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Abstract 

We devise a tractable model of firm dynamics with on-the-job search. The model 
admits analytical solutions for equilibrium outcomes, including quit, layoff, hiring and 
vacancy-filling rates, as well as the distributions of job values, a fundamental challenge 
posed by the environment. Optimal labor demand takes a novel form whereby hiring 
firms allow their marginal product to diffuse over an interval. The evolution of the 
marginal product over this interval endogenously exhibits gradual mean reversion, 
evoking a notion of imperfect labor market competition. This in turn contributes to 
dispersion in marginal products, giving rise to endogenous misallocation. Mirroring 
establishment microdata, quit and layoff rates fall, while hiring and vacancy-filling 
rates rise with firm growth in the model. We further show how it is possible to solve 
for the dynamic equilibrium path of model outcomes—including the distribution of 
job values—out of steady state. 
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The labor market is in a perpetual state of flux. In any given period, some unemployed 
workers find new jobs while other employed workers lose them (Blanchard and Diamond 
1990). Some firms grow through job creation while others shrink through job destruction 
(Davis and Haltiwanger 1992). And, in tandem, some employed workers move directly 
from one employer to another (Fallick and Fleischman 2004). These worker and job flows 
are substantial in magnitude, vary considerably over the business cycle, and exhibit clear 
cross-sectional correlations (Davis, Faberman and Haltiwanger 2012, 2013). 

The purpose of this paper is to understand the economics underlying this rich array 
of empirical regularities. To do so we devise a model that integrates firm dynamics with 
on-the-job search. Firms subject to hiring costs face idiosyncratic shocks that drive 
changes in their desired employment, and thereby job creation and destruction. Workers 
search for jobs across firms while both unemployed and employed, driving worker flows. 
Direct employer-to-employer transitions emerge naturally from the heterogeneity across 
firms induced by idiosyncratic shocks. And we show how the model can be extended to 
accommodate aggregate shocks, and thereby business cycles. The result is a framework in 
which an understanding of the economics of the foregoing stylized facts is feasible. 

Attaining this goal is easier said than done, however. The interplay of firm dynamics 
with on-the-job search poses a seemingly daunting analytical challenge. In general, the 
rate of worker turnover faced by a firm will depend on the firm’s position in the hierarchy 
of job values in the economy. Firms further up in the hierarchy will face lower turnover. 
Steady-state labor market equilibrium thus involves finding a fixed point of an entire 
distribution of job values, one that both sustains firms’ labor demand decisions and is 
implied by aggregation of those same decisions. Out of steady state, equilibrium further 
involves finding a fixed point of the dynamic path of the distribution.  

An important contribution of the paper is that we are able to provide an analytical 
characterization of this distribution. In section 1, we study an environment that gives rise 
to a normalization in which the value of jobs to workers and firms are monotone functions 
of a single idiosyncratic state variable, the marginal product of labor. The distribution of 
job values can thus be summarized by the distribution of marginal products. Furthermore, 
optimal labor demand can be decoupled into two regions for the marginal product. 
Mirroring canonical models of firm dynamics (Bentolila and Bertola 1990; Hopenhayn and 
Rogerson 1993; Abel and Eberly 1996), there is a natural wastage region. At its lower 
boundary, firms shed workers into unemployment. On its interior, firms neither hire nor 
fire, and turnover occurs at a maximal constant quit rate.  
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A novel implication of the presence of on-the-job search, however, is the addition of 
a nondegenerate hiring region. Importantly, this emerges even in the absence of 
heterogeneity in marginal hiring costs. The key intuition is that hiring firms face a novel 
trade off in the presence of on-the-job search. On the one hand, they value the additional 
output generated by new hires. On the other, they value reductions in turnover associated 
with a higher marginal product. We show that this tradeoff is resolved by a novel solution: 
Firms allow their marginal products to diffuse across an interval, a strategy that is 
supported by a quit rate that declines with the marginal product at an appropriate rate. 
We show that the latter force is captured by a simple differential equation that gives rise 
to a closed-form solution for the quit rate. Crucially, this in turn gives rise to a closed-
form solution for the distribution of marginal products offered to new hires—a key result 
in the light of the analytical challenge noted above. 

The hiring region varies interestingly with the structure of wage determination. We 
explore two wage protocols. The first is a model of ex post wage bargaining in the absence 
of offer matching. This synthesizes the insights of credible bargaining (Binmore et al. 
1986) and multilateral bargaining (Bruegemann et al. 2018) in the presence of on-the-job 
search (Gottfries 2019). Interestingly, it provides a rationale for the absence of offer 
matching if job offers are private information, since it is not credible to elicit them through 
the use of layoff lotteries (Moore 1985). The second protocol extends the sequential 
auctions approach of Postel-Vinay and Robin (2002) to allow for multi-worker firms and 
(partial) offer matching. A revealing implication is that firms’ expected costs of turnover, 
and thereby the size of the hiring region, are declining in firms’ ability to match offers. In 
the limit in which firms can respond perfectly to the idiosyncratic outside offers of each 
of their workers, firms become indifferent to turnover, and the hiring region converges to 
a point. Away from that limit, turnover is costly to firms, and a nondegenerate hiring 
region emerges. 

The implications of the preceding behavior for aggregate labor market equilibrium are 
not obvious: Optimal labor demand and turnover are heterogeneous across firms, and 
evolve in a nonlinear fashion with idiosyncratic shocks. Nonetheless, we show in section 2 
how it is possible to derive an analytical characterization of steady-state labor market 
equilibrium. We begin by aggregating microeconomic behavior, obtaining expressions for 
the separation rate into unemployment, as well as the hiring rate, the vacancy-filling rate, 
and the distribution of workers at each marginal product. These in turn imply two 
conditions for aggregate steady-state equilibrium that mirror those in the canonical 
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Mortensen and Pissarides (1994) model: a Beveridge curve implied by steady-state 
unemployment flows; and a job creation curve that summarizes aggregate labor demand. 

A host of insights follow on the nature of labor market behavior induced by the model. 
A first insight emerges from the fact that hiring rates are increasing in the marginal 
product. Coupled with decreasing quit rates, this gives rise to endogenous mean reversion 
in marginal products. Positive innovations raise a firm’s hiring rate and reduce its quit 
rate. Firms thus accumulate more workers and the marginal product reverts back in 
expectation. An appealing interpretation is that the latter is a manifestation of imperfect 
labor market competition; perfect competition would imply infinite mean reversion. 

Second, the model reveals a novel paradox in the interplay between on-the-job search 
and misallocation. As in canonical models of on-the-job search (Burdett and Mortensen 
1998), equilibrium in our model involves dispersion in marginal products across workers, 
and thereby misallocation. In stark contrast to canonical models, however, on-the-job 
search contributes to, rather than resolves, such misallocation by inducing the presence of 
a nondegenerate hiring region. The model thus captures a novel notion of endogenous 
misallocation, driven by the interaction of firm dynamics and on-the-job search. 

Third, the model naturally generates cross-sectional relationships between worker 
flows and firm growth that mirror those documented in recent empirical work by Davis, 
Faberman and Haltiwanger (2012, 2013). Firm growth in the model is monotone in the 
marginal product. It follows that faster-growing firms in the model are less likely to lay 
off workers, more likely to hire and post vacancies and, most notably, will face lower quit 
rates and higher vacancy-filling rates. The latter in particular are highlighted by Davis et 
al. as important channels missing from conventional models. To the contrary, these appear 
to be natural implications of labor demand and turnover decisions in the presence of on-
the-job search. 

Finally, we explore the aggregate dynamics implied by the model out of steady state. 
Recall that, in general, this involves a fixed point in the dynamic path of the entire 
distribution of job offers, a formidable prospect. Note that this problem is distinctly harder 
than those that arise in standard heterogeneous agent models in which agents must 
forecast a market price. Here the analogue of the market price is a whole function, the 
offer distribution. Nonetheless, we are able to make progress by generalizing our earlier 
results. In particular, the same forces that give rise to a closed-form solution for the offer 
distribution of marginal products in steady state allow us to infer the functional form of 
the offer distribution out of steady state. Doing so reduces the problem to one of inferring 
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the dynamic path of a single scalar, labor market tightness. We show that this is feasible 
by presenting an illustrative simulation of the transition dynamics implied by the model. 
Future work will explore this (and other model outcomes) from a quantitative perspective.  

Related literature. The model set out in this paper provides a new theory of firm 

dynamics with (random) job search, both off- and on-the-job. In addition to the work 
already cited, it relates to three further strands of literature.  

First, our model builds on recent work that has developed so-called “large-firm” search 
models that fuse firm dynamics with off-the-job search. These have been used to study 
firm growth (Acemoglu and Hawkins 2014), worker flows over the business cycle (Elsby 
and Michaels 2013), the role of wage posting and directed search in recruitment (Kaas 
and Kircher 2015), and cyclical recruitment intensity (Gavazza, Mongey and Violante 
2016). None of these papers incorporates on-the-job search, however. 

Second, a further strand of related literature has incorporated a business cycle into 
models of on-the-job search (Moscarini and Postel-Vinay 2013; Coles and Mortensen 2016; 
Lise and Robin 2017). As in our model, these papers have addressed a related challenge 
posed by the presence of on-the-job search of solving for the dynamics of distributions of 
job values. In contrast to our model, however, all such work has maintained the 
assumption of linear production technologies.  

Third, and most closely related to our work, a handful of recent papers has sought to 
integrate firm dynamics with on-the-job search. Lentz and Mortensen (2012) focus on firm 
lifecycles and steady-state wage and productivity dispersion in a model without 
idiosyncratic or aggregate shocks. Fujita and Nakajima (2016) study the relation between 
worker and job flows over the business cycle, but assume that workers have no bargaining 
power and firms cannot respond to outside offers. Schaal (2017) studies the effects of time-
varying idiosyncratic risk in a related model that incorporates job-to-job flows, but where 
search is directed, and firms can commit to complete state-contingent contracts. Elsby, 
Michaels and Ratner (2019) focus on the interaction between replacement hiring and on-
the-job search across firms in amplifying labor market responses through vacancy chains. 
Bilal, Engbom, Mongey and Violante (2019) make two important contributions relative 
to our analysis. First, they provide sufficient conditions based on limited commitment and 
mutual consent that distil the firm’s problem into one of surplus maximization. Second, 
they explore a model with a convex vacancy cost, and firm entry and exit, enabling a 
quantitative study of worker flows and employment dynamics over firms’ lifecycles. 
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Importantly, relative to all these, a key contribution of the present paper is that it 
provides several novel analytical results. The identification and characterization of the 
hiring region and the associated equilibrium quit rate, the role of wage determination in 
shaping these, the analytics of aggregation, and the use of all of these in simplifying and 
solving for aggregate dynamics are new results of this paper. 

1. Turnover, wages and labor demand 
Our point of departure is a canonical model of firm dynamics in the presence of frictions, 
mirroring that in Bentolila and Bertola (1990). The labor market is comprised by a mass 
of firms, normalized to one, and a mass of potential workers, equal to the labor force 𝐿. 
Firms use labor 𝑛 to produce output 𝑦 using an isoelastic production technology 𝑦 = 𝑥𝑛&, 
where 𝛼 ∈ (0,1). 𝑥 is an idiosyncratic shock that is the source of uncertainty to the firm, 
and of heterogeneity across firms. It evolves over time according to the geometric 
Brownian motion 

 d𝑥 = 𝜇𝑥d𝑡 + 𝜎𝑥d𝑧, (1) 

where d𝑧 is the increment to a standard Brownian motion.  
Firms hire workers subject to a per-worker hiring cost 𝑐. Denoting the cumulative 

sum of a firm’s hires by 𝐻, and its increment over the time interval d𝑡 by d𝐻, the firm 
faces flow hiring costs of 𝑐 ⋅ d𝐻. Separations occur through two channels. First, the firm’s 
employees quit at rate 𝛿. Second, additional separations may be implemented at zero cost; 
we denote their cumulative sum by 𝑆, and its increment d𝑆.1 It follows that the firm’s 
employment evolves according to the law of motion 

 d𝑛 = d𝐻 − d𝑆 − 𝛿𝑛d𝑡. (2) 

Given this environment, standard methods (see, for example, Dixit 1993, and Stokey 
2009) imply that the Bellman equation for the value of the firm Π can be written as 

 𝑟Πd𝑡 = max
@ABC,@DBC

EF𝑥𝑛& − 𝑤𝑛 − 𝛿𝑛ΠH + 𝜇𝑥ΠI +
1
2𝜎

K𝑥KΠIILd𝑡 − (𝑐 − ΠH)d𝐻 − ΠHd𝑆M, (3) 

where 𝑟 is the firm’s discount rate. The firm chooses its hires d𝐻 and separations d𝑆 to 
maximize the expected present discounted value of its profit stream. Its flow profits are 
given by the flow revenue 𝑥𝑛&, less wage payments 𝑤𝑛 and hiring costs 𝑐 ⋅ d𝐻. The firm 

                                                        
1 We use this notation to allow for the possibility that a firm may choose a continuous, but non-differentiable 
path for cumulative hires and separations. 
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faces capital gains from two sources. First, the firm’s employment 𝑛 evolves according to 
the law of motion (2). Each incremental change d𝑛 is valued by the firm according to the 
marginal value ΠH . The second source of capital gains to the firm arises from the 
idiosyncratic shocks 𝑥 , which evolve according to the stochastic law of motion (1). 
Application of Ito’s lemma yields the form in (3). 

Our key innovation is to incorporate endogenous turnover into this otherwise-
canonical environment, by integrating it with a model of on-the-job search and associated 
theories of wage setting. The next two subsections describe in turn each of these elements 
of the environment. 

1.1 Turnover 

Consider first turnover. Workers can search while unemployed, or while employed with 
relative search intensity 𝑠. Accordingly, unemployed searchers receive job offers at rate 𝜆, 
and employed workers at rate 𝑠𝜆. An important consequence of on-the-job search for the 
latter is that not all such offers will be accepted: an offer will be accepted only if its 
associated worker surplus exceeds that in the worker’s current employment state. The 
quit rate 𝛿 faced by the firm in (3) thus becomes endogenous in the presence of on-the-
job search. Each of the firm’s employees receives an offer from another firm at rate 𝑠𝜆. 
And each contacted employee will choose to quit if the outside contact offers a worker 
surplus that exceeds that at the current firm, 𝑊. Denoting the offer distribution of worker 
surpluses by Φ(⋅), we can thus write the quit rate faced by the firm as 

 𝛿(𝑊) = 𝑠𝜆[1 − Φ(𝑊)]. (4) 

A fundamental, and analytically challenging implication of the interaction of firm 
dynamics with on-the-job search is that the quit rate 𝛿(⋅)—or, equivalently, the offer 
distribution of worker surpluses Φ(⋅)—is in general a state variable for the firm. Firms 
must know this distribution in order to make labor demand decisions; and the distribution 
in turn is determined by aggregation of those same decisions. We will see that steady-
state equilibrium thus involves a fixed point in this distribution. And out of steady state 
equilibrium further involves a fixed point in the dynamic path of the distribution.  

Note that this challenge is distinct from that posed in standard models of aggregate 
equilibrium in heterogeneous agent economies (as in, for example, Krusell and Smith 
1998). As we shall see, in our environment the latter involves firms having to forecast the 
path of the distribution of employment as a means to forecast the path of equilibrium 
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wages—a scalar. The presence of on-the-job search overlays on top of this the higher-
dimensional challenge of firms having to forecast the path of the distribution Φ(⋅) as a 
means of forecasting the function 𝛿(⋅). In what follows, we show how progress can be 
made on this challenge. 

