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Abstract

Some of the world’s largest research funding agencies allocate funds to different fields in pro-

portion to the share of applications received in each field, thus equalizing the success rate across

fields. The same outcome is achieved by selecting applications that meet a target percentile payline

set to exhaust the budget across all fields. Casting the problem in a simple supply and demand

framework, we characterize the equilibrium acceptance standard and the resulting amount of appli-

cations when submissions are costly. We show that in all stable equilibria an increase in the accuracy

of evaluation in a field reduces applications in that field. Multiple equilibria can result when the dis-

tribution of types does not have increasing hazard rate. Fields have perverse incentives to reduce

the accuracy of evaluation in order to increase the number of successful applications in their field.

Benchmarking current merit scores with respect to previous rounds—a practice introduced at the

National Institutes of Health in 1988—generates virtuous incentives to step up the accuracy of the

evaluation. We conclude by discussing the distortions created by equalizing acceptance rates across

university degree programs and across sub-fields in general-interest academic journals.
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Some of the world’s largest research funding organizations assign grants to different fields of re-

search by allocating funds in proportion to the applications received in each field. The EU research

funding agency, the European Research Council (ERC), explained the working of this scheme in the

2008 Work Programme for its second year of operation:1

“. . . an indicative budget will be allocated to each panel, in proportion to the budgetary

demand of its assigned proposals. This indicative budget is calculated as the cumulative

grant request of all proposals to the panel divided by the cumulative grant request of all

proposals to the domain of the call, multiplied by the total indicative budget of the domain.”

Proportional allocation of budget across fields works as follows: A total budget T is assigned to all

fields i= 1,2, ...,N. If applications received in the different fields are A1,A2, ...,AN , the budget allocated

to field i is
Ai

∑
N
j=1 A j

T, (1)

in proportion to the applications received in field i relatively to the applications received in all fields.

This proportional allocation formula implies that the success rate in field i, defined as the fraction of

funded projects over applications received in field i

p :=

Ai

∑
N
j=1 A j

T

Ai

=
T

∑
N
j=1 A j

, (2)

is automatically equalized across all fields. In the context of research funding, grant applications in

each field are assigned to a different panel (or study section) of evaluators with expertise in the field.

Expert evaluators in each panel are then asked to select the most fundworthy applications so as to

exhaust 100× p per cent of the budget requested by the applications in the field.

Canadian public research funding agencies, such as the Canada Institutes of Health Research and

the Social Sciences and the Humanities Research Council of Canada, also allocate their budget propor-

tionally to different fields.2 A number of institutes and centers of the US National Institutes of Health

(NIH), the largest research funding organization in the world, allocates research grants from differ-

ent fields in the life sciences through a similar scheme.3 NIH institutes and centers apportion their

1See European Research Council (2007). The total budget allocated to the ERC for the period 2014-2020 is 13.1 billion

euros.
2The US National Science Foundation and the major UK research councils, such as the Medical Research Council and

the Economic and Social Research Council, do not allocate funds proportionally to different fields. However, they publish

success rates for different programs, resulting in an implicit pressure to equalize success rates across disciplines.
3Out of the NIH overall annual budget of $39.2 billion for the current year, roughly $19 billion are apportioned to finance

extramural research projects.
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budget—in turn determined by the congressional appropriations process—on the basis of the evalua-

tion by specialized expert panels, known as study sections. After ranking and percentiling the scores

given by each study section, grants are financed when they meet a target percentile, known as “payline”,

equalized across study sections so as to exhaust the budget of the individual institute/center according

to (2).4

The proportional formula (1) by construction allocates a larger fraction of the overall budget to

a field that attracts more applications. By automatically equalizing the fraction of successful projects

over applications across different fields, proportional allocation appears to be fair in treating all fields in

the same way. Proportional allocation also eliminates administrative discretion and political meddling

in funding allocation, given that the budget allocation is determined automatically only on the basis of

application demand. As another important virtue, the proportional allocation scheme has the merit of

flexibly responding to demand-side signals.

The simplicity of this scheme, however, can be deceptive when it is costly to submit applications

and fields are heterogeneous, as it is typically the case. Casting the problem in a simple supply and

demand framework, we characterize the equilibrium acceptance standard and the resulting amount of

applications with costly submissions. Our first main result is that proportional allocation is biased

against fields in which the evaluation of quality is more accurate, or, equivalently, more consensual.

We show that in all stable equilibria an increase in dispersion (or, equivalently, a decrease in the

accuracy) of the evaluation signal in a field unambiguously increases applications in that field. The

model predicts that fields with more agreement about the ranking of applications in equilibrium attract

fewer applications compared to less consensual fields in which there is wider dispersion of opinions.

As a proof of concept, Table 1 in Section 3 reports some suggestive evidence on how evolution of

ERC applications across fields relates to the coefficient of variation in the number of citations obtained

by grantees in each field. Panels that awarded grants to researchers that have more variation in citations

have been attracting more applications over time—and ended up awarding more grants to researchers

with lower average citations.

The analysis also uncovers a second critical drawback of proportional allocation by characterizing

when it leads to multiple equilibria. We show that if either the density of types is increasing or the

4Percentile paylines differs across NIH institutes/centers, reflecting the budget available for distribution as well

as the amount of applications received at each institute/center. In addition, more favorable percentile pay-

lines are typically adopted for some special categories of applicants, such as Early Stage Investigators. See

https://www.einstein.yu.edu/administration/grant-support/nih-paylines.aspx for a list of NIH Institutes that publish paylines

and equalize percentile scores across study groups. See Azoulay, Graff Zivin, Li, and Sampat (2019) for a more detailed

description of the mechanism used by the NIH to rank proposals.
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type distribution has increasing hazard rate, the equilibrium is unique. Multiple equilibria allocations

arise when the density of types features segments that decrease sufficiently fast. Intuitively, an increase

in demand by low types then generates such a large increase in awards that the panel, so as to keep

the success rate constant at p, ends up reducing the acceptance standard by more than it is needed to

encourage additional demand.

Third, we turn to the perverse incentives that proportional allocation creates for fields. By increasing

applications, each field obtains a larger fraction of the overall budget, at the expense of other fields.

Indeed, many scientific associations coordinate field-level activities by advertising the availability of

grants and by supporting the submission of applications through information sessions, seminars on

grant-writing, or even seed grants or matching funds for applicants. We also show that with proportional

allocation fields have a perverse incentive to decrease the accuracy of evaluation in their study section,

so as to increase the number of successful applications in their field. However, we find that the NIH

practice of computing percentiles by benchmarking current scores in each evaluation cycle against the

scores from the same study section given in recent cycles introduces virtuous incentives to step up the

accuracy of the evaluation.

More generally, elements of proportionality are present in a wide variety of allocation schemes.

For examples, editorial boards at academic journals exert pressure to equalize the success rate across

editors who deal with different subfields. Similarly, admission boards at universities might be tempted

to equalize admission rates across different majors or degree programs. Our analysis stresses the danger

of giving in to the temptation of equalizing success rates across fields.

Literature. There is no previous literature on proportional allocation mechanisms and a dearth of

work on budget allocation across fields. Peirce (1867) pioneers the normative theory of the allocation

of resources across research fields. As stressed at least since Arrow (1962), market forces tend to

underprovide research, mostly because invention is non-rival. Governments, however, have limited

information about the benefits of research in different fields. For an early attempt to quantify the

social benefits of medical research across diseases see Weisbrod (1963).5 Weinstein and Zeckhauser

(1973) link the problem of the optimal allocation of budget to fields to the decision theoretic approach

underlying hypothesis testing.

At a positive level, the description of the actual process for determining NIH funding by the federal

government in the early days inspires Wildavsky’s (1964) formulation of the incremental nature of

5In a review of the NIH, Zeckhauser (1967) also argues that disease burden should guide funding choices.
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budget apportionment; see also Davis, Dempster, and Wildavsky (1964).6 Zuckerman and Merton

(1971) notice that acceptance rates at leading scholarly journals vary across academic disciplines, with

higher rejection rates in social sciences and humanities compared to physical sciences.7 Rejection rates

also vary along similar lines across directorates at the National Science Foundation, which does not

allocate automatically funds with the proportional formula.

In his broad overview of research funding, Lazear (1997) touches upon allocation across fields, but

mostly looks at how research funding agencies should optimally trade off mean returns with riskiness.

Building on a setting with continuous types and scale-location signal similar to ours, Leslie (2005)

sketches a model of the demand for submissions to academic journals—key to our contribution is con-

sideration of the supply side.8 Scotchmer (2004, Chapter 8) formulates a simple dynamic model of

demand for funding where high quality researchers sort into applying and are disciplined to deliver be-

cause of the expectation of repeated funding. See also Stephan (2012, Chapter 6) for a broad discussion

and references on science funding.9

The contest literature focuses mostly on elicitation of contestants’ effort incentives, see Moldovanu

and Sela (2001), Che and Gale (2003), and Siegel (2009); our model, instead, zooms in on the noisy

evaluation process of contestants’ types. Closer to our setting, Morgan, Sisak, and Várdy (2018) ana-

lyze the incentives of applicants to select different fields in a setting with exogenous supply; instead, we

focus on endogenously determining the supply through proportional budget allocation when applicants

cannot pick field but can only choose whether or not to apply. The agency literature that analyzes how

to optimally constrain biased evaluators is more tangentially related; see, e.g., Che, Dessein, and Kartik

(2013), Alonso (2018), and Frankel (2018).

1 Model

Each field i is populated by a continuum of ni risk-neutral agents representing the pool of potential ap-

plicants. If a fraction ai of the total number ni of potential applicants in the field apply, each requesting

6Savage (1999) gives a historical account of the influence process behind university earmarks in comparison to merit-

based public funding of research.
7Zukerman and Merton (1971, page 77) write: “. . . the more humanistically oriented the journal, the higher the rate of

rejecting manuscripts for publication; the more experimentally and observationally oriented, with an emphasis on rigour of

observation and analysis, the lower the rate of rejection.”
8See also Cotton (2013). Models of publication selection, such as Taylor and Yildirim (2011), mostly focus on discrim-

ination issues, which we skirt.
9Gans and Murray (2012) overview the main funding sources available for scientists (government, private firms’ internal

R&D, and foundations) and compare their different disclosure and openness requirements. Similar allocation problem arises

for arts funding; Cowen (2002) argues that the vitality of the U.S. arts scene results from an ingenious combination of direct

public subsidies and indirect schemes that encourage private charitable giving.
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the allowed budget of ki in that field, the total funds requested in field i are Ai = nikiai.
10 The overall

budget determines the success rate, a.k.a. payline, according to (2).

Consider field i. Each agent in the field is characterized by a type θ , representing the agent’s

quality or merit, which the agent observes. Agent types in field i are distributed according to Gi, with

continuous and differentiable density gi and support equal to the interval between θ i and θ̄ i, which can

be either bounded or unbounded.

To apply agents in field i must spend ci > 0, capturing the application cost in terms of resources,

time, and inconvenience. If the application is successfully funded, the agent obtains a payoff equal to

vi, the value of the benefit from being awarded a research grant, scholarship, or admission. Focus on

the interesting case with vi > ci and define γ i := ci/vi as the cost-benefit ratio.11 Agents are atomistic

and thus do not take into account the impact of their application on the success rate.12

For every agent who decides to apply, the evaluation panel in field i observes a signal drawn from

the location-scale family

x|θ ∼ Fi

(
x−θ

σ i

)
, (3)

with location parameter θ , the agent type, and scale parameter σ , the signal dispersion.13 We assume

that Fi has a logconcave density fi.
14 Given the location structure (3), the signal distributions for

different types θ are horizontally parallel. This property is illustrated in Figure 1 for types θ = θ

(light gray), θ̂ (gray), and θ̄ (black), where we drop the subscript i. Denoting Fθ ,σ (x) = F
(

x−θ

σ

)
, we

have Fθ ,σ (x) = F
θ̄ ,σ

(
x+ θ̄ −θ

)
: the signal distribution for any type θ can be obtained from the signal

distribution for type θ̄ by sliding horizontally to the right by θ̄ −θ .15

Section 2 analyzes the model with a single field facing a given payline, fixed at p. This analysis

10In practice, grant calls typically set maximum budgets for applications, sometimes depending on the career stage of the

applicant; the ERC sets the maximum allowed budgets at the same level in all fields. Given that almost all applicants request

the maximum funding allowed, we do not model the individual choice of budget by the applicant. In the more general case

in which grant applicants request different budgets, panel i selects the projects with the highest score so as to distribute the

fraction 100× p of the total funds applied for in field i.
11The model can also easily accommodate the addition of an embarrassment or psychological cost d borne by the agent

when the application is turned down; the cost benefit ratio then becomes γ = (c+d)/(v+d).
12With a finite population of agents, an additional application in a field would lead to an increase in funding available—

and thus in the success rate—for that field, even holding constant the behavior of other agents. This effect, however, vanishes

as the number of agents and applicants increase.
13A more dispersed signal is less valuable in any monotone decision problem; see Lehmann (1988) and Persico (2000).

Li and Agha (2015) present recent evidence on the accuracy of grant evaluation at the NIH.
14Given the restriction to location experiments, the assumption of logconcavity is equivalent to the Monotone Likelihood

Ratio Property; see, for example, Lehmann and Romano (2005, Example 8.2.1, page 323) for a proof. This implies that

updating is monotonic, so that the evaluator selects the best 100× p per cent of the applications by accepting whenever

x≥ x̂.
15The normal signal displayed in Figure 1 has a symmetric density f , with f (x) = f (−x), so that F (0) = 1/2. We derive

additional results for symmetric signals, but otherwise do not impose this restriction.
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is directly relevant for a field that is so small, relative to the amount of applications submitted in the

other fields, that it does affect the payline. More importantly, the partial equilibrium model with fixed

payline is a fundamental building block for Section 3 where the characterize the full equilibrium with

endogenous payline (2).

