Comparable Rank-Based Measures of Intergenerational Educational Mobility

Sam Asher, Johns Hopkins University / SAIS Paul Novosad, Dartmouth College Charlie Rafkin, MIT

March 5, 2020

Outline

Preview

Methods for IEM Estimation

Results: India

Results: United States

Preview of Presentation

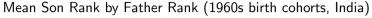
Broad Goal: Estimate upward mobility for population subgroups in contexts with poor or absent income data.

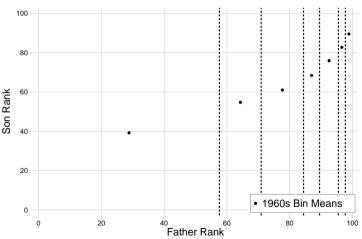
- Focus on educational mobility
- Propose a measure analogous to Chetty et al. (2014) absolute upward mobility (p_{25}) that works well with education data.

Narrow Goals:

- ▶ Generate a measure of educational mobility for the U.S. that is comparable to p_{25} ; compare with income mobility p_{25} .
- Measure upward mobility in India, comparing Scheduled Castes, Muslims, and non-minority groups over time.
- Compare upward educational mobility of minority groups across countries and contexts.

The Challenge: Coarse Education Bins





Preview of Methods

▶ Upward mobility can at best be partially identified, given binned education data.

We propose **Bottom Half Mobility** (μ_0^{50}) , which is an analog to p_{25} , but can be bounded much more tightly than p_{25} with binned data.

▶ BHM is the expected outcome of a child born to a parent in the bottom half of the parent education distribution.

Preview of Results

In the United States:

- ▶ Educational mobility (41.5) is almost identical to income mobility (42).
- ► Compared with income mobility, black-white gap in ed mobility is smaller for men; larger for women

In India:

- Low overall mobility
- Secular growth among SCs; comparable decline among Muslims
- Among men, Muslim mobility (29) is considerably lower than U.S. black mobility (38.5); Scheduled Caste mobility is similar (38)

Outline

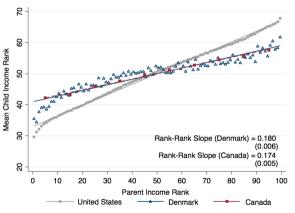
Preview

Methods for IEM Estimation

Results: India

Results: United States

Measurement of Mobility (Chetty et al. 2014)



- ► I will refer to this function as E(Y|X)
- Some common mobility measures: Absolute Upward Mobility (p_{25}) ; Rank-Rank Gradient (β)

Educational Mobility is Sometimes a Desirable Measure

- ▶ When matched parent-child income data is unavailable
 - lacktriangle Or unavailable at comparable ages ightarrow life cycle bias
- When matched parent-child income data is unreliable
 - e.g. How to attribute household income to coresident parents/children?
 - Very low formal female LFP / unremunerated work in India
- Education is a good proxy for lifetime income
 - Data on linked parent-child education are more widely available
 - Educational mobility may be independently of interest

Limitations of Conventional IEM Measures

Standard approach:

- ► Linear estimation of child education (rank) on father education (rank)
- ▶ High coefficient → Low mobility

Some weaknesses of this measure:

1. Pools information from top and bottom of rank distribution

Limitations of Conventional IEM Measures

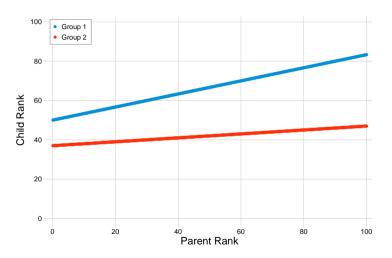
Standard approach:

- ► Linear estimation of child education (rank) on father education (rank)
- ▶ High coefficient → Low mobility

Some weaknesses of this measure:

- 1. Pools information from top and bottom of rank distribution
- 2. Not useful for subgroup analysis

Gradient Not Useful for Subgroup Analysis



Group 2 has a lower rank-rank gradient \rightarrow more mobile?

