Business Cycle Anatomy

George-Marios Angeletos¹ Fabrice Collard² Harris Dellas³ ¹MIT and NBER ²TSE ³University of Bern

NBER Summer Institute: July 10, 2019

"One is led by the facts to conclude that, with respect to the qualitative behavior of co-movements among series, business cycles are all alike. To theoretically inclined economists, this conclusion should be attractive and challenging, for it suggests the possibility of a unified explanation of business cycles." (Lucas 1977)

• A theorist's ambition: account for bulk of the business cycle with a single-shock model i.e., multiple triggers but a dominant propagation mechanism "One is led by the facts to conclude that, with respect to the qualitative behavior of co-movements among series, business cycles are all alike. To theoretically inclined economists, this conclusion should be attractive and challenging, for it suggests the possibility of a unified explanation of business cycles." (Lucas 1977)

- A theorist's ambition: account for bulk of the business cycle with a single-shock model i.e., multiple triggers but a dominant propagation mechanism
- This paper's contribution: provide an empirical template of it

- Estimate a VAR (or VECM) on a few key variables
- Recover shock that has max contribution to volatility of U over BC frequencies
- Repeat exercise by targeting other variables (e.g., TFP) or other frequencies (e.g, LR)

- Estimate a VAR (or VECM) on a few key variables
- Recover shock that has max contribution to volatility of U over BC frequencies
- Repeat exercise by targeting other variables (e.g., TFP) or other frequencies (e.g, LR)
- ⇒ "Business Cycle Anatomy" = large collection of one-dimensional cuts of the data = rich set of restrictions on models of any size and type

Main Findings and their Use

- Establish existence of a "main business cycle (MBC) shock"
 - shocks that target u, Y, h, I, and C over BC frequencies produce similar IRFs
 - supports hypothesis of common propagation mechanism
- Document its properties
 - transitory
 - disconnected from TFP at all horizons
 - orthogonal to shock that targets inflation
 - ...
- Use its properties and overall anatomy to guide theory
 - parsimonious, semi-structural perspective
 - fully structural DSGE models

- Good news for parsimonious theories with a dominant shock/propagation mechanism
- Bad news for the following candidates
 - technology shocks

RBC model

- financial, uncertainty, or other shocks that map to TFP fluctuations Benhabib and Farmer (1992), Bloom et al (2016)
- news about future TFP

Beaudry and Portier (2006), Lorenzoni (2009)

- inflationary demand shocks of the textbook type
- propagation mechanisms in state-of-the-art DSGE models

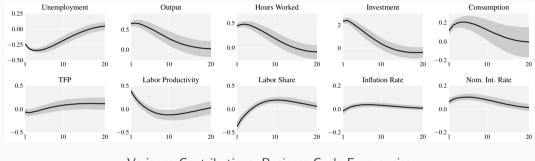
Smets & Wouters, Justiniano, Primiceri & Tambalott, Christiano, Motto & Rostagno

- What fits the MBC template best?
- Non-inflationary, non-specialized, demand shocks
- Perhaps they exist (even) outside realm of sticky prices and Philips curves?

example: our earlier Ecma paper (ACD 2018) Bai, Ros-Rull & Storesletten (2017), Beaudry & Portier (2018), Benhabib, Wang & Wen (2015), Huo & Takayama (2015), Ilut & Saijo (2018); older literature on coordination failures

- Empirical Analysis
- Main Findings and Lessons
- Application to Three DSGE Models

Empirical Analysis

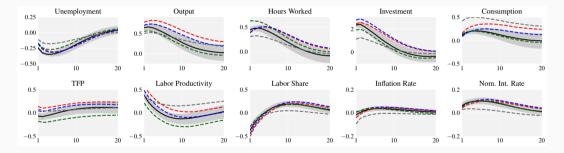

- Quarterly U.S data: 1955Q1-2017Q4
 - Macro Quantities: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.
 - Productivity: util-adjust TFP, NFB labor productivity;
 - Nominal: Inflation (GDP Delator), Federal Fund Rate, Labor Share
- Bayesian VAR, 2 Lags (robust to 4 or 6 lags and VECM)

- Quarterly U.S data: 1955Q1-2017Q4
 - Macro Quantities: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.
 - Productivity: util-adjust TFP, NFB labor productivity;
 - Nominal: Inflation (GDP Delator), Federal Fund Rate, Labor Share
- Bayesian VAR, 2 Lags (robust to 4 or 6 lags and VECM)
- What next? Construct the "shock to variable X"

Linear combination of the VAR residuals that has the maximal contribution to the volatility of a variable X at the business-cycle frequencies, 6-32 quarters.

