
than UberX trips, and the interpretation of their ratings may be different). If the
surrogates capture the effect of a “treatment” on the final outcome, and if the re-
lationship between the surrogates and the final outcome does not depend on the
treatment, then it can be more efficient to analyze the impact of the treatment on
the surrogate index rather than directly on the final outcome (even if that outcome
were available and observed in the relevant timeframe).12

Given that we are focusing our attention on the impact of differences in driver
behavior on rider satisfaction, it is natural to focus on differences in trip ratings that
are captured by the driving metrics. Thus, the conditions for the use of a surrogate
index are satisfied in this application, and we will proceed to use our constructed
score to measure differences between UberX and taxis. A caveat is that it is possible
that the preferences of the full set of UberX riders are different than those who use
taxis; if so, we should be careful to interpret our results as measuring quality as
perceived by UberX riders.

In some specifications we want to distinguish the nonmonotonic preferences for
speed from the monotonic preferences for the remaining metrics. We thus define
a speed score or score S, denoted by sS

ijkt, which we compute from a model of the
form (2), but where s(mijkt; θ) is the interaction of a quartic function of speed low
and a quartic function of speed high—i.e., it only captures preferences for speed.
Finally, we define a no speed score or score NS, denoted by sN

ijkt, where s(mijkt; θ) is
the interaction of a quadratic for handling, a quadratic for mounting, a cubic for
acceleration, and a cubic for brakes. This score only captures preferences for metrics
other than speed. We center our three scores so that they have mean zero. Figure
3.3 shows the density of these scores. Our full score has the largest variance, since
it captures the most variation. We can also see that speed and non-speed metrics

12In an experiment where both surrogates and the final outcome are observed for each unit,
Athey et al. (2016) show that efficiency can be gained by pooling data from the treatment group and
the control group when estimating the relationship between the surrogates and the final outcome.
One exercise in this paper analyzes a randomized experiment with a smaller dataset; in that case,
efficiency is gained by using a larger dataset to estimate the relationship between surrogates and the
final outcome.
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are roughly equally important, since they have similar variances.
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Figure 3.3: Kernel density for the distribution of scores.

One might be worried that our scores F and S are capturing preferences for
getting to the destination in time, and not only preferences for driving.13 In order
to tackle this concern, we also compute additional scores based on the specification
from equation (2) in which we also include a flexible function of the routing metrics.
In Appendix D we show that the new scores that arise from this procedure behave
very similarly to our main metrics. We are not able to use these new scores in the
rest of our paper since our routing metrics are not available for UberTaxi trips.

4 UberX versus UberTaxi

In this section we compare the driving behavior of UberX and UberTaxi trips. Our
main question will be the following: Given the characteristics (origin, destination,
and time) of an UberTaxi trip, how would the driving behavior experienced by the
rider have changed if she had instead requested an UberX trip? In other words,
we want to estimate the average treatment effect of being an UberX trip, for the
distribution of trips that were taken on UberTaxi.14 The key assumption we rely on

13Ideally, we would like to create an additional score that also captures routing behavior. However,
since our routing metrics are not available for UberTaxi, we cannot make the main comparison
between UberX and UberTaxi we are interested in.

14We focus on the UberTaxi population because for most UberTaxi trips, we can find similar UberX
trips, but the reverse is not true given the much larger share of UberX trips in our data.
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for this estimation is unconfoundedness when controlling for trip characteristics.
That is, controlling for trip origin location, destination location, and time of day,
there are no further unobserved characteristics of trips that would lead the trips to
have different telematics.

We use two different methodologies with very similar results. First, we match
UberX and UberTaxi trips according to their origin and destination coordinates
and the hour of the week at which they started. We do so by matching every
UberTaxi trip to its 10 nearest UberX neighbors, using a Euclidean metric in which
a half an hour difference is equivalent to a difference in origin or destination of one
kilometer.15 We then estimate the ATE as

τ̂match =
1
N ∑

i∈Itaxi

(
yi −

1
10 ∑

j∈Ci

yj

)
, (3)

where Itaxi is the set of UberTaxi trips, and Ci denotes the set of nearest neighbors
of trip i. We compute standard errors as in Abadie and Imbens (2005) with an
adjustment for clustering by driver.

The second methodology is a simple fixed effects regression using the same trip
characteristics as in Section 3. The specification we run is

yi = τxj + βXi + εi, (4)

where xi is a dummy that equals one if driver d(i) is an UberX driver, and βXi is a
set of fixed effects. Our estimate for the treatment effect is the OLS estimate for τ. In
general, this estimator is not consistent for the ATE, but it converges to a weighted
average of treatment effects. We will see, however, that both methodologies result
in almost identical results.

Table 4.1 shows the results of running these specifications for different depen-
dent variables. The matching estimator has almost identical results to the OLS
estimator with trip characteristics fixed effects. Our estimates change somewhat
if we also include rider fixed effects, but not enough for the interpretation of the
coefficients to change.

15Our results do not change if we use similar metrics where half an hour is equivalent to more or
less than one kilometer.
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Table 4.1: Comparison of driving behavior between UberX and UberTaxi trips.

Dependent variable:
Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Matching estimator
UberX 0.9552∗∗∗ 0.0697∗∗∗ −0.0475∗∗∗ −0.2453∗∗∗ −0.0269∗∗∗ −0.2225∗∗∗ 0.0035∗∗∗ 0.0031∗∗∗ 0.0015∗∗∗

(0.0245) (0.0129) (0.0116) (0.0140) (0.0083) (0.0072) (0.0003) (0.0001) (0.0002)

Observations 164,288 164,288 164,288 164,288 164,288 164,288 164,288 164,288 164,288

Panel B: Trip characteristics fixed effects
UberX 0.9524∗∗∗ 0.0705∗∗∗ −0.0356∗∗∗ −0.2359∗∗∗ −0.0378∗∗∗ −0.2253∗∗∗ 0.0033∗∗∗ 0.0030∗∗∗ 0.0014∗∗∗

(0.0248) (0.0137) (0.0118) (0.0143) (0.0084) (0.0075) (0.0003) (0.0001) (0.0002)

Observations 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896

Panel C: Trip characteristics and rider fixed effects
UberX 0.9475∗∗∗ 0.0571∗∗∗ −0.0520∗∗∗ −0.2399∗∗∗ −0.0074 −0.2090∗∗∗ 0.0037∗∗∗ 0.0030∗∗∗ 0.0017∗∗∗

(0.0261) (0.0148) (0.0128) (0.0152) (0.0096) (0.0090) (0.0003) (0.0001) (0.0002)

Observations 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896 7,849,896

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
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UberX drivers are more likely to mount their cell phones. The difference is al-
most one standard deviation. This is not surprising since Uber has led campaigns to
ensure drivers mount their phones, sometimes giving away phone mounts. Drivers
are, however, also more likely to handle their phones, despite the fact that we do
not take into account handling at the beginning or end of a trip. This is also not
too surprising, since they rely much more on their cell phone to find the next trip,
and they are probably more tech-savvy and thus more likely to navigate with their
phones.

We also see that UberX drivers have fewer hard brakes and accelerations. The
difference is especially pronounced for accelerations, with a difference of roughly
one quarter of a standard deviation. They also drive more slowly in terms of both
speed measures. However, the UberX effect is much stronger for speed high than
for speed low, which means that UberX drivers tend to drive at a steadier speed
than UberTaxi drivers, as one would expect if they pay more attention to riders’
preferences.