2 Single Field Facing Fixed Payline

This section characterizes the partial equilibrium in a single field for a fixed payline. The properties

of the partial equilibrium we derive here are robust to the endogenization of the payline, as we will

see in Section 3. Given the focus on a single field facing a fixed payline, in this section we drop the

subscript i for the field. Under proportional allocation the evaluator accepts the top 100× p per cent

of the applications a received, based on the signal x. Thus, the evaluator selects the applications most

worthy of funding under the constraint that the success rate is no more than p. This allocation rule

defines a game; we assume that players have common knowledge of the game and its parameters. The

game proceeds as follows:

1. Each agent privately observes her type θ and decides whether to apply;

2. The evaluator observes a signal realization x for every applicant and accepts the top p applica-

tions.

Section 2.1 characterizes the application demand a by the agents if they expect the evaluator to

assign grants to applications with signal realization x ≥ x̂; we show that agents with type above a

threshold level θ̂ apply. Given that a = 1−G
(
θ̂
)

agents apply, according to the proportional rule the

evaluator can accept at most pa applications. As explained in Section 2.2, the evaluator assigns grants

to the 100× p per cent applications with the highest signal realizations, x≥ x̂.

Knowing the model parameters and the information structure, agents share the same expectation

about the acceptance behavior of the evaluator; this expectation is correct in equilibrium. Section 2.3

characterizes the Bayes-Nash equilibria with proportional allocation. Given that agents have measure

zero and are atomistic, any deviation by an individual agent has no impact on the acceptance standard

set by the evaluator x̂; thus, the equilibrium outcome is identical to the one that would result if agents

and evaluator were to act simultaneously. Section 2.4 performs comparative statics of the equilibrium

with respect to the dispersion σ of the evaluator’s signal, our key parameter of interest.
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Figure 1: Derivation of demand from signal distribution for type θ = θ̄ , for F normal with σ = 1. The

light blue and violet vertical bars correspond to the acceptance standards for which all (a= 1) and zero

(a= 0) researchers apply. For intermediate acceptance standard at x̂ (orange bar), the marginal type is

θ̂ .

Figure 2: Construction of demand function from signal distribution and type distribution, for F normal

and G(θ) =
√

θ .
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2.1 Incentives for Application Demand

Suppose that agents expect the evaluator to adopt the acceptance standard x̂, whereby all applications

with signal x ≥ x̂ are accepted. Agents apply provided that the expected payoff from applying is posi-

tive,

v
[
1−Fθ ,σ (x̂)

]
− c≥ 0.

By (3), the type of the marginal applicant who is exactly indifferent between applying and not applying

is then

θ̂ (x̂) = x̂−σF−1 (1− γ) , (4)

where γ = c/v. As illustrated in Figure 1, for a given acceptance standard x̂ (orange vertical line) the

marginal type, θ̂ , expects to be accepted with probability 1−F

(
x̂−θ̂

σ

)
= γ . Given that all agents with

θ ≥ θ̂ apply, application demand at acceptance standard x̂ is

aD (x̂) = 1−G(θ̂ (x̂)) = 1−G
(
x̂−σF−1 (1− γ)

)
. (5)

Figure 2 represents application demand a, on the horizontal axis, as a function of the acceptance

standard x̂, on the vertical axis, which plays a role similar to the price. The vertical intercept xD
0 is the

standard at which the highest type θ̄ is exactly indifferent between applying and not. As illustrated

in Figure 1, at x̂ = xD
0 the highest type, θ̄ , expects to be accepted with probability 1−F

(
xD

0−θ̄

σ

)
= γ .

Equivalently, the vertical demand intercept is xD
0 = F−1

θ̄ ,σ
(1− γ) = θ̄ +σF−1 (1− γ).

Proposition 1 (Demand) Application demand (5)

(a) decreases in the standard, daD/dx̂≤ 0;

(b) decreases in the cost-benefit ratio, daD/dγ ≤ 0;

(c) increases/decreases in signal dispersion ∂aD/∂σ R 0 whenever the acceptance standard on the

demand curve is above/below the marginal type, x̂− θ̂ = σF−1 (1− γ)R 0. If the signal distribution is

symmetric F (0) = 1/2, demand (i) increases in signal dispersion daD/dσ ≥ 0 in a tight contest with

γ ≤ 1/2 and (ii) decreases daD/dσ ≤ 0 in a loose contest with γ ≥ 1/2

Inequalities (a) and (b) hold strictly when demand is interior. According to part (a), demand slopes

down; by (4), the marginal type θ̂ increases in x̂. Figure 2 also represents the inverse of the signal

distributions from Figure 1—with the axes reversed—as signal quantile functions, the increasing curves

for types θ = θ (light gray), θ̂ (gray), and θ̄ (black). Inverting (5), the inverse demand function is then

x̂D (a) = σF−1 (1− γ)+G−1 (1−a) , (6)
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corresponding to the blue curve displayed in bold in Figure 2. By construction, the acceptance standard

at which demand reaches the upper corner a = 1 is xD
1 = θ + σF−1 (1− γ), so that for x̂ ≤ xD

1 the

acceptance probability for all types is more than γ .

For part (b), an increase in γ shifts demand (5) down to the left; from (6) the vertical intercept of

demand is lowered. For part (c), the impact of signal dispersion σ on the demand curve is determined

by the location of the marginal type. For a given σ̃ , at standard x̂(σ̃) consider the marginal type

θ̂ (σ̃), who is exactly indifferent between applying and not. Demand increases with signal dispersion

whenever the acceptance probability for θ̂ (σ̃) increases in σ ,

∂

∂σ

[
1−F

(
x̂(σ̃)− θ̂ (σ̃)

σ

)]
=

x̂(σ̃)− θ̂ (σ̃)

σ2
f

(
x̂(σ̃)− θ̂ (σ̃)

σ

)
> 0,

i.e., whenever x̂(σ̃) > θ̂ (σ̃). Otherwise, demand decreases in dispersion. To illustrate, note that with

perfect information, σ = 0, type θ̂ is accepted for sure at standard x̂ < θ̂ , expecting always a signal

x = θ̂ . As signal dispersion increases, the signal distribution rotates clockwise around θ̂ . Given that

x̂< θ̂ , the acceptance probability is reduced, and thus demand decreases in dispersion.

Symmetric Signal. When the signal is symmetric, F (0) = 1/2, the comparative statics depends on

whether the marginal type expects to be accepted less or more than 50% of the times. From (4) and

symmetry of the distribution F , the marginal applicant is above or below the acceptance standard,

θ̂ Q x̂, whenever γ Q 1/2. Therefore, daD/dσ R 0⇔ γ Q 1/2:16

• In a tight contest (i), the application cost is less than half the value of the award, c < v/2. The

cost-to-value ratio is sufficiently low that the acceptance probability is below 1/2 for the marginal

applicant. By F−1 (1− γ) > 0, the marginal applicant type is below the acceptance standard.

An increase in dispersion σ increases the acceptance probability for the marginal applicant and

thus increases incentives to apply. This means that the marginal applicant decreases—and thus

demand increases—in signal dispersion σ . In practice this result is relevant for common calls

that tend to be are highly competitive because application costs are typically small relatively to

awards, resulting in a tight contest.

16It is worth drawing a parallel between our tight vs. loose contests and Johnson and Myatt’s (2006) niche vs. mass

markets. Like in their setting, the flipping of the comparative statics is based on whether the marginal type is to the left or to

the right of the rotation point of the distribution. In our setting, however, demand by the privately informed agents depends

on their type as well as the noisy signal possessed by the evaluator about the type; comparative statics is with respect to the

private information of the evaluator.
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• The logic is flipped in a loose contest (ii), in which the application cost is more than half the

value of the award, c > v/2. Incentives to apply are then so limited that the marginal type is

above the acceptance standard, θ̂ > x̂; in a loose contest, the marginal applicant increases—and

thus demand decreases—in σ . While less typical, the loose contest case with high cost benefit

ratio γ > 1/2 could arise when applicants face a high stigma from being turned down.17

Next we consider an example in which demand always decreases as dispersion increases.

Example: Positive Exponential Signal. For example, if the signal distribution is F (x) = exp(x)

for x ∈ (−∞,0), we have F−1 (1− γ) = ln(1− γ) < 0 so that demand always decreases in dispersion,

∂aD/∂σ < 0. Intuitively, aD decreases in dispersion given that the marginal applicant is a relatively

high type. With this signal structure, the marginal applicant is always discouraged—and thus demand

decreases—as the signal becomes noisier.

In spite of the ambiguous comparative statics of demand with respect of dispersion, we will see that

equilibrium applications—in all sensible cases in which the equilibrium is stable—always increase in

dispersion.

2.2 Proportional Supply for Given Payline: When Demand Creates Supply

The panel funds applications for which the signal is above the acceptance standard x̂.18 Recall that the

amount of applications received by applicants with θ ≥ θ̂ is a= 1−G(θ̂) and that an applicant of type

θ clears the bar with probability 1−F
(

x̂−θ

σ

)
. The acceptance standard x̂S on the proportional supply,

such that exactly a fraction p of the a applicants are successful, solves

∫
θ̄

G−1(1−a)

[
1−F

(
x̂S−θ

σ

)]
g(θ)dθ

a
= p. (8)

17This amounts to setting the parameter d introduced in footnote 11 at a high level, as can be the case in internal grant

competitions for university faculty members.
18By logconcavity of f , E [θ |a,x] is increasing in x; see footnote 14. The behavior of the evaluator is natural and can

be rationalized if the evaluator aims at maximizing the expected quality of accepted applications subject to the constraint

that exactly pa applications are accepted. Equivalently, accepting the 100× p per cent applications with the highest signal

realizations is optimal for an evaluator who maximizes the total expected worthiness of accepted applications over the

acceptance set X ∫
θ̄

G−1(1−a)

[∫
X

E [θ |x,a] 1

σ
f

(
x−θ

σ

)
dx

]
g(θ)dθ (7)

subject to the success rate being lower than p,
∫

θ̄

G−1(1−a)

[∫
X

1
σ

f
(

x−θ

σ

)
dx
] g(θ)

a
dθ ≤ p.
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This supply equation determines the acceptance standard x̂ that guarantees that the fraction of projects

selected for funding among the applicants—themselves the top a agents in the population—is equal to

p, the required success rate.

Figure 3 illustrates the supply function in the (a, x̂) space.19 The construction relies on the fact that

applicants with higher types enjoy a higher probability of acceptance than weaker candidates. Given a,

with proportional funding the acceptance standard x̂S is set so that the average probability of winning

is p across all applicants, or∫
θ̄

x̂S−σF−1(1−p)

[(
1−F

(
x̂S−θ

σ

))
− p

]
g(θ)dθ =

∫ x̂S−σF−1(1−p)

G−1(1−a)

[
p−
(

1−F

(
x̂S−θ

σ

))]
g(θ)dθ .

(9)

The argument of the integral on left-hand side of (9) is the difference between the acceptance proba-

bility for stronger applicants with types θ ∈
[
x̂S−σF−1 (1− p) , θ̄

]
and the average acceptance prob-

ability p.20 The proportional supply x̂S (a) is such that the excess acceptance probability (weighed

by the corresponding density of agent types) for stronger applicants on the left-hand side—the yel-

low area in Figure 3 when agent types are uniformly distributed, g(θ) = 1—is equal to the inte-

gral of the difference between p and the acceptance probability for weaker applicants with types

θ ∈
[
G−1(1−a), x̂S−σF−1 (1− p)

]
on the right-hand side of (9)—the blue area in Figure 3.

Proposition 2 (Proportional Supply with Fixed Payline) Proportional supply solving (8)

(a) decreases in applications, dx̂S/da≤ 0;

(b) decreases in the success rate, dx̂S/d p≤ 0.

According to part (a), the acceptance standard on the proportional supply x̂S is a downward sloping

function of applications, a. As applications increase, the average quality of applicants is reduced. To

keep the success rate at the same level for the resulting worse pool of applicants, the acceptance standard

must be reduced. Thus, the proportional supply curve slopes down, unlike classic supply curves, which

always slope up.

For part (b), when the success rate is increased, the acceptance standard for any a must be reduced.

This second property of supply will play an important role in the construction of the full equilibrium,

where the success rate is endogenously determined on the basis of applications in all fields.

19The vertical intercept for a = 0 is at xS
0 = θ̄ +σF−1 (1− p), the standard for which the acceptance probability for the

highest type is p. The vertical intercept for a= 1 is at xS
1 solving

∫
θ̄

θ

[
1−F

(
xS

1−θ

σ

)]
g(θ)dθ = p.

20Note that the acceptance probability of type x̂S−σF−1 (1− p) is exactly p.
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Figure 3: Proportional supply function for normal example with uniform G(θ) = θ .

Figure 4: Construction of proportional equilibrium in example with uniformly distributed types and

uniform signal.
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Uniform Signal. With signal Fθ ,σ (x) = 1/2+(x−θ)/σ , a uniform distribution of length σ centered

around θ , the supply is

x̂S (a) = σ

(
1

2
− p

)
+G−1 (1−a)+

∫
θ̄

G−1(1−a)

1−G(θ)

a
dθ .

Comparing this expression with (6), the supply has a similar structure to the inverse demand with

two key differences:21 (i) the cost-benefit ratio γ , determining incentives to apply on the demand

side, is replaced by the success rate p for average applicants on the supply and (ii) the marginal type

G−1 (1−a) = θ̂ is replaced by the average inframarginal type

E
[
θ |θ ≥ G−1 (1−a)

]
=
∫

θ̄

θ̂(a)
θ

g(θ)

1−G
(
θ̂ (a)

)dθ .