▶ Technicalities

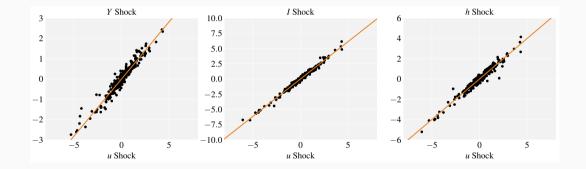
Main Business Cycle Shock: Targeting Unemployment


Impulse Response Functions

Variance Contributions, Business-Cycle Frequencies

и	Y	h	1	С	TFP	Y/h	Wh/Y	π	R
73.71	58.51	47.72	62.09	20.38	5.86	23.91	27.02	6.96	22.27

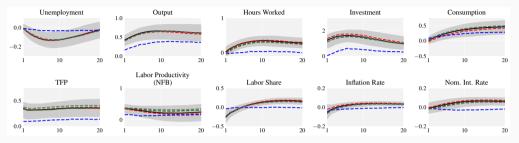
Main Business Cycle Shock: Alternative Targets


Interchangeable facets of the same shock!

_____ u shock; _ _ _ _ Y shock; _ _ _ _ I shock; _ _ _ _ h shock; _ _ _ _ C shock; Shaded area: 68% HPDI.

	и	Y	h	1	С	TFP	Y/h	Wh/Y	π	R
и	73.71	58.51	47.72	62.09	20.38	5.86	23.91	27.02	6.96	22.27
Y	56.24	80.13	44.73	67.13	33.03	4.24	41.31	40.20	10.47	16.89
h	49.84	47.54	70.45	47.99	21.78	11.62	22.61	19.47	7.23	22.38
1	59.03	66.60	45.20	80.29	19.01	3.81	33.74	36.44	7.69	21.51
С	19.19	31.59	20.15	17.10	68.30	1.57	12.93	10.31	9.93	4.50

The Main Business Cycle Shock: Alternative Targets

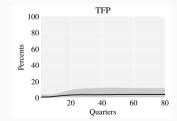


First Principal Component, Business Cycle Frequencies

	и	Y	h	1	С	TFP	Y/h	wh/Y	π	R
Raw Data										
VAR-Based	63.31	87.33	62.47	99.72	26.67	1.22	29.19	14.16	0.68	8.10

- $\bullet\,$ Similar message about variance contributions: MBC \approx 1st PC
- But our approach adds info about (i) IRFs and (ii) footprint on other frequencies

The Main Long-Run Shock


_____ Y shock; _ _ _ I shock; _ _ _ C shock; _ _ _ Y/h shock; _ _ _ TFP shock

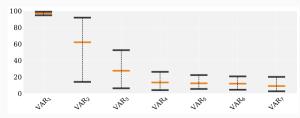
Target	Y	1	С	TFP	Y/h
Y	99.59	95.94	99.47	95.66	97.82
1	96.88	97.83	96.41	91.62	93.02
С	99.34	95.63	99.53	95.39	97.59
TFP	97.39	92.55	97.40	98.43	98.46
Y/h	98.52	93.36	98.67	97.70	99.25

Disconnect Between the Short Run and the Long Run

	и	Y	h	Ι	С	TFP	Y/h
$MBC shock \to Long Run$	20.83	4.64	5.45	5.16	4.13	4.09	3.88
LR TFP shock $ ightarrow$ Short Run	9.63	24.78	11.01	17.56	15.58	22.01	21.89