Columns (7)-(9) report estimates of the ATE on driving scores. We see that
UberX trips are better in terms of all three scores. The difference seems small when
measured in rating stars, but it accounts for 0.16 standard deviations of score F, 0.22
standard deviations of score S, and 0.10 standard deviations of score NS. We will
show in Section 5 that a large fraction of the variation in ratings is outside drivers’
control, so these numbers are not small relative to what a driver can do to change
ratings.

The main takeaway is that UberX trips look better than UberTaxi trips in terms
of driving metrics. In the rest of this paper we will break down this difference and
will explore the causal mechanisms that lead to it. We start by decomposing the
effect across different types of trips. Since trips during rush hour are more time
sensitive than other trips, as suggested in Table 3.2, it could be the case that riders
hurry their drivers. We would like to see whether drivers respond to this, and
whether this effect is stronger for UberX or UberTaxi. In order to do so, we define
a set of dummies zijkt that represent whether a trip took place during the morning
or afternoon rush hour and interact them with the UberX dummy.
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Table 4.2: Heterogeneity in effect of UberX using a matching estimator.

Dependent variable:
Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

UberX × off-peak 0.9491∗∗∗ 0.0567∗∗∗ −0.0637∗∗∗ −0.2749∗∗∗ −0.0648∗∗∗ −0.2725∗∗∗ 0.0039∗∗∗ 0.0032∗∗∗ 0.0018∗∗∗

(0.0243) (0.0143) (0.0124) (0.0147) (0.0089) (0.0081) (0.0003) (0.0001) (0.0002)

UberX × AM rush 0.9909∗∗∗ 0.0889∗∗∗ −0.0188 −0.2111∗∗∗ 0.0190∗ −0.1619∗∗∗ 0.0026∗∗∗ 0.0029∗∗∗ 0.0007∗∗

(0.0320) (0.0146) (0.0151) (0.0176) (0.0102) (0.0093) (0.0003) (0.0001) (0.0003)

UberX × PM rush 0.9200∗∗∗ 0.0804∗∗∗ −0.0410∗∗∗ −0.2031∗∗∗ 0.0216∗ −0.1576∗∗∗ 0.0035∗∗∗ 0.0031∗∗∗ 0.0018∗∗∗

(0.0319) (0.0160) (0.0142) (0.0179) (0.0128) (0.0091) (0.0003) (0.0001) (0.0003)

Observations 164,288 164,288 164,288 164,288 164,288 164,288 164,288 164,288 164,288

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
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Table 4.2 shows the result from this specification. UberX drivers handle their
phones more relative to UberTaxi drivers during rush hour than during off-peak
hours. The gap in hard accelerations and brakes shrinks during rush hour. Further,
while during off-peak hours UberX drivers tend to be slower than UberTaxi drivers
according to the speed low metric, during rush hour UberX drivers tend to be faster
than UberTaxi drivers. This is consistent with UberX drivers paying more attention
to riders who want to get to their destination on time by driving faster—therefore
braking and accelerating more—and by handling the phone more to find better
routes to avoid traffic. This results in a net decrease in the full score. However, as
shown in Table 3.2, riders’ preferences are different during the morning rush hour,
so drivers might just be responding to changes in preferences that are not captured
by our full score. It is perhaps surprising that we also find similar (but smaller)
effects during the afternoon rush hour, when riders are not in as much of a hurry
as in the morning.16

This behavior is consistent with UberX drivers paying more attention to riders
who want to get to their destination on time by driving faster—therefore braking
and accelerating more—and by handling the phone more to find better routes to
avoid traffic. All these adjustments result in a net decrease in the full score. As
shown in Table 3.2, riders’ preferences are different during the morning rush hour,
so drivers might just be responding to changes in preferences that are not captured
by our full score. It is perhaps surprising that we also find similar (but smaller)
effects during the afternoon rush hour, when riders are not in as much of a hurry
as in the morning.17

5 Decomposition of driving behavior

We now start a more detailed analysis of the determinants of driving style. We focus
our analysis on UberX trips given that we only have a small number of UberTaxi

16We also ran similar specifications with dummies for trips that end in airports. We found the
unintuitive result that the interaction between this dummy and the UberX dummy has a negative
coefficient for speed but a positive one for brakes and accelerations. We think this strange pattern
arises from the fact that airport trips in Chicago are highway trips and are thus significantly different
from the typical trip in our sample.

17We also ran similar specifications with dummies for trips that end in airports. We found the
unintuitive result that the interaction between this dummy and the UberX dummy has a negative
coefficient for speed but a positive one for brakes and accelerations. We think this strange pattern
arises from the fact that airport trips in Chicago are highway trips and are thus significantly different
from the typical trip in our sample.
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observations. Broadly speaking, we would like to see how behavior varies by driver,
by passenger, by origin and destination, and by time of the day.

We would first like to see whether riders have an impact on driving behavior.
For instance, it could be the case that some individual riders tend to be in a hurry
and put pressure on their driver to get to their destination quickly. In order to
measure this, let ȳLO

i be the average score of all trips taken by the rider who took
trip i, whom we denote by r(i), leaving out the current trip. We run regressions of
the following form:

yi = µd(i) + νc(i) + βȳLO
i + εi (5)

where the first two terms denote driver and trip characteristics fixed effects. The
driver and trip fixed effects account for the fact that riders will tend to have similar
trips (e.g. trips from their home downtown), and that drivers may focus their
driving in certain areas. In some other specifications we also interact ȳLO

i with
dummies for whether a trip starts or ends in an airport and whether it took place
during the morning or afternoon rush hour. One problem with this specification is
that many riders only have a small number of trips in our database; we address this
by restricting our sample to passengers with 20 or more trips.

Table 5.1 shows results for this exercise. We see a negative but small effect on
mounting, and we see no evidence of a rider effect on handling. On the other hand,
we see a strong and positive effect on brakes and accelerations, and especially on
speed metrics. This means that there is a strong correlation of metrics within riders.
We interpret this finding as establishing that riders influence driver behavior. The
estimates in columns (7)-(9) are consistent with these findings, since the strong
correlations in metrics should be reflected with correlations in scores.

In Table 5.2 we break down this correlation across different kinds of trips.18

We see that it is especially strong for trips during the morning rush hour. This
goes in line with riders being especially time sensitive when going to work and
insisting on fast driving to get there early. In addition, riders who use UberX for
the morning rush hour may do so consistently, and so their preferences are likely to
be consistent as well. It is also possible that this coefficient is picking up unobserved
trip characteristics; one set of heavy UberX riders might be riders who regularly use
UberX during the morning commute, and the route may be identical, inducing a
strong correlation among scores within a rider.

18We also ran similar specifications with dummies for trips that end in airports. We found that
metrics and scores are less correlated for airport trips than for the rest of the trips, but we believe
this is more closely related to the unusual road patterns from downtown Chicago to airports.
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Table 5.1: Response to rider preferences. The average rider score does not include the current observation, and only riders
with more than 20 trips are included in the sample.

Dependent variable:
Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LO mean by rider −0.0049∗∗∗ −0.0046∗∗ 0.1450∗∗∗ 0.1168∗∗∗ 0.3360∗∗∗ 0.3564∗∗∗ 0.1739∗∗∗ 0.2805∗∗∗ 0.0451∗∗∗

(0.0015) (0.0023) (0.0027) (0.0026) (0.0024) (0.0031) (0.0026) (0.0028) (0.0024)

Trip Characteristics FE X X X X X X X X X
Driver FE X X X X X X X X X

Observations 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.