Example: Uniform Types and Signal. What is the impact of an increase in signal dispersion σ on

the standard x̂S that induces a success rate of p given that the top 100× a per cent of agents apply?

The forces at play are nicely illustrated by the example with uniformly distributed types. According

to Lemma 1 in Appendix B, an increase in dispersion shifts up the proportional supply x̂S for any a if

and only if p < 1/2. Consider the realistic scenario (i) with less than fifty-fifty success rate, p < 1/2.

Then, an increase in dispersion raises the average acceptance probability of applicants. To bring down

the average success rate to p the acceptance standard must be raised: dx̂S/dσ > 0. In the knife-edge

case with p = 1/2, the proportional supply is constant in signal dispersion: an increase in dispersion

pulls down the acceptance probability of each applicant stronger than the median by exactly the same

amount as it pushes up the acceptance probability of a corresponding applicant weaker than the median.

In soft contests with p> 1/2, the logic in (i) is flipped: dx̂S/dσ < 0.

2.3 Partial Equilibrium for Fixed Payline

Figure 4 illustrates the equilibrium construction. At any given acceptance bar x̂ the upward sloping

curve in the figure represents the distribution function F

(
x̂−θ̄

σ

)
corresponding to the highest type,

θ = θ̄ . For any given standard x̂, the acceptance probability is equal to 1−F

(
x̂−θ̄

σ

)
. Thanks to the

location structure of the experiment, the acceptance probability for an agent of type θ < 1 can be read

on this same curve by sliding to the right by θ̄ −θ , thus obtaining 1−F
(

x̂−θ

σ

)
.

The demand condition (5) requires that the acceptance probability for the marginal type θ̂ which

21See the Supplementary appendix for more details.
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generates demand a= 1−G
(
θ̂
)

is exactly equal to γ , or

1−F

(
x̂−G−1 (1−a)

σ

)
= γ,

represented by the crossing of the distribution function with the vertical green line. The supply condi-

tion (8) requires that the average acceptance probability satisfies (8), so that the total amount of prizes

assigned, equal to the acceptance probability for types from the highest (corresponding to x = x̂) to

the marginal (corresponding to x = x̂+ θ̄ −G−1 (1−a)), weighted by their corresponding density, is

equal to pa, the amount of prizes available for distribution. Notice that the acceptance probability for

the marginal type θ̂ = G−1 (1−a) is 1−F

(
x̂−G−1(1−a)

σ

)
= γ < p; by the location property of the

distribution, this probability can be read off the distribution function F

(
x−θ̄

σ

)
in the graph by setting

x = x̂+ θ̄ −G−1 (1−a). At the other end, the acceptance probability for the top type θ = θ̄ when the

acceptance bar is at x̂, 1−F

(
x̂−θ̄

σ

)
, must necessarily be higher than p.

Proposition 3 (Uniqueness and Stability of Partial Equilibrium with Fixed Payline) (a) If the av-

erage mean residual life of the type distribution weighted by the signal distribution is lower than the

Mills ratio of the type distribution∫
θ̄

θ
1
σ

f
(

x−t
σ

)
[1−G(t)]dt∫

θ̄

θ
1
σ

f
(

x−t
σ

)
g(t)dt

<
1−G(θ)

g(θ)
, (KEY)

there is a unique equilibrium and this equilibrium is stable.

(b) When the support of the type distribution is bounded, θ̄ < ∞, if p ∈ (γ, p̂), with p= p̂ such that the

vertical intercept of supply for a = 1 satisfies xS
1 = σF−1 (1− γ), there is an interior equilibrium with

aE ∈ (0,1).
(c) Each of the following conditions is sufficient for (KEY) and thus for uniqueness and stability of

equilibrium: (1) the distribution of types has increasing density

d

dθ
g(θ)≥ 0 (S1:ID)

or (2) the distribution of types has increasing hazard rate

d

dθ

g(θ)

1−G(θ)
≥ 0 (S2:IHR)

Condition (KEY) in part (a) characterizes the condition for the supply to cross demand from below,

resulting in an interior equilibrium that is unique and stable. Our stability notion is classic: starting

15



from any non-equilbrium allocation
(
a0,x0

)
any tâtonnement supply and demand adjustment, at+1 =

aD
(
x̂S (at)

)
and xt+1 = x̂S

(
aD (xt)

)
, leads to the equilibrium, limt→∞ (a

t ,xt)→ (ap,xp).

Condition (KEY) is satisfied by a wide set of distributions. Part (c) gives two alternative suffi-

cient conditions for (KEY). First, when the density of types is (weakly) increasing, sufficient condition

(S1:ID) guarantees that the interior equilibrium is unique and stable, for all signal distributions. Sec-

ond, when the type distribution has increasing hazard rate sufficient condition (S2:IHR) guarantees

uniqueness and stability, again regardless of the signal distribution. Condition (S2:IHR) covers a broad

set of distributions, given that all logconcave densities have increasing hazard rates; thus, if the density

of types is strongly unimodal the equilibrium is unique, interior and stable.

Example: Exponential Types. In an important boundary case the type distribution is negative ex-

ponential g(θ) = α exp(−αθ), with constant mean residual life. Condition (KEY) is then veri-

fied with equality for all signal distributions, so that depending on the parameters there is either a

unique stable equilibrium at a = 0 or a unique stable equilibrium at a = 1; for a non-generic bound-

ary region of parameters any a ∈ [0,1] is an equilibrium. To illustrate, if the signal distribution is

also exponential, F (x) = 1− exp(−x), inverse demand is x̂D (a) = −(lna)/α −σ lnγ and supply is

x̂S (a) =−(lna)/α−σ ln [p(ασ −1)/(ασ)]. Then, ap = 0 if (p− γ)/p< 1/(ασ), ap = 1 when the

inequality is reversed, and any ap ∈ [0,1] when equality holds.

Uniform Signal. When restricting attention to uniform signal, f (x) = 1, condition (KEY) boils down

to the property that the type distribution has Decreasing Mean Residual Life∫
θ̄

θ
[1−G(t)]dt

1−G(θ)
<

1−G(θ)

g(θ)
⇔ ∂

∂θ

∫
θ̄

θ
[1−G(t)]dt

1−G(θ)
< 0, (DMRL)

a condition weaker than (S2:IHR).22

Example: Beta (with α = 1) Types. For a particularly tractable DMRL example, when the type

distribution is G(θ) = 1− (1−θ)β with θ̄ = 1, corresponding to a Beta with parameters α = 1 and

22DMRL is equivalent to logconcavity of the right-hand integral of the survival function of the type distribution

∂ 2 log
∫ 1

θ
[1−G(t)]dt

∂θ
2

< 0.

A sufficient condition for DMRL is that the survival function 1−G is logconcave or, equivalently, that the hazard rate g/(1−
G) is increasing (see, e.g., Bagnoli and Bergstrom (1998), Corollary 3). In turn, a sufficient condition for logconcavity of

1−G is that the density g is logconcave (see Bagnoli and Bergstrom (1998), Theorem 6).
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Figure 5: Example of multiple equilibria when DMRL is violated.

general β , for p ∈ (γ, p= 1/(1+β )+ γ) and σ ∈ (0, σ̄ = 1/ [(1+β )(p− γ)]) the unique equilibrium

is interior at ap = [(1+β )σ (p− γ)]β and x̂p = 1+σ [1/2+βγ− (1+β ) p].23

To understand the conditions for the equilibrium to be interior in part (b), note that when the types

have a bounded support if p < γ proportional supply starts off above demand; thus, there is a stable

equilibrium at the corner ap= 0 with no demand. If p≥ p̂, at the boundary a= 1 the vertical intercept of

supply is below the vertical intercept of demand, xS
1≤σF−1 (1− γ), so that there is a corner equilibrium

in which all agents apply, ap = 1, and x̂= xS
1.

When the type distribution has unbounded support (θ̄ = ∞), both demand and supply start off (as

a→ 0) at infinity. The equilibria depend on the features of the Mean Residual Quantile (MRQ) function

computed at 1−a, defined as

MRQ(1−a) =

∫
θ̄

G−1(1−a) [1−G(t)]dt

a
= E

[
θ −G−1 (1−a) |θ ≥ G−1 (1−a)

]
,

representing the average excess type beyond the marginal type when the marginal type is at the 100a%

point (from the top) of the type distribution G.24 If lima→0 MRQ(1−a) < σ (p− γ), then supply

23For p ∈ (γ, p̂) and σ > σ̄ , as well as p> p̂, there is a unique and stable equilibrium at the corner a= 1. For p< γ (as

well as for p ∈ (γ, p̂) and σ = 0) there is a unique and stable equilibrium at a= 0.
24On the definition of MRQ see also Nair, Sankaran, and Balakrishnan (2010, Chapter 2.4)
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starts off below demand, so that the first equilibrium (i.e., the equilibrium with lower a) is stable; this

condition is satisfied for all distributions with light top tail for which lima→0 MRQ(1−a) = 0.25 If, in

addition, lima→1 MRQ(1−a) = E [θ ]> σ (p− γ), the first equilibrium is necessarily interior and a= 1

is not an equilibrium. If, instead, lima→0 MRQ(1−a) = ∞, then there is always a stable equilibrium

with unraveling a= 0.

Equilibrium Multiplicity. Turning to multiple equilibria, part (c) implies that for multiplicity of

equilibria to result it is necessary that the hazard rate be decreasing and that the density be decreasing

in some interval of types. When the signal is uniform, the equilibrium condition can be rewritten as

MRQ(1−a) = σ (p− γ). Violation of DMRL is sufficient for the existence of a region of parameters

for which there are multiple equilibria—and all equilibria for which the condition is reversed are un-

stable. Intuitively, the density of types must decrease so steeply in θ that an increase in demand by

low types generates such a large increase in the supply of awards that the acceptance standard (so as to

keep the success rate constant at p) must be reduced by more than it is needed to encourage additional

demand.

Example: Haupt and Schäbe Types. Figure 5 displays a tractable example with non-monotonic

MRQ where we can obtain a closed-form solution of the full set of multiple equilibria. Suppose types

follow the square root distribution G(θ) =
√

θ (corresponding to a Beta with parameters α = 1/2,β =

1) and the signal is uniform.26 Given that the Mean Residual Quantile is not monotonic in a (here,

it initially increases and then decreases), there is a set of parameters for which multiple equilibria

result. As illustrated by Figure 5, for σ ∈ (σ = 1/ [3(p− γ)] , σ̄ = 3/ [8(p− γ)]) there are two internal

crossings of supply and demand, the first corresponding to a stable equilibrium and the second to an

unstable equilibrium; there is also a corner equilibrium at a= 1.27

Example: Pareto-Lomax Types. We conclude by discussing the pattern of equilibria resulting when

the type distribution has a thick top tail. For example, if the type distribution is Pareto type II, a.k.a. Lo-

max, G(θ) = 1− (1+βθ)−α
on the support [0,∞) for α > 1, with MRQ(1−a) = a−1/α/[β (α−1)]

25When the type distribution is exponential, G(θ) = 1− exp(−αθ), with constant MRQ = 1/α , there is a unique and

stable equilibrium with unraveling a = 0 if σ < 1/(α p−αγ) and with full coverage a = 1 if σ > 1/(α p−αγ). In the

non-generic case σ = 1/(α p−αγ), there is a continuum of equilibria with any a ∈ [0,1].
26The Supplementary Appendix reports closed-form expressions for the all equilibria resulting with the more general

Haupt and Schäbe distribution G(θ) =−η+
√

η2+(1+2η)θ , with η ∈ [0,∞).
27The stable equilibrium is at ãp=

{
3−
√

3 [3−8σ (p− γ)]
}
/4 and the unstable equilibrium at ˜̃ap={

3+
√

3 [3−8σ (p− γ)]
}
/4.
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decreasing in a, there is always a stable equilibrium with unraveling at a = 0, which is unique for

σ < 1/ [β (α−1)(p− γ)]. For σ > 1/ [β (α−1)(p− γ)], there is also an unstable interior equilibrium

at a = [σβ (α−1)(p− γ)]−α
as well as a stable equilibrium with full coverage at a = 1. The general

pattern established in Proposition 3 is again confirmed. Given that it is realistic for the distribution of

ability types to feature a thick tail, multiplicity of equilibria is a serious practical concern.

2.4 Impact of Signal Dispersion and Unraveling

Now, our headline result. For all parameter values, applications in all stable equilibria increase in signal

dispersion:

Proposition 4 (Impact of Dispersion in Partial Equilibrium) Under proportional allocation, in every

stable equilibrium the equilibrium level of applications (strictly) increases (when interior) in signal dis-

persion σ , daE/dσ ≥ 0. In every unstable equilibrium the equilibrium level of applications decreases

in signal dispersion σ .

If the evaluator signal is completely uninformative (σ → ∞), the scheme becomes a lottery. Given

that the signal contains no information, the evaluator selects winners randomly. All agents apply,

expecting to win with probability p > γ . As σ is decreased, at some point some agents at the bottom

of the distribution expect that their acceptance probability is too low to justify spending the application

cost. By the monotone structure of the equilibrium, only top researchers self select into applying.

Within this self-selected pool, only the top p applications are successful.

As σ is reduced further, better and better low-end applicants withdraw, and the bar is continuously

raised. An increase in signal dispersion (i.e., a reduction in signal accuracy) induces contrasting effects

on demand and supply, but in the end unambiguously increases applications in all stable equilibria.

Example: Uniform Types and Signal. To further understand the logic of this general result, it is

useful to initially focus on the example with uniformly distributed types, where the equilibrium is

always unique and stable. Consider our headline case with a tight and tough contest, γ < p < 1/2.