 $\mathsf{MBC}\xspace$ shock \rightarrow TFP at different horizons

MBC Shock: Main Properties and Prelim Lessons


- Explains bulk of BC volatility in key quantities
- Realistic business cycle, with u, h, Y, I, C moving in tandem
- Interchangeability: same IRFs regardless of target
 - support for parsimonious theories
- \approx 0 comovement with TFP at BC frequencies
 - rules out technology and financial, uncertainty or other shocks that map to TFP fluctuations
- \approx 0 footprint on the Long Run (and conversely LR has small footprint on BC)
 - echoes Blanchard & Quad (1989), Gal (1999)
 - hard to reconcile with Beaudry & Portier (2006)
- Disconnect from inflation (coming soon)

More on News Shocks: a Semi-structural Exercise

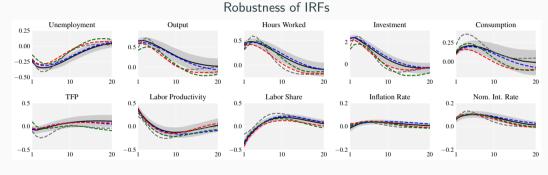
- Could it be that disconnect between SR and LR reflects offsetting effects of (i) expansionary news shocks and (ii) contractionary unanticipated shocks?
- Semi-structural exercise using our anatomy: recover these two shocks from reduced-form shocks that drive TFP in SR and LR
- Explore sensitivity to VAR size

More on News Shocks: a Semi-structural Exercise

- Could it be that disconnect between SR and LR reflects offsetting effects of (i) expansionary news shocks and (ii) contractionary unanticipated shocks?
- Semi-structural exercise using our anatomy: recover these two shocks from reduced-form shocks that drive TFP in SR and LR
- Explore sensitivity to VAR size

Variance Contribution of News Shock to Unemployment

 $\begin{aligned} \mathsf{VAR}_1 &= \{\mathsf{u},\mathsf{TFP}\}, \ \mathsf{VAR}_2 &= \mathsf{VAR}_1 \cup \{I\}, \ \mathsf{VAR}_3 &= \mathsf{VAR}_2 \cup \{Y, C, h\}, \ \mathsf{VAR}_4 &= \mathsf{Baseline} \ \mathsf{VAR}, \\ \mathsf{VAR}_5 &= \mathsf{VAR}_4 \cup \{SP500\}, \ \mathsf{VAR}_6 &= \mathsf{VAR}_5 \cup \{\mathsf{utilization}\}, \ \mathsf{VAR}_7 &= \mathsf{VAR}_6 \cup \{\mathsf{credit spread}\}. \end{aligned}$


Robust to

- More lags, VECM
- Varying the sample: Post vs Pre-Volcker era, w/o Great Recession/ZLB ...
- Adding variables: SP, P^{I}/P^{C} , financial variables ...
- ...
- Shifting to time domain rather than frequency domain

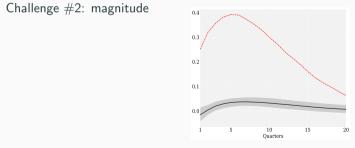
	и	Y	h	Ι	С	TFP	Y/h	Wh/Y	π	R
[1] Benchmark	73.71	58.51	47.72	62.09	20.38	5.86	23.91	27.02	6.96	22.27
[2] 4 lags	74.49	58.23	49.16	62.42	21.20	6.28	23.10	27.87	6.91	24.75
[3] VECM(1)	62.43	50.27	48.81	53.39	34.88	18.13	23.80	24.11	10.46	33.37
[4] VECM(2)	64.85	54.99	48.82	53.78	44.93	12.17	19.51	29.71	11.29	19.51
[5] 1948-2017	78.98	65.32	49.61	63.76	19.52	6.14	26.53	29.62	5.16	16.94
[6] 1960-2007	68.15	59.93	55.99	65.02	20.67	6.02	25.04	29.96	10.70	27.03
[7] pre-Volcker	74.23	56.75	43.21	61.50	23.43	6.82	30.69	28.43	17.45	27.60
[8] post-Volcker	73.39	50.37	50.65	58.44	20.23	7.94	18.46	23.01	4.65	15.05
[9] E×tended	59.33	50.61	45.50	52.91	21.83	4.81	26.69	27.82	12.12	28.99
[10] Financial	68.57	57.56	46.84	59.95	25.94	7.04	27.20	26.86	8.42	26.59
[11] Chained-Type C&I	81.41	59.04	45.96	61.52	17.36	4.03	20.35	20.19	5.82	23.17