Table 5.2: Heterogeneity in response to rider preferences. The average rider score does not include the current observation,
and only riders with more than 20 trips are included in the sample.

Dependent variable:
Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LO mean by rider × Off-peak −0.0013 −0.0023 0.1599∗∗∗ 0.1266∗∗∗ 0.3011∗∗∗ 0.3265∗∗∗ 0.1436∗∗∗ 0.2334∗∗∗ 0.0444∗∗∗

(0.0018) (0.0028) (0.0033) (0.0032) (0.0029) (0.0034) (0.0032) (0.0034) (0.0030)

LO mean by rider × AM rush −0.0202∗∗∗ −0.0224∗∗∗ 0.1219∗∗∗ 0.1101∗∗∗ 0.5048∗∗∗ 0.5226∗∗∗ 0.3134∗∗∗ 0.4800∗∗∗ 0.0441∗∗∗

(0.0037) (0.0056) (0.0069) (0.0067) (0.0059) (0.0082) (0.0068) (0.0072) (0.0061)

LO mean by rider × PM rush −0.0051 0.0003 0.1105∗∗∗ 0.0880∗∗∗ 0.3126∗∗∗ 0.3132∗∗∗ 0.1536∗∗∗ 0.2486∗∗∗ 0.0482∗∗∗

(0.0033) (0.0051) (0.0056) (0.0055) (0.0051) (0.0061) (0.0055) (0.0060) (0.0053)

Trip Characteristics FE X X X X X X X X X
Driver FE X X X X X X X X X

Observations 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222 3,648,222

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
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Our next results decompose variance across different sources of variation. In
order to do so, we run a model of the form

yi = µd(i) + νc(i) + γr(i) + εi, (6)

which decomposes y into a rider effect, a driver effect, a trip characteristics effect,
and a residual.

One potential problem with this specification is that for drivers with a small
number of trips µd(i) is going to take most of the variation. Similarly, for riders
with a small number of trips νc(i) is going to take most of the variation. In order to
avoid this we limit our sample to drivers and riders that have more than 20 trips.19

Table 5.3 shows the variance of each one of the four terms in equation (6). We
see that for most variables the driver is responsible for a significant share of the
variation. This is especially true for mounted and handling. Perhaps surprisingly,
the variable for which driver effects are least important is rating. The rider is not
responsible for much of the variation, with one notable exception: for rating, the
rider is the most important source of variation after the residual. This highlights
the limitations of the rating itself as opposed to the scores based on telematics we
use to evaluate ride quality; our scores are applied systematically to the telematics
from each ride, while the ratings have rider-specific noise that is unrelated to the
driver’s performance. We also see that trip characteristics are especially important
for speed.20

Table 5.3: Variance decomposition (more than 20 trips)

Driver Rider Trip characteristics Residual

Mounted 0.830 0.005 0.003 0.164
Handling 0.591 0.013 0.008 0.386

Brakes 0.220 0.024 0.038 0.725
Accelerations 0.332 0.021 0.026 0.628

Speed low 0.099 0.045 0.083 0.787
Speed high 0.136 0.047 0.116 0.651

Rating 0.046 0.301 0.036 0.627
Score F 0.355 0.028 0.036 0.579

Score NS 0.511 0.017 0.018 0.454

In Appendix E we check whether the variance decomposition of score F looks
19We filter by riders, and then by drivers. After filtering by drivers, a few riders end up having

fewer than 20 trips.
20This finding underscores the importance of checking that our results about the comparison

between UberX and UberTaxi are present even when considering metrics other than speed, since
results based on speed may rely more heavily on carefully controlling for trip characteristics.
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different by trip type (such as rush hour trips), and we find that the results look
very similar across different trip types.

6 Incentives and behavioral nudges

Uber uses a variety of incentives and behavioral nudges intended to promote safety
and quality on the platform. In this section we want to see whether these incen-
tives affect drivers’ behavior and whether the behavioral nudges provided by these
messages promote better driving behavior.

6.1 Ratings, notifications, and deactivation

The main element of Uber’s incentive system are rules under which UberX drivers
with low ratings stop being matched to riders. These rules are coupled with no-
tifications that are sent to drivers when their ratings reach a certain threshold. In
contrast, while riders can rate UberTaxi rides and UberTaxi drivers can access the
ratings in the app, UberTaxi rides are likely to be a small share of a taxi driver’s
business, and there are no explicit incentives tied to the ratings. Thus, we expect
the ratings to be both less salient and less important to UberTaxi drivers.

Table 6.1 summarizes the deactivation process, which follows each one of the
steps in each row. In order to move to the next state, a driver has to satisfy both
conditions on average ratings for the last 50 and 500 trips and the condition for the
number of trips. At each one of the steps the driver gets a notification by email, by
text messaging, and through the Uber app. The notification explains that they are
getting closer to deactivation and provides links to resources with help to improve
ratings.

Table 6.1: Deactivation process for UberX

Event Last 500 rating Last 50 rating Rated trips
Notification 1 < 4.6 < 4.6 25 since first trip
Notification 2 < 4.5 < 4.5 25 since notification 1

Temporary deactivation < 4.4 < 4.4 25 since notification 2
Reactivation Passed quality improvement course

Notification 3 < 4.4 < 4.4 25 since reactivation
Permanent deactivation < 4.4 < 4.4 25 since notification 3

Table 6.2 gives a sense of how many drivers are in each one of the ranges for the
rating of the last 500 trips. This is the rating that drivers can observe in their app
and which is shown to users when they are matched to a driver. We will call it the
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app rating. This table also shows how many drivers already completed 500 rated
trips, so that every additional trip only contributes one five hundredth to the rating
after the trip.

Table 6.2: Number of trips during which driver ratings satisfy each condition

Number Fraction

Total 7, 685, 605
lifetime trips >500 4, 923, 415 0.641

Rating <4.6 565, 779 0.074
Rating <4.5 221, 919 0.029
Rating <4.4 99, 765 0.013

To get a sense of how strong these incentives are, Figure 6.1 shows the percent-
age of drivers that are at risk of falling below each one of these thresholds. It shows
how many 3 star rated trips the driver would have to complete in order to fall be-
low each threshold. We see that only a very small number of drivers are likely to
eventually reach the 4.4 threshold for deactivation. On the other hand, a somewhat
more important fraction of drivers are close and even below the 4.6 threshold for
the first notification. This means that if this deactivation process has an effect on
driving behavior it is most likely through behavioral nudges instead of through
actual incentives a fully rational agent would react to.
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Figure 6.1: Fraction of drivers whose app rating would fall below a certain threshold
if the next N consecutive trips received a 3-star rating, where N is displayed on the
x-axis. The values corresponding to N = 0 represent the fraction whose app rating
currently falls below the threshold.
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Table 6.3 shows how frequently drivers cross one of these thresholds, both from
above and from below. We see that there is a large number of events, even for the
threshold at 4.4, close to which there are not that many drivers.