As illustrated in Figure 6, a reduction in signal dispersion, corresponding to an increase in accuracy of

the evaluator signal (I) shifts down demand (given that γ < 1/2) pushing a down and (II) shifts down

supply (given that p < 1/2) pushing a up—however, given that supply is flatter, effect (I) dominates

and a goes down. Next, in a tight and soft contest, γ < 1/2 < p, (II’) supply now also shifts up—so
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both demand and supply push a down. Finally, in a loose and soft contest, 1/2 < γ < p, (I’) demand

now shifts up, but now (II’) supply shifts up more than demand—again a goes down.28

Unraveling. Consider the limit as the signal becomes perfectly informative, σ → 0. At the limit with

σ = 0 when the evaluator has a perfectly informative signal about each applicant, agents with type

below the acceptance standard are sure they will not be approved. Applicants only spend c> 0 if they

are sure they will be successful. However, only a fraction p< 1 of these applicants must win, according

to the fixed payline. Given that the evaluator selects the top 100× p per cent of the applications received,

agents not in the top 100× p per cent are rejected and so are better off saving the application cost. So,

the only equilibrium has zero applications.29 The equilibrium completely unravels when σ = 0.

The unraveling logic underlying the fact that the equilibrium amount of applications decreases in the

accuracy of evaluation is a major shortcoming of proportional allocation. More generally, according to

Proposition 4, an increase in signal accuracy results in a reduction in applications in all stable equilibria.

Multiple Equilibria Paths. When DMRL is violated and multiple equilibria arise, equilibria are

generically odd in number and follows an alternating stability pattern. To illustrate the pattern, Figure

5 displays the path of multiple equilibria resulting with types following the square root distribution

G(θ) =
√

θ and a uniform signal. Whenever the mean residual quality is non-monotonic, as in this

example, there exists a critical level σ for the variability such that for σ < σ there is a unique stable

equilibrium which increases in a, at σ = σ a second equilibrium with a = 1 appears, while for σ ∈
(σ , σ̄) there are three equilibria (an interior stable equilibrium increasing in σ , an interior unstable

equilibrium decreasing in σ , and a stable corner equilibrium at a = 1), at a second critical level σ =

σ̄ > σ there are two equilibria (an interior equilibrium stable at the left and unstable at the right and

a = 1), for σ > σ̄ a single equilibrium at a = 1. Applications in all unstable equilibria decrease in

signal dispersion.

Revisiting the Pareto example presented in the last paragraph of the previous section, also note that

when there are two stable equilibria the basin of attraction of the larger among the stable equilibria

increases in σ , again in the spirit of Proposition 4. Given that unstable equilibria are not robust to

perturbations, our robust conclusion is that proportional allocation has the perverse property that in all

stable equilibria applications decrease as signal accuracy improves.

28Clearly, the equilibrium is always at the corner a= 0 in a loose and tough contest, p< 1/2< γ .
29Or, equivalently, only the highest type θ (measure-zero) applies and is awarded a fraction p of the grant.

20



Figure 6: Partial equilibrium path as signal dispersion σ increases in example with G uniform and F

normal.

Figure 7: Comparison of path for partial equilibrium, responsive equilibrium, and full equilibrium in

example with G uniform and F uniform.
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3 Full Equilibrium

Recall that the total funds requested in field i are Ai = nikiai when a fraction ai of the ni potential

applicants in the field apply, each requesting the allowed budget of ki. So far we determined the field-

level partial equilibrium application rate ai, and thus Ai = nikiai, in each field i for given success rate p,

at the crossing between the field-level demand and the field-level supply induced by that field’s demand.

Even though each atomistic agent has a negligible impact on the success rate, applicants collectively

determine a1,a2, ...,aN . Given these field-level demands and the overall budget T , the equilibrium

success rate solves the proportional allocation formula (2).

This section characterizes the full equilibrium with proportional allocation by simultaneously solv-

ing with respect to a1,a2, ...,aN ,x1,x2, ...,xN , p the 2N+1 equations representing demand and propor-

tional supply for each of the N fields plus the balanced budget equation (2). We proceed in two steps.

First, we extend Section 1’s partial equilibrium analysis with fixed payline to the case with a single

field facing a responsive payline determined by (2). Second, we characterize the full equilibrium with

N ≥ 2 fields, where the general equilibrium effects generated by the adjustments in the fields are taken

into account.

3.1 Incorporating Payline Response: Single Field

The analysis in Section 2 covers the case with a small field that does not affect the payline—similar to

the small country analysis in international trade. We now characterize the partial equilibrium for a large

field that impacts the payline, while still disregarding the general equilibrium effects generated by the

fact that the allocation in the other fields also depends on the payline. This case can also be interpreted

as the full equilibrium resulting with a single field, N = 1.

Proposition 5 (Full Equilibrium with Single Field) (a) In every stable interior partial equilibrium,

applications increase in the success rate p, da
p
i /d p> 0. (b) If (KEY) holds, the full equilibrium with a

single field, N = 1 is unique and stable. (c) In every stable interior equilibrium with responsive payline

the impact of dispersion on equilibrium applications is still positive but dampened compared to the

case with fixed payline: da
p
i /dσ i > dai

i/dσ i > 0.

According to part (a), all stable partial equilibria a
p
i —and thus the right-hand side of (2)—are de-

creasing in the success rate p. This is a key step in the characterization of the fixed-point problem once

the payline is endogenized. Condition (KEY) guarantees that the equilibrium with responsive payline is

unique and stable, part (b). According to part (c), the impact of dispersion on applications is dampened
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when the payline is endogenized; intuitively, the payline adjusts adversely as applications increase,

thus discouraging additional applications. Figure 7 displays in blue the path of the full equilibrium for

a single field i= N = 1 as σ i increases; full equilibrium applications increase less fast than in the path

for the partial equilibrium in purple.

3.2 Equilibrium with Multiple Fields

The logic of the previous proposition is general and allows us to characterize the full equilibrium with

multiple fields. If the partial equilibrium with fixed payline in every field i = 1, ...,N is unique and

stable (i.e., by Proposition 3, if (KEY) holds for every field), the full equilibrium is unique and stable:

Proposition 6 (Characterization of Full Equilibrium) Under condition (KEY), when interior (a) the

full equilibrium is unique and stable; (b) full equilibrium applications in any field i (when interior) (i)

increase in the dispersion of evaluation in the same field

da
1,...,N
i

dσ i

> 0,

and (ii) decrease in the dispersion of the evaluation in any other field

da
1,...,N
i

dσ j

< 0;

(c) full equilibrium applications (when interior) are less responsive to own dispersion than under par-

tial equilibrium with fixed payline, but more responsive than under partial equilibrium with endogenous

payline

da
p
i

dσ i

>
da

1,...,N
i

dσ i

>
dar

i

dσ i

> 0.

When the partial equilibrium impact of own dispersion σ i on applications in field i is positive (as

it is the case for stable partial equilibria), holding fixed the applications in the other fields j 6= i, the

endogenous adjustment of the payline (2) dampens the partial equilibrium effect, but does not change

its sign, da
p
i /dσ i ≥ dai/dσ i ≥ 0, consistent with the result for a single field in Proposition 5.c. The

full equilibrium impact also takes into account the adjustment of applications in the other fields j 6= i

as the payline deteriorates. Given that partial equilibrium demand in each of the other fields decreases

in the payline by Proposition 5.a, the general equilibrium adjustment in turn dampens the reduction in

the payline, but without overturning the sign of the impact.

Figure 7 displays in red the equilibrium path for field i = 1 with N = 2 when the adverse impact

of the payline is incorporated, but applications in the other field j = 2 are held constant. Consistent
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with part (c), when σ i increases from the baseline, full equilibrium applications (red) increase less fast

than in partial equilibrium (purple) but faster when only the adverse response of the payline is taken

into account but the applications in the other fields different from i are held constant. The comparative

statics for unstable equilibria is clearly reversed.

Unraveling in Full Equilibrium. We argue in a number of steps that applications unravel necessarily

in all fields i with perfect evaluation σ i = 0, provided that there is at least one field j with noisy

evaluation σ j > 0.

First, note that with perfect evaluation in field i, demand is aD
i (x̂) = 1−G(x̂) and supply is

x̂S
i (ai,a−i) = G−1

(
1− Tai

ai+a−i

)
for given a−i = ∑ j 6=i a j. The partial equilibrium correspondence for

a field with σ i = 0 is ar
i (a−i) =max〈T −a−i,0〉.

Second, if evaluation is perfect, σ i = 0, in all fields i = 1, ...,N, there is a large set of multiple

equilibria with p = 1. Any a such that ∑
N
i=1 ai = T , so that all agents who apply are sure to win, is

an equilibrium, given that from ar
j

(
a− j

)
= T − a− j we have ar

−i (ai) = ∑ j 6=i ar
j

(
a− j

)
= T − ai. The

winning applicants can be from any of the fields. In particular, there is a symmetric equilibrium in

which ai = T/N for all i. There are also very extreme equilibria in which applications in a field are

zero, provided the size of the other fields is sufficiently large to scoop up all the available funds, T .

Finally, suppose that there is at least one field j with σ j > 0. Given that this field can sustain a

payline p< 1, applications necessarily unravel in all the fields with σ i = 0, as claimed.

Example: Exponential Types. When types are exponentially distributed Gi (θ) = 1− exp(−α iθ)

and the signal is also exponential in every field with σ i and γ i, the full equilibrium takes a particularly

simple form. Order fields i= 1, ...,N by the index

σ i− 1
α i

σ iγ i

, (10)

from lowest to highest. The index increases in dispersion σ i and decreases in the cost-benefit ratio γ i

as well as in the expectation of the prior type distribution 1/α i in the field. In the generic case in which

there are no ties in the index across fields, there is a unique full equilibrium with applications

a
1,...,N
i =max

〈
min

〈
T −∑

N
j=i+1 n jk j

niki

,1

〉
,0

〉
. (11)

Building on the characterization of the partial equilibrium in Section 2.3, full equilibrium applications

in field N with the highest index (10) are a
1,...,N
N = min

〈
T

nNkN
,1
〉

. Proceeding recursively, we have
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aN−1 = max
〈

min
〈

T−nNkN

nN−1kN−1
,1
〉
,0
〉

and so on, thus obtaining (11). Equilibrium multiplicity arises if

there are ties in the indices in some fields. To illustrate the construction with ties, suppose that k fields,

i = N− k+ 1, ...,N− 1,N, share the same highest index and that the total size of these fields is more

than T
N

∑
i=N−k+1

niki > T,

so that these fields are constrained. Then, any allocation ai, ...,aN that satisfies the budget with equality

N

∑
i=N−k+1

ainiki = T

is part of a full equilibrium. To summarize, the exponential example confirms the general pattern

whereby the amount of equilibrium applications in a field increases in dispersion and decreases in the

cost-benefit ratio relative to other fields. A striking feature of this example is that fields with worse

pools (i.e., agents with lower average types, 1/α i) generate more applications in equilibrium! This

property is due to the positive skewness of the exponential distribution. Intuitively, as prior expected

quality deteriorates, the type distribution becomes more positively skewed, with density more steeply

decreasing. This pathological result holds more generally with other similarly skewed distributions,

such as gamma.

Equilibrium Multiplicity: From Partial to Full Equilibria. To illustrate the possibility of multiple

full equilibria when condition (KEY) does not hold, let us endogenize the payline in the example

with type distribution Gi (θ) =
√

θ for field i. The bending curve in Figure 8 represents the partial

equilibrium correspondence for applications in field a= ai depending on applications in all other fields

b = ∑ j 6=i a j. Not to compound the equilibrium multiplicity across fields, suppose that in the other

fields j 6= i the distribution satisfies (KEY), so that in those fields the partial equilibrium with fixed

payline is unique, and thus the partial equilibrium correspondence in each of those fields is monotonic.

For concreteness, we take twelve other fields with uniform types and uniform signals. The downward

sloping curve in Figure 8 represents the sum of the partial equilibrium correspondences for the sum

of applications in all other fields as a function of a. The crossings of the two partial equilibrium

correspondences represent the equilibria. Figure 9 displays the path of the impact of dispersion. In line

with Proposition 6, the impact of dispersion on applications in full equilibrium is dampened compared

to the partial equilibrium.
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Figure 8: Construction of full equilibria by crossing partial equilibrium correspondences in example

with 13 panels, 12 with types uniformly distributed and 1 with types following the square root distrib-

ution.

Figure 9: Multiple equilibrium paths: from partial equilibria with fixed payline to full equlibria.
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Example: Uniform Types and Signal. Suppose types are uniformly distributed, Gi (θ) = θ , and the

signal is uniform, Fi (x) = 1/2+x, in every field. Recall that field i is characterized by size ni, grant size

ki, cost-benefit ratio γ i, and dispersion σ i. Crossing of demand aD (x̂) = 1− x̂+σ (1/2− γ) and supply

x̂S (a) = 1+ σ (1/2− p)− a/2 gives the partial equilibrium level of applications a
p
i = 2σ i (p− γ i).

Substituting a
p
i into (2), the equilibrium success rate solves

p=
T

∑
N
i=1 nikia

p
i

=
T

∑
N
i=1 niki min〈2σ i (p− γ i) ,1〉

.

