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Abstract

We develop a novel strategy to identify the relative importance of school and neighbor-

hood factors in determining school segregation. Using detailed student enrollment and

residential location data, our research design compares differences in student composi-

tion between adjacent Census blocks served by different schools to analogous differences

between those schools. Our findings indicate that neighborhood factors explain 66%

of racial segregation and 42% of economic segregation across schools, mattering even

more in urban areas, where school segregation has been especially acute. These find-
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1 Introduction

Widespread and rising socioeconomic inequality continues to be a pressing concern in the

United States and abroad. School segregation has received particular attention as a way to

address disparities in opportunity, with ample evidence that school segregation widens the

socioeconomic gap in achievement, attainment, college attendance, incarceration, health, and

earnings (Guryan 2004; Hanushek, Kain and Rivkin 2009; Johnson 2011; Billings, Deming

and Rockoff 2014).

Nearly three decades ago, following one of the most ambitious attempts of the twentieth

century to reduce inequality in the United States, the era of court-ordered desegregation came

to a close. Not surprisingly, school segregation rose substantially as a result (Clotfelter, Ladd

and Vigdor 2008; Lutz 2011). This reversal in policy was based, in no small part, on the belief

that school choice reforms (e.g., allowing for magnet and charter schools) and compensatory

redistribution of school resources could achieve a similar end without curtailing parental

schooling decisions.

In recent years, school choice has seen increasingly widespread adoption. At the same time,

federal programs (such as Title I), as well as many state and local initiatives, have helped

reduce the gap in spending across schools (Cascio and Reber 2013). Yet school segregation

has remained stubbornly pervasive, especially in urban areas (Orfield et al. 2014), where

school choice has been disproportionately embraced.

One potential reason why education policies have been ineffective at reducing school seg-

regation is that it may be partially determined by non-school factors. Intuitively, a house-

hold’s decision about where to reside depends on both school and neighborhood amenities,

the latter of which being less influenced by education policy, or not at all. Examples of neigh-

borhood amenities include the quality of parks, prevalence of walkable streets, age and style

of dwellings, and availability of nearby desirable venues (Jacobs 1961; Glaeser, Kolko and

Saiz 2001). Such features tend to vary particularly intensely across neighborhoods within

high density cities.

The potential for non-school (neighborhood) factors to affect school segregation is best

understood by way of example. Consider the case in which two otherwise similar schools
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differ according to some pre-existing neighborhood amenity. For instance, suppose the at-

tendance area of one school contains a picturesque lake, while the other does not. Further,

let more affluent families value the lake more highly than their less affluent counterparts. As

a result, the socioeconomic composition of the schools would then differ entirely because of

neighborhood factors, as the school near the lake would attract more affluent students.

The initial difference due to the lake may then beget additional differences. For instance,

the influx of affluent households could lead to further sorting of affluent households if they

prefer to live around similar households. It could also lead to gentrification, in which more

desirable venues (e.g., restaurants, retail shops), higher quality buildings and walkable streets

arise to cater to demand. Such amenities might spur even more sorting, which could result in

additional desirable amenities, and so on. Many other positive feedback loops like these could

arise, which result in increased segregation. Some may in turn lead to an interaction between

neighborhood and school factors: for example, the school near the lake might respond to the

influx of affluent households by altering its features to appeal to its student body, giving rise

to school differences that drive further sorting and set yet more positive feedback loops in

motion (in this case, attributable to school factors).

In this paper, we identify the relative importance of school and neighborhood factors in

determining socioeconomic segregation patterns across schools. Our research design builds

on the key insight from Black (1999) that houses located sufficiently close to each other but

served by different schools should share neighborhood features. Thus, with the exception of

differential school factors, households should be indifferent between residing within adjacent

blocks on opposite sides of the boundary separating the schools. We adapt this idea to

address our question of interest by comparing the socioeconomic composition between two

adjacent Census blocks assigned to different attendance areas. Any systematic difference

in the composition between those blocks must arise as a result of a disparity in the local

provision of school features that are valued heterogeneously along socioeconomic lines. We

draw upon this logic to estimate the degree to which the difference in composition between

two schools sharing a boundary (which depends on both school and neighborhood factors)

predicts the difference in composition between the two associated adjacent blocks at the

boundary (which depends only on school factors).
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Our approach sidesteps important endogeneity concerns raised in the literature. For

instance, a major issue noted by Bayer, Ferreira and McMillan (2007) in the context of the

boundary approach is that endogenous residential sorting due to original differences in school

amenities at the boundary may lead to further local differences in house prices. While, in

the standard context, this observation implies that one needs to control for these differences

in local amenities, the issue does not apply to our analysis. Indeed, under our approach,

any discontinuous change in student socioeconomic composition across the boundary is by

definition attributable to school factors.

Critically, such factors represent not only original differences in school features, but also

any differences that arise from household sorting in response to differences in those features.

These include changes via positive feedback loops that are initiated by school factors (anal-

ogous to the discussion above). Returning to our example, school differences that cause

more affluent neighbors to sort into the attendance area with the lake could cause a differ-

ential investment in housing across the boundary if affluent families take better care of their

houses. In turn, if more affluent families disproportionately value residing near houses that

are well cared for, then additional sorting would ensue, leading to further segregation. Un-

der our approach, all such effects would contribute to the school (rather than neighborhood)

component of school segregation.

Another strength of our approach is that it does not require the researcher to observe all

relevant school and neighborhood characteristics. Since it only uses information about the

socioeconomic composition of boundary blocks and schools, the approach is agnostic about

whether features are observed or unobserved, picking up both sources of variation. This is

particularly valuable as school features may be disproportionately observed by researchers,

relative to neighborhood features.

We implement our research design using rich data on the socioeconomic status of North

Carolina students, the schools that they attend and the blocks in which they reside. We

report results by student race and economic advantage across all school attendance area

boundaries in the state. We also stratify the results according to whether the schools of

interest are located in an urban area, and according to the grade level of the schools.

Our analysis reveals that neighborhood features explain about 66% of school racial seg-
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regation and 42% of school economic segregation. These percentages are larger in urban

areas (78% and 69%, respectively) than in non-urban areas (60% and 17%, respectively).

As mentioned, we hypothesize this occurs because the density of neighborhood features to

choose from is greater (relative to school features) in urban areas. Indeed, it is easy to

enumerate many non-school features that may differ from one block to the next in urban

areas, such as restaurants, coffee shops, museums, retail stores, green spaces, public spaces,

street width, through traffic, lot size, parking and public transit. In contrast, these features

are perceived to be more similar from one block to the next in non-urban areas, as families

residing in them (particularly those that are affluent) tend to use cars as their primary mode

of transportation. This may explain the larger gap by urban status for income compared to

race.

We also find that neighborhood features tend to play a smaller role in elementary grades

than in later grades. We speculate this is due to the fact that households with students in

elementary grades have a greater number of options to choose from regarding school features

(given smaller attendance areas) but face the same set of options in terms of neighborhood

features. In addition, the evidence indicates that school and neighborhood factors tend to

attract a disproportionate number of the same type of parents, suggesting that feedback

loops originally created by neighborhood factors intermingle with those created by school

factors, and vice-versa, leading to even more segregation. This positive correlation between

school and neighborhood factors is responsible for about half of the school segregation by

race and income.

Our findings suggest that, in the absence of schemes to break the connection between

residence and school by restricting parental school choice, education policymakers are con-

siderably more limited in their ability to affect school segregation than previously thought.

A nontrivial portion of school segregation is subject to neighborhood factors, particularly in

urban settings. Consequently, any attempt to lower segregation across schools will be more

successful with the engagement of urban planners, irrespective of the existing education

policy landscape. This is particularly true in the face of technological and environmental

upheaval (Glaeser 2011), which may grant planners more latitude in their future urban design

ambitions.
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The remainder of the paper is organized as follows: The next section discusses our identifi-

cation strategy, and Section 3 describes the data used in our analysis. Section 4 presents our

results, which are subsequently interpreted through the lens of a dynamic model in Section

5. Section 6 explores and rules out several potential issues with our analysis, and Section 7

then concludes.

2 Identification Strategy

To identify the role of school and neighborhood factors in explaining school segregation,

we exploit Census block-level variation at the boundary between two school attendance areas.

It is helpful to visualize our approach using Figure 1. Consider two blocks, k0 and k′0, which

are adjacent to each other but are served by different schools, s and s′, respectively. We

define πk as the proportion of students of a given type (e.g., white) in block k, and πs as the

analogous proportion for the entire attendance area served by school s. Our identification

strategy involves comparing how this proportion varies across the boundary at the block

level (from πk0 to πk′0) to how it varies at the attendance area level (from πs to πs′).
1 More

precisely, we consider the regression equation:

∆πk0,k′0
= α + β ·∆πs,s′ + error . (1)

where ∆πk0,k′0
:= πk0 − πk′0 and ∆πs,s′ := πs − πs′ .

The slope coefficient β in equation (1) is our parameter of interest. Below, we discuss the

assumptions under which β identifies the relative importance of school factors in explain-

ing school segregation. We begin by expressing these proportion differences in terms of a

component due to school factors (∆S) and one due to neighborhood factors (∆N):

∆πs,s′ = ∆Ss,s′ + ∆Ns,s′ , (2)

and, more generally, for any two blocks k and k′:

∆πk,k′ = ∆Sk,k′ + ∆Nk,k′ . (3)

1Block k1 depicted in Figure 1 is used later to correct for a potential source of bias in our approach.
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Figure 1: Visualizing Sources of Variation

Notes: This Figure illustrates a specific boundary of the many we observe in the data. The key variables of
interest are the proportions (π) of students who are white or economically advantaged for blocks k1, k0 and k′0,
along with the analogous proportions for the associated schools s and s′. Blocks k0 and k′0 are adjacent to each
other but located in different attendance areas. Blocks k1 and k0 are adjacent to each other and located in the
same attendance area s.

As discussed in Appendix A in the context of a discrete choice framework, ∆S and ∆N

have a straightforward interpretation.2 In the case of race, we have ∆S := (φwhite
S −φnon-white

S )·

(Ss− Ss′), where Ss denotes the school-amenity of school s and φτS denotes the preference of

group τ over that school amenity.3 For ∆Sk,k′ to be nonzero, it is not enough for blocks k and

k′ to have different school amenities; these school amenities must also be valued differently

by white and non-white students. Indeed, this difference in school amenities must attract a

2As Appendix B shows, the additive separability of equations (2) and (3) is not exact. However, it
provides a very good approximation for interpretation purposes.

3The corresponding quantity for income is ∆S := (φadvantaged
S − φdisadvantaged

S ) · (Ss − Ss′).
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disproportionate number of students of a given type for the racial composition between the

blocks to differ. Thus, whenever we use the expression “school factors,” we are referring to

the combination of school amenities and preferences for those amenities. The expression for

“neighborhood factors” (∆N) is defined analogously.

Our goal is to identify the relative role of ∆Ss,s′ and ∆Ns,s′ in explaining var(∆πs,s′) in

equation (2), where the variance is calculated across all boundaries contained in the sample.