Table 6.3: Number of threshold crossings

From above From below
Threshold Crossings Unique drivers Crossings Unique drivers

4.6 7, 405 4, 742 7, 135 4, 495
4.5 4, 913 3, 331 4, 343 2, 874
4.4 3, 613 2, 690 2, 808 2, 046

We now consider a simple way to measure to what extent these incentives drive
the results of Section 4. We estimate whether the differences between UberX and
UberTaxi are the same for drivers with app rating above 4.6 (for whom there are no
explicit incentives and behavioral nudges) and those with app rating below 4.6. We
do so by matching trips as for Table 4.1, but we constrain matches to be only within
trips with app rating above 4.6 and within those below it. We compute an overall
effect of UberX, and additionally, an interaction of UberX and being below 4.6.

Table 6.4 shows the results. The UberX effect is stronger for low rated drivers.
This result comes with two caveats: it goes the other way around for mounted and
for the speed score (although the interaction coefficient for speed is very small), and
not many of these results are significant. We also find similar results for thresholds
different from 4.6. These findings support our claim that part of the difference
between the way UberX and UberTaxi drivers behave can be attributed to the in-
centives set in place by Uber: the differences are largest when drivers’ ratings are
low and the incentives are strongest.

In order to further explore the role of incentives, we examine how previous
ratings affect the behavior in new trips. We thus run regressions of the form

yi = µd(i) + νc(i) + βrapp
i + εi, (7)

where rapp
i is the main rating shown to rider r(i) in the app at the beginning of trip

i. The first two terms represent trip characteristics and, importantly, driver fixed
effects. We are thus trying to measure how changes in ratings within a single driver
are related to their driving behavior.
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Table 6.4: UberX treatment effect by app rating, matching estimator

Dependent variable:
Mounted Handling Brakes Accels Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

UberX 0.0729∗∗∗ 0.9552∗∗∗ −0.0327∗∗∗ −0.2346∗∗∗ −0.0359∗∗∗ −0.2144∗∗∗ 0.0025∗∗∗ 0.0023∗∗∗ 0.0011∗∗∗

(0.0134) (0.0257) (0.0121) (0.0146) (0.0086) (0.0075) (0.0003) (0.0001) (0.0002)

UberX * Rating < 4.6 −0.0255 0.0220 −0.0740∗ −0.0942∗ −0.0344 −0.0475 0.0007 −0.0001 0.0009
(0.0446) (0.0726) (0.0409) (0.0496) (0.0299) (0.0302) (0.0009) (0.0003) (0.0008)

Observations 164,031 164,031 164,031 164,031 164,031 164,031 164,031 164,031 164,031

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.

Table 6.5: Response to rating

Dependent variable:
Rating Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

App rating −0.3043∗∗∗ 0.0078 −0.0023 −0.0076∗∗ −0.0395∗∗∗ 0.0424∗∗ 0.0492∗∗∗ 0.0005∗ 0.0001 0.0004
(0.0149) (0.0111) (0.0127) (0.0032) (0.0027) (0.0175) (0.0093) (0.0003) (0.0001) (0.0002)

# of trips quadratic X X X X X X X X X X
Driver FE X X X X X X X X X X
Trip Characteristics FE X X X X X X X X X X

Observations 2,286,796 7,656,222 7,656,222 7,656,222 2,286,796 7,656,222 7,656,222 7,656,222 7,656,222 7,656,222

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to

mean zero and variance one.
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The results of this exercise are shown in Table 6.5. Column (1) shows that drivers
get higher ratings when their app rating is lower, suggesting that drivers respond
to low ratings by changing their behavior in a way that increases future ratings.
This can be by improving how they drive, but it can also be through some channels
we are not able to measure. For instance, drivers can be more friendly with their
riders, or they can start cleaning their car. Columns (2)-(10) measure to what extent
this change is related to driving behavior. Except for higher speed and mounting
with high ratings, the patterns on individual metrics are not clear.

We next conduct a similar exercise, where instead of exploring how drivers
respond to app ratings, we look at how they respond to the last rating they received.
Let ri represent the rating given to driver r(i) by the rider after trip i. Let l(i)
represent the index of the last trip by driver d(i) that received a rating before trip i
takes place. Then rl(i) represents the last rating that the driver received before the
trip started. We run regressions of the form

yi = µd(i) + νc(i) + αrl(i) + P2(ni; β) + εijkt (8)

where P2(ni; β) is quadratic function of the number of trips completed by driver
d(i) before trip i. Panel A in Table 6.6 shows the result of these regressions.

A potential concern with giving this finding a causal interpretation is that there
may be factors that lead to serial correlation in driver behavior. In order to isolate
the effect of the rating, we use two different instrumental variables strategies. We
wish to focus on variation in the previous rating that is not explained by the driver’s
own behavior or changing characteristics (e.g. car condition). We instrument for
the last rating using the average residual of other similar trips, where by similar we
mean trips taken on the same calendar day and hour in the same location. Thus,
if exogenous factors lead all drivers to deliver an experience that riders perceive
as low quality (e.g. traffic accidents, weather), this shock to the driver’s rating is
unrelated to driver-specific changes over time.

To implement this, we first take the residual from the model in equation (6).
Then we group trips by 16 origin and destination areas and by calendar day and
hour. The instrument for the previous rating is the average residual of all other
trips that took place in the group corresponding to the previous trip. The second
instrument is the leave-out average of all ratings given by the previous rider.21

21Our results are very similar if we exclude trips with riders with fewer than 10 trips
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Table 6.6: Response to last rating

Dependent variable:
Rating Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: OLS
Last rating −0.0041∗∗∗ 0.00003 −0.0003 0.0001 −0.0006∗∗∗ 0.0012∗∗∗ −0.0004 0.00002 −0.00001 0.00002∗∗∗

(0.0008) (0.0006) (0.0005) (0.0003) (0.0001) (0.0004) (0.0006) (0.00001) (0.00001) (0.00001)

Observations 2,282,178 7,640,861 7,640,861 7,640,861 2,282,178 7,640,861 7,640,861 7,640,861 7,640,861 7,640,861

Panel B: IV, average rating by rider
Last rating −0.0054∗∗ −0.0035∗∗ −0.0036∗∗ −0.0017∗∗ −0.0005 0.0017 0.0026 0.00002 −0.00002 0.00003

(0.0021) (0.0018) (0.0017) (0.0008) (0.0004) (0.0013) (0.0017) (0.00004) (0.00003) (0.00003)

Observations 2,087,525 6,994,328 6,994,328 6,994,328 2,087,525 6,994,328 6,994,328 6,994,328 6,994,328 6,994,328

Panel C: IV, both instruments
Last rating −0.0133∗∗∗ −0.0012 −0.0023 −0.00003 −0.0012∗∗ 0.0027∗ 0.0011 −0.00003 −0.0001∗ 0.00001

(0.0026) (0.0019) (0.0019) (0.0009) (0.0005) (0.0014) (0.0019) (0.00004) (0.00003) (0.00003)

Observations 1,014,732 3,416,989 3,416,989 3,416,989 1,014,732 3,416,989 3,416,989 3,416,989 3,416,989 3,416,989

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
All regressions include rider and trip characteristics fixed effects.
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Panels B and C in Table 6.6 shows the results of these 2SLS regressions. The
results are consistent with the OLS results, and with the results in Table 6.5: ratings
have a negative effect on new ratings, but they do not have a large effect on our
metrics based on telematics.