Short-Run Variance Contributions

		Lon	g-Run	Variance	Contrib	utions				
	и	Y	h	Ι	С	TFP	Y/h	Wh/Y	π	R
[1] Benchmark	20.83	4.64	5.45	5.16	4.13	4.09	3.88	3.12	5.77	9.12
[2] 4 lags	18.22	4.39	5.19	4.94	3.98	3.66	3.67	2.93	5.44	9.81
[3] VECM(1)	12.97	14.07	8.06	14.07	14.07	14.07	14.07	13.91	7.50	13.82
[4] VECM(2)	23.29	16.70	9.22	16.70	16.70	16.70	16.70	10.55	8.66	8.66
[5] 1948-2017	31.82	7.44	4.43	7.80	6.66	7.20	6.72	4.85	3.37	4.91
[6] 1960-2007	11.85	4.17	8.83	4.84	3.96	4.11	5.29	5.63	12.48	21.09
[7] pre-Volcker	29.37	8.15	9.33	8.23	7.10	7.31	7.55	7.17	8.82	18.60
[8] post-Volcker	19.30	3.58	9.96	6.07	3.04	3.41	3.03	5.05	9.54	14.30
[9] Extended	9.49	4.52	3.96	4.58	4.43	4.39	4.59	4.36	7.03	11.23
[10] Financial	16.97	4.85	4.85	5.20	4.40	4.26	3.98	3.40	5.06	8.35
[11] Chained-Type C&I	13.94	3.79	5.24	3.73	3.63	3.67	3.20	3.88	7.41	11.91

Baseline; ____ VECM₁; ____ 1960-2007; ____ Extended; ____ Financial

MBC as a Demand Shock along a Philips curve?


Challenge #1: tiny signal-to-noise ratio (negligible R^2)

Target	и	π	Wh/Y
Unemployment	73.71	6.96	27.02
Inflation	4.24	83.03	1.96
Labor Share	26.01	4.03	85.59

MBC as a Demand Shock along a Philips curve?

Challenge #1: tiny signal-to-noise ratio (negligible R^2)

Target	и	π	Wh/Y
Unemployment	73.71	6.96	27.02
Inflation	4.24	83.03	1.96
Labor Share	26.01	4.03	85.59

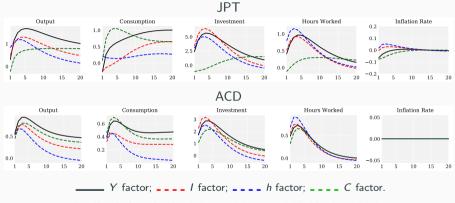
Actual inflation response; _ _ _ Predicted, textbook NKPC.

- Supports parsimonious models with dominant shock/propagation mechanism
- Rules out following candidates for that role
 - technology shocks
 - financial, uncertainty, or other shocks that map to TFP fluctuations
 - news about future TFP
 - inflationary demand shocks of textbook variety
- Remaining possibilities
 - demand shocks of DSGE variety (extremely flat Philips curve)
 - demand shocks without sticky prices/Philips curves
 - ...