1.2 Wage setting 

To complete our description of the firm’s problem, it remains to specify how wages are 
determined. Wages are a key determinant not only of firms’ labor costs, but also of the 
worker surplus, and thereby turnover. The interaction of multi-worker firms and the 
presence of employees with outside offers renders wage determination challenging in this 
environment. We will consider two protocols for wage determination that can be 
accommodated by variations on the preceding framework. 

We first present a benchmark case in which wages are determined entirely ex post—
that is, after all search decisions have been completed—according to a simple model of 
bargaining between a firm and its many workers. A corollary of this bargaining protocol 
is that all workers in a given firm are paid a common wage. Firms do not engage in offer 
matching in response to their employees’ outside offers. As we will discuss at further 
length, potential motivations for such a protocol include non-verifiability of outside offers, 
and the presence of equal treatment constraints across employees within a firm. For these 
reasons, in addition to the relative simplicity of the implied wage outcomes, we study this 
benchmark case for the remainder of the present section. 

Later, we extend this wage determination protocol to accommodate the possibility 
that firms may respond to their employees’ outside offers with some degree of offer 
matching, generalizing the sequential auctions approach of Postel-Vinay and Robin (2002) 
to a multi-worker firm context with partial offer matching. Although the presence of offer 
matching gives rise to more complicated wage outcomes that differ across workers within 
firms, we will see that it is nonetheless tractable, and provides a useful point of contrast 
that elucidates the role of wage determination in shaping the effects of on-the-job search 
on equilibrium firm dynamics. 

Bargaining in the absence of offer matching. For now, though, we begin by 
describing a simple model of ex post bargaining between a firm and its many workers in 
the absence of offer matching. To clarify our meaning of ex post, it is helpful first to return 
to the firm’s problem in (3) and consider the order of events within each d𝑡 period. At 
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the beginning of the period, productivity is realized, and hiring and separation decisions 
are made. Upon completion, a bargaining stage then begins in which wages are negotiated 
between the firm and its many workers—it is in this sense that bargaining is ex post. Once 
bargaining is complete, production takes place, agreed wages are paid, and the period 
concludes. 

The bargaining stage takes the following form. The firm and its workers bargain over 
the flow wage for the current period, 𝑤d𝑡, according to the bargaining game proposed by 
Bruegemann, Gautier and Menzio (2018). The firm engages in a sequence of bilateral 
bargaining sessions with each of its workers subject to breakdown risk. The sequence of 
play is devised such that the strategic position of each worker within the firm is symmetric. 
They characterize an equilibrium2 of the game in which all workers within the same firm 
receive the same wage, and this wage coincides with that implied by a marginal surplus-
sharing rule proposed by Stole and Zwiebel (1996).  

The relevant marginal surplus that the firm and its workers share is determined by 
the threats that the firm and each of its workers can credibly issue in the event of a 
breakdown of negotiations. Binmore et al. (1986) and, more recently, Hall and Milgrom 
(2008) emphasize that threats of permanent suspension of negotiations are not plausibly 
credible in this setting: Regardless of a breakdown in the current period, the firm will wish 
to resume negotiations with the same workers in the subsequent period. Instead, 
breakdown is credibly associated only with a temporary disruption of production due to 
delayed agreement. Since wages are renegotiated every period, turnover and wages in 
subsequent periods will be independent of the current wage, and the effective surplus that 
the firm and its workers share will be the marginal flow surplus. 

This approach to wage bargaining has several appealing properties. First, wage 
outcomes take a particularly simple form. Following Hall and Milgrom, suppose that, in 
the event of breakdown, workers receive a flow payoff 𝜔U, and a firm incurs a per-worker 
flow cost 𝜔V. Then, marginal flow surplus sharing implies 

 𝛽X𝑥𝛼𝑛&YZ − 𝑤 − 𝑤H𝑛 + 𝜔V[ = (1 − 𝛽)(𝑤 − 𝜔U), (5) 

where 𝛽 ∈ (0,1) indexes worker bargaining power. It is straightforward to verify that the 
wage solution takes the following simple form, 

                                                        
2 Specifically, the no-delay subgame perfect equilibrium in the limit as the probability of breakdown goes 
to zero. In their static setting, they show that this no-delay equilibrium is unique. A sufficient condition for 
this equilibrium to hold in our dynamic setting is the presence of non-history-dependent strategies. 
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 𝑤 =
𝛽

1 − 𝛽(1 − 𝛼)𝑥𝛼𝑛
&YZ + 𝜔C, (6) 

where 𝜔C ≡ 𝛽𝜔V + (1 − 𝛽)𝜔U.3 
The wage equation captures some familiar forces: Wages are increasing in the marginal 

product 𝑥𝛼𝑛&YZ, and the flow payoffs from breakdown, summarized by 𝜔C. The wage 
equation also captures standard “large-firm” effects: Due to decreasing returns in 
production, 𝛼 ∈ (0,1), failure to agree with an individual worker will result in higher 
bargained wages for all remaining workers. Using these threats, workers are able to capture 
some of the inframarginal product, giving rise to the leading coefficient. Because 
breakdown of negotiations does not involve permanent severance of a match, the option 
values to search (both off- and on-the-job) do not play a role in wage outcomes. In this 
respect, the wage bargain resembles that proposed by Hall and Milgrom, extended to 
accommodate multi-worker firms and continual renegotiation. 

A further virtue of this approach to wage bargaining is that it can be reconciled with 
the presence of on-the-job search, in two important senses. First, it is not subject to the 
concern noted in Shimer (2006) that the effects of bargained wages on turnover will render 
the bargaining set nonconvex. Since bargaining pertains only to the current flow wage, 
which in turn is re-bargained each period, current wages have no effect on future wages, 
and thereby turnover (see Nagypal 2007, and Gottfries 2019). Second, this approach to 
wage bargaining also suggests a natural rationale for the absence of offer matching. 
Suppose job offers are privately observed by workers and unverifiable. A firm would be 
able to elicit the value of such offers if it were able to confront its (potential) workers with 
a set of appropriately-devised layoff lotteries (Moore 1985). But, echoing our earlier 
discussion of the bargaining stage, such layoff lotteries will not be credible ex post: the 
firm will wish to resume its relationship with a worker after any such layoff realization. 
Thus, inability to commit to permanent severance provides a simple reconciliation of wage 
bargaining, on-the-job search, and absence of offer matching. 

Worker values. A key implication of the wage solution in (6) for what follows is that it 

determines the worker surplus 𝑊, and thereby worker turnover decisions. To see how, 

                                                        
3 Strictly, the wage equation holds in the event of agreement, which occurs provided the marginal flow 
surplus is positive, Z

ZY](ZY&)
𝑥𝛼𝑛&YZ + 𝜔V − 𝜔U > 0. We assume this holds in what follows. 
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consider the value of employment Ω to a worker currently employed in a firm offering 
worker surplus 𝑊. This satisfies the Bellman equation 

 
𝑟Ωd𝑡 = max `a𝑤 + 𝑠𝜆b X𝑊c −𝑊[dΦX𝑊c [

d
− 𝛿𝑛ΩH + 𝜇𝑥ΩI +

1
2𝜎

K𝑥KΩIIe d𝑡

+ ΩH(d𝐻∗ − d𝑆∗) − 𝑊
d𝑆∗

𝑛 , Υd𝑡h. 

(7) 

An employed worker receives a flow wage 𝑤 given by (6), and faces capital gains from 

three sources. First, at rate 𝑠𝜆 she contacts an outside firm with worker surplus 𝑊c  drawn 
from the offer distribution of worker surpluses Φ(⋅). She accepts the outside job only if it 

offers a larger worker surplus, 𝑊c > 𝑊. Second, employment at her current firm will evolve 
according to the law of motion (2). If the worker remains employed by the firm, she values 
each incremental change d𝑛 by ΩH. If the firm implements layoffs, d𝑆∗ > 0, the worker 
faces a uniform risk of being laid off and realizing a capital loss equal to the worker surplus 
𝑊. Since the flows of hires and fires are chosen by the firm, they are evaluated at the 
equilibrium values that maximize the firm’s problem in (3), d𝐻∗  and d𝑆∗. Third, her 
current firm’s idiosyncratic productivity evolves according to the stochastic law of motion 
(1) and, by Ito’s lemma, gives rise to the remaining capital gain terms.  

Finally, note that the worker retains an option to quit employment at the firm, which 
she will exercise whenever Ω falls below the value of unemployment Υ to a worker. This 
in turn satisfies the Bellman equation 

 𝑟Υ = 𝑏 + 𝜆b𝑊c𝑑ΦX𝑊c [. (8) 

While unemployed, a worker receives a flow payoff 𝑏. At rate 𝜆 she receives an offer with 

worker surplus 𝑊c  drawn from the offer distribution of worker surpluses Φ(⋅). Since it is 
never optimal for a firm to make an offer that would not be accepted by an unemployed 
searcher, the worker accepts with certainty. 

Recalling that the worker surplus is the additional value to a worker of employment 
over unemployment, 𝑊 ≡ Ω− Υ , and noting that the value of unemployment Υ  is 
independent of any firm’s idiosyncratic employment or productivity state, we obtain the 
following recursion for the worker surplus, 



 12 

 
𝑟𝑊d𝑡 = max `a𝑤 − 𝑏 − 𝜆b𝑊c𝑑ΦX𝑊c [ + 𝑠𝜆b X𝑊c −𝑊[dΦX𝑊c [

d
− 𝛿𝑛𝑊H + 𝜇𝑥𝑊I

+
1
2𝜎

K𝑥K𝑊IIe d𝑡 + 𝑊H(d𝐻∗ − d𝑆∗) −𝑊
d𝑆∗

𝑛 , 0h. 

(9) 

In what follows we assume that the worker’s reservation wage is sufficiently low such 
that the firm (weakly) initiates all separations into unemployment, and optimality 
decisions over hires and fires can be inferred from solving the firm’s problem. Empirically, 
only a small fraction of flows from employment to unemployment are reported as quits 
(Elsby, Michaels and Solon 2009). However, the alternative case can be accommodated 
by a similar analysis. 

1.3 Optimal labor demand and equilibrium turnover 

Our description of turnover and wage setting completes the environment faced by firms 
and workers. We can now proceed to consider optimal labor demand and turnover 
decisions. Recall that the latter is a key challenge that arises from the interaction of firm 
dynamics and on-the-job search, as labor demand decisions and turnover rates are 
intertwined in this environment. In this subsection, we provide a solution in which the 
joint determination of labor demand and turnover takes a surprisingly simple and 
tractable form. 

We begin by returning to the firm’s problem in (3), and noting that optimality 
conditions for hires and separations imply that4 

 (−𝑐 + ΠH)d𝐻 = 0,  and,  ΠHd𝑆 = 0. (10) 

Optimality requires that the marginal value of labor ΠH be set equal to the marginal hiring 
cost 𝑐 in the event of hiring, d𝐻 > 0, and to zero in the event of firing, d𝑆 > 0. It follows 
that the maximized value of the firm satisfies 

 𝑟Π = 𝑥𝑛& − 𝑤𝑛 − 𝛿𝑛ΠH + 𝜇𝑥ΠI +
1
2𝜎

K𝑥KΠII. (11) 

The proximate effects of on-the-job search on the firm are thus distilled in the turnover 
costs 𝛿𝑛ΠH. Intuitively, each of the firm’s 𝑛 employees quits at rate 𝛿, and is valued on 

                                                        
4 The reader may wonder whether the firm’s optimality conditions also should include terms that capture 
potential effects of the firm’s choice of hires d𝐻 and separations d𝑆 on turnover, via effects on the worker 
surplus in (9). Note, however, that the terms in d𝐻∗ and d𝑆∗ in (9) capture the present discounted value of 
the effects of the firm adhering to its optimal hiring and separation policy in the future. 
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the margin by the firm at ΠH. The magnitude of these turnover costs, and the firm’s 
response to them, will play a central role in the model. 

Optimal labor demand in (10) is determined by the marginal value of labor to the 
firm ΠH. For brevity, in what follows we shall denote the latter by 𝐽 ≡ ΠH. Differentiating 
the firm value in (11) in turn implies that 

 𝑟𝐽 = 𝑥𝛼𝑛&YZ −
𝜕(𝑤𝑛)
𝜕𝑛 −

𝜕(𝛿𝑛𝐽)
𝜕𝑛 + 𝜇𝑥𝐽I +

1
2𝜎

K𝑥K𝐽II, 
(12) 

The marginal value of labor to the firm is determined by the flow marginal product 
𝑥𝛼𝑛&YZ  net of the marginal cost of labor 𝜕(𝑤𝑛) 𝜕𝑛⁄  and the marginal turnover costs 
𝜕(𝛿𝑛𝐽) 𝜕𝑛⁄ , together with the capital gains associated with shocks to the firm’s 
idiosyncratic productivity. 

A proposed solution. Together, the wage equation (6), the worker surplus (9), the 
firm’s optimality conditions for hires and separations (10), and the firm’s marginal value 
of labor (12) provide a recursive system that jointly determines optimal firm labor demand 
and optimal worker turnover. 

To solve this system, we propose a simplification. As stated, the worker surplus in (9) 
and the firm’s marginal value in (12) require two idiosyncratic state variables: the firm’s 
(endogenous) employment 𝑛, and the firm’s (exogenous) productivity 𝑥. In what follows, 
we show how the structure of the problem admits a normalization that allows one to distil 
these forces into a single idiosyncratic state, namely the firm’s flow marginal product, 
which we shall hereafter denote 𝑚 ≡ 𝑥𝛼𝑛&YZ. Thus, we propose a solution in which the 
marginal product 𝑚 is a sufficient statistic for worker and firm behavior. We gather this 
together with a regularity condition on the evolution of firm employment in the following 
definition.  

Definition An 𝑚-solution is a solution to (9), (10) and (12) such that, for any aggregate 

state, the worker surplus 𝑊, the firm marginal value 𝐽, and the firm hiring and firing 
rates, 𝑑𝐻∗ 𝑛⁄  and 𝑑𝑆∗ 𝑛⁄ , are uniquely determined by the marginal product 𝑚.  

In what follows, we verify that a unique 𝑚-solution exists. With a slight abuse of 
notation, we shall henceforth write the worker surplus as 𝑊(𝑚) and the firm’s marginal 
value as 𝐽(𝑚). 
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Optimal worker turnover. Consider first worker turnover. Confronted with an outside 
offer, workers optimally choose the firm that offers the higher worker surplus. The 
following result establishes that such decisions take a particularly simple form under the 
proposed 𝑚-solution. 

Lemma 1 Under an 𝑚-solution, the worker surplus 𝑊(𝑚) is monotonically increasing in 

the marginal product 𝑚. 

The intuition for this result comes from two channels. First, the wage in (6) is an 
increasing function of the marginal product. Thus a direct benefit of being employed in a 
firm with a higher marginal product is a higher flow wage. Second, under the proposed 
𝑚-solution, a higher marginal product in the current period also implies a weakly higher 
path of future marginal products for any sequence of realizations of idiosyncratic 
productivity shocks in (1). 

The upshot of Lemma 1 for what follows is that optimal turnover decisions take a 
simple form, as orderings of worker surpluses coincide with orderings of marginal products. 
Thus, all job-to-job switches involve worker transitions from low-𝑚 firms to high-𝑚 firms. 
The marginal product becomes a sufficient statistic for worker turnover. Recall from (4) 
that the quit rate 𝛿 depends on the offer distribution of worker surpluses Φ(𝑊). With 
another slight abuse of notation, it follows that we can rewrite this as 

 𝛿(𝑚) = 𝑠𝜆[1 − 𝐹(𝑚)], (13) 

where 𝐹(𝑚) = Φ[𝑊(𝑚)] is the offer distribution of marginal products. 