We next explore how drivers’ current app ratings affect the way they drive. Ad-
ditionally, we want to see if the notification system influences their behavior. These
notifications take place on the path towards deactivation according to the steps de-
scribed in Table 6.1. Drivers move onto the next step when all three conditions
are satisfied. In addition to the possibility that drivers move through this process
towards deactivation, it is also possible to go back in the process. A driver that
received the first notification can go back to normal if his average rating over his
last 500 trips gets above the threshhold of 4.6. A driver that received notification 2
can go back to the same state right after notification 1 if his average rating over his
last 500 trips goes above 4.5, and a driver that received notification 3 can go back to
the state right after reactivation if his last 500 trip rating goes back above 4.45.

For this analysis, we run regressions of the following form:

yi = µd(i) + νc(i) + αrapp
i + βwi + εi, (9)

where rapp
i is the rating the driver observes in the app at the time of the trip, and wi

is a vector of dummies that characterizes the stage along the deactivation process
in which the driver is in. Since we are including driver fixed effects, this regres-
sion exploits the variation due to drivers that crossed some threshold and got a
notification. The number of such events is summarized in Table 6.3.

Table 6.7 shows the results of this exercise. Panel A measures the effect of being
in any notification state. In other words, whenever a driver gets his first notification,
wi switches from zero to one and stays like that until the end. We see that notifica-
tions have a positive effect on ratings. They also affect every driving metric in the
direction that riders prefer according to Table 3.1, although not all coefficients are
significant. Notifications also have a positive effect on scores, which is consistent
with the direction in which metrics change.

Panel B separates the effect of notifications across different notification states.
They are measured relative to the level before getting any notification. As we can
see, effects tend to have the same signs as the main effect, although not all coeffi-
cients are significant. Notification 2 does not seem to have any effect on top of the
original effect of notification 1. Notification 3, on the other hand, seems to have the
strongest effect, consistent with the imminent threat of deactivation.
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Table 6.7: Response to ratings and notifications

Dependent variable:
Rating Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: General effect of notifications
Has received notif. 0.1124∗∗∗ 0.0587∗∗∗ −0.0452∗∗∗ −0.0021 −0.0131∗ 0.0090∗ −0.0031 0.0006∗∗∗ 0.0002∗∗∗ 0.0004∗∗∗

(0.0070) (0.0117) (0.0118) (0.0070) (0.0074) (0.0052) (0.0057) (0.0002) (0.0001) (0.0002)

App rating −0.3098∗∗∗ 0.0459∗∗∗ −0.0246 0.0190∗ 0.0076 0.0424∗∗∗ 0.0196∗∗ 0.0005∗∗ 0.0002 0.0003
(0.0144) (0.0174) (0.0188) (0.0111) (0.0116) (0.0087) (0.0093) (0.0003) (0.0001) (0.0002)

Trip Characteristics FE X X X X X X X X X X
Driver FE X X X X X X X X X X
Observations 2,286,772 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161

Panel B: Decomposition of effect of notifications
1st notification 0.1039∗∗∗ 0.0549∗∗∗ −0.0416∗∗∗ −0.0071 −0.0153∗∗ 0.0038 −0.0127∗∗ 0.0006∗∗∗ 0.0002∗∗ 0.0005∗∗∗

(0.0074) (0.0116) (0.0118) (0.0071) (0.0076) (0.0055) (0.0059) (0.0002) (0.0001) (0.0002)

2nd notification 0.1345∗∗∗ 0.0294 −0.0394∗∗ −0.0135 −0.0265∗∗ 0.0012 0.0145 0.0003 0.00003 0.0003
(0.0133) (0.0204) (0.0188) (0.0117) (0.0118) (0.0090) (0.0098) (0.0003) (0.0001) (0.0003)

3rd notification 0.2470∗∗∗ 0.0893∗ −0.1199∗ −0.0586∗∗ −0.0321 0.0249 −0.0362 0.0027∗∗∗ 0.0011∗∗∗ 0.0017∗

(0.0373) (0.0476) (0.0660) (0.0281) (0.0274) (0.0235) (0.0260) (0.0009) (0.0004) (0.0008)

1st notification exp. 0.1078∗∗∗ 0.0747∗∗∗ −0.0461∗∗∗ 0.0192∗∗ 0.0010 0.0191∗∗∗ 0.0144∗ 0.0005∗∗ 0.0002∗∗ 0.0002
(0.0081) (0.0154) (0.0140) (0.0093) (0.0096) (0.0066) (0.0075) (0.0002) (0.0001) (0.0002)

2nd notification exp. 0.0964∗∗∗ 0.0142 −0.0070 0.0207 0.0184 0.0298∗ 0.0267 −0.0003 0.0004 −0.0006
(0.0234) (0.0319) (0.0313) (0.0197) (0.0185) (0.0165) (0.0190) (0.0005) (0.0003) (0.0004)

3rd notification exp. 0.2686∗∗∗ 0.1336∗ −0.1937 −0.0829∗∗ −0.1264∗∗ 0.0697∗∗ −0.0475 0.0049∗∗∗ 0.0021∗∗∗ 0.0029∗

(0.0504) (0.0791) (0.1259) (0.0410) (0.0593) (0.0343) (0.0330) (0.0018) (0.0006) (0.0015)

App rating −0.3110∗∗∗ 0.0409∗∗ −0.0222 0.0155 0.0059 0.0392∗∗∗ 0.0170∗ 0.0005∗ 0.0002 0.0003
(0.0145) (0.0173) (0.0188) (0.0110) (0.0115) (0.0087) (0.0093) (0.0003) (0.0001) (0.0002)

Trip Characteristics FE X X X X X X X X X X
Driver FE X X X X X X X X X X
Observations 2,286,772 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161 7,656,161

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
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The takeaway from Table 6.7 is that although ratings do not seem to have a
direct effect on driver’s behavior, once drivers enter the deactivation process and
start receiving notifications they do make substantial changes to their behavior.
Most importantly, these effects are persistent, since they remain after notifications
expire, i.e., when they start driving better and receive enough high ratings to get
out of the deactivation process.

We now analyze in a nonparametric way the effect associated with the app rat-
ing, to see whether it occurs mostly at low or high ratings. If we just compared
trips with high or low app rating we would obtain a spurious mechanical effect,
since people with high ratings are systematically different from those with low rat-
ings. We pool drivers into buckets of width 0.02 of their lifetime average rating.
We then subtract to each outcome variable the average of the outcome variable for
drivers in their bucket that took place when the observed rating was between 4.7 and 4.8.
The main idea is that, after demeaning, we are measuring changes within groups
of drivers with similar ratings, relative to trips when ratings were between 4.7 and
4.8 as a reference point. We then plot this difference in the vertical axis against the
observed rating in the vertical axis. We see that there is a strong negative relation-
ship between current app rating and the rating on the given ride, but there is little
relationship between the current app rating and our scores.

More precisely, let Ar(i) denote the set of all trips by drivers whose lifetime rating
falls in the same bucket as driver r(i) and during which the observed rating was in
[4.7, 4.8). If we are analyzing outcome yi, we compute ŷi = yi− 1

|Ar(i)| ∑i∈Ar(i)
yi. The

term we subtract takes as a reference trips from similar drivers when their rating
was between 4.7 and 4.8. We then average ŷij by buckets of observed rating of width
0.1; results are shown in Figure 6.2. Thus, every point in these plots is an indication
of the effect of observed rating with respect to the effect that would have taken place
if the observed rating was between 4.7 and 4.8. Therefore, it allows us to observe
any heterogeneity in the effect of observed ratings on the various outcome variables
we analyze.