We decompose var(∆πs,s′) as

var(∆πs,s′) = var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′) . (4)

Note that the covariance term, cov(∆Ss,s′ ,∆Ns,s′), may play an important role in explaining

school segregation. It will be positive if school amenities that attract a disproportionate

number of students of a given type are located near neighborhood amenities that attract a

disproportionate number of students of that same type.

The relative role of ∆Ss,s′ in explaining school segregation is defined as

ΩS :=
var(∆Ss,s′) + cov(∆Ss,s′ ,∆Ns,s′)

var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′)
, (5)

and the relative role of ∆Ns,s′ in explaining school segregation is thus given by ΩN := 1−ΩS.4

The ordinary least squares estimator of β in equation (1) is our estimator of ΩS. It can be

written as:5

βols =
cov(∆Ss,s′ + ∆Ns,s′ ,∆Sk0,k′0

+ ∆Nk0,k′0
)

var(∆Ss,s′) + var(∆Ns,s′) + 2cov(∆Ss,s′ ,∆Ns,s′)
. (6)

To connect these quantities, we write:

∆Sk0,k′0
= ∆Ss,s′ + ∆νk0,k′0

, (7)

so that ∆Sk0,k′0
is equal to ∆Ss,s′ for the corresponding attendance areas with some error.

We invoke the following identifying assumptions:

Assumption 1. cov(∆Ss,s′ + ∆Ns,s′ ,∆νk0,k′0
) = 0, where ∆νk0,k′0

is defined in equation (7).

4Note that ΩS attributes half of the covariance term to each factor. In Section 5 we show how we can
also identify a more intuitive parameter that allows for the relative attribution of the covariance term to
differ depending on the size of var(∆Ss,s′) with respect to var(∆Ns,s′).

5This equation is obtained by noting that βols =
cov(∆πs,s′ ,∆πk0,k′

0
)

var(∆πs,s′ )
.
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Assumption 1 states that the difference in school amenities at the boundary is representative

of the difference in school amenities between the two attendance areas up to a random error.

Assumption 2. cov(∆πs,s′ ,∆Nk0,k′0
) = 0.

Assumption 2 states that the (highly local) difference in neighborhood factors between two

adjacent blocks, ∆Nk0,k′0
, is uncorrelated with the (non-local) school-level difference in stu-

dent composition, ∆πs,s′ .

Assumptions 1 and 2 allow us to simplify equation (6):

βols =
cov(∆Ss,s′ + ∆Ns,s′ ,∆Sk0,k′0

)

var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′)

=
var(∆Ss,s′) + cov(∆Ss,s′ ,∆Ns,s′)

var(∆Ss,s′) + var(∆Ns,s′) + 2 · cov(∆Ss,s′ ,∆Ns,s′)

= ΩS. (8)

Intuitively, as one moves across the boundary from k0 in attendance area s to k′0 in attendance

area s′, only school factors can systematically change the values of both πs and πk0 . Thus, the

slope coefficient from the regression in equation (1) represents the degree to which segregation

across schools is explained by school factors.

2.1 Relaxing Assumption 2

While Assumption 2 may seem similar to the one often invoked in the boundary fixed effects

literature (see Black 1999, for instance), that is not the case. To see why, consider two blocks

k0 and k′0 with initial differences in school amenities. Because of this initial difference, people

may sort, leading to further differences between the blocks (e.g., different neighbors, different

investments in housing). Under the boundary fixed effects approach, one is concerned with

identifying the effect on house prices of the initial difference in school features separately

from further sorting-based differences. In contrast, under our approach, it is unnecessary

to separately identify these two sources, as they are both attributable to school factors.

More formally, anything that affects ∆πk0,k′0
because of the difference in school amenities is

attributed to ∆Ss,s′ , and not to ∆Nk0,k′0
. This rules out concerns related to post-determined
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differences at the boundary, but concerns may still abound with respect to pre-determined

differences driving our results, such as major highways or rivers coinciding with a boundary.

Below, we relax this assumption to accommodate some of these concerns, and Section 6.1.1

rules out remaining issues in detail.

To better understand Assumption 2, consider the example depicted in Figure 2. For

simplicity, we interpret the figure in terms of race, but the intuition is analogous for income.

Each panel depicts a unique boundary along with its two associated attendance areas.6

In the middle of each panel, we depict the boundary, with attendance area s to its left

and attendance area s′ to its right. For simplicity, we consider examples of boundaries for

which school factors do not vary within attendance area, trivially satisfying Assumption 1.

However, doing so is not necessary. Neighborhood factors vary by block (as illustrated by

the curve denoted as Nk in each panel), and they can vary in unrestricted ways depending

on the specific amenities distributed across the blocks in the two attendance areas as well as

white and non-white preferences for those amenities.7 We also depict Ns and Ns′ as dashed

lines in each panel, representing the weighted average of all Nk within each attendance area.

For simplicity, assume that our sample consists of only the two boundaries depicted in

Figure 2. From the figure, note that ∆Nk0,k′0
= Nk0−Nk′0

is negative in Panel (a) and positive

in Panel (b) (this is inferred by inspecting the slope of the Nk curve at the boundary in each

case), which implies that cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk0,k′0
) = 0. Departing from this simple

example, it is clear that this assumption might fail to hold using actual data: indeed, the

slope at the boundary for every boundary must be just so in order for the covariance to

equal zero. In general, cov(∆Ns,s′ ,∆Nk0,k′0
) is likely to be positive (as is the case for Panel

(a)), and cov(∆Ss,s′ + ∆Ns,s′ ,∆Nk0,k′0
) will also be positive if cov(∆Ss,s′ ,∆Ns,s′) > 0.8

To relax Assumption 2, we appeal to an alternative block-level comparison, which is also

6Unless stated otherwise, we use “boundary” as shorthand to denote a geographical dividing line between
two schools that is associated with a specific block pair (k0, k

′
0). Indeed, in the data, we observe many

different boundaries for the same pair of attendance school areas (s, s′).
7Distance from the amenity may play an important role for these heterogeneous preferences too. For

instance, the Nk curve in Panel (a) is consistent with a situation in which there exists only one salient
neighborhood amenity (e.g., a park) located in the far right of attendance area s′ and whites prefer living
close to it more than non-whites do, though at slightly varying degrees depending on the distance.

8Note that cov(∆Ss,s′ ,∆Ns,s′) > 0 in this example: attendance areas with school amenities that attract
a disproportionate number of white students tend to also feature neighborhood amenities that attract a
disproportionate number of white students, and vice-versa.
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(a) Boundary 1

Nk

Ns

Ns′

Ss′

Ss

k1k0k
′
0

s s′

Boundary

(b) Boundary 2

Figure 2: Understanding Assumptions 2 and 2 ′

Notes: This figure shows, for two different boundaries (each depicted in one of the panels), how school and neigh-
borhood factors vary across blocks. In the middle of each panel, we depict the boundary separating attendance
areas s and s′. The horizontal axis represents the blocks in both attendance areas, and the vertical axis represents
the school and neighborhood factors, S and N . The dashed lines represent the weighted average of Nk across all
blocks within the attendance area, denoted as Ns and Ns′ depending on the attendance area. We highlight three
blocks closest to the boundary: k1, k0 and k′0, as also described in Figure 1.

highlighted in Figure 2. Consider block k1, which is adjacent to block k0 and is served

by the same school s. Using this block pair, we can construct an additional block-level

difference in proportion: ∆πk1,k0 . This difference does not systematically depend on the

school component, since both blocks are contained within the same attendance area. Thus,

the ordinary least squares estimator of the slope coefficient of the analogous regression to

equation (1) (by regressing ∆πk1,k0 on ∆πs,s′) is:

βplacebo =
cov(∆πs,s′ ,∆Nk1,k0)

var(∆Ss,s′) + var(∆Ns,s′) + 2cov(∆Ss,s′ ,∆Ns,s′)
. (9)

We can substitute Assumption 2 for a more general condition:

Assumption 2 ′. cov(∆πs,s′ ,∆Nk0,k′0
) = cov(∆πs,s′ ,∆Nk1,k0)

A sufficient condition for this assumption to hold is for N to vary around the boundary in a

linear fashion from k1 to k′0 (i.e., in Figure 2, the portion of the Nk curve from k1 to k0 must

have the same slope as the portion of the Nk curve from k0 to k′0). Given the close proximity

of blocks k1 and k′0 (with only block k0 separating them), we view this local approximation as

plausible. One potential issue, which we consider in detail in Section 6.1.1, is that attendance

10



boundaries may separate neighborhoods beyond their school allocation (e.g., due to a major

highway or river). In that case, the slope from k1 to k0 may be systematically lower than

the slope from k0 to k′0, leading us to attribute to S some of the effect that is due to N . In

practice, we find no evidence that this occurs in enough boundaries for that to be a concern.

Under Assumptions 1 and 2 ′, we form the corrected estimator of ΩS as:

β̃ := βols − βplacebo. (10)

Remark 1. In order for Assumption 2 ′ to be valid, it is crucial to use blocks (instead of larger

geographic areas) as the unit of our analysis, as we need k1 and k′0 to be sufficiently close to

each other. However, choosing blocks raises a potential concern. In practice, our estimate of

∆πk,k′ may differ from the population parameter due to the small size of blocks. For instance,

if the population proportion is 70% and we observe only one student in the block, the block

proportion can only take the value 0 or 1, rather than 0.7. Our approach discussed above is

designed to circumvent this potential issue. Let the measurement error in block k be defined as

εk. Assumption 2 can be stated instead as cov(∆πs,s′ ,∆Nk0,k′0
+∆εk0,k′0

) = 0, and Assumption

2 ′ can be stated instead as cov(∆πs,s′ ,∆Nk1,k0 + ∆εk1,k0) = cov(∆πs,s′ ,∆Nk0,k′0
+ ∆εk0,k′0

).

Measurement error does not diminish the plausibility of these assumptions, as this noise is

likely to be random. We discuss this point further in Section 6.1.3.

2.2 What is contained in ∆S, ∆N and cov(∆S,∆N)?

Recall that ∆Sk0,k′0
is an index of whatever amenities vary discontinuously at the boundary,

and ∆Nk0,k′0
is an index of whatever amenities do not vary discontinuously at the boundary

(both mediated by differential preferences between household types). Under Assumption 1,

∆Sk0,k′0
is representative of ∆Ss,s′ , which implies that ∆Ss′,s′ represents the discontinuity at

the boundary up to an error that is random across boundaries. We now make explicit which

elements are contained in ∆S, ∆N and cov(∆S,∆N). To do so, we now expand upon our

discussion in the introduction, by considering some concrete examples.9

Suppose that, for some initial period, two adjacent attendance areas differ from each other

only because attendance area s′ is more elevated and thus provides a better view of the city

9For additional insight, Section 5 provides a dynamic model to help formalize the ideas we discuss here.
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on average. If white households value a better view more than their non-white counterparts,

then sorting ensues, leading white students to disproportionately reside in attendance area

s′. This sorting would be attributable to ∆N under our framework. It could also give rise to

follow-on responses independently of any school-related changes, which would be classified

under ∆N as well. Some non-mutually exclusive examples: (a) white households may prefer

to reside near other white households; (b) white households may invest more in their house

(e.g., mowing lawns, buying a new roof); and (c) attendance area s′ may endogenously adjust

its features differently than attendance area s to cater to those residing nearby (e.g., venues,

greenery, types of buildings, sidewalks).