Focusing on the case with interior equilibrium applications in each field, σ i < (p− γ i)/2 for all i,

solution of this equation gives the equilibrium success rate

p=
1

2

∑
N
i=1 nikiσ iγ i

∑
N
i=1 nikiσ i

+

√√√√(1

2

∑
N
i=1 nikiσ iγ i

∑
N
i=1 nikiσ i

)2

+
1

2

T

∑
N
i=1 nikiσ i

,

so that equilibrium applications in field i are

Ai = nikiσ i

(
∑

N
j=1 n jk jσ jγ j

∑
N
l=1 nlklσ l

− γ i

)
+2nikiσ i


√√√√(1

2

∑
N
j=1 n jk jσ jγ j

∑
N
l=1 nlklσ l

)2

+
1

2

T

∑
N
l=1 nlklσ l

− γ i

2


and overall applications are

∑
N

i=1
Ai =

√(
∑

N

j=1
n jk jσ jγ j

)2

+2T ∑
N

l=1
nlklσ l−∑

N

j=1
n jk jσ jγ j.

3.3 Suggestive Evidence

Direct testing of Proposition 4 would require data from unsuccessful applications as well as reviewer

scores across fields. As a proof of concept we now check whether ERC panels corresponding to fields

with more quality dispersion tend to attract an increasing fraction of the overall budget over time, as

suggested by our theoretical analysis. Table 1 reports the evolution of applications for ERC Advanced

Grants across different panels, belonging to Life Sciences (LS), Physical Sciences and Engineering (PI),

and Social Sciences and Humanities (SH). To be eligible for advanced grants applicants “are expected

to be active researchers who have a track-record of significant research achievements in the last 10

years”. We restrict attention to advanced grants because we can then rely on the number of Google

scholar citations to measure the differential evolution of the average track record and its variability at

the time of application across panels over time. To this end, we split the sample in half so as to compare

two periods in which the same rules are in place: a first period covering grants awarded during 2008-14

and a second period covering 2014-20.
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Table 1: Average citations of grantees at award time, coefficient of variation for citations, and

evolution of applications across ERC panels.

ERC

Panel

code

(0)

Average

citations

2008-14

(1)

Variability

in citations

2008-14

(2)

Budget

fraction

2008-14

(3)

Average

citations

2015-20

(4)

Variability

in citations

2015-20

(5)

Budget

fraction

2015-20

(6)

∆%

budget

fraction

(7)

LS1 389.82 1.65 4.48% 467.58 2.21 3.52% –21.52%

LS2 806.18 1.27 3.89% 974.23 1.47 3.1% –20.34%

LS3 139.08 1.37 3.82% 376.18 1.49 3.29% –13.95%

LS4 544.21 1.88 4.61% 713.75 1.59 3.92% –15.06%

LS5 339.33 1.48 5.55% 434.53 1.43 4.88% –12.05%

LS6 371.96 1.58 4.16% 545.39 1.62 3.54% –14.9%

LS7 315.75 1.69 5.83% 672.67 1.89 5.52% –5.29%

LS8 456.68 0.95 4.21% 506.88 1.05 3.64% –13.49%

LS9 433.63 1.09 2.89% 305.5 1.9 2.81% –2.58%

PE1 192.08 1.55 4.1% 208.66 1.51 2.99% –27.27%

PE2 401.38 1.56 5.32% 520.59 1.27 5.42% 1.96%

PE3 377.88 1.27 4.67% 522.86 1.05 4.82% 3.05%

PE4 318.71 1.19 3.86% 707.71 1.81 4.21% 9.11%

PE5 482.26 1.84 5.37% 509.04 1.37 5.32% –1.09%

PE6 665.97 1.08 4.2% 573.07 0.7 4.61% 9.7%

PE7 389.85 1.21 3.22% 508.29 0.88 4.3% 33.38%

PE8 237.84 1.41 5.02% 502.93 0.98 5.82% 15.98%

PE9 395.81 1.79 3.74% 617.43 1.82 3.86% 3.3%

PE10 274.99 1.03 4.41% 345.64 1.37 4.9% 11.1%

SH1 418.12 1.73 2.26% 654.4 1.29 2.25% –0.31%

SH2 260.58 1.54 3.45% 413.79 1.88 3.4% –1.59%

SH3 220.79 1.34 1.4% 290.04 1.43 2.05% 46.22%

SH4 323.44 1.19 4.21% 441.44 0.94 4.22% 0.15%

SH5 35.8 2.27 1.95% 109.66 2.89 3.73% 91.45%

SH6 101.95 1.9 3.35% 270.96 2.84 3.88% 15.74%

Notes: Column (0): ERC Panel code; see Table 2 in the Supplementary Appendix for a list of the fields

associated to each panel. Columns (1) and (4): Average number of Google scholar citations obtained by

principal investigators for each year of activity before grant award for each panel in the period. Columns (2) and

(5): Coefficient of variation (standard deviation divided by mean) of citations computed in columns (1) and (2).

Columns (3) and (6): Fraction of budget allocated to each panel in the period. Column (7): percentage change in

fraction of budget (6) relative to (3).
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Table 1 documents how the evolution of grants allocated to different ERC panels relates to the dis-

persion in citations obtained by principal investigators at the time of award.30 According to column 7,

over the years some panels ended up attracting an increasing amount of applications, while applications

in other panels dwindled. The correlation between the coefficient of variation of citations in the first

period (column 2) and the growth in funding between the two periods (column 7) is positive and equal

to 0.27. This result is in line with the theoretical prediction that panels with higher quality dispersion

tend to attract more applications and thus obtain a higher fraction of funds. Moreover, the correlation

between the coefficient of variation of citations in the first period (column 2) and average citations in

the second period (column 4) is negative and equal to −0.16. Thus, panels with higher first-period

variability in citations obtain in the second period more funding for their principal investigators, who

in turn tend to attract less citations.31

Even at research funding agencies that do adopt proportional allocation, success rates across fields

are closely monitored. We also noticed that fields with decreasing share of applicants and thus funding

at ERC tend to have higher than average success rates at the NSF and other systems that do not adopt

proportional allocation. But even though differences in success rates across fields in non-proportional

systems persist over time, there is an implicit pressure to reduce the budget for fields with higher success

rates in favor of fields with lower success rates.

3.4 Welfare Performance and Design Tweaks

To evaluate the welfare performance of proportional allocation define social welfare as the sum of the

welfare of the evaluator and the welfare of agents in all the fields

W =
N

∑
i=1

∫
θ

θ̂ i


∫ x

x̂i

 E
(
θ |x;θ ≥ θ̂ i

)
− fi︸ ︷︷ ︸

evaluator expected net merit

+ vi︸︷︷︸
agent benefit

 f (x|θ)dx− ci︸︷︷︸
agent cost

g(θ)dθ ,

where E
(
θ |x;θ ≥ θ̂ i

)
is computed by Bayes’ rule taking into account the information contained in the

fact that agents of higher types self select into applying and fi is the evaluator’s opportunity cost of

30The data on the identity of principal investigators (PI) recipients of an ERC advanced grant is publicly available. We

collected citation data by a routine that searched for the Google scholar profile associated to each PI. For each PI in the

corresponding panel in the respective period we computed the average number of citations per year of activity before

obtaining the grant. For candidates for whom the routine could not find a Google scholar profile, we assigned a value of 0.
31We also verified that fields in which there is more agreement in the evaluation of research (as measured by the Gini

coefficient in the Article Influence Score among ISI Web of Science journals in the field) have been attracting a shrink-

ing fraction of funds over the years. Funding for fields that have larger overall impact on science (as measured by the

eigenfactor) is shrinking to the advantage of less influential fields.
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funds for field i.32

To illustrate how inefficient proportional allocation can be, consider two fields 1 and 2, identical

(γ1 = γ2 and f1 = f2) other than for the fact that evaluation is perfect in field 1, σ1 = 0, but completely

uninformative in field 2, σ2 = ∞. The evaluator’s value from awarding a grant is equal to the agent’s

type θ . Suppose the total budget is equal to T = 1 and that the opportunity cost for the evaluator is f ∈
(1/2= E [θ ] ,1) in either field, so that accepting a random applicant gives a negative value, justifying

the evaluation process. The optimal policy for the evaluator is: in field 1 accept all applicants with

θ ≥ f by setting x̂= θ̂ = f so that the top 1− f agents apply, yielding evaluator surplus (1− f )2 /2> 0;

reject all applicants in field 2, which then attracts no application. With budget T = 1, the proportional

allocation equilibrium in the two fields is a1= 0 and a2= 1, yielding evaluator surplus of (1/2− f )< 0.

The loss of evaluator surplus from proportional allocation relative to the optimal allocation is f 2/2.33

In this admittedly extreme scenario, proportional allocation is actually the worst possible allocation

system.

More generally, elements of proportionality are welfare improving when fields have different cost-

benefit ratios γ i 6= γ j. It is natural to wonder whether there are simple modifications of the proportional

allocation formula (1) that improve the welfare performance of the resulting equilibrium outcome.

While we leave a thorough investigation of this design problem to future work, here we sketch how our

model can be easily adapted to attack this key policy question.

Consider the following quasi-proportional generalization of the proportional allocation rule (1)

A
ρ

i

∑
N
j=1 A

ρ

j

T, (12)

with ρ ≥ 0. We verified that when the allocation rule is sub-subproportional decreasing (e.g., for

ρ < 1) there is no unraveling, but our main comparative statics result holds, so that stable equilibrium

allocation increases in dispersion σ . When the allocation is super-proportional (ρ ≥ 1), unraveling can

take place for σ < σ , with σ bounded away from zero, also when (DMRL) holds.

Consider the design problem of choosing the proportionality coefficient ρ to maximize overall

social welfare W . For a specification of the model with normally distributed types and signals (see

Supplementary Appendix B for details), we verified numerically that when all fields have the same

32 Note that the opportunity cost of funds fi could well be negative, given that it captures the cost of funds provided net

of the (hopefully positive) spillover on the rest of society.
33In the more general case with budget T , the optimal policy yields evaluator surplus (1− f )2 /2 > 0 if T > f and

T (1− f −T )+T 2/2 if T < f in field 1. With proportional allocation, the equilibrium is as in the text unless T ∈ [0,γ]
(in which case a2 = 0, yielding evaluator surplus of 0) or T ∈ [γ,1] (when a2 = 1 and α = T , with evaluator surplus

(1/2− f )T < 0). The loss of evaluator surplus from proportional allocation is then 0 if T ∈ [0,γ], T (1−T )/2 for T ∈ [γ, f ],

(1− f )2 /2− (1/2− f )T for T ∈ [ f ,1], and f 2/2 for T ≥ 1.
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dispersion σ i = σ but vary in terms of the cost-benefit ratios γ i 6= γ j, it is socially optimal to introduce

some element of proportionality ρ∗ > 0. Intuitively, proportionality allocates more resources to fields

with more favorable cost-benefit ratios; this responsiveness is socially beneficial. If, instead, fields have

identical γ i = γ but differ in terms of σ i 6= σ j, fair and unresponsive allocation with ρ∗ = 0 is optimal.

More generally, the optimal level of proportionality increases in the variation of cost-benefit ratio γ but

decreases in the variation in dispersion σ across fields.

4 Field Game

We now turn to the perverse incentives that the proportional allocation formula creates for fields. Re-

searchers in a given field face a collective action problem, which they can solve by forming a scientific

association that represents their interests. Scientific associations can naturally coordinate field-level

outcomes through a number of activities, such as advertising the availability of grants and supporting

the submission of applications through seed grant schemes, information sessions, and seminars on grant

writing.

Consider the following game between field associations. First, each field association i = 1, ...,N

simultaneously sets its application rate ai, thus determining applications Ai= nikiai. This stage captures

the ability of associations to incentivize applications, to advise and assist applicants, as well as to affect

the accuracy of the evaluation process in their panel. Second, according to (1) field association i obtains

the fraction

p(Ai,A−i) =min

〈
T

Ai+A−i

,1

〉
of the overall budget T , where A−i = ∑ j 6=i n jk ja j denotes the sum of the applications submitted by the

competing fields; thus, this is an aggregative game. By increasing applications, each field association

obtains a larger fraction of the overall budget. The incentive to increase applications, however, is

curbed by the fact that field associations also take into account the cost of applications. Given total

applications A−i in the other fields, field association i’s maximizes the overall payoff obtained by all

researchers within the field

max
ai

vi p(Ai,A−i)Ai− ciAi. (13)

We are looking for the Nash equilibrium solution resulting in the first stage, where each field best

replies to the equilibrium applications in the other fields.

Given the payoff function induced by the proportional allocation formula, the solution turns out

to have a very simple structure. Each field’s problem is equivalent to a monopoly problem with in-
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verse (residual) demand function Pi (Ai,A−i) := vi p(Ai,A−i) and with constant marginal cost ci. The

proportional allocation rule actually induces a hyperbolic demand with elasticity

ε i =
dAi

dPi

Pi

Ai

=−1− Ai

A−i

.

Given that demand is always more than unit elastic, ε < −1, each field has an incentive to increase

applications so as to attract more funding to their field out of the fixed available budget for all fields, at

the expense of other fields. Thus, the revenue maximizing level of applications is at the corner, Ai = 1.

Intuitively, if applications were costless, taking as given the sum of applications A−i from the other

fields, each field has an incentive to flood the system so as to maximize the funding obtained.

Marshall’s second law of demand holds: demand becomes less elastic (|ε i| decreases) as demand

Ai increases, ∂ε i/∂Ai > 0, guaranteeing concavity and uniqueness of the solution. The first-order

condition for firm i can be rewritten according to the familiar Lerner formula equating the markup to

the inverse of the elasticity
Pi− ci

Pi

=
p− γ i

γ i

=
1

−ε
,

from which we obtain the expression for the best reply

Ai =min

〈√
A−iT

γ i

−A−i,1

〉
. (14)

The best reply is downward sloping. To see why, note that demand becomes more elastic as total

demand by competing fields increases, ∂ε i/∂A−i < 0, so that an increase in applications in the other

fields A−i reduces the optimal Ai chosen by a field. Thus, competition is in strategic substitutes. The

best reply is interior Ai< 1 for A−i>
(

T +
√

T 2−4T γ i

)
/(2γ i)−1; otherwise, the best reply is Ai= 1.