6.2 Information on past behavior

The information that Uber discloses to drivers about their past behavior has the
potential to influence their future behavior. One example is a driver’s app rating:
as we showed in the previous section, drivers with lower ratings behave in a way
that increases their rating. Uber also previously informed drivers of their past
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Figure 6.2: Effect of current observed rating on the rating and scores of new trips.

performance according to driving metrics22. Every week, drivers received a simple
report, which fit in a smartphone screen, summarizing drivers’ metrics in the past
week and comparing them with other drivers’. Receiving this information could
motivate drivers to improve their behavior, but it could also lead to worse behavior
if well-behaving drivers decrease their efforts.

Every driver in our sample received this report, so there is no direct way to tell
to what extent it affected their behavior. However, Uber ran a closely related ex-
periment that is informative about how information of past behavior affects future
behavior. Uber was considering a major upgrade of the simple report. The new
version would be a complete dashboard in the Uber app with detailed information
about their past behavior. The dashboard included information on individual trips
and on specific segments within each trip. Images of the dashboard are in Figure
6.3.

Uber initially treated a random set of drivers with the upgraded dashboard, and

22This feature of the product was discontinued in late 2018
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Figure 6.3: Images of the dashboard with detailed information about past driving
behavior.

kept on sending the original report to a control group. We use this experimental
setting to measure how additional information on past behavior influenced their
behavior. If treated drivers improved their driving metrics, then it is natural to con-
clude that the original report is responsible for some of the difference in behavior
between UberX and UberTaxi drivers.23

In Appendix F we report results of a balance test of pre-experiment averages
by driver for each of the metrics and scores. We include only drivers who took at
least ten trips in the month before the experiment. We find statistically insignificant
differences for each of the non-speed metrics and scores, but we find significant
differences for the speed variables, particularly for the low speed metric. Since
we do not have perfect balance in the pre-treatment period for these variables we
control for pre-treatment averages in analyzing the experiment.

We start by analyzing the results of the experiments with regressions of the form

yi = α + τTd(i) + γXi + εi, (10)

where Td(i) is a dummy for whether the driver was in the treatment group. Our
estimate for τ is thus an estimate of the intent to treat (ITT). We limit our sample
to those trips that took place after the experiment started. Xi includes the driver’s
pre-experiment mean for the outcome and a set of trip characteristics fixed effects.

We are also interested in measuring the effect of interacting with the new dash-
board on outcomes yi. We construct an indicator variable Ii which is equal to one
if driver d(i) interacted with the dashboard in the week prior to trip i. We are then

23Appendix F shows that the sample is balanced.
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interested in estimating the following regression:

yi = α + θ Ii + γXi + εi. (11)

We estimate this regression by 2SLS, instrumenting Ii with the treatment dummy
and treatment interacted with the driver’s pre-treatment mean for each of the telem-
atics metrics and scores. Treatment status and the pre-treatment outcomes are de-
meaned for interpretability.24 Our estimate of θ is thus an estimate of the average
treatment effect, where being treated means interacting with the dashboard.

Table 6.8 shows results for regressions of the form in equations 10 and 11 where
the dependent variables are our scores. Interacting with the dashboard leads to an
improvement in all three scores, which means there is also an effect of having access
to the dashboard. The effect is especially clear for the full and no-speed scores. We
do not measure significant effects on individual metrics (see Appendix G).25

We are also interested in seeing how the effects of the dashboard differ by
drivers’ pre-treatment behavior. To see how the experiment affected poorly-performing
drivers, we first compute the average of each outcome for each driver in the pre-
treatment period. We exclude drivers with fewer than ten trips in the month before
the experiment launched. We then code a dummy variable, referred to in Table 6.9
as "Bottom 10th Perc. Before," which indicates whether the driver was in the worst-
performing 10% of drivers in the pre-period. For example, in column 1 "Bottom
10th Perc. Before" means the driver was below the 10th percentile for the full score,
while in columns 2 and 3 it indicates the driver was below the 10th percentile for
the speed score and non-speed score, respectively.26

Table 6.9 shows results from regressions similar to equations 10 and 11, but
where access and interaction with the dashboard are interacted with our pre-treatment
dummy. We see that the effects of the Dashboard are driven mainly by drivers that
performed worst in the pre-treatment period. This means that informing poorly-
performing drivers about their performance results in increased efforts and an im-
provement in their performance. There also seems to be a small improvement for
drivers that do not perform poorly, suggesting that more detailed information does
not lead to worse performance for previously good-performing drivers.

24We obtain similar results if we use a less rich set of instrumental variables.
25We pulled data from other cities to try to increase the power of our regressions, but we found

inconsistent results on metrics. For scores, we found a stronger effect in San Francisco, somewhat
weaker results in LA, DC, and Boston, and no evidence of an effect in New York.

26We obtain similar results if we create similar dummies with different cutoffs, or if we use a
continuous measure instead of a dummy variable.
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Table 6.8: Results of experiment

Dependent variable:
Score F Score S Score NS

(1) (2) (3)

Panel A: Intent to treat estimator
Treatment 0.0002∗ 0.00005 0.0001∗

(0.0001) (0.00004) (0.0001)

Pre-Period Mean 0.8199∗∗∗ 0.6876∗∗∗ 0.8430∗∗∗

(0.0055) (0.0113) (0.0054)

Observations 4,254,109 4,254,109 4,254,109

Panel B: 2SLS estimator
Interaction 0.0008∗∗∗ 0.0003∗∗ 0.0006∗∗

(0.0003) (0.0001) (0.0003)

Observations 4,254,109 4,254,109 4,254,109

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized

to mean zero and variance one.

Table 6.9: Results of experiment, heterogeneity

Dependent variable:
Score F Score S Score NS

(1) (2) (3)

Panel A: Intent to treat estimator
Bottom 10th Perc. Before −0.0271∗∗∗ −0.0082∗∗∗ −0.0255∗∗∗

(0.0005) (0.0004) (0.0004)

Treatment x Not Bottom 10th Perc. 0.0001 0.0001 0.00004
(0.0002) (0.0001) (0.0001)

Treat x Bottom 10th Perc. 0.0015∗∗ 0.0006 0.0014∗∗

(0.0006) (0.0005) (0.0005)

Observations 4,254,109 4,254,109 4,254,109

Panel B: 2SLS estimator
Bottom 10th Perc. Before −0.0008∗ −0.0005∗∗ 0.0002

(0.0005) (0.0002) (0.0004)

App Int. x Not Bottom 10th Perc. 0.0003 0.0001 0.0002
(0.0002) (0.0001) (0.0002)

App Int. x Bottom 10th Perc. 0.0028∗∗∗ 0.0007 0.0027∗∗∗

(0.0010) (0.0005) (0.0009)

Observations 4,254,109 4,254,109 4,254,109

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized

to mean zero and variance one.
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7 Conclusions

Observers have expressed concern that ridesharing platforms might reduce quality
by allowing inexperienced drivers in their platform, a consequence of their stream-
lined screening process that enables a flexible workforce. Using objective measures
of driving quality, we find that UberX in fact provides better driving quality than
taxis. We are not able to fully explain the forces shaping this finding, but we provide
empirical evidence that the ratings, incentives, nudges, and information systems set
up by Uber explain part of this difference.