Optimal labor demand. Now consider the determination of the firm’s marginal value 

of labor. Applying the proposed 𝑚-solution, and the wage equation (6), the marginal value 
in (12) can be rewritten in normalized form,  

 
𝑟𝐽(𝑚) = (1 − 𝜔Z)𝑚 −𝜔C − [𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]𝐽(𝑚)

+ [𝜇 + (1 − 𝛼)𝛿(𝑚)]𝑚𝐽p(𝑚) +
1
2𝜎

K𝑚K𝐽pp(𝑚), 
(14) 

where 1 − 𝜔Z ≡ (1 − 𝛽) [1 − 𝛽(1 − 𝛼)]⁄  is the firm’s share of the marginal product implied 
by the wage bargaining solution. 

The optimality conditions for hires and separations (10) provide boundary conditions 
for the firm’s marginal value in (14). We will show that these are resolved by a labor 
demand policy with three thresholds for the marginal product, 𝑚q < 𝑚s < 𝑚t. Optimal 



 15 

hires and separations are zero whenever the firm’s marginal value 𝐽 lies in the interval 
(0, 𝑐). Because the presence of quits will induce employment to decline over time in this 
region, we shall refer to it as the natural wastage region. The firm will undertake non-
zero separations d𝑆 > 0 whenever the firm’s marginal value 𝐽 reaches the lower boundary 
0, where the marginal product is 𝑚q. Likewise, the firm will undertake non-zero hires 
d𝐻 > 0 as soon as the firm’s marginal value 𝐽 reaches the boundary 𝑐, where the marginal 
product is 𝑚s.  

We shall see, however, that a distinctive implication of the interaction of on-the-job 
search with firm dynamics is the additional presence of a hiring region in which optimal 
hires d𝐻 are positive for all 𝑚 ∈ (𝑚s,𝑚t) such that the firm’s marginal value 𝐽 is equal 
to the marginal hiring cost 𝑐. That this interval may be nondegenerate is a novel and 
surprising feature of this environment. It also provides a key solution to the challenge of 
solving for the equilibrium distributions that, as we have discussed, are fundamental to 
models of on-the-job search. We now characterize each of these two regions. 

The natural wastage region. The natural wastage region is the more straightforward 

of the two. Under the proposed 𝑚-solution, the lowest-value hiring firm has marginal 
product 𝑚s, which exceeds that for any firm in the natural wastage region where 𝑚 ∈
(𝑚q,𝑚s). Firms thus face the maximal quit rate 𝛿(𝑚) = 𝑠𝜆, and thus 𝛿p(𝑚) = 0, for all 
𝑚 on the interior of this region—hence natural wastage. This considerably simplifies the 
recursion for the firm’s marginal value (14) and, together with value-matching and 
smooth-pasting conditions implied by optimality, admits the following solution. 

Proposition 1 In the natural wastage region, the firm’s marginal value is given by 

 𝐽(𝑚) =
(1 − 𝜔Z)𝑚
𝜌(1) −

𝜔C
𝜌(0) + 𝐽Z𝑚

vw + 𝐽K𝑚vx, (15) 

for all 𝑚 ∈ (𝑚q,𝑚s). The coefficients 𝐽Z and 𝐽K , and the boundaries 𝑚q  and 𝑚s , are 
known implicit functions (provided in the appendix) of the parameters of the firm’s 
problem, and 𝛾Z < 0 and 𝛾K > 1 are roots of the fundamental quadratic, 

 𝜌(𝛾) = −
1
2𝜎

K𝛾K − F𝜇 −
1
2𝜎

K + (1 − 𝛼)𝑠𝜆L𝛾 + 𝑟 + 𝑠𝜆 = 0. (16) 

Constancy of the quit rate in the natural wastage region transforms the firm’s labor 
demand decision into a canonical firm dynamics problem. An extension of the approach 



 16 

Figure 1. Optimal labor demand and the equilibrium quit rate 

A. Marginal value of labor 𝐽(𝑚) B. Quit rate 𝛿(𝑚) 

  
 

devised by Abel and Eberly (1996) yields the solution for the firm’s marginal value in 
Proposition 1. 

The first two terms in (15) characterize the certainty equivalent value to the firm of 
a marginal employee. The final two terms in (15) capture, respectively, the value to the 
firm of the option to separate from employees in adverse future states, and the value of 
the option to hire employees in favorable future states. In combination, these forces give 
rise to a marginal value to the firm that is shaped like a slide in the natural wastage 
region, a shape that is characteristic of firm dynamics models with constant depreciation 
and infinitesimal control (Dixit 1993). Figure 1 illustrates. 

Optimal labor demand in the natural wastage region thus corresponds closely to that 
in existing models of firm dynamics. We will see, however, that firm behavior differs 
importantly from this benchmark in the hiring region, to which we now turn. 

The hiring region and the equilibrium quit rate. Recall that a distinctive feature 

of the interaction of firm dynamics and on-the-job search is that labor demand and 
turnover are jointly determined among hiring firms. Formally, we seek solution for the 
firm’s marginal value 𝐽(𝑚) and the quit rate 𝛿(𝑚) that are mutually consistent in the 
hiring region. 

The model offers a considerable simplification, however. The optimality condition for 
hiring in (10) stipulates that a hiring firm’s marginal surplus be equal to the marginal 
hiring cost. Thus, 𝐽(𝑚) = 𝑐 , and 𝐽p(𝑚) = 𝐽pp(𝑚) = 0 , for all 𝑚 	in the hiring region 
(𝑚s,𝑚t). This observation transforms the recursion for the firm’s marginal value in (14) 
into a differential equation for the quit rate 𝛿(𝑚). This in turn gives rise to a simple 
solution. 
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Proposition 2 In the hiring region, the quit rate is given by 

 
𝛿(𝑚) = 𝑠𝜆 +

1
𝑐 {
(1 − 𝜔Z)(𝑚 −𝑚s)

𝛼

− a
(1 − 𝜔Z)𝑚s

𝛼 − 𝜔C − (𝑟 + 𝑠𝜆)𝑐e |}
𝑚
𝑚s

~
Z

ZY&
− 1��, 

(17) 

for all 𝑚 ∈ (𝑚s,𝑚t) , where the upper boundary solves 𝛿(𝑚t) = 0  and is unique. 
Furthermore, 𝛿(𝑚) is strictly decreasing and concave for all 𝑚 ∈ (𝑚s,𝑚t). 

Proposition 2 is an important result. By establishing the equilibrium quit rate 𝛿(𝑚), 
it in turn implies a solution for the equilibrium offer distribution of marginal products, 
𝐹(𝑚) in (13). Proposition 2 thus provides a key part of the solution to the challenge of 
how to determine equilibrium turnover, and thereby the equilibrium distributions of 
marginal products, in this environment. We will see in later sections that this in turn 
provides a key building block to the determination of steady-state aggregate equilibrium, 
as well as out-of-steady-state aggregate dynamics. 

Proposition 2 also has a surprising implication: Hiring firms that face a homogeneous 
per-worker hiring cost 𝑐  nonetheless allow their marginal products to vary over an 
interval, giving rise to a non-degenerate distribution of worker values across hiring firms. 
Proposition 2 reveals that this surprising property is fundamentally linked to the 
interaction of on-the-job search with firm dynamics. It is straightforward to verify from 
(17) that eliminating on-the-job search (𝑠 → 0), or a notion of firm size (𝛼 → 1), implies 
that the hiring region collapses to a point, 𝑚t → 𝑚s.  

The intuition for why is as follows. Consider a firm at the middle boundary 𝑚s. 
Following a positive innovation to its productivity 𝑥, and thereby its marginal product 
𝑚, the firm faces a tension in the presence of on-the-job search. On the one hand, it is 
optimal for the firm to hire whenever 𝑚 rises above 𝑚s, a force which lowers the marginal 
product back toward the middle boundary. On the other hand, a higher marginal product 
is valuable to the firm as it reduces turnover costs. This tension is resolved by the firm 
diffusing its hires across an interval of marginal products (𝑚s,𝑚t), a policy which in turn 
is supported by the quit rate in (17). Furthermore, because 𝛿(𝑚) is declining throughout 
the hiring region, the implied offer distribution 𝐹(𝑚) is rising in 𝑚. By Lemma 1, it 
follows that the quit rate in (17) is consistent with optimal worker turnover. 



 18 

1.4 Discussion 

The role of wage setting: Offer matching. Thus far, we have characterized optimal 
labor demand and turnover for a case in which wages are bargained ex post and firms do 
not engage in offer matching. Recall that potential justifications for the latter include lack 
of verifiability of job offers, and the presence of equal treatment constraints across workers 
within a firm. 

We now consider an alternative wage determination protocol that accommodates some 
degree of offer matching via a generalization of the sequential auctions approach of Postel-
Vinay and Robin (2002). As in their model, firms are assumed to have all the bargaining 
power. In a simple extension of their model, we allow for a variable propensity for offer 
matching among competing firms, indexed by a parameter 𝜉. Mirroring the preceding 
discussion, one interpretation of 𝜉 is the probability that both firms are credibly informed 
over the presence of both job offers (with 1 − 𝜉 the probability neither firm is informed). 
An alternative interpretation is that the firm and its workers will tolerate unequal 
treatment up to some limit, expressed for convenience as a fraction 𝜉  of the firm’s 
marginal value of labor. We will see that these interpretations are analytically equivalent. 
Under either interpretation, the special case of 𝜉 = 1 then corresponds to the model of 
Postel-Vinay and Robin. 

To map the worker and firm values implied by this protocol to a path of flow wage 
payments, firms are assumed to be able to commit to payments to workers only in the 
current d𝑡 period (as in Moscarini 2005). This aids comparability of this case with the 
preceding sections, and simplifies the contract structure as we will see that workers within 
a firm are almost always paid the same flow wage. 

The resultant equilibrium then takes a simple form. Consider a worker employed in a 
firm with marginal value ΠH . Upon realization of an outside offer from a firm with 

marginal value ΠcH, the worker chooses the firm with the higher marginal value. If she 
quits from her current firm (at rate 𝛿 ), she receives (in expectation) a lump-sum 
recruitment bonus equal to 𝜉ΠH. If she stays with her current firm (at rate 𝑠𝜆 − 𝛿), she 

receives (in expectation) a lump-sum retention bonus equal to 𝜉ΠcH. In the absence of an 
outside offer, the worker receives a flow wage payment such that she is indifferent to 
unemployment and the worker surplus is zero, 𝑊 = 0. The option value to search while 
unemployed is thus also zero, and the firm’s hiring and firing behavior has no effect on 
worker values. 
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Applying similar arguments to those underlying (9) and (11) above,5 we can write the 
firm and worker values implied by this environment as follows: 

 
𝑟Π = 𝑥𝑛& − 𝑤𝑛 − 𝛿𝑛ΠH − (𝑠𝜆 − 𝛿)𝑛𝜉𝔼�ΠcH|ΠcH < ΠH� + 𝜇𝑥ΠI +

1
2𝜎

K𝑥KΠII, and 

𝑟𝑊 = 𝑤 − 𝑏 + 𝛿𝜉ΠH + (𝑠𝜆 − 𝛿)𝜉𝔼�ΠcH|ΠcH < ΠH� − 𝛿𝑛𝑊H + 𝜇𝑥𝑊I +
1
2𝜎

K𝑥K𝑊II. 
(18) 

The flow wage paid in the absence of outside offers solves 𝑊 = 0, and takes the form 

 𝑤 = 𝑏 − 𝛿𝜉ΠH − (𝑠𝜆 − 𝛿)𝜉𝔼�ΠcH|ΠcH < ΠH�. (19) 

The wage is equal to the flow payoff from unemployment 𝑏 less the expected capital gains 
from recruitment and retention bonuses associated with future outside offers. Inserting 
the wage solution into the firm’s value yields the simple result 

 𝑟Π = 𝑥𝑛& − 𝑏𝑛 − (1 − 𝜉)𝛿𝑛ΠH + 𝜇𝑥ΠI +
1
2𝜎

K𝑥KΠII. (20) 

Equation (20) yields an important insight. Recall that the key channel through which 
on-the-job search interacts with firm decisions is through turnover costs; these are now 
given by (1 − 𝜉)𝛿𝑛ΠH. The upshot of (20), then, is that the presence of offer matching 
implicitly reduces the turnover costs faced by the firm, and does so in proportion to the 
firm’s propensity to match offers, 𝜉. The intuition stems from the wage equation (19). 
The prospect of future recruitment and retention bonuses leads the worker to accept lower 
flow wages. The firm implicitly recoups the entirety of the cost of its retention bonuses in 
this way. To the extent that firms’ propensity to match offers is incomplete (𝜉 < 1), the 
wage reductions implied by prospective recruitment bonuses only partially offset the firm’s 
turnover costs. Thus, through the degree of offer matching, the nature of wage setting 
plays an important role in shaping the effective costs of turnover to the firm, and thereby 
the nature of labor market equilibrium.  

In the limit case of complete offer matching (𝜉 = 1), the firm recoups its turnover 
costs entirely, and thereby becomes indifferent to turnover. This outcome suggests further 
intuition. Absent an ability to match offers, a firm faces a quandary in the presence of 
on-the-job search: it has one instrument—the marginal product 𝑚—to respond to a 
continuum of outside offers. As 𝜉 approaches one, the firm is able to tailor its recruitment 

                                                        
5 Note that the effective cost of hiring will now include both the base hiring cost as well as the recruitment 
bonuses firms expect to pay. By the same logic as before, these will cancel from the firm’s maximized value 
by optimality. It is important in this case that the base hiring cost is incurred prior to meeting a searcher.  
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and retention strategy to the idiosyncratic circumstances of all of its contacted employees. 
In this way, the ability to engage in offer matching has a nonlinear pricing interpretation. 
By the same token, absent an unconstrained ability to set a continuum of such nonlinear 
prices, the firm will face costs associated with turnover, and the insights of the preceding 
sections will apply. 

Indeed, the qualitative resemblance between the firm’s problem with offer matching 
(20) and its counterpart with ex post wage bargaining and no offer matching (11) makes 
it clear that optimal labor demand and equilibrium turnover will have the same qualitative 
form. The following Lemma confirms this for a case analogous6 to that in Proposition 2. 

Lemma 2 In the preceding model of (partial) offer matching, Proposition 1 holds mutatis 

mutandis with 𝜔C = 𝑏, 𝜔Z = 0, and 𝑠𝜆 exchanged with (1 − 𝜉)𝑠𝜆. Furthermore, the quit 
rate in the hiring region becomes 

 𝛿(𝑚) = 𝑠𝜆 +
1

(1 − 𝜉)𝑐 {
𝑚 −𝑚s

𝛼 − �
𝑚s

𝛼 − 𝑏 − [𝑟 + (1 − 𝜉)𝑠𝜆]𝑐� |}
𝑚
𝑚s

~
Z

ZY&
− 1��. (21) 

The degree of offer matching is thus a further channel that shapes the presence of a 
hiring region, in addition to the extent of on-the-job search (mediated through 𝑠), and a 
notion of firm size (𝛼 < 1). As anticipated by the preceding logic, the hiring region 
collapses to a point, 𝑚t → 𝑚s , in the limit case of complete offer matching (𝜉 = 1). 
Interestingly, a novel implication of the disappearance of a hiring region in this case is 
that optimal labor demand will share the same qualitative analytical properties as a model 
without on-the-job search (similar to that in Elsby and Michaels 2013).  