Proposition 7 (Equilibrium in Field Game) In the interior equilibrium of the field game, applica-

tions in field i are

A
(N)
i = (N−1)T

∑
N
j=1 γ j− (N−1)γ i(

∑
N
j=1 γ j

)2
(15)

and the equilibrium success rate (as well as payline) is p =
(

∑
N
j=1 γ j

)
/(N−1). If the N fields have

identical γ i = γ , the equilibrium surplus in each field is vT/N2 and the total surplus is vT/N. In the

limit as N → ∞, the success rate p converges to γ and the surplus of each field as well as the total

surplus of all fields converges to zero.

Because field associations internalize the cost of applications, they do not completely flood the

market with applications. However, as the number of fields increases, competition also increases—the
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entire rent from inframarginal applications is fully dissipated in the limit as the number of fields goes

to infinity.

5 Percentiles and Benchmarking: The Organization of Evaluation

We now turn to a variation of the proportional allocation system that is in place at the NIH. Recall that

NIH grants are awarded by the Councils of one of 27 NIH institute/centers (such as the National Cancer

Institute and the National Institute for Allergies and Infectious Diseases) according to a system of dual

review. For the first-level review, applications from different institutes/centers are assigned to one of

the some 180 specialized study sections. Study sections evaluate and score applications based on their

field-specific scientific expertise. The second-level review is made by the Council of the institute/center

based on the merit scores assigned by the study section. A number of the largest institutes/centers fund

applications with percentiled score above their payline, set so as to exhaust the budget obtained from

Congress through the appropriations process.34

However, there is a small tweak in the NIH system compared to the baseline proportional allocation

used by the ERC and other research funding organizations. The NIH computes percentiles by pooling

scores from the three most recent evaluation cycles. This system was introduced after various attempts

to normalize scores so as to make them more easily comparable across study sections.35 Starting

in October 1988, normalization was eventually replaced with percentiling: “all of the NIH funding

components will be utilizing percentile values. This action will emphasize the importance of relative

rank and provide compensation for widely differing scoring practices that have occurred among IRGs

in recent years”, as announced by National Institutes of Health (1988).36 The announcement also

explains that percentiles for applications in each evaluation cycle are calculated by pooling the current

scores with the scores given by the same study sections to the applications evaluated in the preceding

two cycles, a system that is still in operation today.37 As we argue next, what might look like an

inessential detail actually turns out to dampen the force leading to unraveling. Also, we show that

benchmarking induces virtuous incentives for accuracy, a countervailing force to the vicious incentive

34For a list of NIH paylines for the last three years see https://www.einstein.yu.edu/administration/grant-support/nih-

paylines.aspx.
35See Mandel (1996) for a historical account of the long process that led to the introduction of the payline, percentiling,

and benchmarking of applications across study sections at the NIH. As reported by Mandel (1996, pages 164-165), the NIH

started normalizing scores in 1971 given that “variations in scoring and success rates among study sections could not be

explained in terms of scientific merit criteria alone. . . . To minimize skewing effects when applications from high-scoring

and low-scoring study sections were interdigitated . . . transforming raw priority scores on a Gaussian curve . . .”.
36IRGs stands for Integrated Review Groups, clusters of study sections around a general scientific area.
37See https://www.niaid.nih.gov/grants-contracts/understand-paylines-percentiles for a detailed account.
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to reduce accuracy we highlighted so far.

Benchmarking Dampens Unraveling. To illustrate the impact of benchmarking on unraveling, con-

sider a field and assume that the distribution of agents is the same across two consecutive evaluation

cycles. With benchmarking, the supply equation (8) is replaced by

a

a+b

∫
θ̄

G−1(1−a)

[
1−F

(
x−θ

σ

)]
g(θ)

a
dθ +

b

a+b

∫
θ̄

G−1(1−b)

[
1−F

(
x−θ

σ

)]
g(θ)

b
dθ = p

Once applicants from the current and the past cycle are pooled, the mixture distribution of the sig-

nal becomes relevant. The left-hand side is the average of the distribution of signals for applicants

from the current cycle (with conditional density g(θ)/
[
1−G

(
G−1 (1−a)

)]
= g(θ)/a) and past cy-

cle weighted by their relative sizes.

We now argue that unraveling breaks down once current applications are benchmarked against

previous applications: some applications are submitted in the second cycle provided that some appli-

cations b > 0 were submitted in the previous cycle. To see this, note that the intercept of the supply

with benchmarking, xSb
0 , is equal to the approval standard that would have resulted if only applications

b were submitted, i.e., x̂S (b). In turn, x̂S (b)< xS
0 given that the supply is downward sloping; thus, even

as the dispersion σ → 0, the highest type θ has an incentive to apply.38 More generally, benchmarking

dampens the negative impact of information accuracy on the equilibrium incentives to apply.

Benchmarking Rewards Accuracy. Next, we argue that benchmarking can actually reverse the per-

verse comparative statics of proportional allocation with respect to information accuracy. To this end,

consider the impact of benchmarking on the distribution of scores that represent posterior expectations

E [θ |a,x], rather on the distribution of signals that we analyzed so far.39 The black curve in Figure 10

displays the distribution of the posterior expectation generated by a normal signal with σb, correspond-

ing to scores from the previous cycle. Now, pool those scores with the scores resulting in the current

cycle generated from a normal signal with lower dispersion σa < σb (green distribution). Note that the

38In the uniform-uniform example, partial equilibrium demand in this round is

aPb = σ (p− γ)−b+

√
[σ (p− γ)−b]2+b [b+2σ (p− γ)].

When evaluation becomes perfectly accurate, the equilibrium application rate converges to
(√

2−1
)

b > 0. Note that

∂ 2aPb/∂σ∂b< 0 so that benchmarking dampens the positive impact of dispersion equilibrium demand.
39So far we represented the acceptance standard in term of the signal x, rather than the posterior expectation E [θ |a,x]

about the application merit θ . The two approaches are equivalent when all applicants are evaluated with a common signal

structure F and homogeneous dispersion σ , given that E [θ |a,x] is increasing in x by logconcavity of f (equivalent to the

monotone likelihood ratio property in our setting with location signal; see footnotes 14 and 18).

34



Figure 10: Impact of improvement in accuracy relative to previous round.

distribution of posterior expectations E [θ |a,x] about application quality θ , given the evaluator’s noisy

signal x, becomes more dispersed as the signal becomes less dispersed (or more accurate).40

The blue distribution is the resulting mixture distribution that is used to determine which applica-

tions are above the payline. For a given payline p, represented by the horizontal line, if the current

distribution (in green) is more dispersed than the past distribution (in black), the proposals above the

payline are disproportionately originating from the current cycle—in addition to a fraction p of appli-

cants, the applications displayed in violet are also accepted. Through this mechanism, by improving

its accuracy in this cycle compared to the previous cycle, a panel is able to increase the fraction of

successful applications above the payline. Under the reasonable assumption that panel reviewers aim

at assigning as many grants as possible to applicants in their study section (possibly at the expense of

panels in other fields), they now have an incentive to be more accurate than in the previous cycle, so as

to increase dispersion in the posterior expectation and thus increase the number of funded applications

in their panel. Through this channel, the NIH method of computing percentiles relative to the appli-

cations previously evaluated by the same panel incentivizes accurate evaluation, triggering a virtuous

cycle.

Panel Organizational Design and Within-Field Heterogeneity. The same logic we highlighted in

the previous paragraph also explains the impact of a merger between heterogeneous fields. Consider

40To confirm the intuition, in the limit as signal dispersion σ → ∞, the distribution of the posterior expectation becomes

a step function at the prior E[θ ].
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two fields characterized by signal dispersions σ1 > σ2, but otherwise identical. If each field had its

own panel, the same fraction of applications would be funded in the two fields, though field 2 would

attract less applications than field 1. What would result if the two fields were pooled into a single panel,

while retaining the evaluation by reviewers specialized in each field? Fix for now the application levels

in the two fields. Given that the distribution of scores of applications from field 1 (with more dispersed

signal or less consensual evaluation, corresponding to the black curve in Figure 10) is less dispersed

than field-2 applications (green curve), field 1 suffers relative to field 2. This pattern is compatible with

Martin, Lindquist, and Kotchen’s (2008) finding that clinical research has lower success rate relative

to basic research at the NIH—when clinical research is pooled with basic research it suffers from

being less consensual. Less consensual fields thus have a strong incentive to separate and lobby to

have their own panel—once separated, not only the fraction of accepted applications will increase, but

also application incentives will improve, setting in place a spiral with an increase in applications and

in acceptances. When, instead, a more consensual field remains isolated with its own panel, it will

experience dwindling applications.

6 Conclusion

The mechanism that leads to unraveling in our model—with no applications being submitted in equi-

librium for fields with perfect evaluation—is somewhat reminiscent of Akerlof’s (1970) market for

lemons. However, in our setting unraveling leads to breakdown of applications in fields where infor-

mation is symmetric, rather than asymmetric as in Akerlof. Agents who are able to predict how they

will be evaluated prefer to hold out and save the application cost, unless they are confident of being

accepted. Fields with accurate evaluation are driven out by fields with noisier evaluation. Proportional

allocation creates perverse incentives for fields with asymmetric information to thrive.

Beyond research funding, our analysis of proportional allocation is relevant for large research fel-

lowships programs, such as the EU-wide Marie Skłodowska-Curie Action (MSCA) scheme (with a total

budget of 6.16 billion euros for the period 2014-2020, assigned in proportion to applications across all

university fields) and doctoral fellowship programs in Canada.41 The drawbacks we highlighted are

particularly severe for mechanisms that equalize the success rate among very heterogeneous fields—as

it is the case for the ERC and MSCA—but we expect it to be somewhat less problematic at the NIH,

which focuses on medical research, even though life sciences are far from homogeneous. It is only

understandable that some institutes/centers at the NIH prefer not to publish paylines, thus retaining the

41Such as the SSHRC Doctoral Fellowships program covering all humanities and social sciences.
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flexibility of setting different paylines for proposals from different fields.

General-interest academic journals are often subject to a similar pressure to allocate space to dif-

ferent subfields in proportion to submissions. When co-editors are given a common target acceptance

rate, fields with less accurate evaluation will attract more submissions. Similarly, university admission

boards are tempted to admit students to different programs in proportion to applications—or to increase

slots available in areas that attract more applications. Giving in to this temptation leads to a race to the

bottom in terms of quality of admitted students.
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7 Appendix: Proofs

Proof of Proposition 1. Differentiating the demand equation

D(x,a;σ ,γ) = 1−F

(
x−G−1 (1−a)

σ

)
− γ = 0 (16)

gives

Dx =− 1
σ

f

(
x−G−1(1−a)

σ

)
Da =− 1

σ
f

(
x−G−1(1−a)

σ

)
1

g(G−1(1−a))

Dγ =−1 Dσ =
x̂−G−1(1−a)

σ2 f

(
x̂−G−1(1−a)

σ

)
.

(17)

Part (a) follows from daD/dx = −Dx/Da = −g
(
G−1 (1−a)

)
< 0; similarly, part (b) from daD/dγ =

1/Da < 0. For part (c), daD/dx=−Dσ/Da R 0 if and only if the marginal applicant is below or above

the acceptance standard on the demand curve, G−1 (1−a) = θ̂ Q x̂. From (4) this holds whenever

F−1 (1− γ) R 0⇔ 1− γ R F (0). If the distribution F is symmetric, F (0) = 1/2, we conclude that

daD/dσ R 0⇔ γ Q 1/2.

Proof of Proposition 2. Differentiating the supply equation

S (x,a;σ , p) =

∫
θ̄

G−1(1−a)

[
1−F

(
x−θ

σ

)]
g(θ)dθ

a
− p= 0, (18)

we have

Sx =−
∫

θ̄

G−1(1−a)
1
σ

f( x−θ

σ )g(θ)dθ

a
Sa =

1
a

[
1−F

(
x−G−1(1−a)

σ

)
−
∫

θ̄

G−1(1−a)[1−F( x−θ

σ )]g(θ)dθ

a

]

Sp =−1 Sσ =

∫
θ̄

G−1(1−a)
1
σ

f( x−θ

σ )
x−θ

σ2 g(θ)dθ

a

(19)

where Sx < 0, Sp < 0, and Sa < 0 because along the supply the acceptance probability of the marginal

type G−1 (1−a) must be below the average success rate p. Part (a) and (b) follow.