Our paper raises the issue of what exactly the channels are that contribute to the
difference between UberX and UberTaxi driving behavior. This question may be
best answered by randomized experiments that can be conducted in the future. For
instance, future research could answer whether UberX drivers are primarily moti-
vated by an intrinsic desire to create a good experience for passengers, or whether
perceived or real economic incentives play a more important role in motivating
behavior.
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Appendix A Selection of metrics

In order to select our main variables, we run a lasso regression that includes all
candidate metrics as well as their squares. We also include driver and trip charac-
teristics fixed effects without penalization. The candidate metrics include metrics
for brakes and accelerations using thresholds of 2, 2.5 and 3 m/s2 (the industry
standard is 3.06 m/s2), and metrics for 12 different moments of the distribution of
contextualized speeds within each trip (percentiles 0, 10, 20, ..., 100, as well as the
mean).

Table A.1: Penalty at which variables are dropped by a lasso regression.

Metric Penalty

Cont. speed 30 0.00001
Cont. speed 0 0.00001

Cont. speed mean 0.00002
Cont. speed 40 0.00003
Cont. speed 50 0.00004

Accelerations 2.5 m/s2 0.0002
Brakes 3 m/s2 0.0002

Accelerations 3 m/s2 0.0002
Cont. speed 20 0.0003

Cont. speed 100 0.0004
Cont. speed 60 0.0005

Mounted 0.0008
Cont. speed 70 0.0011
Brakes 2.5 m/s2 0.0027

Avg. speed when moving 0.0027
Cont. speed 10 0.0027

Handling 0.0036
Cont. speed 80 0.0040
Cont. speed 90 0.0040
Brakes 2 m/s2 0.0044

Accelerations 2 m/s2 0.0044
Excess distance 0.0146
Excess duration 0.0212

Table A.1 shows the order in which variables are dropped as we start increasing
the penalty, and the value for the penalty at which they are dropped. Distance and
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duration are the most predictive variables. We choose the most predictive accelera-
tions and brakes variables, those that use a threshold of 2 m/s2. The most predictive
speed variables are percentiles 80, 90, and 10. Percentiles 80 and 90 measure simi-
lar information, so we choose only percentile 80 because it has a distribution with
higher variance. We also choose percentile 10, despite being less predictive, because
it captures speed during the slowest parts of a trip.

Appendix B Score model

We tried a variety of ways of regularizing our model. In order to test them, we split
our sample into three sets. The first is a train set with 47.5% of observations that
we use to choose penalty parameters. We also have an estimation set with 47.5%
of the data to estimate the model parameters. We set apart the remaining 5% of
our observations as a test set. Our selection criterion is test-set mean square error
(MSE).
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Figure B.1: Performance of different models for score.

Our baseline model is an OLS regression with no penalization. We also run a
lasso model with no penalties on fixed effects, as well as a post-lasso model that
keeps all terms with nonzero coefficients in the lasso regression. We choose the
penalty by 10-fold cross validation within the train set. We also run a lasso model
with an increasing penalty factor. In other words, the penalty factor for an n-th
order term is λµn, where λ is the base penalty for the model and µ is the penalty
factor. We choose µ by 20-fold cross validation within the train set, and we choose
λ by 10-fold cross validation within the remaining data in each fold.

Figure B.1 compares the performance of all these models. The one that performs
best is the post-lasso model with a penalty factor. The lasso model without a penalty
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factor performs almost as well. We prefer the post-lasso model with a penalty
factor since the final model has no penalty, which means our coefficients have no
asymptotic bias.

The final score we create uses the same procedure as the post-lasso model with
a penalty factor, but we use all the data to estimate it. In other words, we split the
sample into two equally sized training and estimation sets (without leaving out any
data in a test set).

The coefficients we measure throughout our paper change very little if we use
different methodologies, and the interpretation of all our results stays the same.

Appendix C Response to car prices

One potential concern is the effect that car quality might have on riders’ preferences.
In order to address that issue, we construct a car price variable based on car make,
model, year, and mileage. We do not observe mileage, so we assume that cars are
driven twice the average mileage of 13,476 mi per year since the car was produced,
given Uber cars are used more intensely than average cars. We use Kelley Blue Book
data for prices that were collected manually by Uber. This is a time consuming task,
so we only have prices for the most common car models, which account for roughly
60% of our trips.

Table C.1 shows regressions of rating variables on driving metrics, as well as on
prices. Columns (2), (4), and (6) also include the interaction of prices and driving
metrics. Neither the car price nor its interactions seem to have any noticeable effect
on ratings. Furthermore, we do not observe any major changes from the main
coefficients in Table 3.1.

We also explore how the UberX effect varies by car type. One major challenge
is that only 5% of UberTaxi trips in our sample have a car model. However, we do
observe the car year. This gives us a good idea of the car quality, given that taxi
models tend to be relatively homogeneous. We split UberX trips into four groups.
The first group ("unknown") includes trips with a car we did not find a price for.
We split trips with a known car into three price quantiles ("low", "medium", and
"high"). We split UberTaxi into those newer than the median and those older than
the median.
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Table C.1: Response to ratings and notifications, including car prices

Dependent variable:
Rating Rating is 5 Rated

(1) (2) (3) (4) (5) (6)

Mounted 0.0049∗∗∗ 0.0037 0.0020∗∗ 0.0017 −0.0011∗ −0.0014
(0.0017) (0.0034) (0.0008) (0.0016) (0.0006) (0.0011)

Handling −0.0070∗∗∗ −0.0044∗ −0.0022∗∗∗ −0.0009 −0.0002 −0.0010
(0.0011) (0.0023) (0.0005) (0.0010) (0.0004) (0.0007)

Brakes −0.0047∗∗∗ −0.0057∗∗∗ −0.0016∗∗∗ −0.0018∗∗∗ 0.0018∗∗∗ 0.0018∗∗∗

(0.0008) (0.0015) (0.0004) (0.0007) (0.0003) (0.0005)

Accelerations −0.0030∗∗∗ −0.0032∗∗ −0.0014∗∗∗ −0.0008 0.0020∗∗∗ 0.0024∗∗∗

(0.0008) (0.0016) (0.0004) (0.0008) (0.0003) (0.0005)

Speed low 0.0091∗∗∗ 0.0097∗∗∗ 0.0036∗∗∗ 0.0041∗∗∗ −0.0039∗∗∗ −0.0037∗∗∗

(0.0007) (0.0014) (0.0003) (0.0007) (0.0002) (0.0005)

Speed high −0.0015∗ −0.0031∗∗ −0.0018∗∗∗ −0.0027∗∗∗ −0.0032∗∗∗ −0.0029∗∗∗

(0.0008) (0.0015) (0.0004) (0.0007) (0.0003) (0.0005)

Price 0.0013 0.0013 0.0006 0.0006 0.0003 0.0003
(0.0009) (0.0009) (0.0004) (0.0004) (0.0003) (0.0003)

Price × Mounted 0.0002 0.00005 0.00005
(0.0004) (0.0002) (0.0001)

Price × Handling −0.0004 −0.0002 0.0001
(0.0003) (0.0001) (0.0001)

Price × Brakes 0.0001 0.00003 0.000001
(0.0002) (0.0001) (0.0001)

Price × Accels. 0.00002 −0.0001 −0.0001
(0.0002) (0.0001) (0.0001)

Price × Speed low −0.0001 −0.0001 −0.00003
(0.0002) (0.0001) (0.0001)

Price × Speed high 0.0002 0.0001 −0.00004
(0.0002) (0.0001) (0.0001)