Limitations of Conventional Method for IM Estimation

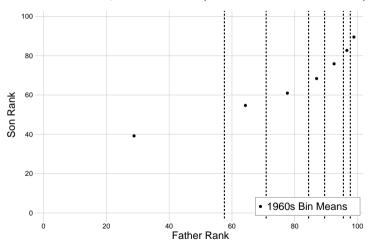
Standard approach:

- ► Linear estimation of child education (rank) on father education (rank)
- ► High coefficient → Low mobility

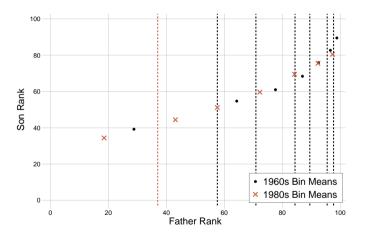
Some weaknesses of this measure:

- 1. Pools information from top and bottom of rank distribution
- 2. Not useful for subgroup analysis
- 3. Education is observed coarsely
 - ▶ In 1960s India, 57% of fathers, 82% of mothers report bottom-coded education
 - ▶ Internationally comparable datasets (e.g. IPUMS) use \leq 5 ed bins

Mean Son Rank by Father Rank (1960s birth cohorts, India)

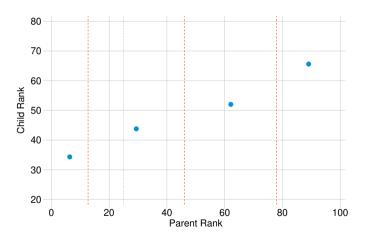


Comparing CEFs across time: India 1960s vs. 1980s



How should we compare the 1980 and 1960 birth cohorts?

U.S. Father-Child Mobility CEF



Other Approaches in the Recent Literature

- ► Card et al. (2018) on educational mobility (IEM) in the 1920s, also used by Derenoncourt (2019)
 - Definition: the 9th grade completion rate of children whose parents have 5–8 years of school
 - ▶ This is approximately $E(y > 50 | x \in [30, 70])$
 - ▶ Both compare this in 1980s with Chetty et al. measure E(y|x=25)

Other Approaches in the Recent Literature

- ► Card et al. (2018) on educational mobility (IEM) in the 1920s, also used by Derenoncourt (2019)
 - Definition: the 9th grade completion rate of children whose parents have 5–8 years of school
 - ▶ This is approximately $E(y > 50 | x \in [30, 70])$
 - ▶ Both compare this in 1980s with Chetty et al. measure E(y|x=25)
- ▶ Alesina et al. (2019) on IEM in Sub-Saharan Africa
 - Definition: Probability that a child completes primary school conditional on a parent who didn't
 - ▶ This is $E(y > 52 | x \in [0, 76])$ in Mozambique...
 - ▶ ... and $E(y > 18 | x \in [0, 42])$ in South Africa

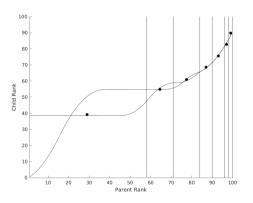
Other Approaches in the Recent Literature

- ► Card et al. (2018) on educational mobility (IEM) in the 1920s, also used by Derenoncourt (2019)
 - Definition: the 9th grade completion rate of children whose parents have 5–8 years of school
 - ▶ This is approximately $E(y > 50 | x \in [30, 70])$
 - ▶ Both compare this in 1980s with Chetty et al. measure E(y|x=25)
- ▶ Alesina et al. (2019) on IEM in Sub-Saharan Africa
 - ▶ Definition: Probability that a child completes primary school conditional on a parent who didn't
 - ▶ This is $E(y > 52 | x \in [0, 76])$ in Mozambique...
 - ... and $E(y > 18 | x \in [0, 42])$ in South Africa
- ▶ Our goal: calculate $E(y|x \in [a,b])$ for any a and b