More generally, though, the message of Lemma 2 is that this framework can 
accommodate a wide class of wage setting protocols which in turn play an important role 
in the nature of labor market equilibrium. 

The role of the structure of frictions. The preceding analysis has maintained a 
particular assumption on the structure of frictions in the labor market—specifically, that 
they take the form of a constant per-worker hiring cost 𝑐. This is a compelling baseline 
case to study because, as we have seen, it yields the stark prediction of heterogeneity in 
worker values across hiring firms, despite a lack of heterogeneity in hiring costs.  

                                                        
6 Specifically, for comparability with the preceding analysis, we assume that the effective hiring cost is a 
constant, equal to 𝑐 (for example, by appropriate scaling of a pure vacancy cost). 
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The model can accommodate deviations from this baseline case, however. One natural 
example is the case of a training cost. Suppose that the cost of training a flow d𝐻 of new 
hires is captured by the lost output of 𝜏 ⋅ d𝐻 existing employees of the firm. Because the 
flow of new hires is small relative to the stock of employees, the effective per-worker hiring 
cost is thus equal to 𝜏 ⋅ 𝑚. The qualitative properties of labor demand and turnover 
implied by this alternative structure of frictions will resemble those in the preceding 
results. Its quantitative implications, however, will differ, and in interesting ways 
summarized by the following Lemma. 

Lemma 3 In the preceding model of training costs, Proposition 1 holds up to a change 
in coefficients. Furthermore, the quit rate in the hiring region becomes 

 
𝛿(𝑚) = 𝑠𝜆 +

1
𝜏𝑚s

{𝜔C �1 −
𝑚s

𝑚 �

− a
1 − 𝜔Z − (𝑟 − 𝜇 + 𝛼𝑠𝜆)𝜏

𝛼 𝑚s − 𝜔Ce |}
𝑚
𝑚s

~
&
ZY&

− 1��. 

(22) 

Although the nonlinear nature of the model makes comparisons difficult, notice that 
the presence of training costs has the effect of reducing the power in the final term of the 
quit rate—the term that dominates its decline as 𝑚 rises. Intuitively, training costs imply 
that hiring becomes costlier as firms become more productive on the margin. The result 
is that, relative to the case of a constant per-worker hiring cost, firms become even less 
inclined to hire aggressively in response to positive innovations to productivity in the 
hiring region. Consequently, there is a force toward widening the hiring region. 

Clearly, the framework can accommodate a broader class of alternative structures of 
frictions—for example, a hybrid of constant per-worker hiring costs and training costs—
provided that the requisite normalization that underlies the proposed 𝑚 -solution is 
preserved. We return to this point in section 4, where we show how the model can be 
extended to accommodate convex hiring costs. 

2. Aggregation and steady-state equilibrium 
In this section, we take on the task of inferring the implications of the preceding 
microeconomic structure for equilibrium labor market dynamics. An important first step 
toward this end is to aggregate individual firm and worker behavior for a given aggregate 
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state. Notice that the latter is complicated in this environment by the fact that optimal 
labor demand and turnover are nonlinear in the source of heterogeneity in the economy, 
firms’ idiosyncratic productivity 𝑥. Given a solution to this aggregation problem, a further 
task is to characterize the conditions for aggregate steady-state labor market equilibrium. 

We make two further assumptions to aid these steps. First, we restrict the drift of the 
stochastic process for idiosyncratic shocks in (1) to ensure that aggregate labor demand 
is stationary. This obtains when frictionless employment, which is proportional to 

𝑥Z (ZY&)⁄ , has no drift. Applying Ito’s lemma, this requires that 

 𝜇 +
1
2

𝛼
1 − 𝛼 𝜎

K = 0. (23) 

This assumption is made purely to simplify the analysis by abstracting from growth. 
Second, toward the end of deriving aggregate labor market equilibrium, we endogenize 

the job offer arrival rate 𝜆. We do so by invoking a conventional, constant-returns-to-
scale matching function 𝑀(𝑈 + 𝑠(𝐿 − 𝑈), 𝑉) that regulates the total flow of contacts 𝑀 
arising from 𝑉  vacancies, 𝑈  unemployed searchers, and 𝑠(𝐿 − 𝑈)  effective employed 
searchers. An implication is that the ratio of vacancies to searchers 𝜃 ≡ 𝑉 [𝑈 + 𝑠(𝐿 − 𝑈)]⁄  
is a sufficient statistic for contact rates: Workers contact a vacancy at rate 𝜆(𝜃) =
𝑀 [𝑈 + 𝑠(𝐿 − 𝑈)]⁄ = 𝑀(1, 𝜃) while unemployed, and at rate 𝑠𝜆(𝜃) while employed. 

A further implication of the matching process is that hires are in turn mediated 
through vacancies: Each vacancy contacts a searcher at rate 𝜒(𝜃) = 𝑀 𝑉⁄ = 𝑀(1 𝜃⁄ , 1). 
With probability 𝜓 = 𝑈 [𝑈 + 𝑠(𝐿 − 𝑈)]⁄  the searcher is unemployed and therefore hired 
with certainty. With probability 1 − 𝜓, the searcher is employed, and is hired only if the 
worker surplus 𝑊—or, equivalently, the marginal product 𝑚—associated with the 
vacancy exceeds that of the employed searcher at her current firm. Denoting the 
distribution of marginal products among employees by 𝐺(⋅), the vacancy-filling rate faced 
by the firm can thus be written as 

 𝑞(𝑚) = 𝜒[𝜓 + (1 − 𝜓)𝐺(𝑚)]. (24) 

Under this interpretation, then, the flow of hires d𝐻 in (3) can be written as the vacancy-
filling rate 𝑞(𝑚) multiplied by the firm’s flow of vacancies. 

2.1 Aggregation 

We are now in a position to infer the steady-state aggregate labor market stocks and flows 
implied by the model. These are summarized by solutions for the separation rate into 
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unemployment (denoted 𝜍), the hiring rate (denoted 𝜂), and the density of the stock of 
employees 𝑔, at each marginal product 𝑚. 

Proposition 3 In steady state, (i) the separation rate into unemployment is given by 

 𝜍 =
𝜎K 2⁄
1 − 𝛼𝑚q𝑔(𝑚q). 

(25) 

(ii) The hiring rate is given by  

 𝜂(𝑚) = −
𝜎K 2⁄
1 − 𝛼

𝑚𝛿p(𝑚)
𝛿(𝑚) . (26) 

(iii) The vacancy-filling rate is given by 

 𝑞(𝑚) = 𝜒𝜓 exp a
1 − 𝛼
𝜎K 2⁄

b
𝛿(𝑚�)
𝑚� d𝑚�

s

s�

e, (27) 

which, using (24), yields the worker distribution 𝐺(𝑚).  

We now explain the intuition behind each element of Proposition 3. The most 
standard is the solution for the separation rate into unemployment 𝜍. Given the structure 
of optimal labor demand, all such separations arise at the lower boundary for the marginal 
product 𝑚q. There, a density of 𝑔(𝑚q) employees receives shocks of instantaneous variance 
𝜎K to their log marginal product. Following negative shocks, employees are shed into 
unemployment until the marginal product is replenished, with more employees shed the 
greater is the elasticity of labor demand, 1 (1 − 𝛼)⁄ . 

The remaining results in Proposition 3 are novel features of this environment, 
however. We explain these in more detail in what follows. 

Hiring, mean reversion and labor market competition. Consider first the solution 
for the hiring rate at each marginal product. Proposition 3 reveals that, in steady state, 
𝜂(𝑚)  is proportional to minus the elasticity of the quit rate. Equivalently, it is 
proportional to the hazard function of the offer distribution of log marginal products, 
𝑚𝑓(𝑚) [1 − 𝐹(𝑚)]⁄ . This interpretation in turn reveals some useful intuition. A firm’s 
ability to hire is determined by the intensity of offers at 𝑚, 𝑓(𝑚), relative to the intensity 
of offers at higher	𝑚s, as captured by 1 − 𝐹(𝑚). The intensity of offers at lower 𝑚s is not 
directly relevant, since all such offers are dominated by those issued by firms at 𝑚. 
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Figure 2. Steady-state hiring and vacancy-filling rates 

A. Hiring rate 𝜂(𝑚) B. Vacancy-filling rate 𝑞(𝑚) 

  
 

In combination with Proposition 2, this result yields further intuitive insights. First, 
and most simply, since the quit rate is a constant (equal to 𝑠𝜆) in the natural wastage 
region, (26) confirms that the hiring rate is zero for 𝑚 < 𝑚s. Second, because 𝛿(𝑚) is 
strictly decreasing and concave in 𝑚 in the hiring region, it follows that the hiring rate 
𝜂(𝑚) is strictly positive and increasing in 𝑚 for 𝑚 > 𝑚s. Third, since the quit rate is 
equal to zero at the upper boundary, a further implication is that the hiring rate 
asymptotes to infinity at 𝑚t.  

These properties of the hiring rate yield further insights on the behavior of the labor 
market. A key implication is that the marginal product 𝑚 becomes endogenously mean 
reverting in the presence of on-the-job search. To see how, note that the stochastic law of 
motion for 𝑚 in the hiring region takes the form 

 d𝑚 = {𝜇 − (1 − 𝛼)[𝜂(𝑚) − 𝛿(𝑚)]}𝑚d𝑡 + 𝜎𝑚d𝑧. (28) 

Positive innovations to the marginal product 𝑚 induce increases in the hiring rate 𝜂(𝑚), 
and declines in the quit rate 𝛿(𝑚), such that the firm accumulates more employees, and 
the marginal product reverts back down in expectation. This is a distinctive consequence 
of the interaction of on-the-job search with firm dynamics. As we have emphasized, absent 
on-the-job search, the hiring region is degenerate on 𝑚s.  

This observation in turn suggests further intuition for the behavior of the labor 
market. One interpretation of mean reversion in the marginal product is that it is a 
manifestation of imperfect labor market competition. Perfect competition would induce 
infinite mean reversion in marginal products—the law of one wage (or marginal product) 
restored. The interaction of on-the-job search and labor market frictions weakens this 
mean reversion, and thereby labor market competition. Thus, one interpretation of the 
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nondegenerate interval of marginal products among hiring firms uncovered in Proposition 
2 is that it is a manifestation of imperfect labor market competition.  

Viewed from this perspective, the analysis of the preceding sections further highlights 
the economic forces that shape the competitiveness of the labor market in the model. 
Lemma 2 underscores the role of wage determination. Quite intuitively, the greater the 
propensity of offer matching (indexed by 𝜉 in Lemma 2), the smaller the hiring region, 
the greater the degree of mean reversion in marginal products, and the greater the degree 
of labor market competition. The nonlinear pricing interpretation of offer matching is also 
intuitive: To the extent that the firm can tailor wages to the idiosyncratic outside offers 
of its workers, competitive outcomes can be achieved. 

Lemma 3, by contrast, emphasizes the role of the structure of frictions. Again, the 
implication is intuitive: In the presence of training costs, positive shocks raise the 
opportunity cost in terms of lost output of training new recruits, and so there is a force 
that pushes firms to hire less aggressively in response to such shocks. To the extent that 
this force dominates, mean reversion in the marginal product, and hence labor market 
competition, weaken. 

A final implication of endogenous mean reversion is that it also shapes the steady-
state distribution of employees 𝐺(𝑚)  or, equivalently, the vacancy-filling rate 𝑞(𝑚) . 
Absent such mean-reversion, a canonical implication of geometric Brownian motion is that 
it induces stationary distributions that obey a power law. And, indeed, it can be verified 
that this holds in the natural wastage region, where constancy of the quit rate implies 
that the marginal product evolves according to the geometric Brownian motion, 

 d𝑚 = [𝜇 + (1 − 𝛼)𝑠𝜆]𝑚d𝑡 + 𝜎𝑚d𝑧, (29) 

and, from (24) and (27), the worker distribution takes the form 

 𝐺(𝑚) =
𝜓

1 − 𝜓
|}
𝑚
𝑚q
~
ZY&
�x K⁄ ��

− 1� , for all 𝑚 ∈ (𝑚q,𝑚s). (30) 

By contrast, the presence of mean reversion in the hiring region thins the tail of the 
steady-state worker distribution in that region. Formally, because the quit rate is strictly 
declining in 𝑚 in the hiring region, it follows from Proposition 3 that the vacancy-filling 
rate 𝑞(𝑚) in (27), and thereby the worker distribution 𝐺(𝑚), rise ever more slowly in 𝑚 
relative to the power law in the natural wastage region (30). In the limit, because the quit 
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rate is zero (and the hiring rate explodes) at 𝑚t, mean reversion is so extreme at that 
point that there can in fact be no density of employees at the upper boundary. 

On-the-job search and misallocation. A key feature of the aggregation results in 
Proposition 3 is the presence of dispersion in marginal products across workers, as 
summarized by 𝐺(𝑚), and thereby the presence of misallocation. A natural intuition 
suggests that on-the-job search might alleviate such misallocation, by allowing employees 
to transition faster to more productive jobs. Paradoxically, it turns out that the preceding 
model cautions against this intuition. The following Lemma provides a stark example of 
this paradox. 

Lemma 4 Suppose there are no idiosyncratic shocks, 𝜇 = 𝜎 = 0, and separations into 

unemployment occur at exogenous rate 𝜍. Then, (i) the hiring region and quit rate in 
Proposition 2 hold mutatis mutandis with 𝑟 exchanged with 𝑟 + 𝜍; (ii) the boundary 𝑚s 
is such that  (1 − 𝜔Z)𝑚s − 𝜔C = (𝑟 + 𝜍 + 𝑠𝜆)𝑐 and 𝛿p(𝑚s) = 0; (iii) the natural wastage 
region is never entered; and (iv) the vacancy-filling rate takes the form 

 𝑞(𝑚) =
𝜒𝜍

𝜍 + 𝛿(𝑚). 
(31) 

Lemma 4 reveals that the hiring region induced by the interaction of firm dynamics 
and on-the-job search is present even in the absence of idiosyncratic shocks and 
endogenous job destruction. Importantly, by extension of Proposition 2, this hiring region, 
and the accompanying dispersion in marginal products, would not emerge in the absence 
of on-the-job search (𝑠 = 0). A striking implication, then, is that on-the-job search in fact 
gives rise to equilibrium misallocation in this case. We argue in what follows that Lemma 
4 presents a stark point of contrast to existing canonical models of on-the-job search.  

On one hand, the models have much in common. The hiring region shares interesting 
parallels with a large literature inspired by Burdett and Mortensen (1998). These models 
emphasize the interplay of ex ante wage posting and firms’ turnover concerns in generating 
“residual” wage dispersion among identical workers. By contrast, in our model the 
interplay between ex post wage bargaining and firms’ turnover concerns gives rise instead 
to “residual” dispersion in marginal products, and thereby in wages. Both results can be 
traced to notions of imperfect labor market competition associated with on-the-job search 
and labor market frictions, as well as to the nature of wage setting. In Burdett and 
Mortensen (1998) and its descendants, wage dispersion is a consequence of firms having 
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to commit ex ante to wage payments that cannot respond to workers’ future outside offers. 
In the model of the preceding sections, marginal product dispersion is a consequence of 
firms being unable to tailor wages perfectly to the idiosyncratic outside offers of each of 
their workers.  