The initial sorting could also lead schools s and s′ to differentially cater to their new

student bodies and parents, potentially resulting in further (now school-induced) sorting of

white (non-white) parents or would-be parents to attendance area s′ (s). If so, this would

lead to a discontinuity in the proportion of students who are white at the boundary, as in

Figure 5. The actual discontinuity we observe includes not only the sorting due to this initial

difference in school features, but also any further sorting arising from several overlapping

positive feedback loop mechanisms, analogous to the examples given for ∆N above. Non-

mutually exclusive examples (which would intensify the discontinuity at the boundary even

further): (a’) white families may prefer to attend schools with predominantly white students;

(b’) following the sorting due to the initial difference in school quality, if white families

invest more in their house, then the ensuing housing quality differential across the boundary

would attract a disproportionate number of white households; and (c’) sorting from initial

differences between the schools could beget further differential school catering and sorting.

To summarize, all complementary positive feedback loops, such as those contained in the

preceding examples, are included in ∆S as long as they manifest as discontinuities in the

racial composition at the boundary.

It is also informative to consider a few examples of changes partly induced by ∆S that do

not show up as a discontinuity at the boundary. These are rightly attributed in our frame-

work to the covariance term between ∆S and ∆N , since they simultaneously intermingle

in positive feedback loops that arise from both ∆S and ∆N . A couple of examples: (i)

there is a park in the center of attendance area s′, and white families sorting because of
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school features disproportionately sort towards the center of attendance area s′, relative to

the boundary (perhaps because they disproportionately value both sending their kids to a

predominantly white school and residing near a park relative to simply sending their kids

to such a school); and (ii) certain venues (e.g., coffee shops, grocery stores, yoga studios)

may decide to locate in the middle of attendance area s′ in order to cater to their clientele

(predominantly white families who sorted because of S in the first place), and additional

white households may disproportionately want to locate close to such venues, leading yet

more venues to locate there.

Note that, given the preceding examples, there is no reason to expect a further disconti-

nuity at the boundary. To see why, consider the second example in which attendance area s′

gentrifies due to initial differences in school amenities. Provided the boundary is sufficiently

distant from the location of the attendance area where the venues are located, there is little

difference in the distance to the venues from block k′0 versus block k0.10 Thus, the discon-

tinuity at the boundary will not account for the full difference in racial composition across

schools initiated by ∆S. This is why our framework incorporates the correlation between

the discontinuity at the boundary (∆πk0,k′0
) and the variation across the two corresponding

attendance areas (∆πs,s′). The portion of the S-initiated difference that does not show up

at the boundary but is correlated with the difference between the attendance areas, ∆πs,s′ ,

is part of the covariance term. Of course, there are analogous examples initiated by ∆N

rather than by ∆S, which are equally attributed to the covariance term.

3 Data

To determine the extent to which neighborhood factors drive school segregation, we draw

upon rich administrative data provided by the North Carolina Education Research Data

Center (NCERDC), focusing on the 2011-12 school year. The dataset contains detailed

longitudinal information about all third through twelfth grade students who attend North

10Incidentally, if there are barriers at the boundary that make the trip for those residing in block k0

systematically more difficult than for those residing in block k′0, then our approach correctly attributes this
difference to S. However, as discussed in Section 6.1.1, we find no evidence that boundaries provide such
stark neighborhood divisions in our data.
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Carolina public schools, including their grade, race, an indicator for economic advantage,11

the school they attend and, critically for our research design, their Census block of res-

idence.12 While students are classified as being white, black, Hispanic, Asian, American

Indian or of mixed race, we choose to concentrate on white versus non-white students for

our analysis of segregation along racial lines. We use the indicator of economic advantage to

investigate segregation along economic lines.

The data also include important information about each public school, such as its grade

span (i.e., the lowest and highest grade served) and location (both a latitude-longitude

combination and urban-suburban-rural classification). Crucial to our research design, each

student is connected to both a school and a Census block of residence. This feature of the

data allows us to discern the location of school boundaries by identifying blocks that are

adjacent to each other but inferred (based on enrollment data) to be served by different

schools.13 It also allows us to determine the share of students within each school and block

that are of a particular type (e.g., white or economically advantaged).

With these data in hand, we are able to implement our research design for different student

subsets of interest. Using the information about each student’s grade and cross checking

against school grade spans, we classify schools serving any third through fifth grade students

as elementary schools, those serving any sixth through eighth grade students as middle

schools and those serving any ninth through twelfth grade students as secondary schools,

presenting our results for each category. We also subdivide our results according to whether

schools serve urban or non-urban areas (i.e., suburban or rural). Our final estimation sample

is constructed by removing all magnet and charter schools, which do not strictly adhere to

11We define a student as economically advantaged if the student’s household income is above 185% of the
federal poverty threshold, which is recorded in our data as not qualifying for a reduced-price lunch at school.

12The Census block represents a very fine level of geography, each encompassing between one and a few
hundred residents (with very large numbers usually due to apartment buildings in urban centers). For the
2011-12 school year, we know the Census block of residence for 93% of public school students. The match
rate is fairly uniform across grade spans, with coverage ranging from 91% for elementary grades to 94% for
secondary grades. We obtained data at the block level from a previously available version of the standard
NCERDC repository. The data has since been updated to only include block groups, but should be available
via custom request.

13Given that we do not possess independent geographical information about attendance area boundaries
(and the way in which they may divide some blocks), we restrict our analysis to blocks for which all students
residing within them are served by the same school. Depending on the grade level, this covers between 54%
and 69% of all blocks.
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Table 1: Descriptive Statistics

Elementary Middle Secondary
Boundary School Boundary School Boundary School

Prop. white 0.59 0.53 0.57 0.54 0.59 0.55

(0.46) (0.28) (0.46) (0.27) (0.46) (0.26)

Prop. black 0.23 0.25 0.26 0.26 0.26 0.29

(0.39) (0.23) (0.41) (0.22) (0.41) (0.24)

Prop. economically advantaged 0.42 0.40 0.43 0.41 0.50 0.47

(0.45) (0.23) (0.45) (0.20) (0.46) (0.19)

N - Students 34,001 266,720 29,426 264,295 33,619 368,974

All schools

N - Schools 1,093 471 518

Avg. Students per school 244 561 712

Avg. Blocks per school 93 205 256

N - Boundary block pairs 12,661 9,256 9,700

Urban schools

N - schools 246 92 100

Avg. Students per school 259 669 836

Avg. Blocks per school 100 245 315

N - Boundary block pairs 2,105 1,611 1,469

Notes: Standard deviations in parentheses. “Elementary,” “Middle” and “Secondary” refer to schools
serving third through fifth grade students, sixth through eighth grade students and ninth through
twelfth grade students, respectively. “Urban schools” refers to the sample of school pairs in which
both schools are located in urban areas.

the attendance area boundary system that we exploit.14 Thus, socioeconomic proportions

at the school and block level are calculated using only traditional public school students.

Descriptive statistics for our proportions of interest (i.e., white and economically advan-

taged) are reported in Table 1, along with information about the relevant dimensions (i.e.,

local boundary level, school level, and grade level). For each school-grade level, the average

proportions of white and economically advantaged students are reasonably similar across

boundary blocks and across school attendance areas and there is a large degree of variation

across both boundary blocks and schools (though, as one might expect, the variance is sub-

stantially higher for blocks since they are geographically smaller). Regardless of the level,

the proportion of black students tends to be about half of the non-white proportion, with

14In our data, magnet and charter schools account for about 5% and 3% of total public school enrollment,
respectively. While charter schools in North Carolina place no geographical restrictions on applicants (other
than requiring state residency), many magnet schools rely on a hybrid admission process that grants students
residing within a priority/walk zone the right to enroll before any lottery applicants are considered. As we do
not possess lottery information, we abstract from magnet and charter schools in our analysis. After dropping
them and recognizing that North Carolina does not feature open enrollment for the period of interest, our
sample contains only boundaries which are binding for schooling allocations.
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the remainder consisting mostly of Hispanic students. The total number of students in our

sample is 266,720, 264,295 and 368,974 at the elementary, middle and high school levels, re-

spectively, and the number of students residing next to an attendance area boundary ranges

from 9 to 13 percent of the total. The number of schools serving elementary, middle and

secondary grades is 1,093, 471 and 518, respectively, approximately twenty percent of which

are located in an urban area.15 On a per-school basis, the average number of students is 244,

561 and 712, while the average number of blocks is 93, 205 and 256 (each corresponding to

elementary, middle and high schools, respectively). In terms of our unit of analysis, there are

between 9,256 and 12,661 boundary block pairs depending on the grade level, approximately

16% of which are located in urban areas.

4 Results

In this section, we implement the approach detailed in Section 2 to estimate the rela-

tive role of school features in explaining school segregation, both in terms of race (white

vs. non-white students: βwhiteols ) and income (economically advantaged vs. economically

disadvantaged students: βadvols ).

4.1 All Schools

Our main results for race are presented in Panel (a) of Figure 3. The horizontal axis mea-

sures the difference in the proportions of white students between schools s and s′ (∆πwhites,s′ ),

while the vertical axis measures the difference in the proportions of white students between

boundary blocks k0 and k′0 (∆πwhitek0,k′0
). The scatter plot shows averages of ∆πwhitek0,k′0

across all

boundaries with similar values of ∆πwhites,s′ (in increments of 2.5 percentage points). The line

represents the ordinary least squares fit of the disaggregated regression at the boundary block

pair level. The corresponding regression slope estimate and standard error (in parenthesis)

are reported in the top right-hand portion of the panel. Panel (a) of Figure 3 suggests that

45% of racial school segregation is due to school factors. Panel (a) of Figure 4 reports the

15The urban schools in our sample are located across about twenty cities in the state, with over 80% of the
schools located in (by descending share) Charlotte, Fayetteville, Greensboro, Raleigh, Durham, Winston-
Salem, Burlington, and Wilmington.
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analogous results for income, revealing that 57% of economic school segregation is due to

school factors.

(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 3: The Relative Role of School Factors on School Segregation by Race

Notes: In the left panel, we relate each pair of adjacent blocks k0 and k′0 in different attendance areas to their
corresponding assigned school pair s and s′. The horizontal axis measures the difference in the proportion of
students in school s who are white relative to the analogous proportion in school s′. The vertical axis measures
the difference in the proportion of students in block k0 who are white relative to the analogous proportion in block
k′0. The scatter plot represents averages of the variable in the vertical axis across all block pairs with similar values
of the variable in the horizontal axis (in increments of 2.5 percentage points). The line represents the ordinary
least squares fit of the disaggregated regression at the block-pair level. The regression slope estimate along with
its standard error (in parenthesis) are also shown. The right panel shows an analogous plot, but with a different
vertical axis: instead of considering blocks k0 and k′0, it considers blocks k1 and k0. These results were obtained
from a sample of 31,617 block pairs along with their associated schools.