Our Strategy: A Partial Identification Approach

- ▶ **Key Idea**: Under minimal assumptions, we can *bound* the set of feasible mobility functions
- ▶ **Goal**: Conditional expectation function of child rank given parent *education* percentile rank
 - Call this E(y|x=i)
 - ▶ From this function, we can calculate p_{25} , p_{75} , β , and other measures of mobility
- ▶ **Problem**: Education rank *X* is interval censored only observed in coarse bins
- ▶ Solution: Build on Manski and Tamer (2002)

Two Candidate Father-Son CEFs: India (1960s birth cohort)



Key question: What can we say about the latent conditional expectation function?

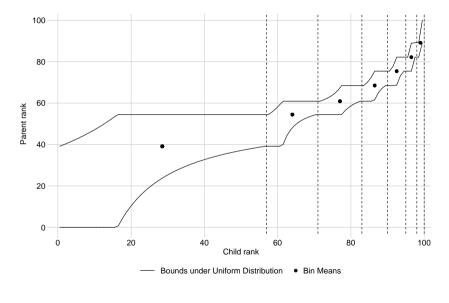
▶ Both of these CEFs Y(i) fit the data with zero MSE

Overview of Methods

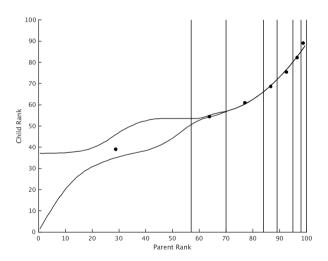
Assume:

- 1. There exists a latent education rank, observed in coarse intervals (Latent
- 2. Monotonicity: Expected child rank is weakly increasing in parent rank (Dardanoni 2012)
- 3. Child CEF has discrete jumps or kinks at major education boundaries only (if at all)
- 4. Child rank directly observed (loosened in paper)

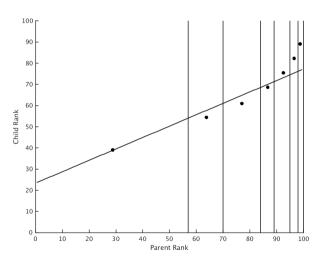
Bounds on E(Parent Rank — Child Rank), India 1960s



Constrained Curvature Bounds on E(Parent Rank — Child Rank), India 1960s

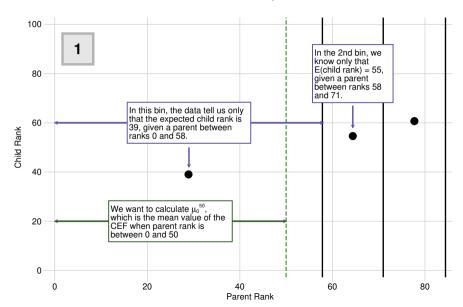


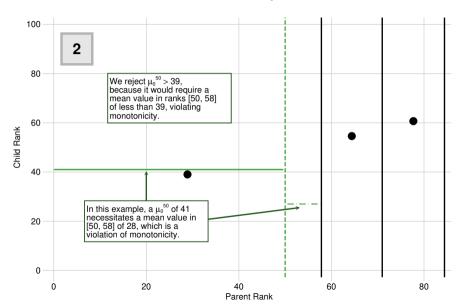
CEF Bounds under Interval Data: $\overline{C} = 0$

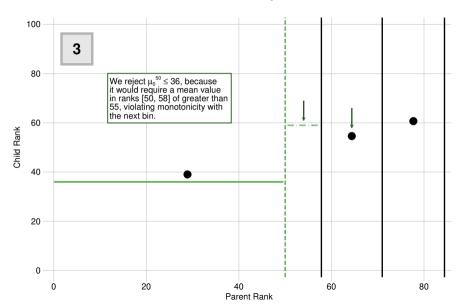


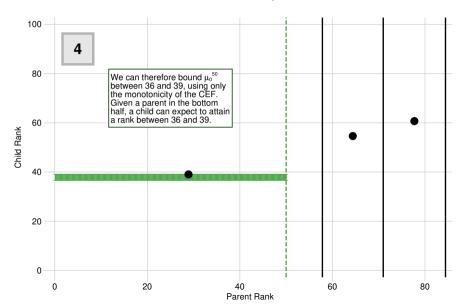
Our Measure: μ_a^b and Bottom Half Mobility