Further aspects of the special case in Lemma 4 also mirror the implications of 
canonical models of on-the-job search with wage posting. In particular, given the offer 
distribution 𝐹(𝑚) that emerges from the hiring region, equations (13), (24) and (31) 
confirm that the worker distribution in this special case takes the form 

 𝐺(𝑚) =
𝜓

1 − 𝜓
𝑠𝜆𝐹(𝑚)

𝜍 + 𝑠𝜆[1 − 𝐹(𝑚)]. 
(32) 

This outcome is again reminiscent of Burdett and Mortensen (1998): The model gives rise 
to a job ladder whereby workers move towards higher-wage, more productive firms. And 
the worker distribution 𝐺(𝑚) that emerges from this process mirrors the form in Burdett 
and Mortensen (1998). 

On the other hand, a crucial message of Lemma 4 is that these models have 
fundamentally different implications for misallocation. Models of wage posting in the mold 
of Burdett and Mortensen (1998) invariably invoke linear technologies. When extended 
to accommodate productive heterogeneity (for example, as in Bontemps et al. 2000), an 
extreme implication is that allocative efficiency requires all workers to be employed in the 
most-productive firm. A corollary is that on-the-job search is a force toward resolution of 
misallocation in these models, since it accelerates worker transitions toward more 
productive firms. 

The paradox of Lemma 4 is that this last implication is turned on its head. In Lemma 
4, heterogeneity in marginal products emerges as an equilibrium outcome, rather than by 
assumption. And the presence of on-the-job search is the primitive force that gives rise to 
equilibrium misallocation, rather than solely being an equilibrium response to it.  

The key difference is the presence of diminishing returns. This provides an economic 
margin by which differences in firm marginal productivity can be resolved. Indeed, in the 
absence of on-the-job search, marginal products are equalized: 𝑠 = 0 implies 𝑚t = 𝑚s. 
Instead, in the presence of on-the-job search, firms allow their marginal products to vary 
as a means to manage turnover, generating equilibrium misallocation. Thus, integrating 
the allocative consequences of firms’ desire to manage turnover with neoclassical forces 
that militate toward equality of marginal products greatly alters the economic role of on-
the-job search in misallocation. 
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Lemma 4 makes this point particularly starkly, by abstracting from idiosyncratic 
shocks and endogenous job destruction. Returning to the general case, though, Proposition 
2 implies that on-the-job search will at least give rise to greater misallocation among 
hiring firms. It follows that there must be configurations of the parameters of the model 
such that this effect dominates, and on-the-job search can raise misallocation overall. 
Lemma 4 describes one particularly instructive such example. 

Worker flows, job flows and vacancy yields. The aggregation results in Proposition 
3 also provide a novel perspective on the relationship between worker flows and job flows. 
In a pair of influential papers, Davis, Faberman and Haltiwanger (2012, 2013) document 
a set of stylized facts on the relationships between gross flows and net employment growth 
at the establishment level. Gross layoff rates rise in tandem with job destruction in 
shrinking establishments, and flatten out at a minimal level in growing establishments. 
Symmetrically, gross hiring rates display a tight positive link to job creation, and are 
minimal and roughly invariant in the presence of job destruction. 

As Davis et al. note, these so-called “hockey stick” relations for gross hires and layoffs 
are a natural outcome of firm dynamics models in which hires and separations are 
governed by an “iron link” between employment growth in an establishment and its gross 
worker flows. But they also note two stark empirical deviations from such an iron link. 
The first, noted in Davis et al. (2012), is that the presence of quits drives a wedge between 
job flows and gross worker flows, and that these quits vary negatively with establishment 
growth. The second, noted in Davis et al. (2013), is that vacancy-filling rates vary 
positively with establishment growth, thereby driving a wedge between gross hires and 
vacancies. 

An important implication of Proposition 3 is that the model of the preceding sections 
accommodates all of these stylized facts, in particular those that deviate from an iron link 
between worker flows and job flows. The key observation is that (away from the lower 
and upper boundaries) the marginal product 𝑚 is a sufficient statistic for a firm’s net 
employment growth 𝜂(𝑚) − 𝛿(𝑚) in the model: Higher marginal products are associated 
with faster firm growth. It is then immediate from Propositions 2 and 3 that expanding 
firms will face lower quit rates, and higher vacancy-filling rates, as documented by Davis 
et al. 
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Figure 3. Gross worker and job flows implied by the model 

A. Hires, layoffs, quits and vacancies B. Vacancy-filling rate 

  
Notes. Based on the model calibrated as described in section 3 simulated over one month, applying the 
Davis et al. and JOLTS survey methodologies to model-generated data.  

 
To illustrate this feature, Figure 3 reports the results of applying the methods of Davis 

et al. to data simulated from the model. Mirroring the JOLTS methodology, vacancies in 
the model are measured at a point in time and are scaled to match an aggregate vacancy 
rate of 3 percent. Hires, layoffs and quits are cumulated over the subsequent month. The 
model is otherwise parameterized according to the calibration described later in section 3.  

Figure 3 reveals that the hockey sticks implied by the model qualitatively resemble 
those documented by Davis et al. This contrasts interestingly with recent work by Kaas 
and Kircher (2015). In a model without on-the-job search, they instead invoke the presence 
of convex vacancy costs and directed search to explain the same patterns. Vacancies and 
wages are imperfect substitutes in recruiting. Growing firms thus use increased wage offers 
to attract workers, and the vacancy-filling rate rises with firm growth. By contrast, the 
present model suggests that the interaction of on-the-job search with firm dynamics can 
generate similar patterns, without invoking convexity in the hiring technology. 

In terms of magnitudes, the outcomes in Figure 3 differ from the empirical results of 
Davis et al. (2013) in two related dimensions. First, the rise in the vacancy-filling rate 
with firm growth is around half as steep as its empirical analogue. Second, the rise in the 
vacancy rate with firm growth is steeper than in the data. The latter goes some way to 
explaining the former: Ceteris paribus, a shallower rise in the vacancy rate would induce 
the vacancy-filling rate to rise more steeply in firm growth. 
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The reason for this discrepancy is that, in the model, all vacancies are assigned to 
hiring firms that, in turn, are unlikely to shrink substantially. In the data, however, a 
nontrivial fraction of aggregate vacancies is accounted for by establishments that are 
shrinking, often at substantial rates. This may reflect a form of replacement hiring, or 
mismeasurement of vacancies, neither of which is captured by the model. For a fixed 
aggregate vacancy rate, assigning more vacancies to shrinking establishments would lower 
the gradient of the vacancy rate in firm growth, and thereby increase the gradient of the 
vacancy yield toward its empirical counterpart. 

2.2 Steady-state equilibrium 

We now complete the model by characterizing its steady-state equilibrium. Toward that 
end, note that the matching structure implies that all endogenous outcomes of the model 
described thus far—the marginal value in Proposition 1, the quit rate in Proposition 2, 
and the separation, hiring and vacancy-filling rates in Proposition 3—depend on a single 
endogenous aggregate state, labor market tightness 𝜃, which determines the contact rates 
𝜆(𝜃) and 𝜒(𝜃). Given this, we can summarize the steady state in terms of two equilibrium 
conditions reminiscent of those that characterize the standard search and matching model 
of Mortensen and Pissarides (1994).  

The first emerges from the law of motion that governs the evolution of unemployment. 
Making explicit the dependence of the separation rate on tightness, we can write this as 

 d𝑈
d𝑡 = 𝜍(𝜃)(𝐿 − 𝑈) − 𝜆(𝜃)𝑈. (33) 

In steady state, aggregate unemployment is stationary, and thus we obtain the Beveridge 
curve condition,  

 𝑈� (𝜃) =
𝜍(𝜃)

𝜍(𝜃) + 𝜆(𝜃) 𝐿. 
(34) 

The second steady-state condition is implied by aggregation of firms’ labor demand. 

Aggregate employment is the mean of employment across firms, 𝑁 = 𝔼�(𝛼𝑥 𝑚⁄ )Z (ZY&)⁄ �. 

Observing that the latter is equal to the ratio of the mean of (𝛼𝑥)Z (ZY&)⁄  across firms and 

the employment-weighted mean of 𝑚Z (ZY&)⁄  gives rise to the job creation condition, 

 𝑈¢ (𝜃) = 𝐿 − E𝔼 F(𝛼𝑥)
Z

ZY&L b𝑚
Z

ZY&𝑔(𝑚; 𝜃)d𝑚¤ M. (35) 
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Figure 4. Steady-state equilibrium and comparative statics 

 
Notes. Based on simulation of the model calibrated as described in Table 1. The figure illustrates the steady-
state response to a one-percent decline in aggregate labor productivity. 

 

Steady-state equilibrium unemployment and labor market tightness are then jointly 
determined by (34) and (35). Figure 4 illustrates the steady-state job creation and 
Beveridge curve, and depicts the upward shift of the job creation curve induced by a 
decline in aggregate labor productivity. Specifically, it plots the effect of modifying the 
production function to 𝑝𝑥𝑛&, such that 𝑝 falls by one percent. 

3. Aggregate dynamics 
The analysis thus far has addressed the first part of the analytical challenge posed by the 
interaction of firm dynamics with on-the-job search—namely that of inferring the steady-
state fixed points of the offer and worker distributions, 𝐹(𝑚) and 𝐺(𝑚). We now show 
how these results also inform the solution to the second part of the analytical challenge—
that of inferring out of steady state equilibrium dynamics, which involves a fixed point in 
the dynamic path of the distributions. 

The key insight is that the form of the quit rate in Proposition 2 also will hold out of 
steady state, subject to the modification that the middle boundary 𝑚s and the job offer 
arrival rate 𝜆 will vary over time. The intuition is simple. Out of steady state dynamics 
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give rise to additional capital gains in the firm’s marginal value relative to its steady-state 
form in (14). Optimality in the hiring region, however, requires that the firm’s marginal 
value of labor is a constant, equal to the marginal hiring cost 𝑐. It follows that any such 
out-of-steady-state capital gains are zero in the hiring region, and that the quit rate shares 
the same form as in Proposition 2. This is a considerable simplification, as the solution 
for the dynamic path of the quit rate—or, equivalently, the offer distribution 𝐹(𝑚)—is 
thus known up to the path of two scalars, 𝑚s and 𝜆, a much simpler prospect. 

This in turn aids the solution for the time path of the worker distribution 𝐺(𝑚). In 
the same way that the quit rate informs the steady-state vacancy-filling rate in (27), and 
thereby the steady-state worker distribution, its time path induces the dynamics of 𝐺(𝑚) 
via the out-of-steady-state Fokker-Planck (Kolmogorov Forward) Equation. Thus, the 
dynamic path of the two scalars 𝑚s  and 𝜆 also implies the time path of the worker 
distribution 𝐺(𝑚). 

Finally, consider first the natural wastage region. Here, the quit rate is maximal and 
equal to 𝑠𝜆. The job offer arrival rate 𝜆 is thus the sole aggregate state in this region. 
Given a time path for 𝜆, the firm’s marginal value 𝐽(𝑚), and the boundaries 𝑚q and 𝑚s, 
can then be inferred out of steady state. This implies a further simplification: the path of 
𝜆 is also sufficient to determine the paths of 𝑚q and 𝑚s. 

The upshot is that the dimensionality of the problem of inferring the model’s 
transition dynamics is greatly reduced by the analytical results developed earlier in the 
paper. Absent these results, solving the model out of steady state would involve forecasts 
of a sequence of unknown functions, a daunting prospect. With these results, we can distil 
the problem to one which requires a forecast of the dynamic path of just one scalar, 𝜆.  

3.1 Quantitative illustration 

To demonstrate the feasibility of the latter, we now illustrate the quantitative implications 
of a calibrated version of the model. In what follows, we provide an account of the 
empirical moments that are most relevant for the calibration of each parameter. Of course, 
in cases for which direct calibration is infeasible, in principle all target moments inform 
all parameters. 

We begin with a normalization. Note that, in the limit in which the hiring cost 𝑐 is 
zero, optimal labor demand implies that marginal products are equalized across firms at 
a level 𝑚∗ ≡ 𝜔C (1 − 𝜔Z)⁄ . It follows from (6) that there is a common wage in this case 
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equal to 𝑤∗ ≡ 𝜔C (1 − 𝛽)⁄ . We normalize 𝑤∗ ≡ 1 or, equivalently, 𝜔C ≡ 1 − 𝛽. It follows 
that all flow parameters are thus expressed in terms of monthly frictionless wages. 

We begin by setting the discount rate 𝑟 to replicate an annual real interest rate of 5 
percent. We then set the curvature of the production function 𝛼 to equal 0.64 based on 
the estimates of Cooper, Haltiwanger and Willis (2007, 2015).  

Idiosyncratic shocks 𝑥 in the model drive changes in firms’ desired labor demand. 
Accordingly, we choose the standard deviation of idiosyncratic shocks 𝜎 such that, when 
simulated over a quarter, the model replicates the empirical standard deviation of 
quarterly employment growth of 0.287.7 

The monthly job offer arrival rate for unemployed searchers is set to 0.45 to mirror 
empirical unemployment outflow rates, as in Shimer (2005). Relatedly, the search 
intensity of employed searchers 𝑠 is chosen such that the model replicates a monthly job-
to-job transition rate of 0.032, as in Moscarini and Thomsson (2007). 

Turning now to wages, we seek to accommodate two aspects of recent empirical work 
on wage determination: First, the degree of rent sharing between firms and their workers; 
and, second, the degree of procyclicality in real wages. It is not possible to do justice to 
both of these outcomes with the single remaining wage parameter 𝛽. For this reason, we 
use worker bargaining power 𝛽 to replicate an elasticity between wages and firm-specific 
productivity of 0.15. As noted by Manning (2011) and Card et al. (2018), estimates of 
such rent-sharing parameters can vary depending on the methods used, but this is within 
the plausible range of such estimates. To capture the procyclicality of real wages, we 
modify slightly the model of preceding sections to allow the flow breakdown payoff to 
vary with the cycle. Specifically, we modify the wage equation (6) to an out-of-steady-
state counterpart, 

 𝑤 =
𝛽

1 − 𝛽(1 − 𝛼)𝑚 + 𝑝¦𝜔C, (36) 

where 𝜛 is the elasticity of the flow breakdown payoff to aggregate labor productivity 𝑝, 
which is normalized to one in the initial steady state. We then choose 𝜛 such that the 
semi-elasticity of average wages with respect to the unemployment rate is equal to -0.7. 
This is in line with the procyclicality of estimates of worker composition-adjusted real 
wages in Elsby, Shin and Solon (2016). 

                                                        
7 This is inferred from Figure 5 in Davis, Faberman and Haltiwanger (2012), which reports employment-
weighted kernel density functions of establishment growth rates from Business Employment Dynamics data. 
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Table 1. Calibrated parameters (monthly frequency) 

Parameter Meaning Value Reason 

𝑟 Discount rate 0.004 Annual real interest rate = 0.05 

𝛼 Returns to scale 0.64 Cooper et al. (2007, 2015) 

𝜎 Std. dev. of 𝑥 shocks 0.075 Std. dev. quarterly emp. growth = 0.287 

𝜆 Unemployed contact rate 0.45 Job-finding rate = 0.45 

𝑠 Employed search intensity 0.074 E-to-E transition rate = 0.032 

𝛽 Worker bargaining power 0.147 Avg. elasticity {𝑤, firm 𝑦} = 0.15	
𝜔C Flow breakdown payoff 0.853 Normalization 

𝜛 Elasticity of 𝜔C to 𝑝 0.525 Semi-elasticity {avg. 𝑤, 𝑈/𝐿} = -0.7 

𝜍C Exogenous separation rate 0.0053 Quit share of 𝑈 inflows = 0.225 

𝑐 Per-worker hiring cost 0.238 Unemployment rate = 0.05 

𝐿 Labor force 21.05 Avg. firm size = 20 
 

We next consider inflows into unemployment. We use two parameters to target two 
moments of related data. First, we augment the model of the preceding sections to 
incorporate a portion of separations into unemployment that are exogenous. Specifically, 
we allow such exogenous separations to occur at rate 𝜍C. We calibrate 𝜍C to replicate the 
fraction of unemployment inflows that are recorded as “job leavers” in the Current 
Population Survey, which is 22.5 percent. Second, we use the hiring cost 𝑐 to target the 
extent of the remaining (endogenous) separations such that the initial steady-state 
unemployment rate is 5 percent. Intuitively, the hiring cost determines the irreversibility 
of firms’ endogenous separation decisions, and thereby their incidence. 

