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Abstract
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1 Introduction

Given the huge economic and social costs of financial crisis (Laeven and Valencia, 2018),

understanding the early warning signs is of great importance for economic policy makers.

However, identifying a reliable set of early warning predictors is challenging because of

several reasons. First, there are only limited observations of past crises, which makes

robust modelling challenging. Second, crisis indicators often only flash red when it is

already too late to intervene. Third, it is challenging to distill complicated early warning

models into simple and transparent pointers that can allow policy makers to respond

quickly.

In this paper, we use machine learning to address these issues. We find that credit

to GDP growth, as well as the slope of the yield curve, both domestically and globally,

are key predictors for financial crises across a diverse set of prediction models. While

the former is a standard finding in the literature, the role of the yield curve has been far

less explored within a crisis prediction context. We observe significant nonlinearities and

interactions. For example, a (globally) flat or inverted yield curve paired with high credit

growth and falling or flat consumption substantially increases the probability of a crisis

two years ahead. The importance of the predictors changes across time and countries.

We find that the global financial crisis in 2008 was the first major crisis mostly driven

by global credit growth, while the string of financial crises in the early 1990s was mostly

due to domestic credit growth. On the other hand, the global yield curve we introduce

provides a fairly robust crisis signal across time.

To the best of our knowledge, this paper is the first to provide a rigorous inference

analysis of how black box machine learning models predict financial crises by decomposing

their predictions into the contributions of individual variables using the Shapley value

framework (Strumbelj and Kononenko, 2010; Lundberg and Lee, 2017; Joseph, 2019).

We employ the Macrohistory Database by Jordà et al. (2017) which covers macroe-

conomic and financial variables from 17 advanced economies over 140 years and contains

a binary crisis variable. We first estimate a benchmark logistic regression model. As

logistic regressions assume linearity in the predictors, we apply machine learning models

(e.g. decision trees, random forests, extremely randomised trees, support vector machines
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(SVM), and artificial neural networks) to allow for more flexibility such as nonlinear re-

lationships and interactions terms of a priori unknown form. As financial crises are

rare events and likely to exhibit nonlinear dependencies during their build-up, non-linear

methods are particularly suited to construct a reliable early warning system. Almost all

machine learning models outperform the basic regression model in extensive out-of-sample

prediction tests.

Our work is closely related to the literature on early warning systems (Kaminsky

et al., 1998; Bussiere and Fratzscher, 2006; Frankel and Saravelos, 2012; Babeckỳ et al.,

2014) and more recent work on applying machine learning techniques to financial crisis

prediction (Ward, 2017; Joy et al., 2017; Alessi and Detken, 2018; Beutel et al., 2018).

For example, Alessi and Detken (2018) use random forests to construct an early

warning system to predict banking crises. Similar to our results, they find that (a) credit

growth is an important indicator for crises, and (b) accounting for global factors helps

to improve the predictive performance of early warning systems. Beutel et al. (2018)

use a similar dataset but obtain different results. They show that logistic regression

consistently outperforms all machine learning competitors, including random forest, and

SVMs.1 Our paper differs from their contributions in a number of ways: (1) Neither paper

provides a rigorous analysis of the models’ nonlinearities nor measures the contributions of

individual variables and interactions to the predictions. (2) Methodologically, Alessi and

Detken (2018) use a cross-validation approach to compare the out-of-sample performance

of the models, while Beutel et al. (2018) focus on recursive forecasting. We compare the

models using both types of methodologies. (3) In terms of data, both these studies use

quarterly data starting in 1970 for the European Union2, while we use annual data that

covers a longer time span and contains more crises our models can learn from.

in line with out findings, domestic private credit growth or credit to GDP growth have

been found to be key predictors in many studies that use conventional logistic regression

modelling (Borio and Lowe, 2002; Drehmann et al., 2011; Schularick and Taylor, 2012;

Aikman et al., 2013). Also, confirming our results, global credit growth has been found

1Other examples of tree applications in economics are Manasse and Roubini (2009) and Savona and
Vezzoli (2015) for sovereign crises or Duttagupta and Cashin (2011) for banking crises in emerging
and developing countries. (Ward, 2017) uses random forests on similar datasets as we do but without
investigating the drivers of that model nor other possible models.

2Beutel et al. (2018) added USA and Japan to the dataset.
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to be important (Alessi and Detken, 2011; Duca and Peltonen, 2013) and in some cases

even more so than domestic credit (Cesa-Bianchi et al., 2018). Unlike these previous

studies, we also test and find that the domestic and global slope of the yield curve is

a crucial and robust predictor. The flatter/more inverted the yield curve is the higher

the chances of a financial crises in the upcoming two years. While the yield curve is a

well-established indicator for economic recessions (Estrella and Hardouvelis, 1991), it is

fairly new within the financial crises context. It could indicate the search for yield and

increased risk-taking that can be observed in the run-up to a financial crises.

The paper is structured as follows. Section 2 describes the dataset and our selection

of variables and transformations. Section 3 outlines the methodology and provides a brief

description of the machine learning models and the Shapley value framework. Section 4

presents the main results comparing the out-of-sample performance of all models, investi-

gating the importance of the variables across time and space and providing an analysis of

nonlinearities and interactions. Section 5 conducts a recursive forecasting experiment to

predict crises. This simulates how the models would have performed at different points

in time looking forward. Section 6 concludes.