(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 4: The Relative Role of School Factors on School Segregation by
Income

Notes: See the notes for Figure 3, which presents the analogous results by race.
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One potential issue with the estimates from Panel (a) is that they may reflect highly local

variation in neighborhood features, in addition to school features. This concerns Assumption

2, which states that no systematic change in neighborhood features across adjacent blocks

should exist. If it is violated, then the results from Panel (a) would represent an upper bound

of the true value (see discussion pertaining to Figure 2). We use the “placebo” estimates

from Panel (b) of the respective figures to provide a correction for the estimates in Panel (a).

In particular, we construct a plot that is similar to Panel (a) but uses a different vertical axis:

rather than considering the difference between adjacent blocks k0 and k′0 (which are served

by different schools), we calculate the difference between adjacent blocks k1 and k0 (which

are served by the same school). The placebo estimates for race and income are both equal to

3%. Thus, our corrected estimates for the relative role of school factors in explaining racial

and economic school segregation are respectively 42% (= 45− 3) and 54% (= 57− 3). This

leads us to conclude that neighborhood factors play a key role in both racial and economic

segregation across schools.

4.2 Urban Status

We carry out our analysis separately for school pairs located in urban and non-urban areas,

the estimates for which are reported in Table 2 alongside the overall estimates discussed

above. We find that school factors matter substantially less in urban areas: they account for

35% (= 37− 2) of racial segregation in urban areas and 45% (= 51− 6) of racial segregation

in non-urban areas. The analogous estimates for economic segregation are 40% (= 42−2) for

urban areas and 69% (= 71−2) for non-urban areas. (All pairwise differences are significant

at the 1% level.)

4.3 Grade Level

We also report our results by grade level, presenting the associated results in Table 3. The

columns “Elementary grades,” “Middle grades” and “Secondary grades” restrict attention

to students enrolled in grades 3 through 5, 6 through 8, and 9 through 12, respectively.

The estimates indicate that the importance of school features in explaining racial school
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Table 2: The Relative Role of School Factors on School Segregation

All Schools Urban Schools Non-Urban Schools

βols βplacebo βols βplacebo βols βplacebo

Race 0.45∗∗∗ 0.03∗ 0.37∗∗∗ 0.02 0.51∗∗∗ 0.06∗∗∗

(0.01) (0.01) (0.03) (0.03) (0.02) (0.02)

Income 0.57∗∗∗ 0.03∗ 0.42∗∗∗ 0.02 0.71∗∗∗ 0.02

(0.02) (0.02) (0.03) (0.03) (0.02) (0.03)

Observations 31,617 5,185 21,002

Notes: “All Schools” refers to the full sample of school pairs. “Urban Schools” refers to
the sample of school pairs in which both schools are located in urban areas, and “Non-
Urban Schools” refers to the sample of school pairs in which both schools are located
in a non-urban area. βols is defined in equation (8), and βplacebo is defined in equation
(9). “Observations” refers to the number of unique observations used in the regressions.
Standard errors, shown in parentheses, are corrected for heteroskedasticity and clustered
by attendance area pair, (s, s′). *** denotes significance at the 1% level; and * denotes
significance at the 10% level.

segregation is monotonically decreasing in the grade level, with such features accounting

for 51% (=53-2), 42% (=45-3) and 32% (=35-3) of the variation in the elementary, middle

and high grades, respectively. The analogous income results are 60%, 47% and 55%. (All

pairwise differences are significant at the 1% level.)

Table 3: The Relative Role of School Factors on School Segregation by Grade

Elementary Grades Middle Grades Secondary Grades

βols βplacebo βols βplacebo βols βplacebo

Race 0.53∗∗∗ 0.02 0.45∗∗∗ 0.03 0.35∗∗∗ 0.03

(0.02) (0.02) (0.03) (0.03) (0.03) (0.02)

Income 0.62∗∗∗ 0.02 0.50∗∗∗ 0.03 0.58∗∗∗ 0.03

(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

Observations 12,661 9,256 9,700

Notes: “All Schools” refers to the full sample of school pairs. “Elementary Grades,”
“Middle Grades” and “Secondary Grades” refers to the sample of school pairs that serve
students in grades 3 through 5, 6 through 8, and 9 through 12, respectively. βols is defined
in equation (8), and βplacebo is defined in equation (9). “Observations” refers to the number
of unique observations used in the regressions. Standard errors, shown in parentheses, are
corrected for heteroskedasticity and clustered by attendance area pair, (s, s′). *** denotes
significance at the 1% level.

5 Interpretation

In this section we present a simple dynamic model that explores how school segregation

emerges. We interpret our findings through the lens of the model, and then provide context
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with respect to policies that move or eliminate school attendance boundaries.

5.1 Dynamic Model

As discussed, both school and neighborhood amenities may differ across two attendance

areas s and s′, which would lead to segregation. It is useful to consider how such differences

emerge in the first place. Initially (in period 0), suppose the two adjacent attendance areas

differ due to a small set of amenities. These amenities are considered to be “exogenous” for

our purposes, as they are not of primary interest but rather the seed of the data generating

process. They may be inherent, for example, from topographical differences, such as the

distance to a river, the degree to which the land is fertile or the elevation of the terrain.

As suggested by these examples, we assume that the initial differences are due entirely to

non-school factors. More precisely, the difference for each pair of attendance areas s and

s′ is modeled as arising from the shock ∆η0 := ∆ηN0 , entirely attributable to neighborhood

features.16

People then engage in sorting based on these original differences, which beget further dif-

ferences. We denote these additional sorting-based differences in amenities as “endogenous.”

While some of these endogenous amenities change mechanically with socioeconomic com-

position (e.g., racial composition of school peers or neighbors), other endogenous amenities

may vary with the socioeconomic composition via a less well-known process (e.g., local taxes

and the provision of local goods and services, such as schools and venue offerings). House-

holds may further sort based on these endogenous changes, leading to additional endogenous

changes in amenities, potentially creating a positive feedback loop. Attendance areas are

observed by the researcher only after numerous decades of this endogenous process taking

place.

The evolution of the difference in socioeconomic composition between two schools is given

by the expression:

∆πt −∆πt−1 = ∆ηNt−1 + ψS [∆πt−1 −∆πt−2] + ψN [∆πt−1 −∆πt−2] . (11)

16For expositional convenience, we omit the subscript referring to the pair of schools.
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We assume that the relationship depends linearly on the prior shock and the endogenous

shocks triggered by that prior shock. The last two terms of equation (11) represent endoge-

nous shocks attributable to schools and neighborhoods, reflected by the parameters ψS and

ψN , respectively. We view these parameters as being representative of the true time-varying

parameters ψ̃St and ψ̃Nt over the long run, averaging across them from period 0 to the period

in which we observe the data. Thus, ψS and ψN subsume endogenous sorting and policies

that have taken place over time.

The component of ∆π that is due to school amenities (∆S) is represented by the terms

that depend on ψS. Analogously, the component of ∆π that is due to neighborhood amenities

(∆N) is represented by the terms that depend on the initial shock ∆ηN0 and ψN . Assuming

0 ≤ ψS + ψN < 1, we have:17

var(∆S)

var(∆π)
= (ψS)2 , (12)

var(∆N)

var(∆π)
= (1− ψS)2 , (13)

cov(∆S,∆N)

var(∆π)
= ψS · (1− ψS) , (14)

ΩS = ψS . (15)

5.2 Interpretation of Results

This simple dynamic model allows us to interpret our results from Section 4. Indeed, As-

sumptions 1 and 2 ′ in conjunction with equation (15) imply that β̃ (from equation (10))

is a consistent estimator of ψS. Consequently, we are able to obtain estimates of the key

quantities in equations (12) through (14).

Table 4 reports these estimates overall and by urban status for segregation by race (Panel

A) and income (Panel B). Irrespective of the dimension of segregation or school urban status,

we find that the covariance component is positive and accounts for approximately 50% of the

total variance, var(∆π) (see row 3 of each panel). In theory, the covariance between ∆S and

∆N could have been negative if school and neighborhood amenities had opposing effects on

17See Appendix D for details. Assuming 0 ≤ ψS + ψN < 1 implies that schools converge to a stable
equilibrium.
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Table 4: Corrected Estimates – The Relative Role of School and
Neighborhood Factors on School Segregation (Overall and by Urban Status)

Panel A: Race

All schools Urban Schools Non-Urban Schools

var(∆S)
var(∆π)

0.18 0.12 0.20

var(∆N)
var(∆π)

0.34 0.42 0.25

2·cov(∆S,∆N)
var(∆π)

0.49 0.46 0.50

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.42 0.35 0.45

var(∆N)
var(∆S)+var(∆N)

0.66 0.78 0.60

Panel B: Income

All schools Urban Schools Non-Urban Schools

var(∆S)
var(∆π)

0.29 0.16 0.48

var(∆N)
var(∆π)

0.21 0.36 0.10

2·cov(∆S,∆N)
var(∆π)

0.50 0.48 0.43

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.54 0.40 0.69

var(∆N)
var(∆S)+var(∆N)

0.42 0.69 0.17

Notes: This table reports the results from Table 2 through the lens of the dynamic model
discussed in Section 5.1. Standard errors, calculated via the Delta method, are always below
three percentage points and are omitted for clarity.

segregation, as would be the case if either ψS < 0 (so that ψN > 0, from 0 ≤ ψS + ψN < 1)

or ψS > 1 (so that ψN < 0). Instead, we find 0 < ΩS = ψS < 1 in all cases (ΩS is shown in

the penultimate row of each panel). This is an intuitive result: for example, it is likely that

schools with higher test scores attract a disproportionate number of affluent students (all

else constant), which may in turn attract a disproportionate number of affluent households

without children if they disproportionally prefer to locate near other affluent households.

One complication that arises when interpreting our original parameter of interest, ΩS

(given by equation (5)), is that it attributes half of the covariance component to school

and neighborhood factors. A potentially more compelling parameter is one that attributes

a higher proportion of the covariance to the factor that most explains school segregation.

Accordingly, we define the more general measure ΩS(γ) := var(∆S)+2·γ·cov(∆S,∆N)
var(∆π)

, where γ

denotes the proportion of the covariance term attributed to school factors (with ΩS(1/2) :=

ΩS). We propose a specific candidate for the value of γ: γ? := var(∆S)
var(∆S)+var(∆N)

. To illustrate

the difference between ΩS(1/2) and Ω(γ?), consider an example in which var(∆S) is two

times larger than cov(∆S,∆N) and four times larger than var(∆N). In this scenario, ΩS =
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2/3 but ΩS(4/5) = 4/5. In general, ΩS tends to bias our findings toward a 50-50 split

between school and neighborhood factors, which motivates the correction. Our correction

attributes the proportion of segregation to school factors in a way that is independent from

the value of the covariance: Ω(γ?) = γ? = var(∆S)
var(∆S)+var(∆N)

.