Proof of Proposition 3. (a) The supply curve is flatter than the inverse demand

dx̂S

da
=−Sa

Sx

>−Da

Dx

=
1

daD/dx̂
⇔
∣∣∣∣ Dx Da

Sx Sa

∣∣∣∣< 0 (20)

Substituting from (17) and (19), we have∣∣∣∣ Dx Da

Sx Sa

∣∣∣∣
−1

a
1
σ

f

(
x−G−1(1−a)

σ

) (21)

= 1−F

(
x−G−1 (1−a)

σ

)
−
∫

θ̄

G−1(1−a)

[
1−F

(
x−θ

σ

)]
g(θ)dθ

a
+

∫
θ̄

G−1(1−a)
1
σ

f
(

x−θ

σ

)
g(θ)dθ

g(G−1 (1−a))

42



Integration by parts gives

∫
θ̄

G−1(1−a)
1
σ

f
(

x−θ

σ

)
g(θ)dθ

g(G−1 (1−a))
=
−F
(

x−θ

σ

)
g(θ)

θ̄

G−1(1−a)
+
∫

θ̄

G−1(1−a)F
(

x−θ

σ

)
g′ (θ)dθ

g(G−1 (1−a))

= −
g
(
θ̄
)

F
(

x−1
σ

)
g(G−1 (1−a))

+F

(
x−G−1 (1−a)

σ

)
+
∫

θ̄

G−1(1−a)
F

(
x−θ

σ

)
g′ (θ)

g(G−1 (1−a))
dθ

= F

(
x−G−1 (1−a)

σ

)
−F

(
x− θ̄

σ

)
−
∫

θ̄

G−1(1−a)

[
F

(
x− θ̄

σ

)
−F

(
x−θ

σ

)]
g′ (θ)

g(G−1 (1−a))
dθ ,

where the last line used g
(
θ̄
)
=
∫

θ̄

G−1(1−a) g
′ (θ)dθ + g

(
G−1 (1−a)

)
. Substituting this last equation

into (21) and using
∫

θ̄

G−1(1−a) g(θ)dθ = a, we conclude that∣∣∣∣ Dx Da

Sx Sa

∣∣∣∣Q 0⇔
∫

θ̄

G−1(1−a)

[
F

(
x−θ

σ

)
−F

(
x− θ̄

σ

)](
g(θ)

a
+

g′ (θ)

g(G−1 (1−a))

)
dθ R 0. (22)

Using the definition a= 1−G
(
θ̂
)
, we conclude that the equilibrium is unique and stable if and only if∫

θ̄

θ

[
F

(
x− t

σ

)
−F

(
x− θ̄

σ

)](
g(t)

1−G(θ)
+

g′ (t)

g(θ)

)
dt > 0. (23)

Integrating by parts and simplifying, this is equivalent to

−
[

F

(
x−θ

σ

)
−F

(
x− θ̄

σ

)](
G(θ)

1−G(θ)
+

g(θ)

g(θ)

)
+
∫

θ̄

θ

1

σ
f

(
x− t

σ

)(
G(t)

1−G(θ)
+

g(t)

g(θ)

)
dt > 0

Collecting terms, we can rewrite characterization (23) for uniqueness and stability of equilibrium as∫
θ̄

θ

1

σ
f

(
x− t

σ

)(
g(t)

g(θ)
− 1−G(t)

1−G(θ)

)
dt > 0 (24)

or equivalently as (KEY).

(b) The conditions for the equilibrium to be interior are explained in the text below the statement of

the proposition.

(c) Sufficient condition (S1:ID) follows from characterization (23), given that the term in brackets

is positive—if the density g is increasing, (23) holds. Sufficient condition (S2:IHR) follows from

characterization (24)—if the hazard rate g/(1−G) is increasing, (24) holds.

Proof of Proposition 4. (i) Applying the implicit function theorem to the system (16) and (18) gives

da

dσ
=−

∣∣∣∣ Dx Dσ

Sx Sσ

∣∣∣∣∣∣∣∣ Dx Da

Sx Sa

∣∣∣∣ (25)
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We already characterized the sign of the determinant at the denominator in the proof of Proposition 4.

From (17) and (19), the determinant at the numerator of (25) is equal to

J[a]σ :=

∣∣∣∣ Dx Dσ

Sx Sσ

∣∣∣∣=− 1

aσ
f

(
x−G−1 (1−a)

σ

)
[∫

θ̄

G−1(1−a)

1

σ
f

(
x−θ

σ

)
x−θ

σ
g(θ)dθ − x−G−1 (1−a)

σ

∫
θ̄

G−1(1−a)

1

σ
f

(
x−θ

σ

)
g(θ)dθ

]

= − 1

aσ
f

(
x−G−1 (1−a)

σ

)∫
θ̄

G−1(1−a)

G−1 (1−a)−θ

σ

1

σ
f

(
x−θ

σ

)
g(θ)dθ > 0.

Combining this inequality with (22), from (25) we conclude that equilibrium applications increase

(decrease) in dispersion for all stable (unstable) equilibria, i.e., depending on (22).

Proof of Proposition 5. (a) Following the same steps as in the proof of Proposition 4, from∣∣∣∣ Dx Dp

Sx Sp

∣∣∣∣= 1

σ
f

(
x−G−1 (1−a)

σ

)
> 0

we conclude that in any stable (or unstable) partial equilibrium da
p
i /d p ≥ 0, i.e., that applications

increase (or decrease) in the success rate p, strictly so when the equilibrium is interior.

(b) Note that

Ji =

∣∣∣∣∣ ∂Di

∂xi

∂Di

∂ai
∂Si

∂xi

∂Si

∂ai
− ∂ p

∂a

∣∣∣∣∣= Jip− ∂Di

∂xi

∂ p

∂a
< Jip, (26)

where the inequality follows from ∂Di/∂xi < 0 and ∂ p/∂a < 0. If (KEY) holds, we have Jip < 0,

which in combination with (26), implies that Ji < 0. Thus, the partial equilibrium with responsive

payline (or, equivalently, the full equilibrium with a single field) is unique and stable.

(c) As shown in part (b), every partial equilibrium that is stable (i.e., with Jip < 0) is also stable

when the adverse response of the payline is taken into account (given that Ji < Jip < 0). Applying

the implicit function theorem to the demand and supply systems with fixed and responsive payline, we

conclude that responsiveness of the payline dampens the positive impact of dispersion on the level of

equilibrium applications,

−
J[ai]σ i

Jip
=

da
p
i

dσ i

>
dai

i

dσ i

=−
J[ai]σ i

Ji
> 0.

Proof of Proposition 6. (a) If T = 0 there is unique equilibrium at the corner p = ai = 0 for all i.

For T > 0, there is an equilibrium with ai > 0 for some i. Condition (KEY) guarantees that any given

p determines a unique vector of field-level application rates a1,a2, ...,aN ; given that the right hand

side of (2) is decreasing in p, the overall equilibrium is unique. Turning to stability, recall that the full
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equilibrium solves the system of 2N demand and supply equations obtained by replacing the budget (2)

into the supply equations. The determinant of the Jacobian of this system

J1,...,N :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂D1

∂x1

∂D1

∂a1
0 0 0 0

∂S1

∂x1

∂S
p

1

∂a1
− ∂ p

∂a
0 −∂ p

∂a
0 −∂ p

∂a

. . .

0 0 ∂Di

∂xi

∂Di

∂ai
0 0

0 −∂ p

∂a
∂Si

∂xi

∂S
p
i

∂ai
− ∂ p

∂a
0 −∂ p

∂a

. . .

0 0 0 0 ∂DN

∂xN

∂DN

∂aN

0 −∂ p

∂a
0 −∂ p

∂a

∂SN

∂xN

∂S
p
N

∂aN
− ∂ p

∂a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is equal to

J1,...,N =∏
N

i=1
Jip︸︷︷︸
−
−∑

N

i=1

−︷︸︸︷
∂ p

∂a

−︷︸︸︷
∂Di

∂xi︸ ︷︷ ︸
+

∏ j 6=i
J jp︸︷︷︸
−
. (27)

Note that if the partial equilibrium with fixed payline in each field i is stable, Jip < 0, as guaranteed by

(KEY), for all i= 1, ...,N, this determinant J1,...,N has a negative sign when the number N of markets

is odd and a positive sign for N even. Thus, the full equilibrium is stable.

(b) Turn to the comparative statics of the full equilibrium. (i) Given that J1,...,N and J1,...,Nri have

opposite sign, we obtain that for any locally stable selection of the partial equilibrium, full equilibrium

demand in any field i increases in the dispersion of the evaluation in that field

da
1,...,N
i

dσ i

=−

+︷ ︸︸ ︷
J[ai]σ i

J1,...,Nri

J1,...,N
> 0,

given that J[ai]σ i
> 0, as shown in Proposition 4. (ii) For any locally stable selection of the partial

equilibrium, full equilibrium demand in any field i decreases in the dispersion of the evaluation in any

other field j

da
1,...,N
i

dσ j

=−

+︷ ︸︸ ︷
J[a j]σ j

+︷ ︸︸ ︷
∂ p

∂a

∂Di

∂xi
∏k 6=i, j Jip

J1,...,N
< 0,

given that the sign of ∏k 6=i, j Jip is the same as the sign of J1,...,N . The comparative statics for unstable

equilibria is reversed.
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(c) Having established the last inequality in part (b) we now obtain inequalities (i) and (ii) in

da
p
i

dσ i

=−
J[ai]σ i

Jip
>
(i)

da
1,...,N
i

dσ i

=−
J[ai]σ i

J1,...,Nri

J1,...,N
>
(ii)

dar
i

dσ i

=−
J[ai]σ i

Ji
> 0.

To prove (i), note that from (27) for fields 1, ...,Nr i we have

JipJ1,...,Nri =∏
N

i=1
Jip− ∂ p

∂a
∑ j 6=i

∂D j

∂x j
∏k 6= j

Jkp.

Combining this equation with (27) for fields 1, ...,N we obtain

J1,...,N = JipJ1,...,Nri− ∂ p

∂a

∂Di

∂xi
∏ j 6=i

J jp,

so that condition (i) is equivalent to

JipJ1,...,Nri

J1,...,N
=

J1,...,N+ ∂ p

∂a
∂Di

∂xi
∏ j 6=i J jp

J1,...,N
< 1,

which clearly holds given that ∏ j 6=i J jp and J1,...,N have opposite sign for every N.

To establish (ii), note that

JiJ1,...,Nri = ∏
N

i=1
Jip− ∂ p

∂a
∑ j 6=i

∂D j

∂x j
∏k 6= j

Jkp

−∂ p

∂a

∂Di

∂xi
∏ j 6=i

J jp+

(
∂ p

∂a

)2
∂Di

∂xi
∑ j 6=i

∂D j

∂x j
∏k 6= j,i

Jkp

= ∏
N

i=1
Jip− ∂ p

∂a
∑

N

i=1

∂Di

∂xi
∏k 6=i

Jkp+

(
∂ p

∂a

)2
∂Di

∂xi
∑ j 6=i

∂D j

∂x j
∏k 6= j,i

Jkp,

so that

JiJ1,...,Nri = J1,...,N+

(
∂ p

∂a

)2
∂Di

∂xi
∑ j 6=i

∂D j

∂x j
∏k 6= j,i

Jkp.

Substituting into condition (ii), this is equivalent to

JiJ1,...,Nri

J1,...,N
=

J1,...,N+
(

∂ p

∂a

)2
∂Di

∂xi
∑ j 6=i

∂D j

∂x j
∏k 6= j,i Jkp

J1,...,N
> 1,

which always holds given that
(

∂ p

∂a

)2
∂Di

∂xi
∑ j 6=i

∂D j

∂x j
∏k 6= j,i Jkp and J1,...,N have opposite sign for every

N.
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Proof of Proposition 7. The equilibrium (15) is found by solving simultaneously the N best replies

(14). To verify, from (15) we have

A−i =∑
j 6=i

A j =
(N−1)2 T γ i(

∑
N
j=1 γ j

)2
,

which substituted into the best reply (14) gives

Ai =

√
A−iT

γ
−A−i =

(N−1)T

∑
N
j=1 γ j

− (N−1)2 T γ i(
∑

N
j=1 γ j

)2
= (N−1)T

∑
N
j=1 γ j− (N−1)γ i(

∑
N
j=1 γ j

)2
,

as desired. Total applications are

N

∑
j=1

a
(N)
j = (N−1)T

∑
N
j=1 γ j− (N−1)γ i(

∑
N
j=1 γ j

)2
+
(N−1)2 T γ i(

∑
N
j=1 γ j

)2
=
(N−1)T

∑
N
j=1 γ j

,

so that the equilibrium success rate is

p=
∑

N
j=1 γ j

N−1
.

Substituting into (13), the equilibrium surplus in field i is

vi

(
∑

N
j=1 γ j

N−1

)(N−1)T
∑

N
j=1 γ j− (N−1)γ i(

∑
N
j=1 γ j

)2

− ci

(N−1)T
∑

N
j=1 γ j− (N−1)γ i(

∑
N
j=1 γ j

)2


=

(
vi−

N−1

∑
N
j=1 γ j

ci

)
T

∑
N
j=1 γ j− (N−1)γ i

∑
N
j=1 γ j

.

Under symmetry (γ i= γ), we have demand at each field a(N)=T (N−1)/
(
γN2

)
, total demand Na(N)=

T (N−1)/(γN), and success rate p=Nγ/(N−1). The equilibrium surplus in each field is then vT/N2

and total surplus vT/N, both converging to zero as N→ ∞.

PARAMETERS

Figures 1 and 2
γ = 1/5, F normal, σ = 0.4, G(θ) =

√
θ

θ = 1 (blue), θ = 1−aD (x̂)=̃0.2 (gray), θ = 1−aD
(
xD

1

)
= 0 (light gray)

Figure 3 p= 1/4, F uniform, σ = 1, G(θ) = θ

Figure 4 γ = 1/8, p= 1/4, F,G uniform, σ = 1

Figure 5 γ = 1/5, p= 1/4, F uniform, σ = 7.2, σ = 7.5, σ ≈ 6.67, G(θ) =
√

θ

Figure 6 γ = 1/7, p= 1/4, F normal, G uniform θ , σ = 0.6 (black), σ = 0.25 (purple)

Figure 7 2 markets, γ1 = 1/5, γ2 = 1/4, λ = 1/4, F1,F2,G1,G2 uniform, T = .3

Figure 8 and 9
12 markets, σ1 = 8,γ1 = 1/5, γ j = 1/5,σ j=̃6.9 ,σ j = 7.2,σ j = 7.5,

for j = 2, ..,12, Fi,Gi uniform for i= 1, ..,12, T = 2.55

Figure 10 µ = 2, κ = 1,a= .3, F,G normal, σa = .3, σb = 2
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8 Supplementary Material: Analytical Examples in Figures

This appendix presents some background results for the analysis of the examples of the information

structure used to illustrate the working of the model in the figures.