Finally, we set the labor force 𝐿 such that the average size of a firm is 20 employees, 
consistent with data from the Small Business Administration. 

Table 1 summarizes the parameters that emerge from this calibration exercise, 
expressed at a monthly frequency. 

Given this calibration, we solve for the transition path of model outcomes in response 
to a permanent unanticipated decline in aggregate labor productivity 𝑝  (similar to 
Boppart, Krusell, and Mitman 2018). Our analytical results provide us with solutions for 
the initial and final steady states. Given a (conjectured) path for 𝜆 , we first solve 
backwards from the final steady state for the implied sequence of firm marginal value 
functions (in the natural wastage region). This implies sequences for the boundaries 𝑚q 
and 𝑚s, and thereby for the quit rate 𝛿(𝑚). Given these, we can then use the Fokker  
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Figure 5. Transition dynamics of calibrated model 

A. Unemployment rate, 𝑈 𝐿⁄  
B. Worker density, 𝑔(𝑚) 

(deviation from new steady state) 

  
Notes. Based on simulation of the model calibrated as described in Table 1. The figure illustrates the 
dynamic response to an unanticipated, permanent one-percent decline in aggregate labor productivity.  

 

Planck (Kolmogorov Forward) Equation to solve forward for the implied sequence of 
distributions of marginal products across employees 𝐺(𝑚) and thereby the vacancy-filling 
rate 𝑞(𝑚). We then iterate over the path of 𝜆 until a measure of excess labor demand at 
each point in time is reduced to zero (up to numerical error). 

Figure 5 depicts some preliminary results from this exercise. It illustrates the evolution 
of the unemployment rate, and the distribution of employees across marginal products 
following a permanent, unanticipated decrease in aggregate productivity of one percent.  

4. Extensions 
We noted earlier that the methods applied thus far are amenable to being extended to 
richer environments, provided the requisite normalization that underlies the 𝑚-solution is 
preserved. One notable example is the case in which the adjustment friction takes a convex 
form. As emphasized by Bilal, Engbom, Mongey and Violante (2019) in a related model 
of firm dynamics and on-the-job search, such convex adjustment costs have rich 
implications for firm growth dynamics, as it becomes optimal to adjust employment 
incrementally. It turns out that the analytical results described in the preceding sections 
can be used to simplify greatly the analysis of such environments. In what follows, we 
show how. 
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Convex hiring costs. We begin by extending our previous results to a case in which 
there is convexity in the hiring cost. A commonly-used functional form has the cost of 
generating a flow ℎd𝑡 of hires8 equal to 

 𝐶(ℎ; 𝑛)d𝑡 =
𝑐ℎ
1 + 𝛾 }

ℎ
𝑛~

v

d𝑡, (37) 

where 𝛾 > 0 regulates the degree of convexity. This isoelastic form combines simplicity 
with the property that firms do not “grow out” of their hiring costs, in the sense that the 
marginal hiring cost is a function of the firm’s hiring rate, 𝐶p(ℎ; 𝑛) = 𝑐(ℎ 𝑛⁄ )v. This in 
turn preserves the homogeneity that gives rise to an 𝑚-solution.  

Since the hiring cost is continuously differentiable in ℎ for all ℎ ≥ 0, and convex, 
optimal labor demand under an 𝑚-solution involves just one boundary in this case, 𝑚q. 
As before, whenever the firm’s marginal product reaches 𝑚q, the firm implements fires—
𝑚q is a reflecting barrier. For all 𝑚 > 𝑚q, the firm implements positive hires ℎ > 0. There 
is no natural wastage region induced by inaction. The following Lemma then summarizes 
the results of following steps analogous to those in the preceding sections. 

Lemma 5 Under the convex hiring cost (37), the steady-state marginal value satisfies 

 
𝑟𝐽(𝑚) = (1 − 𝜔Z)𝑚 −𝜔C + 𝛾 F

1
1 + 𝛾 𝜂

(𝑚) − (1 − 𝛼)𝑚𝜂p(𝑚)L 𝐽(𝑚)

− [𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]𝐽(𝑚) + [𝜇 + (1 − 𝛼)𝛿(𝑚)]𝑚𝐽p(𝑚)

+
1
2𝜎

K𝑚K𝐽pp(𝑚), 

(38) 

subject to the first-order condition for optimal hiring 

 𝐽(𝑚) = 𝑐[𝜂(𝑚)]v, (39) 

the steady-state aggregation identity 

 𝜂(𝑚) = −
𝜎K 2⁄
1 − 𝛼

𝑚𝛿p(𝑚)
𝛿(𝑚) , (40) 

and the boundary conditions 

 𝐽(𝑚q) = 0,  𝐽p(𝑚q) = 0,  𝛿(𝑚q) = 𝑠𝜆,  and lim
s→®

𝛿(𝑚) = 0. (41) 

                                                        
8 In contrast to the case of a per-worker hiring cost, convexity of the hiring cost implies that it is optimal 
to hire incrementally, such that the flow of hires is differentiable in time. 



 37 

Relative to the case of a per-worker hiring cost (𝛾 = 0), the presence of a convex 
hiring cost (𝛾 > 0) induces the firm’s marginal valuation of labor in (38) to depend 
additionally on the firm’s hiring rate 𝜂(𝑚). Intuitively, the firm’s marginal hiring costs 
are determined by its hiring rate under the convex hiring cost in (37). In turn, optimal 
hiring requires that the firm equate the marginal value of labor to the marginal hiring 
cost in (39). 

What is particularly useful about Lemma 5 is that it distils a complicated dynamic 
problem into one of solving a more manageable system of nonlinear differential equations: 
in the marginal value 𝐽(𝑚), the hiring rate 𝜂(𝑚), and the quit rate 𝛿(𝑚). Alternatively, 
after substitution the ingredients of Lemma 5 comprise a third-order differential equation 
in the quit rate 𝛿(𝑚). This contrasts with the simpler environment underlying Proposition 
2, in which the hiring cost is linear, and the quit rate is summarized by a first-order 
differential equation. The implication is that the presence of a convex hiring cost gives 
rise to richer dynamics of worker retention. 

The key insight is that all of the aggregation results in Proposition 3 apply more 
generally to richer structures of adjustment frictions, provided the simplification of an 𝑚-
solution holds. Thus, the hiring rate 𝜂(𝑚) can be linked both to the marginal value 𝐽(𝑚) 
through the first-order condition (39), and to the quit rate via the aggregation identity 
(40). Although analytical solution of the system of differential equations in (38) to (41) 
remains a significant challenge (at least, it has so far eluded us), Lemma 5 greatly 
simplifies numerical solution of the model. 

Convex vacancy costs. Another alternative structure of frictions posits that adjustment 
costs have their origins in the posting of vacancies—as opposed to gross hires per se. A 
key distinction is that vacancies need not always generate hires, a difference mediated by 
the vacancy-filling rate 𝑞(𝑚). We will see that this adds a further layer of economics to 
the model, as the effective hiring cost becomes endogenous. 

Nonetheless, the techniques developed in the preceding sections again aid progress for 
this adjustment cost structure. Mirroring our discussion of convex hiring costs above, we 
consider a functional form for vacancy costs in which the cost of sustaining a flow 𝑣d𝑡 of 
vacancies is 

 𝐶(𝑣; 𝑛)d𝑡 =
𝑐𝑣
1 + 𝛾 �

𝑣
𝑛�

v
d𝑡, (42) 
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where, again, 𝛾 > 0 indexes the degree of convexity. As above, this form sustains an 𝑚-
solution and, for the same reasons, induces optimal labor demand with a single boundary 
𝑚q. For 𝑚 > 𝑚q, the firm now posts vacancies 𝑣 > 0, and its hires are given by the flow 
of filled vacancies. The following Lemma summarizes. 

Lemma 6 Under the convex vacancy cost (42), the steady-state marginal value satisfies 

 
𝑟𝐽(𝑚) = (1 − 𝜔Z)𝑚 −𝜔C + 𝛾 F

1
1 + 𝛾 𝜈

(𝑚) − (1 − 𝛼)𝑚𝜈p(𝑚)L 𝑞(𝑚)𝐽(𝑚)

− [𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]𝐽(𝑚) + [𝜇 + (1 − 𝛼)𝛿(𝑚)]𝑚𝐽p(𝑚)

+
1
2𝜎

K𝑚K𝐽pp(𝑚), 

(43) 

subject to the definition of the firm’s vacancy rate 

 𝜈(𝑚) ≡
𝜂(𝑚)
𝑞(𝑚), 

(44) 

the first-order condition for optimal hiring 

 𝑞(𝑚)𝐽(𝑚) = 𝑐[𝜈(𝑚)]v, (45) 

the steady-state aggregation identities 

 𝜂(𝑚) = −
𝜎K 2⁄
1 − 𝛼

𝑚𝛿p(𝑚)
𝛿(𝑚) , and 𝑞(𝑚) = 𝜒𝜓 exp a

1 − 𝛼
𝜎K 2⁄

b
𝛿(𝑚�)
𝑚� d𝑚�

s

s�

e, (46) 

and the boundary conditions 

 𝐽(𝑚q) = 0,  𝐽p(𝑚q) = 0,  𝛿(𝑚q) = 𝑠𝜆,  and lim
s→®

𝛿(𝑚) = 0. (47) 

Relative to the case of a convex hiring cost in Lemma 5, the presence of a convex 
vacancy cost in Lemma 6 adds further layers of complexity through the additional 
dependence of the firm’s labor demand problem on the vacancy-filling rate 𝑞(𝑚). This 
emerges through two channels. First, the recursion for the firm’s marginal valuation of 
labor in (43) now includes terms in the vacancy rate 𝜈(𝑚), which in turn is the ratio of 
the hiring rate 𝜂(𝑚) to the vacancy-filling rate 𝑞(𝑚), as in (44). Second, optimal hiring 
now requires that the firm sets its marginal value 𝐽(𝑚) equal to its marginal vacancy costs 
divided by the vacancy-filling rate 𝑞(𝑚), as in (45). In this way, the firm’s effective 
marginal hiring cost is mediated by the firm’s (endogenous) ability to fill its vacancies.  

The reiteration of the aggregation identities for the hiring rate 𝜂(𝑚) and the vacancy-
filling rate 𝑞(𝑚)  in (46) underscores the usefulness of the analytical results of the 
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preceding sections to these alternative environments. Notably, since 𝑞(𝑚) involves an 
integral of the quit rate 𝛿(𝑚), inspection of the ingredients of Lemma 6 makes clear that 
they can be rewritten as a fourth-order differential equation in the quit rate. It is in this 
formal sense that the interaction of optimal hiring and retention with the vacancy-filling 
rate gives rise to still richer firm dynamics. 

The upshot is that the determination of the firm’s vacancy-filling rate 𝑞(𝑚) is now 
intertwined with the determination of the firm’s marginal value 𝐽(𝑚), its quit rate 𝛿(𝑚), 
and its hiring rate 𝜂(𝑚). Thus, the system of differential equations summarized by Lemma 
6 now determines four endogenous functions that are mutually interdependent. 
Nonetheless, despite its further layers of complexity, Lemma 6 again distils an otherwise-
complex dynamic problem into a simpler system of differential equations, aided by the 
analytical results of earlier sections.  

Illustrative simulations. Figure 6 illustrates numerical solutions to the systems of 

differential equations summarized by Lemma 5 for the case of a convex hiring cost, and 
Lemma 6 for the case of a convex vacancy cost. For concreteness, we focus on the 
quadratic case with 𝛾 = 1. The remaining parameters are not chosen to match empirical 
moments, but rather to illustrate the qualitative form of the solutions. For this reason, 
scales are omitted. Thanks to the characterization of the dynamic systems in Lemmas 5 
and 6, numerical solution requires only a standard ordinary differential equation solver, 
obviating the need for brute-force simulation of firms’ decisions, and their aggregate 
implications. A consequence is that numerical solution is, in practice, very fast. 

Figure 6 highlights several intuitive properties of the solutions. Consider first the case 
of a convex hiring cost, illustrated by the bold lines in Figure 6. The solution now has the 
property that the firm’s marginal value 𝐽(𝑚)  is strictly increasing for all 𝑚 > 𝑚q . 
Likewise, consistent with the first-order condition for optimal hiring in (39), the hiring 
rate 𝜂(𝑚) also is strictly increasing over this range. Intuitively, positive innovations to a 
firm’s productivity are now resolved by an incremental increase in hiring, the marginal 
costs of which are offset by an incremental rise in the firm’s marginal value of labor. 
Consistent with the hiring rate rising less aggressively in the presence of a convex cost, 
the quit rate 𝛿(𝑚) now descends less abruptly with the marginal product, and indeed 
asymptotes to zero. 
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Figure 6. Model outcomes with convex hiring and vacancy costs 

A. Marginal value of labor 𝐽(𝑚) B. Quit rate 𝛿(𝑚) 

  
C. Hiring rate 𝜂(𝑚) D. Vacancy-filling rate 𝑞(𝑚) 

  
Notes. Illustrative simulations of the model with convex hiring and vacancy costs, respectively. Solutions to 
the differential equations in Lemmas 5 and 6 are plotted for the quadratic case (𝛾 = 1). The figure is 
intended to provide a qualitative sense of the solutions, and so we omit scales. 

 

Now consider the case of a convex vacancy cost, illustrated by the dotted lines in 
Figure 6. Qualitatively, outcomes in this case bear a strong resemblance to those in the 
convex hiring cost case. The difference is the role of the vacancy-filling rate 𝑞(𝑚) in 
endogenously shaping firm’s marginal hiring costs. Again, the results are intuitive. 
Because firms with higher marginal products are able to fill their vacancies more quickly, 
their effective marginal hiring costs are smaller. It follows that the marginal value of labor 
𝐽(𝑚) rises less steeply, and the hiring rate 𝜂(𝑚) more steeply, with 𝑚. In turn, the steeper 
rise in hiring rates is accompanied by a faster decline in the quit rate 𝛿(𝑚) which, via 
(46), accumulates in a shallower rise in the vacancy-filling rate 𝑞(𝑚). 
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Appendix 

A. Proofs of Lemmas and Propositions 

Proof of Lemma 1. We first verify that, under an 𝑚-solution, the worker surplus in (9) 

is a function solely of 𝑚. Denoting the firm’s hiring and separation rates by d𝐻∗ 𝑛⁄ =
𝜂(𝑚; d𝑡) and d𝑆∗ 𝑛⁄ = 𝜍(𝑚; d𝑡), we can rewrite (9) as 

 

𝑟𝑊(𝑚)d𝑡 = a
𝛽𝑚

1 − 𝛽(1 − 𝛼) + 𝜔C − 𝑏 − 𝜆
b𝑊c𝑑ΦX𝑊c [

+ 𝑠𝜆b �𝑊c −𝑊(𝑚)�dΦX𝑊c [
d(s)

+ �𝜇 + (1 − 𝛼)𝛿X𝑊(𝑚)[�𝑚𝑊p(𝑚)

+
1
2𝜎

K𝑚K𝑊pp(𝑚)e d𝑡 − (1 − 𝛼)[𝜂(𝑚; d𝑡) − 𝜍(𝑚; d𝑡)]𝑚𝑊p(𝑚)

− 𝜍(𝑚; d𝑡)𝑊(𝑚), 

(48) 

which is a function of the single idiosyncratic state 𝑚, as required.  
We now establish monotonicity of 𝑊 in 𝑚. Consider two firms with different marginal 

products 𝑚p and 𝑚 with 𝑚p > 𝑚 at a given point in time 𝑡. Clearly, the flow worker 
surplus is higher in firm 𝑚p. In addition to this, worker surpluses in each firm incorporate 
capital gains from three sources: changes in idiosyncratic productivity 𝑥, changes in firm 
employment through hiring and firing, and the arrival of superior outside offers.  