Correcting for this bias, the final row of each panel in Table 4 reports ΩN(γ?) := 1−ΩS(γ?),

revealing that neighborhood factors explain 66% and 42% of overall school segregation by

race and income, respectively. The role of neighborhood factors in explaining racial and

income segregation is substantially larger in urban areas (78% and 69%, respectively) than

in non-urban areas (60% and 17%, respectively). As discussed in the introduction, these

results are likely due to the higher complexity of neighborhood features in urban relative to

non-urban settings. Features, such as specific venues or sidewalks, tend to be perceived as

being more similar in non-urban areas, particularly given that residents of those places are

more likely to travel by car. It is noteworthy that school sorting on the basis of income and

race are more similar in urban areas but differ dramatically in non-urban areas. Indeed, in

non-urban areas, neighborhood factors matter much less for school sorting on the basis of

income than for sorting on the basis of race, which would occur if richer households use cars

to access neighborhood amenities in non-urban areas more intensely than poorer ones.

Table 5 reports analogous estimates by grade level. As with the results overall and by

urban status, the covariance component represents approximately 50% of the total variance,

irrespective of the grade level. After correcting for the covariance bias, we find that neigh-

borhood factors explain 48%, 66% and 72% of racial segregation in elementary, middle and

secondary grades, respectively. The analogous estimates for income segregation are 31%,

56% and 40%.

To provide context for these findings, note that attendance areas tend to be geographically

smaller for earlier grades (as shown in Table 1). Thus, households with students in elemen-

tary grades have a greater number of school options to choose from, relative to households

with students in middle grades (with a similar but less pronounced relationship between

middle and secondary grades). Yet these households have identical housing options (and

thus neighborhood amenities) from which to choose. If household valuations of school and

neighborhood features are grade-invariant, then school factors should explain more of the
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Table 5: Corrected Estimates – The Relative Role of School and
Neighborhood Features on School Segregation (By Grade Level)

Panel A: Race

Elementary Grades Middle Grades Secondary Grades

var(∆S)/var(∆π) 0.26 0.18 0.10

var(∆N)/var(∆π) 0.24 0.34 0.46

2 · cov(∆S,∆N)/var(∆π) 0.50 0.49 0.44

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.51 0.42 0.32

var(∆N)
var(∆S)+var(∆N)

0.48 0.66 0.72

Panel B: Income

Elementary Grades Middle Grades Secondary Grades

var(∆S)/var(∆π) 0.36 0.22 0.30

var(∆N)/var(∆π) 0.16 0.28 0.20

2 · cov(∆S,∆N)/var(∆π) 0.48 0.50 0.50

ΩS :=
var(∆S)+cov(∆S,∆N)

var(∆π)
0.60 0.47 0.55

var(∆N)
var(∆S)+var(∆N)

0.31 0.56 0.40

Notes: This table shows the results from Table 3 through the lens of the dynamic model discussed
in Section 5.1. Standard errors calculated via the Delta method are always below three percentage
points and are omitted for clarity.

variation in school segregation for earlier grades, which is broadly in line with the patterns

we uncover. The exception is the income result for secondary grades. We conjecture that

the income gap in valuation of school amenities for secondary grades is higher than the

corresponding gap for middle grades.18

5.3 Boundary Changes and Open Enrollment

In light of our interpretation that neighborhood factors limit the ability of education pol-

icymakers to influence school segregation, it is worth considering two key policies at their

disposal that go beyond redistributing funding and inputs across schools.

First, there is ample evidence that school boards manipulate attendance area boundaries

to affect segregation, both upon the overturning of earlier court-ordered desegregation mea-

sures (Billings, Deming and Rockoff 2014) and subsequently according to political affiliation

(Macartney and Singleton 2018). However, such policy is not a panacea for confronting

school segregation. As Lutz (2011) and Reardon et al. (2012) show, residential sorting (due

18Consistent with this finding, Caetano (2018) reports that households, particularly wealthier ones, tend
to value school quality more at the secondary school level than at the middle grade level.
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to both S and N studied above) can rapidly undo the effects of boundary changes in the

medium run, requiring continual action by boards to achieve long-run aims. Moreover, as

noted by Macartney and Singleton (2018), the set of feasible boundaries to choose from will

be restricted according to the cost of transporting students over large distances and parental

opposition to unusually shaped attendance areas, making it unlikely that any adjustments

would deviate strongly from already established boundaries.

The second policy is an outright elimination of attendance area boundaries via the adop-

tion of open enrollment (Cullen, Jacob and Levitt 2006). Doing so lessens the dependence

of school segregation on neighborhood factors, but does not eliminate it altogether if travel

costs are important. Further, some families may respond to this policy by sorting to an-

other district or to a private school, potentially exacerbating school segregation. During this

sorting process, both the S and N components we consider will likely factor into families

decisions.

Regarding our dynamic model, we view boundary changes and open enrollment policies

as a form of reset in terms of the initial conditions ∆η0. Endogenous processes represented

by ψS and ψN will dominate in the long run.

6 Addressing Potential Concerns

We now assess the extent to which our results are robust to potential concerns that might

be raised in the context of our application. We first discuss possible issues regarding the

validity of our identification strategy, and then consider those related to the interpretation

of our results.

6.1 Issues Regarding Validity

6.1.1 Is Assumption 2 ′ valid?

In Section 2, we show that Assumption 2 ′ (our main identifying assumption) is a substantially

weaker form of Assumption 2, which is related to the one often made in the boundary fixed

effects literature. We also discuss how post-determined amenities that change as a function

of school differences at the boundary are completely attributable to school factors under our
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approach. This is in stark contrast to the boundary fixed effects literature.

Notwithstanding that contrast, a key potential concern raised by that literature may also

affect our approach. Blocks at the boundary may coincide with particular geographical

features, such as a river, lake or major highway, making them systematically different from

interior blocks. In this scenario, differences in the socioeconomic composition of those living

in block k0 and those living in block k′0 would reflect not only S but N as well, which would

imply a violation of Assumption 2. Assumption 2 ′ would also be violated, as the difference

between k0 and k′0 would be larger than the difference between k1 and k0. Importantly

however, this would bias our estimates of the role of S upward, making our conclusion that

N plays a key role a conservative one. In any case, we provide suggestive evidence that these

local differences at the boundary, if they exist, are not first order in our analysis.

Figure 5 plots the average proportion of elementary students in each block who are white

(πwhite
k ) for blocks ranging from k30 to k′30.19 This average is calculated across all boundaries

for each block kl (k′l), where l reflects the number of degrees of separation from block k0

(k′0) within the corresponding attendance area.20 In the plot, we assign the school with the

largest proportion of students who are white to the right hand attendance area (s′).21 As

expected, there is a positive discontinuity at the boundary in the proportion of students in a

block who are white, highlighting the role of S in explaining sorting patterns. The plot also

reveals a positive slope for both attendance areas, suggesting that neighborhood amenities

in attendance area s′ tend to disproportionately attract white families relative to s. These

findings corroborate our conclusion in Section 5.2 that cov(∆S,∆N) > 0.

19Note that Figure 5 is the empirical analog of the theoretical Figure 2 aggregated across all boundaries,
given that only πk = Sk +Nk is observed directly (rather than Sk or Nk).

20Block k′2 is indexed as “2” because it is the nearest block (in terms of the Euclidian distance) to block
k′0, among all blocks located within attendance area s′ that are adjacent to block k′1 but not to block k′0. We
use an analogous definition for each block (k30 to k′30). Note that each boundary k0, k

′
0 has many different

“paths” going from k30 to k′30. We truncate the plot at 30 to avoid any potential selection issue, as some
attendance areas have paths with only about 30 blocks. Results are unchanged if we use different notions of
distance.

21We have not done so when implementing our approach in the previous sections, as our research design
is agnostic to which side is more attractive to a given group. Indeed, our approach yields virtually the same
estimates when we choose attendance area s′ to be the one that attracts whites disproportionately.
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Figure 5: Proportion of Elementary Students who are White in Each Block

Notes: This figure plots the average proportion of students who are white across all boundaries for each block kl
(k′l). The index l reflects the number of degrees of separation from block k0 (k′0) in their corresponding attendance
area. See footnote 20 for details on how l is measured.

Importantly, as one approaches the boundary from the left (block k0), the slope is similar

to the slope as one approaches it from the right (block k′0). This strongly suggests that

preexisting differences do not play an important role in our analysis, and that Assumption

2 ′ (N varies linearly at the boundary) is valid. We now explore this logic in greater detail.

Figure 5 looks very different from what it would look like if major highways, lakes or rivers

commonly coincided with attendance area boundaries. For instance, consider a case in which

boundaries coincide with a disamenity, which attracts a disproportionately low number of

white students (e.g., a major highway). If there were a sufficiently large number of such

boundaries, then one would expect a negative slope when approaching the boundary from

the left and a positive slope when approaching it from the right (in other words, opposite

signed slopes). Alternatively, consider the case of a coincident amenity, which attracts a

disproportionately high number of white students (e.g., a picturesque lake). One would then

expect a positive slope when approaching the boundary from the left and a negative slope
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when approaching it from the right (i.e., opposite signed slopes once again).

In general, if attendance boundaries divide neighborhoods in ways beyond those related

to the school allocation, then what it means to reside on the left versus the right side of the

boundary would be entirely different. Those living in block k0 would have much less access

to amenities available in attendance area s′ than those living in block k′0, and vice-versa. If

that was the case for a large enough number of boundaries, then the slopes on both sides

would be unrelated to each other, as they would constitute essentially separate self-contained

areas. We do not find that to be the case in our sample.

Appendix Figure E.1 presents analogous plots for middle and secondary school students,

and also for the proportion of students in each block who are economically advantaged. All

plots lend credence to the notion that the two sides of the boundary look like, on average, a

single neighborhood that happens to be served by two different schools. Furthermore, it is

worth noting that attendance areas for later grades are larger than for earlier grades, which

makes them more likely to contain boundaries coinciding with major highways or rivers. Yet

the patterns for secondary schools are similar to those for lower grades.

Additional pertinent evidence is presented in Figure 6. We estimate βk by race across all

elementary schools for each k = {k30, ..., k0, k
′
0, ..., k30} from the regressions:

∆πk0,k = αk + βk.∆πs,s′ + errork0,k , (16)

reporting the corrected estimate β̃k := βk − βk1 for each value of k. It is worth noting that

the resulting figure looks strikingly similar to Figure 5, though it exploits entirely different

variation. The first point to the right of the boundary is equal to β̃ from our main results

(equation (10)). However, this figure allows us to understand how our estimate of β̃k would

change if we used a block farther away from the boundary in either direction, rather than the

block k′0 right at the boundary. As one moves farther away from k′0 towards the right of the

figure (within attendance area s′), β̃k likely starts incorporating variation due to ∆N as well.