- ▶ The CEFs above show that E(Y|x=25) has bounds that are too wide to be informative.
- ▶ We propose an alternate function of the CEF: $\mu_a^b = E(Y|x \in (a,b))$
 - We can estimate this in arbitrary [a, b]
 - ho μ_0^{50} : expected child rank, given a parent in the bottom 50%
 - ▶ This is a close analog of p_{25} from Chetty et al.
 - $ightharpoonup p_{25}$ is the expected rank of a child born to the median parent in the bottom half
 - lacksquare μ_0^{50} is the expected rank of a child born to any parent in the bottom half
 - If the CEF is linear, $\mu_0^{50} = p_{25}$









Outline

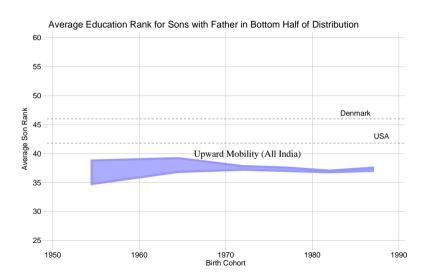
Preview

Methods for IEM Estimation

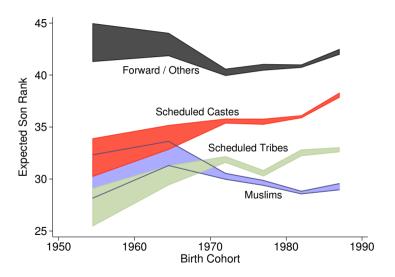
Results: India

Results: United States

Upward Mobility over Time: All India



Upward Mobility: By Subgroup



Outline

Preview

Methods for IEM Estimation

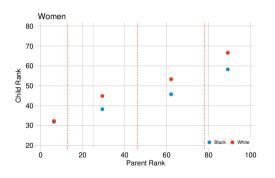
Results: India

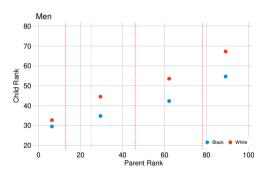
Results: United States

Data

- ▶ Data from Chetty, Hendren, Jones and Porter (2018)
- Source: Census 2000 and ACS 2005–2015
- ► Sample: Children age > 24
- ► Ed attainment in four categories:
 - Less than High School
 - ► High School
 - Some College
 - B.A. or Higher
- Focus here on black/white levels and gaps

Father-Child Education Rank CEFs (U.S. 2000–2015)





Cannot Tightly Bound p_{25} Without Significant Shape Assumptions

Bounds on p_{25} , U.S. Black women:

<i>p</i> ₂₅		
	Monotonicity only	[32, 42]
	Conservative Curvature Constraint	[32.5, 39.7]
	Aggressive Curvature Constraint	[34.9, 38.8]
	Linear Fit	[36.4, 36.4]
μ_0^{50}		
	Monotonicity only	[36.6, 37.2]
	Conservative Curvature Constraint	[36.6, 37.2]
	Aggressive Curvature Constraint	[36.7, 37.1]
	Linear Fit	[36.4, 36.4]

Bounds on Bottom Half Mobility (μ_0^{50}): U.S. 2000–2015

Midpoint of μ_0^{50} bounds (all of which have width < 0.5)

	Father-Daughter	Father-Son
U.S. Black	36.9	33.7
U.S. White	42.0	41.9

Compare with income p_{25} (Chetty et al. 2018):