Fix, for both firms, a given sample path for changes in idiosyncratic productivity. 
Furthermore, suppose that the worker employed in firm 𝑚p implements, for all future 
periods, the same job acceptance policy as the optimal policy for the worker employed in 
firm 𝑚. The implied worker surplus for the worker in firm 𝑚p is thus weakly lower than 
would be implied had she implemented her optimal job acceptance policy.  

Despite implementing a suboptimal job acceptance policy, it is clear that the worker 
in firm 𝑚p receives a higher worker surplus: She receives a higher flow wage. She accepts 
the same outside offers. And since, under an 𝑚-solution, sample paths for employment 
are continuous, the same is true for the path of the marginal product. Thus, for any given 
sample path for changes in idiosyncratic productivity, the path for the marginal product 
of firm 𝑚p must be weakly higher than that for firm 𝑚. Since the worker surplus is based 
on expectations over sample paths, monotonicity of 𝑊 in 𝑚 directly follows. 
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Proof of Proposition 1. Given that 𝛿(𝑚) = 𝑠𝜆 and 𝛿p(𝑚) = 0 in the natural wastage 
region, the recursion for the firm’s marginal value (14) takes the simple form 

 (𝑟 + 𝑠𝜆)𝐽(𝑚) = (1 − 𝜔Z)𝑚 − 𝜔C + [𝜇 + (1 − 𝛼)𝑠𝜆]𝑚𝐽p(𝑚) +
1
2𝜎

K𝑚K𝐽pp(𝑚). (49) 

The latter resembles canonical firm dynamics problems studied by Bentolila and Bertola 
(1990) and Abel and Eberly (1996). It involves finding a solution to the recursion for the 
marginal surplus 𝐽(𝑚) in (49) subject to two pairs of boundary conditions that are implied 
by optimality, 

 𝐽(𝑚q) = 0,  and,  𝐽(𝑚s) = 𝑐, (50) 

together with 

 𝐽p(𝑚q) = 0,  and,  𝐽p(𝑚s) = 0. (51) 

It can be verified that the stated solution for 𝐽(𝑚) satisfies (49). Furthermore, the 
coefficients 𝐽Z  and 𝐽K , and the boundaries 𝑚q  and 𝑚s , that satisfy the boundary 
conditions (50) and (51) can be inferred from the solution provided by Abel and Eberly 
(1996). Applying their result mutatis mutandis yields the coefficients 

 𝐽Z = −
(1 − 𝜔Z)𝜗(𝒢)𝑚q

ZYvw

𝛾Z𝜌(1)
,  and,  𝐽K = −

(1 − 𝜔Z)[1 − 𝜗(𝒢)]𝑚q
ZYvx

𝛾K𝜌(1)
, (52) 

where 

 𝒢 ≡
𝑚s

𝑚q
,  and,  𝜗(𝒢) ≡

𝒢vx − 𝒢
𝒢vx − 𝒢vw. 

(53) 

In turn, the geometric gap between the middle and lower boundaries 𝒢 is the solution to 

 𝜔C + 𝜌(0)𝑐
𝜔C

𝜑(𝒢) − 𝒢𝜑(𝒢YZ) = 0, (54) 

where 

 𝜑(𝒢) ≡
1

𝜌(1)`1 −
𝜗(𝒢)
𝛾Z

−
1 − 𝜗(𝒢)

𝛾K
h. (55) 

Finally, the boundaries solve 

 (1 − 𝜔Z)𝑚q =
𝜔C

𝜌(0)𝜑(𝒢) ,  and,  (1 − 𝜔Z)𝑚s =
𝜔C + 𝜌(0)𝑐
𝜌(0)𝜑(𝒢YZ). 

(56) 
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Proof of Proposition 2. Given that 𝐽(𝑚) = 𝑐, and 𝐽p(𝑚) = 𝐽pp(𝑚) = 0 in the hiring 
region, the recursion for the firm’s marginal value (14) becomes a differential equation in 
the quit rate 𝛿(𝑚), 

 {𝑟 + [𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]}𝑐 = (1 − 𝜔Z)𝑚 − 𝜔C. (57) 

It is straightforward to verify that the solution takes the form 

 𝛿(𝑚) =
(1 − 𝜔Z)𝑚

𝛼𝑐 −
𝜔C
𝑐 − 𝑟 + 𝛿Z𝑚

Z
ZY&, (58) 

for all 𝑚 ∈ (𝑚s,𝑚t).  
It remains to infer the coefficient 𝛿Z, and the upper boundary for the marginal product 

in the hiring region, 𝑚t. These are determined by boundary conditions for the quit rate, 

 𝛿(𝑚s) = 𝑠𝜆,  and,  𝛿(𝑚t) = 0. (59) 

It follows from the first boundary condition that 

 𝛿Z = �𝑟 + 𝑠𝜆 +
𝜔C
𝑐 �𝑚s

Y Z
ZY& −

1 − 𝜔Z
𝛼𝑐 𝑚s

ZY Z
ZY&. (60) 

Inserting the latter into (58) yields the stated solution for 𝛿(𝑚). 
Turning now to the upper boundary 𝑚t, the second condition in (59) implies 

 a𝑚s − 𝛼
𝜔C + (𝑟 + 𝑠𝜆)𝑐

1 − 𝜔Z
e |}

𝑚t

𝑚s
~

Z
ZY&

− 1� =
𝛼𝑐𝑠𝜆
1 − 𝜔Z

+ (𝑚t − 𝑚s). (61) 

Using the solution for 𝑚s in (56), we can write the leading coefficient in the latter as 

 𝑚s − 𝛼
𝜔C + (𝑟 + 𝑠𝜆)𝑐

1 − 𝜔Z
=
𝜔C + (𝑟 + 𝑠𝜆)𝑐

1 − 𝜔Z
F

1
(𝑟 + 𝑠𝜆)𝜑(𝒢YZ) − 𝛼L. 

(62) 

Abel and Eberly (1996) prove that 𝒢 > 1 implies that 𝜑(𝒢YZ) < 𝜑(1) = 1 (𝑟 + 𝑠𝜆)⁄ . It 
follows that 

 𝑚s − 𝛼
𝜔C + (𝑟 + 𝑠𝜆)𝑐

1 − 𝜔Z
>
𝜔C + (𝑟 + 𝑠𝜆)𝑐

1 − 𝜔Z
(1 − 𝛼) > 0. (63) 

This implies that there exists a unique 𝑚t > 𝑚s that satisfies (61). 
Now consider the slope of 𝛿(𝑚). Differentiating (17), applying the solution for 𝑚s in 

(56), and once again noting that 𝒢 > 1 implies that 𝜑(𝒢YZ) < 𝜑(1) = 1 (𝑟 + 𝑠𝜆)⁄  yields  
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𝛿p(𝑚) =

1 − 𝜔Z
𝛼𝑐 {1 −

1
1 − 𝛼

[1 − 𝛼(𝑟 + 𝑠𝜆)𝜑(𝒢YZ)] }
𝑚
𝑚s

~
&
ZY&

�	

<
1 − 𝜔Z
𝛼𝑐

|1 − }
𝑚
𝑚s

~
&
ZY&

�. 

(64) 

It follows that 𝛿p(𝑚s
´ ) < 0 and that 𝛿(𝑚) is declining for all 𝑚 ∈ (𝑚s,𝑚t). Finally, 

differentiating (17) once more, and following the same steps, 

 𝛿pp(𝑚) = −
1 − 𝜔Z
𝑐(1 − 𝛼)K

1
𝑚s

[1 − 𝛼(𝑟 + 𝑠𝜆)𝜑(𝒢YZ)] }
𝑚
𝑚s

~
K&YZ
ZY&

< 0. (65) 

Proof of Proposition 3. (i) Denote the logarithm of the marginal product 𝓂 ≡ ln𝑚. In 
the natural wastage region, this evolves according to the stochastic law of motion 

 d𝓂 = d ln 𝑥 − (1 − 𝛼)d ln 𝑛 = F𝜇 −
1
2𝜎

K + (1 − 𝛼)𝑠𝜆L d𝑡 + 𝜎d𝑧 ≡ 𝜇𝓂d𝑡 + 𝜎d𝑧. (66) 

This process can be approximated by the following discrete-time, discrete-state process 
(Dixit 1993):  

 𝓂·´@· = E𝓂· + Δ with probability 𝓅,
𝓂· − Δ with probability 𝓆, 

(67) 

where Δ = 𝜎√d𝑡, 𝓅 = Z
K
�1 + ¼𝓂

� √d𝑡�, and 𝓆 = Z
K
�1 − ¼𝓂

� √d𝑡�. 

Consider a worker at 𝓂q. With probability 𝓆, her firm crosses the lower boundary 
and fires a fraction Δ (1 − 𝛼)⁄  of its employees such that it returns to 𝓂q. Denoting the 
stationary density of employees at 𝓂q by ℊ(𝓂q), the fraction of total employment that 
separates into unemployment is given by 

 𝜍d𝑡 = 𝓆
Δ

1 − 𝛼 ⋅
[ℊ(𝓂q) ⋅ Δ] =

𝜎K 2⁄
1 − 𝛼 ℊ

(𝓂q)d𝑡 + 𝑜(d𝑡). 
(68) 

Mapping back from logarithms to levels, ℊ(𝓂q) = 𝑚q𝑔(𝑚q), yields the stated result,  

 𝜍 =
𝜎K 2⁄
1 − 𝛼𝑚q𝑔(𝑚q). 

(69) 

It will be useful in what follows to derive the flow-balance condition for the steady-
state density at the lower boundary ℊ(𝓂q). Setting outflows equal to inflows,  

 𝓅ℊ(𝓂q) + 𝓆
Δ

1 − 𝛼ℊ
(𝓂q) + 𝑠𝜆d𝑡ℊ(𝓂q) = 𝓆ℊ(𝓂q + Δ). (70) 
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Expanding ℊ(𝓂q + Δ), using the definitions of 𝓅, 𝓆 and Δ, collecting terms in orders of 

√d𝑡, and eliminating terms of order higher than d𝑡 yields 

 
a¿𝜇𝓂 +

𝜎K 2⁄
1 − 𝛼Àℊ

(𝓂q) −
1
2𝜎

Kℊp(𝓂q)e √d𝑡

=
𝜎
2 F}

1
1 − 𝛼 𝜇𝓂 − 2𝑠𝜆~ℊ(𝓂q) − 𝜇𝓂ℊp(𝓂q) +

1
2𝜎

Kℊpp(𝓂q)L d𝑡. 

(71) 

As d𝑡 → 0, the terms of order √d𝑡 dominate, and therefore must cancel,  

 ¿𝜇𝓂 +
𝜎K 2⁄
1 − 𝛼Àℊ

(𝓂q) −
1
2𝜎

Kℊp(𝓂q) = 0. (72) 

Noting that ℊ(𝓂q) = 𝑚q𝑔(𝑚q)  and ℊp(𝓂q) = 𝑚q𝑔(𝑚q) + 𝑚q
K𝑔p(𝑚q) , recalling the 

definition of 𝜇𝓂, and imposing the aggregate stationarity condition 𝜇 + Z
K
𝜎K &

ZY&
= 0 yields 

 F(1 − 𝛼)𝑠𝜆 −
1
2𝜎

KL 𝑔(𝑚q) =
1
2𝜎

K𝑚q𝑔p(𝑚q). (73) 

(ii) and (iii). To infer the stationary distribution of marginal products across 
employees 𝑔(𝑚), and thereby the vacancy-filling rate 𝑞(𝑚) = 𝜒[𝜓 + (1 − 𝜓)𝐺(𝑚)], we 
first infer the stochastic law of motion for the marginal product, d𝑚 𝑚⁄ = (d𝑥 𝑥⁄ ) −
(1 − 𝛼)(d𝑛 𝑛⁄ ), on the interval 𝑚 ∈ (𝑚q,𝑚t)	. The evolution of productivity 𝑥 is given by 
(1). The evolution of employment 𝑛 is as follows: There are outflows of employment due 
to quits, 𝛿(𝑚)𝑛d𝑡. But there are also potential inflows due to hires: The hiring rate at 𝑚, 
denoted 𝜂(𝑚), can be written as the total measure of hires at 𝑚, 𝑓(𝑚)𝑉𝑞(𝑚), divided by 
the total measure of employment at 𝑚, 𝑔(𝑚)𝑁; or, more succinctly, 

 𝜂(𝑚) = −
𝛿p(𝑚)𝑞(𝑚)
𝑞p(𝑚) . (74) 

Thus, the stochastic law of motion for the marginal product is 

 d𝑚
𝑚 = `𝜇 + (1 − 𝛼) a

𝛿p(𝑚)𝑞(𝑚)
𝑞p(𝑚) + 𝛿(𝑚)eh d𝑡 + 𝜎d𝑧. (75) 

The latter describes the motion of the marginal product for an employee that remains 
in a given firm. However, additional flows of employees across marginal products arise 
due to the presence of search. Specifically, the net inflow of density into 𝑔(𝑚) from this 
channel is given by the measure of hires less quits,  
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 [𝜂(𝑚) − 𝛿(𝑚)]𝑔(𝑚) = −
𝜕
𝜕𝑚

[𝛿(𝑚)𝑞(𝑚)]
𝜒(1 − 𝜓) . (76) 

The Fokker-Planck (Kolmogorov Forward) equation for the worker density 𝑔(𝑚) is 
thus given by 

 

∂𝑔(𝑚)
∂𝑡 = −

𝜕
𝜕𝑚

[𝛿(𝑚)𝑞(𝑚)]
𝜒(1 − 𝜓) −

𝜕
𝜕𝑚

a`𝜇 + (1 − 𝛼) a
𝛿p(𝑚)𝑞(𝑚)
𝑞p(𝑚) + 𝛿(𝑚)eh𝑚𝑔(𝑚)e

+
1
2𝜎

K 𝜕K

𝜕𝑚K [𝑚
K𝑔(𝑚)]. 