In particular, similar estimates are obtained if we drop the blocks closest to the boundary

from the analysis and rely instead on predicting the value of β̃k0 and β̃k′0 by estimating the

limits liml→0 β̃kl and liml→0 β̃k′l , respectively. This suggests that the blocks at the boundary

are not special enough to bias our estimates. Appendix Figure E.2 shows analogous figures
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by race and income for elementary, middle and secondary schools, and the conclusions are

unchanged.
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Figure 6: Corrected β Depending on the Reference Block k – Race,
Elementary Schools

Notes: This figure plots β̃k := βk −βk1 for each k = {k30, ..., k0, k′0, ..., k30}, where βk is estimated from equation
(16). See footnote 20 for details on how k is measured.

6.1.2 Is Assumption 1 valid?

Assumption 1 states that the block-level difference ∆Sk0,k′0
is representative of the overall

difference in school factors between the two corresponding attendance areas, ∆Ss,s′ . Recall

that for groups defined by race, ∆Sk,k′ := (φτk,S − φτ
′

k,S) · (Sk − Sk′), where Sk denotes the

school amenity of block k and φτk,S denotes the preference over it of those from group τ

considering residing in block k.22 Thus, for Assumption 1 to be valid, two conditions must

hold: (i) Sk0 − Sk′0 is representative of Ss − Ss′ ; and (ii) φτk0,S
− φτ

′

k′0,S
is representative of

φτs,S − φτ
′

s′,S.

22See Appendix C for a generalized model where φτk,S can vary with each block k.
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In Section 2.2, we discuss in detail why Sk0 − Sk′0 is representative of Ss − Ss′ . This is

implied by our definition of ∆S. It simply involves an understanding of what is included in

∆S and, by implication, what is included in ∆N and Cov(∆S,∆N), which we provide in

that section.

We now turn our attention to the second condition. In essence, it would fail to hold if the

sorting due to S (captured by the difference in the student population between representative

blocks Ks and Ks′) is not reflected by the difference in student population between the

boundary blocks k0 and k′0. As discussed in Section 6.1.1, Figure 5 suggests that there is

nothing particularly special about blocks at the boundary (on average), when considering

race or income on their own. This implies that the condition is likely to hold. However,

there is a nuance that could call this conclusion into question.

Essentially, Figure 5 cannot rule out the condition failing in multiple dimensions. Dimen-

sions other than race might be affected by sorting at the boundary, and that could correlate

with the difference between the two attendance areas in terms of race, ∆πwhites,s′ . For instance,

it is possible that households in block k′0 are the poorest ones in their attendance area (be-

cause they would be willing to incur the price difference to reside in block k′0 versus block

k0, but otherwise would not be willing to additionally pay to be closer to nicer neighborhood

amenities). The differences associated with income and race together may correlate more

with ∆πwhites,s′ than the differences in race alone.

To assess whether this multidimensional issue presents a problem for our analysis, we

estimate versions of equation (1) using two dimensions simultaneously. In particular, we cal-

culate the extent to which ∆πwhites,s′ helps predict ∆πrichwhitek0,k′0
, where πwhites is defined as before

and πrichwhitek represents the proportion of students in block k who are both economically

advantaged and white, compared to all other types (non-white of any income or economically

disadvantaged white).

The results are presented in Figure 7. The slope estimate in the left panel (43%) is very

similar to our main unidimensional estimate for race in Figure 3 (45%). The same is true

when restricting the analysis to urban schools only, as the slope estimate in the left panel of

Figure 8 (35%) is again very close to the corresponding race-only estimate in Table 2 (37%).

For both cases, the placebo estimates are in line with the unidimensional estimates reported

30



in Table 2. Thus, there is essentially no difference in the extent to which ∆πwhites,s′ explains

∆πrichwhitek0,k′0
or ∆πwhitek0,k′0

. We view this as lending further credence to Assumption 1.

(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 7: The Effect of ∆πwhites,s′ on ∆πrichwhitek0,k′0
– All Schools

Notes: See the notes for Figure 3, which presents the analogous results for the effect of ∆πwhite
s,s′ on ∆πwhite

k0,k
′
0

.

(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure 8: The Effect of ∆πwhites,s′ on ∆πrichwhitek0,k′0
– Urban Schools Only

Notes: See the notes for Figure 3, which presents the analogous results for the effect of ∆πwhite
s,s′ on ∆πwhite

k0,k
′
0

on

all schools.

For completeness, we also regress ∆πrichwhitek0,k′0
on ∆πrichwhites,s′ . The corresponding plots are

contained in Appendix Figures E.3 and E.4. Interestingly, the estimate across all schools

(55%) is very close to the main unidimensional estimate for income in Figure 4 (57%), while

31



the estimate for the urban sub-sample (37%) is identical to the unidimensional estimate

for race. Intuitively, sorting by race (due to both S and N) is better at explaining school

segregation in urban areas, while sorting by income appears to do a better job outside of

them.

6.1.3 Are results biased from noisy measures at the block level?

Another potential issue with our approach is that bias may arise from exploiting variation

across blocks, in which very few students typically reside. This can be best understood

by way of example. Suppose that all boundary block pairs are associated with population

differences ∆πk0,k′0
= 0.3, and each block contains one student. In that case, the sample

difference estimate of ∆πk0,k′0
for a single pair of blocks is constrained to take the value -1,

0 or 1. The deviation of the sample difference estimate from its unmeasured population

counterpart represents noise from small sample sizes, which could potentially lead to bias.

However, as we argue in Remark 1, our estimates are unlikely to be affected by the presence

of even substantial noise, since it is averaged away when aggregating across a sufficiently

large number of block pairs.

The graphical evidence in Figures 3 and 4 bears this out. Taking averages of ∆πk0,k′0

across boundaries by bin of ∆πs,s′ (which is measured at the school level and not affected

by small sample noise) produces a pattern that closely tracks the fit of the disaggregated

ordinary least squares regression. Indeed, Figure B.1 in Appendix B explicitly shows that

the slope from a regression based on aggregated values is statistically indistinguishable from

its disaggregated counterpart, regardless of bin width. We take this as evidence that our

estimates are not biased by small sample noise.23

6.2 Issues of Interpretation

Table 6 summarizes the robustness tests we carry out regarding interpretation. For conve-

nience, the first column reports the baseline estimates of β̃ for all schools in our sample, as

23We have also performed different robustness checks by controlling for the number of students in the block
pairs and in the school pairs using cubic B-splines, and the slope estimates barely change. These results are
available upon request.
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implied by the first column of Table 2.

6.2.1 Are comparisons too local?

One concern is that the relative role of school features in explaining school segregation may

depend on the locality of between-school comparisons. Indeed, schools within the same

district are likely to be more similar than schools located in different districts. Thus, focus-

ing exclusively on school comparisons within the same district may fail to recover the full

scope of school policies affecting segregation (particularly those that vary across districts).

However, an analogous argument applies to neighborhood amenities: it is likely that neigh-

borhoods within the same district would be more similar than neighborhoods in different

districts, which implies that we may also not recover the full scope of non-school policies

(again, particularly those that vary across districts). Ultimately, which of these forces pre-

vails is an empirical question. Accordingly, we assess whether the relative role of school

factors changes substantially if our analysis includes school pairs that are located in differ-

ent districts.24 Comparing the first (within-district baseline) and second (within and across

districts) columns of Table 6, we do not find a systematic difference for race or income when

we include schools in different districts in our analysis.25

6.2.2 Does the relative role of N depend on the size of the attendance areas or

the presence of charter and magnet schools?

Yet another concern is that the relative role of S and N may depend on the degree of

school choice available to parents. For instance, although North Carolina does not allow

open enrollment during our period of interest, one may be concerned that there is increased

scope for N to change within an urban attendance area, given that attendance areas in

urban settings contain a greater number of blocks than in non-urban settings (as Table 1

24Another related concern is that our identification strategy does not allow us to compare, for instance,
one school from Charlotte, NC to another school from Raleigh, NC. Again, although school amenities may
vary more non-locally than locally, the same is true for non-school amenities. In fact, it is intuitive that most
people choose the city in which they will reside based on non-school factors, such as their job prospects.

25These results corroborate our finding in Section 6.1.1 that pre-existing differences at the boundary (e.g.,
due to a major road or river) do not drive our results. Indeed, it is intuitive that boundaries separating
school districts are more likely to be coincident with such barriers than boundaries within the district.
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Table 6: Robustness Tests

Baseline Within and Across Control for Intensity of Control for

Districts School Choice School Observables

Race 0.42 0.44 0.43 0.39

(0.02) (0.02) (0.02) (0.03)

Income 0.54 0.53 0.54 0.43

(0.02) (0.02) (0.03) (0.03)

Observations 31,617 41,332 31,617 31,617

Notes: This table shows the estimates of β̃ (equation (10)) for different specifications and samples.
The first column refers to the “all schools” results from Tables 2, which are our baseline results
to which the results in the other columns should be compared. In the second column (“Within
and Across Districts”), we also include boundaries separating schools from different districts. In
the third column (“Control for Intensity of School Choice”), we add controls for the total number
of blocks in attendance areas s and s′ (a cubic B-spline for this quantity) and indicators for
whether charter or magnet schools are located near either of the two attendance areas s and
s′. Finally, in the fourth column (“Control for School Observables”) we add as control variables
the difference across schools s and s′ of a wide list of observable characteristics of the schools -
see footnote 28 for details. “Observations” refers to the number of unique observations used in
the regressions. Standard errors, shown in parentheses, are corrected for heteroskedasticity and
clustered by attendance area pair, (s, s′).

shows). This could imply a larger role for N in urban settings, relative to their non-urban

counterparts. This mechanical effect contrasts with our explanation for the prominent role

of N in urban areas, which is that neighborhood features change more intensely from one

block to the next in urban relative to non-urban areas.

Another possibility is that charter and magnet schools, which are more prevalent in urban

areas, may be indirectly affecting our results. In our calculations, we did not count students

who were attending those schools, potentially leading to a selection issue that affects urban

areas more intensely than non-urban areas.

To rule out these alternative mechanical explanations, we flexibly control for the total

number of blocks in attendance areas s and s′,26 as well as for whether charter or magnet

schools are located near either of the two attendance areas s and s′.27 The results are reported

in column three of Table 6. They are statistically indistinguishable from the baseline effects

in column one, supporting our explanation.

26To account for non-linearities, we add them as cubic B-splines with five equally spaced knots (so there
are a total of four control variables added).

27In the table, we report results using a strict notion of distance: where either type of choice school is
located within one of the two attendance areas. Our results are essentially invariant to alternative notions
of distance.
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6.2.3 To what extent does S project onto observable school characteristics?

Finally, we assess the extent to which the component we construe as being related to school

factors (S) is correlated with a rich set of observable school characteristics. We do so by

comparing our baseline estimate β̃ to the analogous coefficient in a regression that also

conditions on differences between school characteristics.28 Intuitively, as the characteristics

are likely to be more correlated with S than with N , their inclusion in the regression should

disproportionately absorb school factors and lower the value of β̃. That is precisely what

we find for both race and income (see column four of Table 6). We view this evidence as an

independent confirmation of what S represents.