Evaluating DSGE Models

Evaluating Two DSGE Models

- JPT (Justiniano, Primiceri & Tambalotti, 2010)
 - Same as CEE, SW (but estimation more suitable for our purposes)
 - Sticky prices, Sticky wages, Monetary Policy
 - Standard Bells and Whistles (Habit, Invt Adj Costs, Utilization)
 - Multiple shocks (but *I* shock is most important)


Evaluating Two DSGE Models

- JPT (Justiniano, Primiceri & Tambalotti, 2010)
 - Same as CEE, SW (but estimation more suitable for our purposes)
 - Sticky prices, Sticky wages, Monetary Policy
 - Standard Bells and Whistles (Habit, Invt Adj Costs, Utilization)
 - Multiple shocks (but I shock is most important)
- ACD (Angeletos, Collard & Dellas, 2018)
 - RBC with variation in "confidence"
 - waves of optimism and pessimism about SR economic outlook
 - example of literature on demand shocks without sticky prices/Philips curves

Evaluating Two DSGE Models

- JPT (Justiniano, Primiceri & Tambalotti, 2010)
 - Same as CEE, SW (but estimation more suitable for our purposes)
 - Sticky prices, Sticky wages, Monetary Policy
 - Standard Bells and Whistles (Habit, Invt Adj Costs, Utilization)
 - Multiple shocks (but I shock is most important)
- ACD (Angeletos, Collard & Dellas, 2018)
 - RBC with variation in "confidence"
 - waves of optimism and pessimism about SR economic outlook
 - example of literature on demand shocks without sticky prices/Philips curves
- Q: Do these models match MBC template form the data?
- A: Only second meets interchangeability property

JPT vs ACD: Interchangeability of MBC Facets

Note: "factors" refer to reduced-form shocks recovered via our approach, "shocks" to theoretical shocks.

MBC facets interchangeable in ACD model (as in data), less so in JPT \implies JPT/CEE/SW lacks the "right" propagation mechanism

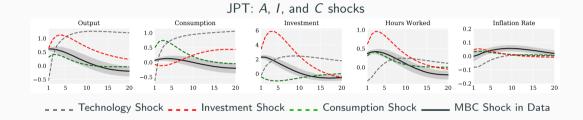
JPT and ACD: Interchangeability of MBC Facets

- Measure of Interchangeability: $D_v = \frac{1}{4} \sum_{f \in F} \sqrt{\sum_{k=0}^{20} (Z_{v,k}^f \overline{Z}_{v,k})^2}$
- Smaller numbers mean more interchangeability

	Y	С	1	h	Average
Data	0.47	0.52	1.28	0.28	0.64
JPT	2.90	2.21	6.29	1.35	3.19
ACD	0.64	0.56	1.56	0.22	0.75

• Ranking robust to re-estimating both models on the basis of our factors

JPT and ACD: Mapping Factors to Shocks

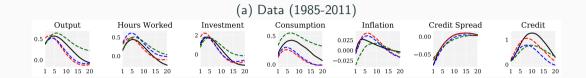

Contribution of Theoretical Shocks to Factors

	ACD	ACD				
Factor	A shock	/ shock	C shock	other	confidence	other
Y	31%	66%	1%	2%	88%	12%
1	0%	99%	0%	1%	80%	20%
С	33%	1%	65%	1%	93%	7%
h	0%	96%	2%	2%	99%	1%

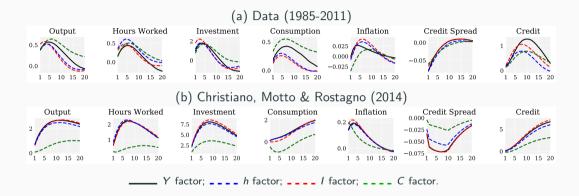
In JPT, "A shock" a permanent technology shock, "I shock" a transitory investment-specific demand shock, "C shock" a transitory discount-factor; "other" include monetary policy, price, wage markup shocks. In ACD, "beliefs" a transitory shock to higher-order beliefs; "other" include both transitory and permanent technology shocks, new shocks, and I and C shocks of JPT

- JPT and many other DSGE models: specialized shocks \Rightarrow poor interchangeability
- ACD: "shotgun" shock ⇒ great interchangeability

JPT and ACD: Theoretical Shocks vs MBC in Data


 \implies JPT (and many other models): No individual shock resembles the MBC shock in the data;