(77) 

Noting that 𝑔(𝑚) = 𝑞p(𝑚) 𝜒(1 − 𝜓)⁄ , and that ∂𝑔(𝑚) ∂𝑡⁄ = 0 in steady state, we can 
rewrite the latter as 

 𝜕
𝜕𝑚

[𝛿(𝑚)𝑞(𝑚)] +
𝜕
𝜕𝑚

E𝜇𝑚𝑞p(𝑚) + (1 − 𝛼)𝑚
𝜕
𝜕𝑚

[𝛿(𝑚)𝑞(𝑚)]M =
1
2𝜎

K 𝜕K

𝜕𝑚K [𝑚
K𝑞p(𝑚)]. (78) 

Integrating once,  

 𝛿(𝑚)𝑞(𝑚) + 𝜇𝑚𝑞p(𝑚) + (1 − 𝛼)𝑚
𝜕
𝜕𝑚

[𝛿(𝑚)𝑞(𝑚)] =
1
2𝜎

K 𝜕
𝜕𝑚

[𝑚K𝑞p(𝑚)] + 𝐶Z, (79) 

where 𝐶Z is a constant of integration. Evaluating at 𝑚 = 𝑚q , imposing the boundary 
condition for 𝑔(𝑚q) = 𝑞p(𝑚q) 𝜒(1 − 𝜓)⁄ in (73), noting that 𝛿(𝑚q) = 𝑠𝜆 , 𝛿p(𝑚q) = 0 , 

𝑞(𝑚q) = 𝜒𝜓, and recalling the aggregate stationarity condition, 𝜇 + Z
K
𝜎K &

ZY&
= 0, yields 

 𝐶Z = 𝑠𝜆𝜒𝜓 −
𝜎K 2⁄
1 − 𝛼𝑚q𝑞p(𝑚q) = 𝜒(1 − 𝜓)𝜍 }

𝜆𝑈
𝜍𝑁 − 1~ = 0, (80) 

where the second and third equalities follow from the solution for the separation rate into 
unemployment 𝜍 in (25), established above, the definition of 𝜓 = 𝑈 (𝑈 + 𝑠𝑁)⁄ , and the 
fact that inflows into unemployment 𝜍𝑁 must equal outflows from unemployment 𝜆𝑈 in 
steady state.  

Expanding and collecting terms in (79), we can now write 

 (1 − 𝛼)
𝜕
𝜕𝑚 F𝑚

Z
ZY&𝛿(𝑚)𝑞(𝑚)L + (𝜇 − 𝜎K)𝑚

Z
ZY&𝑞p(𝑚) =

1
2𝜎

K𝑚Z´ Z
ZY&𝑞pp(𝑚). (81) 

Integrating again, applying integration by parts to the right-hand side, collecting terms, 

and imposing the aggregate stationarity condition 𝜇 + Z
K
𝜎K &

ZY&
= 0, yields a first-order 

differential equation in 𝑞(𝑚),  

 (1 − 𝛼)𝛿(𝑚)𝑞(𝑚) =
1
2𝜎

K𝑚𝑞p(𝑚) + 𝐶K𝑚
Y Z
ZY&, (82) 
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where 𝐶K is a further constant of integration. Evaluating once again at 𝑚 = 𝑚q implies 

 𝐶K = (1 − 𝛼)𝜒(1 − 𝜓)𝜍𝑚q

Z
ZY& }

𝜆𝑈
𝜍𝑁 − 1~ = 0. (83) 

Thus we have  

 𝛿(𝑚)𝑞(𝑚) =
𝜎K 2⁄
1 − 𝛼𝑚𝑞

p(𝑚), (84) 

and it is straightforward to verify that the solution takes the form stated in (27). 
Finally, it follows that the hiring rate can be written as 

 𝜂(𝑚) = −
𝜎K 2⁄
1 − 𝛼

𝑚𝛿p(𝑚)
𝛿(𝑚) . (85) 

Proof of Lemma 2. Applying the same methods as those underlying Propositions 1 and 

2, the marginal value of labor to the firm 𝐽 = ΠH can be written as follows in the presence 
of offer matching, 

 
𝑟𝐽(𝑚) = 𝑚 − 𝑏 − (1 − 𝜉)[𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]𝐽(𝑚)

+ [𝜇 + (1 − 𝜉)(1 − 𝛼)𝛿(𝑚)]𝑚𝐽p(𝑚) +
1
2𝜎

K𝑚K𝐽pp(𝑚). 
(86) 

In the natural wastage region, the latter simplifies to 

 [𝑟 + (1 − 𝜉)𝑠𝜆]𝐽(𝑚) = 𝑚 − 𝑏 + [𝜇 + (1 − 𝛼)(1 − 𝜉)𝑠𝜆]𝑚𝐽p(𝑚) +
1
2𝜎

K𝑚K𝐽pp(𝑚). (87) 

Thus, Proposition 1 holds mutatis mutandis with 𝜔C, 𝜔Z and 𝑠𝜆 exchanged respectively 
with 𝑏, 0, and (1 − 𝜉)𝑠𝜆. Likewise, in the hiring region, we can write 

 {𝑟 + (1 − 𝜉)[𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]}𝑐 = 𝑚 − 𝑏. (88) 

When combined with the boundary condition 𝛿(𝑚s) = 𝑠𝜆, it is straightforward to verify 
that the solution for 𝛿(𝑚) takes the stated form.  

Proof of Lemma 3. Applying the same methods to the case with a per-worker hiring 

cost equal to 𝑐 ⋅ 𝑚 yields a recursion in the firm’s marginal valuation of labor identical to 
that in (14). As before, in the natural wastage region, 𝛿(𝑚) = 𝑠𝜆, 𝛿p(𝑚) = 0, and the 
marginal value satisfies  

 (𝑟 + 𝑠𝜆)𝐽(𝑚) = (1 − 𝜔Z)𝑚 −𝜔C + [𝜇 + (1 − 𝛼)𝑠𝜆]𝑚𝐽p(𝑚) +
1
2𝜎

K𝑚K𝐽pp(𝑚) (89) 
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for all 𝑚 ∈ (𝑚q,𝑚s). However, the boundary conditions differ in the presence of a training 
cost. Specifically, (50) and (51) are replaced by 

 𝐽(𝑚q) = 0,  and,  𝐽(𝑚s) = 𝜏 ⋅ 𝑚s, (90) 

and 

 𝐽p(𝑚q) = 0,  and,  𝐽p(𝑚s) = 𝜏. (91) 

It follows that the solution for 𝐽(𝑚) in the natural wastage region has the same functional 
form as the solution in Proposition 1, but that the solution for the coefficients, and the 
boundaries will differ. 

In the hiring region, 𝐽(𝑚) = 𝜏𝑚, 𝐽p(𝑚) = 𝜏, 𝐽pp(𝑚) = 0, and 

 {𝑟 − 𝜇 + [𝛼𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]}𝜏𝑚 = (1 − 𝜔Z)𝑚 −𝜔C. (92) 

Using an integrating factor, we can write the latter as 

 𝜕
𝜕𝑚

Â(1 − 𝛼)𝑚Y &
ZY&𝛿(𝑚)Ã = F(𝑟 − 𝜇) −

1 − 𝜔Z
𝜏 L𝑚Y Z

ZY& +
𝜔C
𝜏 𝑚Y Z

ZY&YZ. (93) 

Thus 

 𝛿(𝑚) =
1
𝛼 F
1 − 𝜔Z
𝜏 − (𝑟 − 𝜇)L −

𝜔C
𝜏𝑚 + 𝛿Z𝑚

&
ZY&. (94) 

Noting that 𝛿(𝑚s) = 𝑠𝜆 completes the solution, 

 𝛿Z = E𝑠𝜆 −
1
𝛼 F
1 − 𝜔Z
𝜏 − (𝑟 − 𝜇)LM𝑚s

Y &
ZY& +

𝜔C
𝜏 𝑚s

Y &
ZY&YZ. (95) 

Proof of Lemma 4. (i) In the absence of idiosyncratic shocks, 𝜇 = 𝜎 = 0, and with 

exogenous job destruction at rate 𝜍, the firm’s marginal value satisfies 

 𝑟𝐽(𝑚) = (1 − 𝜔Z)𝑚 −𝜔C − [𝜍 + 𝛿(𝑚) − (1 − 𝛼)𝑚𝛿p(𝑚)]𝐽(𝑚)
+ (1 − 𝛼)[𝜍 + 𝛿(𝑚)]𝑚𝐽p(𝑚). 

(96) 

It follows that there is a hiring region such that 𝐽(𝑚) = 𝑐 and 𝐽p(𝑚) = 0 on its interior, 
and in which the quit rate is given as in Proposition 2, with 𝑟 exchanged with 𝑟 + 𝜍. 

(ii) Evaluating (96) to the left and right of 𝑚s implies  

 (𝜍 + 𝑠𝜆)𝑚s𝐽p(𝑚s
Y ) = 𝑚s𝛿p(𝑚s

´ )𝑐. (97) 

Noting that 𝐽p(𝑚s
Y ) ≥ 0 and 𝛿p(𝑚s

´ ) ≤ 0 implies that 𝐽p(𝑚s) = 𝛿p(𝑚s) = 0. This in turn 
implies that 𝑚s solves (𝑟 + 𝜍 + 𝑠𝜆)𝑐 = (1 − 𝜔Z)𝑚s −𝜔C, as claimed. 
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(iii) and (iv). Retracing the steps of the proof of Proposition 3, imposing 𝜇 = 𝜎 = 0, 
and noting that the total separation rate from a firm is in this case given by 𝜍 + 𝛿(𝑚), 
gives rise to the following analogue to (78), 

 𝜕
𝜕𝑚

{[𝜍 + 𝛿(𝑚)]𝑞(𝑚)} +
𝜕
𝜕𝑚 {(1 − 𝛼)𝑚

𝜕
𝜕𝑚

{[𝜍 + 𝛿(𝑚)]𝑞(𝑚)}� = 0. (98) 

Integrating once,  

 [𝜍 + 𝛿(𝑚)]𝑞(𝑚) + (1 − 𝛼)𝑚
𝜕
𝜕𝑚

{[𝜍 + 𝛿(𝑚)]𝑞(𝑚)} = 𝐶Z, (99) 

where 𝐶Z is a constant of integration. This has solution 

 [𝜍 + 𝛿(𝑚)]𝑞(𝑚) = 𝐶Z + 𝐶K𝑚
Y Z
ZY&. (100) 

Evaluating at 𝑚 = 𝑚s , noting that 𝛿(𝑚s) = 𝑠𝜆, and 𝑞(𝑚s) = 𝜒𝜓, 

 (𝜍 + 𝑠𝜆)𝜒𝜓 = 𝐶Z + 𝐶K𝑚s
Y Z
ZY&. 

(101) 

Likewise, evaluating at 𝑚 = 𝑚t, noting that 𝛿(𝑚t) = 0, and 𝑞(𝑚t) = 𝜒, 

 
𝜍𝜒 = 𝐶Z + 𝐶K𝑚t

Y Z
ZY&. 

(102) 

Solving for the constants yields 

 

𝐶Z = (𝜍 + 𝑠𝜆)𝜒𝜓 = 𝜒𝜍, and 

|}
𝑚t

𝑚s
~

Z
ZY&

− 1�𝐶K = 𝜒[𝜓𝑠𝜆 − (1 − 𝜓)𝜍]𝑚t

Z
ZY& = 𝜒(1 − 𝜓)𝜍 }

𝜆𝑈
𝜍𝑁 − 1~𝑚t

Z
ZY& = 0, 

(103) 

where the latter uses the definition of 𝜓 = 𝑈 (𝑈 + 𝑠𝑁)⁄ , and the fact that inflows into 
unemployment 𝜍𝑁 must equal outflows from unemployment 𝜆𝑈 in steady state. We thus 
obtain the following solution for the vacancy-filling rate, 

 𝑞(𝑚) =
𝜍𝜒

𝜍 + 𝛿(𝑚). 
(104) 

It follows that the hiring rate can be written as 

 𝜂(𝑚) = −
𝛿p(𝑚)𝑞(𝑚)
𝑞p(𝑚) = 𝜍 + 𝛿(𝑚). (105) 

It follows that the drift for each 𝑚 is zero, firm marginal products are constant over time, 
and thus the natural wastage region is never entered. 



 50 

Proof of Lemma 5. The firm’s value is given by 

 
𝑟Πd𝑡 = max

ÅBC,@DBC
`a𝑥𝑛& − 𝑤𝑛 −

𝑐ℎ
1 + 𝛾 }

ℎ
𝑛~

v

+ ℎΠH − 𝛿𝑛ΠH + 𝜇𝑥ΠI +
1
2𝜎

K𝑥KΠIIe d𝑡

− ΠHd𝑆h. 

(106) 

The wage remains 𝑤 = 𝛽𝑚 [1 − 𝛽(1 − 𝛼)]⁄ + 𝜔C . Note that, since 𝑚 is a state variable, 
and hiring is incremental, ℎ has no effect on 𝑚. The first-order conditions for optimal 
hires and fires are thus 

 a−𝑐 }
ℎ
𝑛~

v

+ ΠHe ℎ = 0,  and  	ΠHd𝑆 = 0. (107) 

It follows that the optimized value function is given by 

 𝑟Π = 𝑥𝑛& − 𝑤𝑛 + 𝛾𝐶(ℎ∗; 𝑛) − 𝛿𝑛ΠH + 𝜇𝑥ΠI +
1
2𝜎

K𝑥KΠII, (108) 

where ℎ∗ denotes optimal hires. Differentiating with respect to 𝑛 yields 

 
𝑟𝐽 = (1 − 𝜔Z)𝑚 −𝜔C + 𝛾 F𝐶Z(ℎ∗; 𝑛)

𝜕ℎ∗

𝜕𝑛 + 𝐶K(ℎ∗; 𝑛)L −
𝜕
𝜕𝑛

(𝛿𝑛𝐽) + 𝜇𝑥𝐽I

+
1
2𝜎

K𝑥K𝐽II. 
(109) 

Under an 𝑚 -solution, ℎ∗ = 𝜂(𝑚)𝑛  and 𝛿 = 𝛿(𝑚) . Using these, and the definition of 
𝐶(ℎ; 𝑛) in (37), we can write the firm’s marginal value as in (38). 

Proof of Lemma 6. The firm’s value is given by 

 
𝑟Πd𝑡 = max

ÆBC,@DBC
EF𝑥𝑛& − 𝑤𝑛 −

𝑐𝑣
1 + 𝛾 �

𝑣
𝑛�

v
+ 𝑞𝑣ΠH − 𝛿𝑛ΠH + 𝜇𝑥ΠI +

1
2𝜎

K𝑥KΠIIL d𝑡

− ΠHd𝑆M. 
(110) 

The wage remains 𝑤 = 𝛽𝑚 [1 − 𝛽(1 − 𝛼)]⁄ + 𝜔C . Note that, since 𝑚 is a state variable, 
and hiring is incremental, 𝑣 has no effect on 𝑚. The first-order conditions for optimal 
vacancies and fires are 

 F−𝑐 �
𝑣
𝑛�

v
+ 𝑞ΠHL 𝑣 = 0,  and,  ΠHd𝑆 = 0. (111) 

It follows that the optimized value function is given by 
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 𝑟Π = 𝑥𝑛& − 𝑤𝑛 + 𝛾𝐶(𝑣∗; 𝑛) − 𝛿𝑛ΠH + 𝜇𝑥ΠI +
1
2𝜎

K𝑥KΠII (112) 

where 𝑣∗ denotes optimal vacancies. Differentiating with respect to 𝑛 yields 

 
𝑟𝐽 = (1 − 𝜔Z)𝑚 − 𝜔C + 𝛾 F𝐶Z(𝑣∗; 𝑛)

𝜕𝑣∗

𝜕𝑛 + 𝐶K(𝑣∗; 𝑛)L −
𝜕
𝜕𝑛

(𝛿𝑛𝐽) + 𝜇𝑥𝐽I

+
1
2𝜎

K𝑥K𝐽II. 

(113) 

Under an 𝑚-solution, 𝛿 = 𝛿(𝑚), 𝑞 = 𝑞(𝑚) and 

 𝑣∗ =
𝜂(𝑚)
𝑞(𝑚)𝑛 ≡ 𝜈(𝑚)𝑛, (114) 

where 𝜈(𝑚) is the firm’s optimal vacancy rate. Using these, and the definition of 𝐶(𝑣; 𝑛) 
in (42), we can write the firm’s marginal value as in (43). 
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