7 Conclusion

This paper has attempted to underscore the key role that neighborhood factors play in

explaining school socioeconomic segregation. Given that school and residential decisions are

often made jointly, both school and neighborhood factors should affect school segregation,

but little has been previously established about their relative importance. We found that

66% of school segregation by race and 42% of school segregation by income is attributable to

neighborhood factors. Importantly, they tend to matter even more in urban environments,

settings in which school segregation has received disproportionate attention.

Our results have implications for the efficiency and efficacy of widely implemented policies

that hold educators accountable for scholastic outcomes. It is inefficient to reward or punish

them for outcomes that are beyond their control. As student outcomes depend on the degree

of school segregation, the first-order importance of neighborhood factors in explaining such

segregation implies that a substantial portion of outcome variation is under the control

of urban policymakers, especially in urban areas. Without urban policymakers playing an

28The included variables are the differences between schools s and s′ of the following school characteristics:
standardized mathematics and reading test scores, whether the school met adequate yearly progress under
the federal No Child Left Behind act, average class size, the proportion of fully licensed teachers, the rate
of teacher turnover, the proportion of teachers with 0 to 3, 4 to 10, and 11 or more years of experience, the
proportion of teachers with an advanced college degree, Title I status, the proportion of classrooms connected
to the Internet, the number of library books and their average age, total enrollment, and the proportion of
students who are female, are limited English proficient, are classified as gifted (separately for mathematics
and reading), are classified as disabled, and attend school daily.

35



active role in the process, efforts to lower school segregation through well meaning educational

policies are likely to be insufficient.

In future research, it would be interesting to replicate these results for additional states.

Many areas of North Carolina have been subject to a variety of educational policies over the

past few decades, including those providing school choice. At the same time, many school

boards have repeatedly attempted to lower segregation through attendance boundary shifts

in order to counteract gradual household re-sorting (Macartney and Singleton 2018). The

fact that neighborhood factors are central in explaining school segregation given this policy

backdrop suggests that our conclusions about their importance may be conservative when

applied to other regions.

More broadly, using Census data, our approach can be adapted to study the role of

school and neighborhood factors in explaining neighborhood segregation. Doing so could

uncover important heterogeneity between school and neighborhood sorting beyond what can

be studied using our data. Related, additional demographic information about the parents

of students, such as their marital status, age and education,29 could allow us to investigate

patterns of sorting along many dimensions beyond race and income. We view this paper as

enabling a new line of inquiry into confronting segregation, a matter of great importance to

society.

29Parental education and a student’s residential location are never simultaneously reported in the
NCERDC data.

36



References

Bayer, P., F. Ferreira, and R. McMillan. 2007. “A Unified Framework for Measuring
Preferences for Schools and Neighborhoods.” Journal of Political Economy, 115(4): 588–
638.

Billings, Stephen B., David J. Deming, and Jonah Rockoff. 2014. “School segrega-
tion, educational attainment, and crime: Evidence from the end of busing in Charlotte-
Mecklenburg.” Quarterly Journal of Economics, 129(1): 435–476.

Black, Sandra. 1999. “Do Better Schools Matter? Parental Valuation of Elementary Edu-
cation.” Quarterly Journal of Economics, 114(2): 577–599.

Caetano, Gregorio. 2018. “Neighborhood Sorting and the Valuation of Public School
Quality.” Mimeo.

Caetano, Gregorio, and Vikram Maheshri. 2019. “Explaining Recent Trends in US
School Segregation.” Mimeo.

Cascio, Elizabeth U, and Sarah Reber. 2013. “The poverty gap in school spending
following the introduction of Title I.” American Economic Review, 103(3): 423–27.

Clotfelter, Charles T, Helen F Ladd, and Jacob L Vigdor. 2008. “School segregation
under color-blind jurisprudence: The case of North Carolina.” Va. J. Soc. Pol’y & L.,
16: 46.

Cullen, Julie Berry, Brian A. Jacob, and Steven Levitt. 2006. “The effect of school
choice on participants: Evidence from randomized lotteries.” Econometrica, 74(5): 1191–
1230.

Glaeser, Edward. 2011. Triumph of the City. Pan.

Glaeser, Edward L., Jed Kolko, and Albert Saiz. 2001. “Consumer city.” Journal of
economic geography, 1(1): 27–50.

Guryan, Jonathan. 2004. “Desegregation and black dropout rates.” American Economic
Review, 94(4): 919–943.

Hanushek, Eric A., John F. Kain, and Steven G. Rivkin. 2009. “New evidence
about Brown v. Board of Education: The complex effects of school racial composition on
achievement.” Journal of Labor Economics, 27(3): 349–383.

Jacobs, Jane. 1961. “The death and life of great American cities.” New-York, NY: Vintage.

Johnson, Rucker C. 2011. “Long-run impacts of school desegregation & school quality on
adult attainments.” National Bureau of Economic Research 14503.

Lutz, Byron. 2011. “The end of court-ordered desegregation.” American Economic Journal:
Economic Policy, 3(2): 130–68.

37



Macartney, Hugh, and John Singleton. 2018. “School Boards and Student Segregation.”
Journal of Public Economics, 164: 165–182.

Orfield, Gary, Erica Frankenberg, Jongyeon Ee, and John Kuscera. 2014. Brown at
60: Great progress, a long retreat and an uncertain future. Civil Rights Project/Proyecto
Derechos Civiles.

Reardon, Sean F, Elena Tej Grewal, Demetra Kalogrides, and Erica Greenberg.
2012. “Brown fades: The end of court-ordered school desegregation and the resegregation
of American public schools.” Journal of Policy Analysis and Management, 31(4): 876–904.

38



For Online Publication

Appendices

A A Simple Model of School and Neighborhood Choice

Our framework is based upon a simple model of households jointly choosing their school

and neighborhood. The term “neighborhood” refers to a Census block, which we shorten

to “block” for convenience. Each block k is uniquely associated with one attendance area

(and thus to one school) s. This implies that each household chooses the block in which

it will reside with the understanding that it is selecting both the school and neighborhood

amenities to which it will be exposed.

Specifically, each household h of type τ ∈ {A,B} observes the vector of school-related

amenities S = [S1, . . . ,SK ]′ and the vector of neighborhood-related amenities N = [N1, . . . ,NK ]′,

where k indexes the K neighborhoods in their choice set (each of which is assigned to a school

indexed by s).30 Each household selects the option that maximizes its utility:

uh,τk = φτSSk + φτNNk︸ ︷︷ ︸
δτk

+ζh,τk , (A.1)

where δτk corresponds to the mean utility of households of type τ for neighborhood k, and ζτk

is an idiosyncratic error term that captures household-specific deviations from that mean.

The mean utility depends on the preference parameter scalars φτS and φτN , each of which

depends on the household’s type τ .

As is standard in discrete choice frameworks, we assume that ζh,τk is independently and

identically drawn from the extreme value distribution.31 This yields the familiar expression

for the proportion of students residing in neighborhood k who are of type A:

30For expositional simplicity, we assume that blocks can be different in the values of only one school
amenity and only one neighborhood amenity. In practice, blocks are different from each other because of
many school and neighborhood amenities, so that S and N should be understood as indexes of all these
corresponding amenities. Moreover, some amenities inherently conflate school and neighborhood amenities,
such as the block house price. In that case, the component of the price that capitalizes school amenities is
included in the index S, and the component that capitalizes neighborhood amenities is included in the index
N.

31This assumption is made only for didactic purposes. We present a more general model in Appendix C,
which allows for substitutability to be different for surrounding neighborhoods.
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πk =
nAk

nAk + nBk
,

where nτk = nτ .
exp(δτk )∑
k̃ exp(δ

τ
k̃

)
. Similarly, the proportion of students attending school s who are

of type A is:

πs =
nAs

nAs + nBs
,

where nτs = nτ .
∑
k∈Ks exp(δ

τ
k )∑

k̃ exp(δ
τ
k̃

)
and Ks denotes the set of blocks k that are associated with

attendance area s. Given representative blocks Ks and Ks′ for s and s′, respectively, we

denote Ss := SKs and Ns := NKs . Under the normalization
∑

k̃ exp(δ
τ
k̃
) = nτ , we write:

πs =
exp(φASSs + φANNs)

exp(φASSs + φANNs) + exp(φBS Ss + φBNNs)

=
exp(δAs )

exp(δAs ) + exp(δBs )
, (A.2)

where δτs := φτSSs + φτNNs represents the mean utility of households of type τ for attendance

area s.

For school segregation to exist in our sample of schools, the proportion of students of a

given type must vary across schools. Consider two schools s and s′. For πs 6= πs′ , there must

be something different across the two school attendance areas that is valued differently by

type. This intuition can be made precise. Recall equations (2) and (3) in Section 2:

∆πs,s′ = ∆Ss,s′ + ∆Ns,s′ ,

∆πk,k′ = ∆Sk,k′ + ∆Nk,k′ .

The key quanitites are defined as ∆Ss,s′ := (φAS − φBS )(Ss − Ss′) and ∆Ns,s′ := (φAN −

φBN)(Ns − Ns′). Note that ∆Ss,s′ and ∆Ns,s′ are not the same as ∆Ss,s′ and ∆Ns,s′ : the

former represent both differences in the level of amenities across school attendance areas

and differences in preferences across groups, while the latter represent only differences in the

level of amenities across attendance areas. In Appendix B, we explain how equations (2)

and (3) in Section 2 serve as good approximations for interpretation purposes given these

intuitive definitions of ∆Ss,s′ and ∆Ns,s′ .
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B Justifying the Interpretation of ∆Ss,s′ and ∆Ns,s′

In this appendix, we justify why ∆Ss,s′ := (φAS − φBS )(Ss − Ss′) and ∆Ns,s′ := (φAN −

φBN)(Ns − Ns′) given in Appendix A are good approximations for interpretation purposes.

We begin by explicitly deriving the components of ∆πk,k′ and ∆πs,s′ , based on the discrete

choice model in Appendix A. Using equation (A.2), we have that δAk − δBk = ln
(

πk
1−πk

)
=

Sk+Nk, where Sk :=
(
φAS − φBS

)
Sk and Nk :=

(
φAN − φBN

)
Nk. Given the two adjacent blocks

k and k′ in attendance areas s and s′, we have δAk − δBk −
(
δAk′ − δBk′

)
= ln

(
πk(1−πk′ )
πk′ (1−πk)

)
=

∆Ss,s′ + ∆Nk,k′ , where ∆Ss,s′ := Ss − Ss′ and ∆Nk,k′ := Nk − Nk′ . Analogously, we can

write δAs − δBs −
(
δAs′ − δBs′

)
= ln

(
πs(1−πs′ )
πs′ (1−πs)

)
= ∆Ss,s′ + ∆Ns,s′ , where ∆Ss,s′ := Ss − Ss′ and

∆Ns,s′ := Ns −Ns′ .