JPT and ACD: Theoretical Shocks vs MBC in Data



- \implies ACD: the confidence shock **does**
 - needless to say, this doesn't mean that ours is the "right" model
 - but illustrates what the current paradigm misses and what it takes to match MBC template

Bonus: Christiano, Motto & Rostagno (2014)

Bonus: Christiano, Motto & Rostagno (2014)

- Interchangeability: great in terms of Y, h, I, worse in terms of C
- Real-financial nexus: misses dynamics of credit spread and credit level

- Simple and flexible method for dissecting the macroeconomic dynamics
- Supports hypothesis of dominant propagation mechanism
- Provides an empirical template for it \Rightarrow looks like a non-inflationary AD shock
- Detects defects in propagation dynamics of DSGE models fitted to the data
- Perhaps resolution rests on accommodating demand-driven cycles even without sticky prices

Business-Cycle Moments

	Data	Experiment 1	Experiment 2
st.dev (y_t)	1.41	1.39	1.01
$\operatorname{st.dev}(\pi_t)$	0.21	0.30	0.25
$\operatorname{corr}(y_t, y_{t-1})$	0.92	0.91	0.89
$\operatorname{corr}(y_t, y_{t-2})$	0.70	0.67	0.61
$\operatorname{corr}(\pi_t,\pi_{t-1})$	0.91	0.89	0.86
$\operatorname{corr}(\pi_t,\pi_{t-2})$	0.67	0.61	0.49
$\operatorname{corr}(y_t, \pi_{t-2})$	-0.11	0.11	-0.08
$\operatorname{corr}(y_t, \pi_{t-1})$	0.06	0.18	-0.15
$\operatorname{corr}(y_t, \pi_t)$	0.22	0.22	-0.17
$\operatorname{corr}(y_t, \pi_{t+1})$	0.34	0.20	-0.13
$\operatorname{corr}(y_t, \pi_{t+2})$	0.43	0.13	-0.07

<u>Moments</u> obtained from bandpass-filtered series (6-32 Quarters). The two model-based experiments are those described in the text.

Technicalities

• Consider the VAR

$$A(L)X_t = u_t,$$

with $A(L) \equiv \sum_{\tau=0}^{p} A_{\tau} L^{\tau}$, A(0) = I and $\mathbb{E}(u_t u'_t) = \Sigma$;

- Orthogonalize the residuals as $u_t = S \varepsilon_t$ where $\mathbb{E}(\varepsilon_t \varepsilon'_t) = I$;
- Rewrite S as S = SQ, where S is the Cholesky decomposition of Σ, and Q is an orthonormal matrix (QQ' = I)

$$\Longrightarrow \varepsilon_t = S^{-1}u_t = Q'\widetilde{S}^{-1}u_t$$

 \implies Each ε_t is associated to a column of Q.

Technicalities

• Let us write the $VMA(\infty)$ representation of the VAR

 $X_t = B(L)u_t$

where $B(L) = A(L)^{-1}$ is an infinite matrix polynomial of the form $B(L) = \sum_{\tau=0}^{\infty} B_{\tau} L^{\tau}$. • Replace $u_t = \tilde{S}Q\varepsilon_t$.

$$X_t = C(L)Q\varepsilon_t = \Gamma(L)\varepsilon_t$$

where $C(L) = B(L)\widetilde{S}$ and $\Gamma(L) = C(L)Q$ are infinite matrix polynomials.

• The contribution of shock *j* to the spectral density of variable *k* over the frequency band $[\underline{\omega}, \overline{\omega}]$ is given by

$$\Upsilon(q;k,\underline{\omega},\overline{\omega}) \equiv \int_{\omega \in [\underline{\omega},\overline{\omega}]} \left(\overline{C^{[k]}(e^{-i\omega})q} \, C^{[k]}(e^{-i\omega})q \right) \mathrm{d}\omega = q' \left(\int_{\omega \in [\underline{\omega},\overline{\omega}]} \overline{C^{[k]}(e^{-i\omega})} \, C^{[k]}(e^{-i\omega}) \mathrm{d}\omega \right)$$

• q is then determined by maximizing the latter quantity \implies Standard eigenvalue problem.