Trip characteristics FE X X X X X X
Driver FE X X X X X X

Observations 1,413,283 1,413,283 1,413,283 1,413,283 4,773,516 4,773,516

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
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Table C.2: Comparison between UberX and UberTaxi by car quality

Dependent variable:
Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

UberX, low 0.9454∗∗∗ 0.0836∗∗∗ −0.0371∗∗ −0.2743∗∗∗ −0.0437∗∗∗ −0.2448∗∗∗ 0.0026∗∗∗ 0.0025∗∗∗ 0.0011∗∗∗

(0.0353) (0.0219) (0.0176) (0.0206) (0.0117) (0.0107) (0.0004) (0.0001) (0.0004)

UberX, medium 0.9963∗∗∗ 0.0453∗∗ −0.0088 −0.2084∗∗∗ −0.0208∗ −0.2068∗∗∗ 0.0026∗∗∗ 0.0024∗∗∗ 0.0011∗∗∗

(0.0352) (0.0220) (0.0176) (0.0207) (0.0117) (0.0106) (0.0004) (0.0001) (0.0004)

UberX, high 1.0044∗∗∗ 0.0314 0.0060 −0.2027∗∗∗ −0.0228∗ −0.2001∗∗∗ 0.0028∗∗∗ 0.0023∗∗∗ 0.0014∗∗∗

(0.0352) (0.0220) (0.0176) (0.0208) (0.0117) (0.0106) (0.0004) (0.0001) (0.0004)

UberX, unknown 0.9547∗∗∗ 0.0570∗∗∗ −0.0912∗∗∗ −0.2999∗∗∗ −0.0821∗∗∗ −0.2833∗∗∗ 0.0033∗∗∗ 0.0023∗∗∗ 0.0020∗∗∗

(0.0338) (0.0204) (0.0168) (0.0196) (0.0112) (0.0100) (0.0004) (0.0001) (0.0003)

UberTaxi, new 0.0368 −0.0292 −0.0364∗ −0.0589∗∗ −0.0139 −0.0105 0.0006 −0.0001 0.0007∗

(0.0450) (0.0236) (0.0213) (0.0250) (0.0151) (0.0133) (0.0004) (0.0002) (0.0004)

Trip Characteristics FE X X X X X X X X X
Observations 8,530,144 8,530,144 10,459,336 10,459,336 9,511,238 9,511,238 7,855,743 7,855,743 7,855,743

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.2 shows the results of regressions of the form of equation 4, where
we measure treatment effects for the four UberX groups and for trips with new
UberTaxi cars. In other words, we measure effects relative to trips with old UberTaxi
cars. These coefficients do not show much heterogeneity from our main results in
Table 4.1 . The main differences we observe are that drivers with more expensive
UberX cars seem to handle their phone less and have more hard brakes. The net
effect is a slightly higher score for expensive cars. UberX cars with unknown price
brake significantly less, which leads to a somewhat more noticeable increase in
scores.

Appendix D Controlling for routing

We create a score similar to score F, following equation (2), where s(mijkt; θ) includes
the sum of both terms in score F and a routing component, which is a quartic func-
tion of the distance metric interacted with a quartic function of the duration metric.
We run the same cross validation procedure we did for our main scores to obtain
estimates for θ. We then create a residualized score equal to s(m̃ijkt; θ), where m̃ijkt is
the same as m̃ijkt, except that the distance and duration metrics are set to zero. This
score thus accounts for cell phone usage, speed, brakes, and accelerations, after
residualizing any effect that may be taking place through routing. Both scores are
very similar, with a correlation of 0.89.

Table D.1: Response to ratings and notifications

Dependent variable:
Full score Res. score

(1) (2)

Panel A: Matching estimator
UberX 0.0035∗∗∗ 0.0032∗∗∗

(0.0003) (0.0002)

Observations 164,288 164,288

Panel B: Trip characteristics fixed effects
UberX 0.0033∗∗∗ 0.0031∗∗∗

(0.0003) (0.0002)

Observations 7,849,896 7,849,896

Panel C: Trip chars. and rider FEs
UberX 0.0037∗∗∗ 0.0033∗∗∗

(0.0003) (0.0002)

Observations 7,849,896 7,849,896

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized

to mean zero and variance one.

Table D.1 shows results for our main UberX vs UberTaxi comparison, using
both the full score and this new residualized score. As we can see, both scores give
very similar results, with slightly smaller differences using the residualized score.
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One might be concerned that our speed variables are capturing the effect of trip
duration. However, if that was the case, we would see a smaller coefficients with
our original scores, given that UberX drivers are slower.

Appendix E Variance decomposition by trip type

Table E.1 is a similar exercise to Table 5.3, but it focuses on the full score. It splits
the sample across different trip characteristics: trips to and from airports, and trips
during morning and afternoon rush hour.

Table E.1: Variance decomposition of score F, by different subsamples of the data
(more than 20 trips).

Driver Rider Trip characteristics Residual

All 0.355 0.028 0.035 0.579
Beg. airport 0.304 0.028 0.036 0.465
End airport 0.332 0.029 0.029 0.513

Morning rush 0.344 0.030 0.041 0.576
Afternoon rush 0.353 0.027 0.032 0.548

Appendix F Balance of experimental sample

Table F.1 shows results of a balance test for mean pre-experiment period outcomes
for each driver. Estimates are across trips in the experimental period and are clus-
tered by driver. While all of the non-speed metrics and scores have insignificant
results, there seems to be some difference in the speed outcomes.
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Table F.1: Balance Test for Experiment

Dependent variable:
Mounted Handling Brakes Accels. Speed low Speed high Score F Score S Score NS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Constant 0.6915∗∗∗ 0.1020∗∗∗ 0.2196∗∗∗ 0.1875∗∗∗ 23.7304∗∗∗ 86.0890∗∗∗ −0.0152 −0.0170 −0.0089
(0.0050) (0.0022) (0.0011) (0.0013) (0.0592) (0.0525) (0.0123) (0.0117) (0.0124)

Treatment 0.0009 −0.0021 −0.0001 −0.0015 0.2367∗∗∗ 0.1491∗∗ 0.0262 0.0292∗ 0.0153
(0.0066) (0.0028) (0.0014) (0.0018) (0.0772) (0.0682) (0.0160) (0.0153) (0.0161)

Observations 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix G Effect of Dashboard Experiment on Metrics

Table G.1 shows results for regressions of the form in equations 10 and 11 where
the dependent variables are the quality metrics.

Table G.1: Results of experiment, metrics

Dependent variable:
Mounted Handling Brakes Accels. Speed low Speed high

(1) (2) (3) (4) (5) (6)

Panel A: Intent to treat estimator
Treatment −0.0036 −0.0157∗∗∗ −0.0005 0.0019 0.0030 −0.0013

(0.0060) (0.0058) (0.0042) (0.0047) (0.0028) (0.0032)

Pre-Period Mean 2.0863∗∗∗ 3.6528∗∗∗ 4.6098∗∗∗ 4.7673∗∗∗ 0.0501∗∗∗ 0.0755∗∗∗

(0.0085) (0.0352) (0.0305) (0.0291) (0.0004) (0.0005)

Observations 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109

Panel B: 2SLS estimator
Interaction −0.0059 −0.0408∗∗ −0.0087 −0.0193 0.0220∗∗∗ 0.0086

(0.0257) (0.0173) (0.0123) (0.0140) (0.0080) (0.0100)

Observations 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109 4,254,109

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
All safety metrics are normalized to mean zero and variance one.
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