Thus, the exact equations are ln
(
πs(1−πs′ )
πs′ (1−πs)

)
= ∆Ss,s′ + ∆Ns,s′ and ln

(
πk(1−πk′ )
πk′ (1−πk)

)
=

∆Sk,k′ + ∆Nk,k′ , instead of ∆πs,s′ = ∆Ss,s′ + ∆Ns,s′ (equation (2)) and ∆πk,k′ = ∆Sk,k′ +

∆Nk,k′ (equation (3)), respectively. However, we would like to avoid using ln
(
πk(1−πk′ )
πk′ (1−πk)

)
because this ratio is often not defined for our estimates of πk and πk′ . Indeed, as discussed

in Remark 1, π̂k = 0 and π̂k = 1 often occur in our sample even if 0 < πk < 1. Thus, this

measure is highly affected by noise.

Here, we argue that the slope of the linear-linear regression (∆π̂k0,k′0
on ∆π̂s,s′ , as in

equation (1)) and the slope of the log-log regression (ln

(
π̂k0

(
1−π̂k′0

)
π̂k′0

(1−π̂k0)

)
on ln

(
π̂s(1−π̂s′ )
π̂s′ (1−π̂s)

)
) are

approximately the same when noise is not present. To see this, we reduce the role of noise by

aggregating, across all boundaries, all school pairs with sufficiently similar values of ∆πs,s′ .

∆πs,s′ , which in principle can vary from -1 to 1, is divided in intervals of width m, and we

aggregate ln

(
π̂k0

(
1−π̂k′0

)
π̂k′0

(1−π̂k0)

)
and ln

(
π̂s(1−π̂s′ )
π̂s′ (1−π̂s)

)
for each of these intervals. For comparison, we

aggregate ∆π̂k0,k′0
and ∆π̂s,s′ in order to estimate an aggregated version of the linear-linear

regression.

Figure B.1 compares the slope of the aggregated version of the linear-linear regression

(solid black line) and the slope of the aggregaged version of the log-log regression (dashed

black line) for different values of the aggregation interval m.32 The corresponding 95%

confidence intervals are also shown in grey. The larger the value of m, the more aggregated

32We weight the aggregated regressions by the number of block pairs in each interval.
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the data used in the regressions. To provide more context, we use m = 0.025 in the scatter

plots of Figures 3 and 4. As Figure B.1 shows, the slope estimates are very similar to each

other, and are in turn similar to the disaggregated slopes shown in the left panel of Figures

3 and 4 (0.45 for race and 0.57 for income). Importantly, as m gets smaller the confidence

interval of the log-log slope estimator increases while the corresponding confidence interval

of the linear-linear slope estimator continues to be well behaved. A similar pattern is found

in all stratified regressions we attempted (e.g. by urban status, by grade level).

(a) Race (b) Income

Figure B.1: Relationship Between Slopes in the Aggregated Log-Log
Regression and the Aggregated Linear-Linear Regression

Notes: This figure plots the slope parameter of the aggregated log-log regression (dashed line) and the aggregated
linear-linear regression (solid line), along with their respective 95% confidence intervals. Block pairs and their
corresponding school pairs are aggregated across all boundaries on intervals of width m of the value ∆πs,s′ , where
m changes in the horizontal axis of the figure. The corresponding disaggregated linear-linear slope estimates are
0.45 (race) and 0.57 (income), as shown in the left panels of Figures 3 and 4.

We conclude that running the linear-linear version of the regression yields the same inter-

pretation of the slope as running the log-log version of the regression, but with the advantage

of being more robust to noise. Thus, we can safely interpret ∆Ss,s′ as (φAS − φBS )(Ss − Ss′)

and ∆Ns,s′ as (φAN − φBN)(Ns − Ns′), as discussed in Appendix A.
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C More General Discrete Choice Model

In this appendix, we outline a more general model than the one presented in Appendix

A, allowing for spillovers from other neighborhoods. The model setup differs only in the way

that δτk is defined. Otherwise, all other expressions and results from the main text hold.

Assume each household h of type τ observes the vector of school-related amenities S =

[S1, . . . ,SK ]′ and the vector of neighborhood-related amenities N = [N1, . . . ,NK ]′, where

k ∈ [1, K] indexes the neighborhoods in their choice set (each of which are assigned to a

school indexed by s). Each household selects the option that maximizes its utility:

uh,τk = φτk,SS + φτk,NN︸ ︷︷ ︸
δτk

+ζh,τk , (C.1)

where δτk corresponds to the mean utility of households of type τ for neighborhood k, and ζh,τk

is an idiosyncratic error term that captures household-specific deviations from the shared

effect of S and N on the population of type τ households in neighborhood k. The mean

utility depends on the preference parameter vectors φτk,S = [φτk,1,S, . . . , φ
τ
k,K,S] and φτk,N =

[φτk,1,N , . . . , φ
τ
k,K,N ]. Each element depends on a household’s type τ (allowing preferences to

differ across types) and is specific to the neighborhood k chosen (weighting the exposure to

different components of the amenity vector according to the selected location).33

As we are interested in comparing one household type to its complement (e.g., white vs.

non-white, or advantaged vs. disadvantaged), we consider two types τ, τ ′ ∈ {A,B}, where

τ ′ 6= τ . Household h will choose to reside in neighborhood k if uh,τk > uh,τ
k̃
∀ k 6= k̃. As is

standard in discrete choice problems, we assume that ζh,τk is independently and identically

drawn from the extreme value distribution. This assumption results in the exact same

expressions we obtained in Appendix A.

The only difference between this model and the more restricted model in Section 2 is

that we now allow households who choose block k to experience school and neighborhood

amenities from other blocks at different rates than if they had chosen block k̃. Thus, rather

33The weighting is easily motivated by the distance to the amenity in question. It is reasonable to expect
that someone living in a house located one mile from a park would derive greater value from the park than
someone living in a house that is ten miles away from it.
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than ∆S := (φAS − φBS ) · (Ss − Ss′), we have ∆S := (φAs,S − φBs′,S) · S, where φτs,S reflects the

representative value of φτk,S considering all blocks in attendance area s, with an analogous

definition for neighborhood factors.
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D Derivation of Dynamic Model Results

Recall the expression that governs the evolution of ∆πt, given by equation (11):

∆πt −∆πt−1 = ∆ηt−1 + ψS [∆πt−1 −∆πt−2] + ψN [∆πt−1 −∆πt−2] ,

where ∆η0 := ∆ηN0 and ∆ηt = 0 ∀ t 6= 0.

We now develop a generic expression for ∆πt, the difference in socioeconomic composition

between the two schools in period t, which depends only on the initial shock ∆ηN0 , and

parameters ψS and ψN . Given initial conditions ∆πt′ = 0 for t′ ≤ 0 (neighborhoods are

identical prior to period 0), we have ∆π0−∆π−1 = 0. Consequently, the period 1 difference

is determined only by the overall period 0 shock: ∆π1 = ∆η0. The general expression for

t > 1 is ∆πt =
∑t−1

w=0 Ψw∆η0, where Ψ := ψS + ψN .34 As long as Ψ 6= 1, the expression

simplifies to ∆πt =
(

1−Ψt

1−Ψ

)
∆η0. We focus on stable non-oscillatory solutions by restricting

attention to 0 ≤ Ψ < 1.35 Thus, in the limit as t → ∞ (long-run stable equilibrium), we

have ∆π = ∆η0

1−Ψ
.

We now decompose ∆π into its constituent elements ∆S and ∆N . Attributing the initial

shock ∆ηN0 to ∆N , the components of ∆π are:

∆S =
[
ψS + ψSΨ + ψSΨ2 + . . .

]
∆ηN0

= ψS

[
∞∑
w=0

Ψw

]
∆ηN0

=
ψS∆ηN0
1−Ψ

and

∆N = ∆ηN0 +
[
ψN + ψNΨ + ψNΨ2 + . . .

]
∆ηN0

= ∆ηN0 +
ψN∆ηN0
1−Ψ

=

(
1− ψS

)
∆ηN0

1−Ψ
,

where ∆π = ∆S + ∆N as in Section 2. With these expressions in hand, we can compute

34This can be proven by induction. For example, the period 2 expression is ∆π2 = (1 + Ψ) ∆η0, while the
period 3 expression is ∆π3 = (1 + Ψ) ∆π2 −Ψ∆π1 =

(
1 + Ψ + Ψ2

)
∆η0.

35Our main conclusions are also valid in the context of oscillatory trajectories to the stable equilibrium
(−1 < Ψ ≤ 0). Moreover, many frictions in residential sorting, such as moving costs, lead us to conclude
that multiplicity of equilibria (|Ψ| > 1) is not realistic for most schools in our context (see Caetano and
Maheshri 2019).
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var(∆π), var(∆S), var(∆N) and cov(∆S,∆N). Assuming that the shock ∆ηN0 is drawn

from a distribution with variance σ2, we obtain:

var(∆π) =
1

(1−Ψ)2
σ2 ,

var(∆S) =
(ψS)2

(1−Ψ)2
σ2 ,

var(∆N) =
(1− ψS)2

(1−Ψ)2
σ2 ,

cov(∆S,∆N) =
ψS(1− ψS)

(1−Ψ)2
σ2 .

In turn, we can compute ΩS:

ΩS =
var(∆S) + cov(∆S,∆N)

var(∆π)

= (ψS)2 + ψS(1− ψS)

= ψS .
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(a) White, Elementary

.3
5

.4
5

.5
5

.6
5

Pr
op

. o
f S

tu
de

nt
s 

w
ho

 a
re

 E
co

no
m

ic
al

ly
 A

dv
an

ta
ge

d

k30 k25 k20 k15 k10 k5 k0 k'0 k'5 k'10 k'15 k'20 k'25 k'30

(b) Economically Advantaged, Elementary
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(c) White, Middle
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(d) Economically Advantaged, Middle
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(e) White, Secondary
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(f) Economically Advantaged, Secondary

Figure E.1: Proportion of Students of a Given Type in Each Block

Notes: This figure plots the average proportion of students who are white across all blocks of type kl (k′l) (each
block representing a different boundary). The index l reflects the number of degrees of separation from block k0

(k′0) in their corresponding attendance area. See footnote 20 for details on how l is measured.
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(a) White, Elementary
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(b) Economically Advantaged, Elementary
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(c) White, Middle
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(d) Economically Advantaged, Middle
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(e) White, Secondary
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(f) Economically Advantaged, Secondary

Figure E.2: Corrected βs Depending on the Reference Block k

Notes: This figure plots β̃k := βk −βk1 for each k = {k30, ..., k0, k′0, ..., k30}, where βk is estimated from equation
(16). See footnote 20 for details on how k is measured.
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(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure E.3: The Effect of ∆πrichwhites,s′ on ∆πrichwhitek0,k′0
– All Schools

Notes: See the notes for Figure 3, which presents the analogous results by race.

(a) Blocks in Different Attendance Areas (b) Blocks in the Same Attendance Area

Figure E.4: The Effect of ∆πrichwhites,s′ on ∆πrichwhitek0,k′0
– Urban Schools Only

Notes: See the notes for Figure 3, which presents the analogous results by race and for all schools.
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