Uniform Signal Example. Suppose that the signal x∼U [θ −σ/2,θ +σ/2] follows a uniform distri-

bution centered around θ of length σ , so that Fθ ,σ (x) = 1/2+(x−θ)/σ . This example is particularly

tractable and allows us to obtain closed-form expressions for demand, supply, and equilibria when the

type distribution is uniform (a special case of the beta distribution considered below) and square root (a

special case of the Haupt and Schäbe distribution considered below). Substituting F (x) = 1/2+ x into

the supply equation (8) we obtain(
1
2
− x̂

σ

)∫
θ̄

G−1(1−a) g(θ)dθ + 1
σ

∫
θ̄

G−1(1−a)θg(θ)dθ

a
= p.

Integrating by parts∫
θ̄

G−1(1−a)
θg(θ)dθ = aG−1 (1−a)−

∫
θ̄

G−1(1−a)
[1−G(θ)]dθ ,

and solving we find the following explicit expression for the supply curve

x̂S (a) = σ

(
1

2
− p

)
+G−1 (1−a)+

∫
θ̄

G−1(1−a)

1−G(θ)

a
dθ ,

where the last addend is equal to E
[
θ −G−1 (1−a) |θ ≥ G−1 (1−a)

]
. Comparing with (6), with

uniform signal the supply has a similar structure to the inverse demand

x̂D (a) = σ

(
1

2
− γ

)
+G−1 (1−a) ,

with two key differences: (i) instead of the cost-benefit ratio γ the supply features the success rate p in

the intercept and (ii) the marginal type G−1 (1−a) = θ̂ on the demand side is replaced by the average

inframarginal type on the supply

E
[
θ |θ ≥ G−1 (1−a)

]
= G−1 (1−a)+

∫
θ̄

G−1(1−a)

1−G(θ)

a
dθ =

∫
θ̄

θ̂(a)
θ

g(θ)

1−G
(
θ̂ (a)

)dθ .

Beta (with α = 1) and Uniform Types Example. We now derive the closed-form expressions for the

unique interior equilibrium resulting with uniform signal and type distribution G(θ) = 1− (1−θ)β ,
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corresponding with a Beta with parameters α = 1 and general β ; the special case with β = 1 corre-

sponds to uniformly distributed types, illustrated in Figure 4. This example satisfies the DMRL condi-

tion. Setting the average winning probability among applicants equal to p, the winning probability of

the highest type θ = 1 is 2p− γ . The equilibrium conditions for demand (5) and supply (8) boil down

to

aD (x̂) =

[
1− x̂+σ

(
1

2
− γ

)]β

x̂S (a) = 1+σ

(
1

2
− p

)
− β

β +1
a

1
β ,

resulting in the unique interior equilibrium

x̂ = 1+σ

[
1

2
+βγ− (1+β ) p

]
a = [(1+β )σ (p− γ)]β .

for p ∈ (γ, p= 1/(1+β )+ γ). For p ≥ p, the unique equilibrium is at the corner a = 1 with x̂ =

1/(1+β )+σ (1/2− p). Equilibrium demand a always increases in σ , with limσ→0 a= 0 and limσ→∞ a=

1, where we reach the corner solution with no demand x= 1,a= 0 at the boundary σ = 0 and the corner

solution with demand by all types for a bounded level of dispersion, σ̄ = 1/[(1+β )(p− γ)].

Lemma 1 If types are uniformly distributed, the acceptance standard on the supply curve

(i) increases in evaluator signal dispersion dx̂S/dσ ≥ 0 in a tough contest with p≤ 1/2;

(ii) decreases dx̂S/dσ ≤ 0 in a soft contest with p≥ 1/2.

Proof of Lemma 1. For part (i), if p< 1/2 the acceptance probability for weaker candidates, which

is below 50%, clearly increases in dispersion σ , as the right tail of the distribution gets larger. If, in

addition, p is sufficiently small, x̂S > 1 so that the acceptance probability of the strongest applicant is

also less than 50% and thus also decreases in σ . Then, given that all applicants a are more likely to be

accepted at the initial acceptance standard, the acceptance standard must increase in order to keep the

success rate equal to p.

When, instead, p is large so that x̂S < 1, so that the acceptance probability of stronger applicants

is above 50% and thus decreases in σ , the acceptance probability for most applicants increases in

dispersion given that p< 1/2. To see this, consider first the uniform example case where f is loglinear;

in this case, the acceptance probability of the median applicant is equal to p by construction; given that
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the overall success rate must be kept fixed at p < 1/2 more that half of the applicants enjoy a higher

probability of acceptance as dispersion is raised. If f is strictly logconcave, the acceptance probability

of the median applicant is even lower than p, so that this median applicant always benefits from an

increase in dispersion—actually, the acceptance probability for more than 50% of applicants increases

with dispersion. Overall, in case (i) to bring down the average success rate to p the acceptance standard

must be raised: dx̂S/dσ > 0.

In the knife-edge case with p = 1/2. By symmetry of the signal distribution, F−1 (1/2) = 0, the

vertical intercept is xS
0 = 1. More generally, in (and only in) this case the acceptance probability of the

median applicant is exactly equal to the average success rate p. As dispersion increases, the acceptance

probabilities of applicants is spread in a completely symmetric way, so that the acceptance standard is

constant in σ . Regardless of F , the proportional supply is then x̂S (a) = 1−a/2, which is invariant in

signal dispersion. If, instead, p> 1/2 as in case (ii), the logic in (i) is flipped so that dx̂S/dσ < 0.

Lemma 2 If types are uniformly distributed, the equilibrium acceptance standard dx̂E/dσ R 0⇔ pQ
p̃ with p̃≤ 1/2(1/2+ γ).

Proof of Lemma 2. With uniform signal when the success rate is p̃U = 1/2(γ+1/2), half way

between the cost-to-value ratio γ and the rotation point of the signal distribution 1/2 = F
θ̄ ,σ

(
θ̄
)
=

F (0), the approval standard is necessarily constant at x̂ = θ̂ for all σ . For distributions with f strictly

logconcave, we now show that the success rate at which the equilibrium acceptance standard is constant

in σ is strictly below the one we found for the case with loglinear density, p < p̃U . If the density is

strictly logconcave, the density is strictly decreasing above the symmetry point of the distribution; thus

for θ = θ̂ , F
θ̂ ,σ (x) is strictly concave for x≥ θ̂ , as illustrated for the normal example in Figure 2. Thus,

at α = α̂U we have∫
θ̄+a

F−1

θ̂ ,σ
(1−p̃U )

[
F

(
θ̂ − (1− x)

σ

)
− (1− p̃U)

]
dx>

∫ F−1

θ̂ ,σ
(1−p̃U )

θ̄

[
(1− p̃U)−F

(
θ̂ − (1− x)

σ

)]
dx.

This means that the equilibrium acceptance standard must be x̂P < θ̄ at p = pU . In order to raise the

acceptance standard to θ̂ , the level such that dx̂E/dσ = 0, it is necessary to reduce p̃ below p̃U . By

continuity, there exists p̃< p̃U such that x̂P = θ̂ for all σ . We conclude that in general dx̂E/dσ R 0 for

pQ p̃ with p̃≤ p̃U .

Haupt and Schäbe Types Example. Next, we report closed-form expressions for all the equilibria

resulting with Haupt and Schäbe distribution G(θ) =−η+
√

η2+(1+2η)θ , where η ∈ [0,∞); see,
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e.g., Nair, Sankaran, and Balakrishnan (2010, page 243). As η → ∞ the distribution converges to the

uniform; for η = 0 we recover the square root distribution used for Figure 5. Even though the hazard

rate is non-monotonic for η ∈ [1/3,1), for η ∈ [1/3,∞) the DMRL condition is satisfied—the unique,

interior, and stable equilibrium is equal to ãp=
3(1+η)−

√
9η2+3(2η+1)(3−8σ(p−γ))

4
. For η ∈ [0,1/3)

DMRL is violated, so that for σ ∈ ((1+3η)/ [3(1+2η)(p− γ)] ,3(1+η)2 / [8(1+2η)(p− γ)]) in

addition to the interior stable equilibrium at ãp, there is second interior but unstable equilibrium at

˜̃ap=
3(1+η)+

√
9η2+3(2η+1)(3−8σ(p−γ))

4
, as well as a stable equilibrium at the corner ˜̃̃ap= 1.

Normal Example. Suppose that types are normally distributed with θ ∼ N
(
µ,κ2

)
with mean µ and

standard deviation κ and that the signal x ∼ N
(
θ ,σ2

)
follows a normal distribution with mean θ and

standard deviation σ . Given that F
(

x−θ

σ

)
=Φ

(
x−θ

σ

)
and G(θ) =Φ

(
θ−µ

κ

)
, the demand is

aD (x̂) = 1−Φ

(
x−σΦ−1 (1− γ)−µ

κ

)
and the supply solves ∫

∞

µ+κΦ−1(1−a)

[
1−Φ

(
x−θ

σ

)]
1
κ

ϕ

(
θ−µ

κ

)
dθ

a
= p.

Using the well-known formula for conditioning on a variable being greater than a certain value we

obtain

X
∣∣θ > µ+κΦ

−1 (1−a)∼ ESN

(
µ,
√

κ2+σ2,
κ

σ
,−Φ

−1 (1−a)
)

(28)

where ESN (µ,σ ,α,τ) is an extended skew normal distribution with the density

h(x;a) =
1

σ
ϕ

(
x−µ

σ

)
Φ

(
τ
√

1+α2+αx−µ

σ

)
Φ

(
τ−µ

σ

) ;

see Azzalini and Capitanio’s (2014, page 36, equation 2.39). Thus, the supply is

1−H (x;a) =
∫

∞

x̂

1√
κ2+σ2

ϕ

(
x−µ√
κ2+σ2

)Φ

(
−Φ−1(1−a)

√
1+( κ

σ )
2
+ κ

σ
x−µ

√
κ2+σ2

)
Φ

(
−Φ−1(1−a)−µ√

κ2+σ2

) dx= p.

The distribution of θ when demand is a (or equivalently when θ > θ̂ =Φ−1
µ,κ (1−a)= µ+κΦ−1 (1−a))

is a truncated normal with density

g

(
θ |θ ≥Φ

−1
µ,κ (1−a)

)
=

1
κ

ϕ

(
θ−µ

κ

)
1−Φ

(
Φ
−1
µ,κ (1−a)−µ

κ

) Iθ≥µ+κΦ−1(1−a).
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The posterior about θ conditional on (x,a) is a truncated normal with parameters µ̃ (x) and σ̃
2 and

truncation at Φ−1
µ,κ (1−a) = µ+κΦ−1 (1−a); the density of this posterior is

g(θ |x,a) =
1
σ̃

ϕ

(
θ−µ̃(x)

σ̃

)
1−Φ

(
Φ
−1
µ,κ (1−a)−µ̃(x)

σ̃

) Iθ≥µ+κΦ−1(1−a).

The posterior expectation conditional on (x,a) is then

E (θ |x,a) = µ̃ (x)+
ϕ

(
µ+κΦ−1(1−a)−µ̃(x)

σ̃

)
1−Φ

(
µ+κΦ−1(1−a)−µ̃(x)

σ̃

) σ̃ . (29)

Conditional on a, signal x is the sum of a truncated normal with location µ and scale κ2 trun-

cated at Φ−1
µ,κ (1−a) = µ + κΦ−1 (1−a) and an independent normal N (0,σ). Note that a normal

with parameters (µ,κ) truncated at µ + κΦ−1 (1−a) is an extended skew normal with parameters(
µ,κ,α = ∞,−Φ−1 (1−a)

)
.42 Given that limα→∞ α

(
1+
(
1+α2

)
σ2/κ2

)−1/2
= κ/σ , it follows from

Azzalini and Capitanio’s (2014, page 37) Proposition 2.9 that the sum of an ESN with parameters(
µ,κ,α = ∞,−Φ−1 (1−a)

)
and an independent Normal with parameters (0,σ) is an ESN with para-

meters
(

µ,
√

κ2+σ2,κ/σ ,−Φ−1 (1−a)
)

.

42This observation follows from equation (2.41) on page 37 in Azzalini and Capitanio (2014), once we take X1 to be

perfectly correlated with X0 by setting δ = 1 in their notation and then using equation (2.15) on page 29.
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Table 2: Fields associated to ERC panels.

Panel Fields

LS1 Molecular Biology, Biochemistry, Structural Biology and Molecular Biophysics

LS2 Genetics, ’Omics’, Bioinformatics and Systems Biology

LS3 Cellular and Developmental Biology

LS4 Physiology, Pathophysiology and Endocrinology

LS5 Neurosciences and Neural Disorders

LS6 Immunity and Infection

LS7 Applied Medical Technologies, Diagnostics, Therapies and Public Health

LS8 Ecology, Evolution and Environmental Biology

LS9 Applied Life Sciences, Biotechnology and Molecular and Biosystems Engineering

PE1 Mathematics

PE2 Fundamental Constituents of Matter

PE3 Condensed Matter Physics

PE4 Physical and Analytical Chemical Sciences

PE5 Synthetic Chemistry and Materials

PE6 Computer Science and Informatics

PE7 Systems and Communication Engineering

PE8 Products and Processes Engineering

PE9 Universe Sciences

PE10 Earth System Science

SH1 Individuals, Markets and Organisations

SH2 Institutions, Values, Environment and Space

SH3 The Social World, Diversity, Population

SH4 The Human Mind and Its Complexity

SH5 Cultures and Cultural Production

SH6 The Study of the Human Past
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