	Father-Daughter	Father-Son
U.S. Black	41.1	38.6
U.S. White	39.6	48.6

Some Conclusions on Educational Mobility

- ▶ Using a measure directly comparable to Chetty et al. 2014's p_{25} , U.S. intergenerational education mobility is the same on average as intergenerational income mobility...
- but subgroup differences are substantial.
 - Relative to income mobility, educational mobility is higher for white women, and lower for men and black women
- ▶ International comparisons can be made:
 - Indian Muslim male mobility much lower than U.S. Black; comparable to Native Americans
 - ▶ Indian SC male mobility higher than U.S. Black

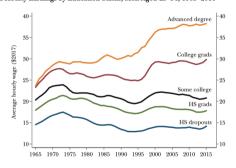
Other Applications of the Method: Less Educated Americans

Marriage Rates at Ages 40 to 44, 1980 to 2017

	Share of men married at ages 40 to 44			
- Group	1980	2000	2017	Change 1980–2000 (percentage points)
By Education				
<hs< td=""><td>80%</td><td>65%</td><td>60%</td><td>-16</td></hs<>	80%	65%	60%	-16
HS graduate	82%	62%	59%	-19
Some college	82%	67%	64%	-16
College	85%	77%	79%	-8

Coile and Duggan (JEP 2019)

Figure 1
Real Hourly Earnings by Education Status, Men Aged 25–54, 1965–2016



Binder and Bound (JEP 2019)

Conclusions: Widely Applicable Methods

- Our mobility measure is valid for comparison across subgroups, countries, and time
- Our partial identification approach may be useful in other contexts:
 - Changing fertility, marriage patterns by education
 - ▶ Expectation of *Y* given income when income is top-coded
 - Expectation of default given bond rating
 - CEFs with Likert Scales or other survey data
 - Monotonicity not required, but it will help

Public Stata/Matlab packages: https://github.com/paulnov/nra-bounds

THANK YOU!

Appendix

Comparison with Other Approaches

Other approaches to dealing with coarse data

- ▶ Focus on groups for whom education has not changed very much
- Assume linearity of CEF
 - Canonical approach, but:
 - Many fully supported CEFs are concave at bottom
 - Doesn't distinguish change at top from change at bottom
 - ▶ Identical to our approach with $\overline{C} = 0$
- Randomly reassign people across bins to get same bin sizes
 - Very widely used
 - Used in World Bank's 2018 flagship report on intergenerational mobility
 - Concludes Ethiopia has almost perfect upward mobility
 - Equivalent to assuming CEF is a function with zero slope and large steps right at education boundaries

Overview of Methods

- Assumption 1: There exists a latent education rank, observed in coarse intervals
- ► Arises out of the most standard human capital investment model (e.g. Card 1999, Card et al. 2018)
 - Schooling choice determined by heterogeneous cost and benefit shifters
 - lacktriangle Model suggests a continuous optimal level of schooling E for each individual
 - ▶ Individuals complete the last year with positive expected value
- High ranked individuals within bin would advance to next level if marginal cost/benefit shifted only a little
- ▶ Note: this is a descriptive exercise
 - We are not trying to estimate causal effects of parent education

Why are mu-bounds tighter?

Bounds on key mobility statistics $\overline{C} = 3$:

Gradient β : [0.45, 0.63]

Abs. Mobility p_{25} : [31.0, 46.0]

Interval Mobility μ_0^{50} : [36.5, 38.5]

Why are μ_0^{50} bounds so much tighter?

- ▶ Bin 1 has fathers in ranks 1-57:
 - \blacktriangleright μ_0^{57} is point identified we observe it in the data
- $\blacktriangleright \ \mu_0^X \ \text{is mean of} \ \mu_0^1, \mu_1^2, ..., \mu_{X-1}^X$
- ▶ Given μ_0^{57} and monotonicity, narrow set of possible values of μ_0^{50} .
- ▶ In paper: proof of analytical bounds for μ_a^b given interval data