2 Dataset and Variable Selection

Financial crises are rare events. While there are a handful of truly global financial crises

(e.g. 1890, 1907, 1921, 1930/31, and the 2007/08 global financial crisis), the majority

of crises mostly occur in a single country or a small cluster of countries. Given that we

observe financial crises so infrequently, we use the longest cross-country dataset available.

2.1 The dataset

The Jordà-Schularick-Taylor Macrohistory Database (Jordà et al., 2017)3 contains an-

nual macroeconomic and financial measures of 17 developed countries4 between 1870 and

2016. For each of the 2499 observations, the dataset contains a binary variable indi-

3We obtained the third version of this dataset in January 2019 from http://www.macrohistory.net
4The countries covered are the United States, Canada, Australia, Belgium, Denmark, Finland, France,

Germany, Italy, Japan, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United
Kingdom.
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cating whether a country in a particular year suffered from a financial crisis (n=90) or

not (n=2409). The authors define a financial crisis as “events during which a country’s

banking sector experiences bank runs, sharp increases in default rates accompanied by

large losses of capital that result in public intervention, bankruptcy, or forced merger

of financial institutions.” The crisis variable is an integration across several previous

databases (Bordo et al., 2001; Laeven and Valencia, 2008; Reinhart and Rogoff, 2009;

Cecchetti et al., 2009) and has been confirmed by experts for the respective countries

(Schularick and Taylor, 2012).

In order to capture the emergence of a crisis ahead of time, we set our binary outcome

variable to positive values for one and two years before the beginning of the crisis. The

actual year of the crisis and the following five years are deleted from the data to avoid the

post-crisis bias (Bussiere and Fratzscher, 2006).5 Additionally, the two world wars (1914–

1918, 1939–1945) and the years 1933–1938 after the Great Depression are excluded from

the data. To ensure full coverage, we also delete all observations with any missing values

on the indicators, which especially applies to many observations in the 19th century.

Appendix C.2 provides more details on the data sample.

2.2 Variable Selection and Transformation

We use a set of 12 predictors, which can roughly be divided into four categories: financial,

fiscal, macro, and external factors. Financial channels are likely to play an important

role in capturing the build-up of a financial crisis. We try to capture specific financial

channels by including the following variables: total loans to the non-financial private

sector (credit), broad money, stock prices, debt service ratio (i.e. debt × long-term

interest rate over GDP), and the slope of the yield curve (i.e. long-term interest rate −
short-term interest rate).

Credit growth or credit to GDP growth has been found to be a crucial predictor of

financial crises (Borio and Lowe, 2002; Drehmann et al., 2011; Schularick and Taylor,

2012; Aikman et al., 2013). It can endanger financial stability by amplifying small shocks

5If we do not delete the years after a crisis emerged, episodes where the economy is sustainable and
healthy are in the same class as post-crisis episodes, where the economy is still affected by the crisis and
in a recovering process before it returns to a sustainable level.
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via the financial accelerator effect (Bernanke and Blinder, 1992) or by causing financial

fragility induced by collateral constraints (Bernanke et al., 1999). Also, credit growth can

become an issue in itself by generating financial instability through endogenous credit

cycles, as stated by Minsky (1977) or Kindleberger (1978) who coined the term that

financial crises are “credit booms gone wrong”.

Additional to domestic credit growth, global credit growth across countries has been

identified as an important predictor. It accounts for the fact that financial crises often

occur on an international scale and might be the result of cross-country spillovers rather

than domestic imbalances. Cesa-Bianchi et al. (2018) investigate the role of global credit

growth for the emergence of financial crises. The authors find an increasing correlation of

credit growth between countries over time and show that global credit growth is an even

stronger predictor for financial crises than domestic credit. Similarly, Alessi and Detken

(2011) and Duca and Peltonen (2013) show that the global credit gap is an effective

early warning signal for periods of asset price booms and financial distress. Similar to

Cesa-Bianchi et al. (2018), we define the global credit for a country-year pair ⟨c, y⟩ as the

mean credit to GDP growth in all countries except c in year y.6

Related to credit growth, money growth can cause an increase in liquidity and lower

market rates which could lead to an increase in spending (Friedman, 1970). One might

hypothesise that, analogous to the credit view above, a certain event makes agents worry

about the value of their money which may result in banks runs, bank insolvencies and

further down the line, a financial crisis. Schularick and Taylor (2012) found that money

growth is good proxy for credit before the second world war but is not a good predictor

for crises after the war. Baker et al. (2018) does not see theoretical nor empirical reasons

for strong money growth to be an indicator for financial crises. Rather the authors stress

that recessions are often preceded by weak money growth.

The slope of the yield curve, i.e. the term spread, is often seen as a strong predictor of

an impending economic recession (Estrella and Hardouvelis, 1991), especially on a longer

horizon of 12–18 months (Liu and Moench, 2016), and outperforms professional forecast-

ers from finance, banking, and other fields (Rudebusch and Williams, 2009; Croushore

6Using a global variable might bias the results in prediction. Appendix C.2 discusses this potential
problem in detail and gives evidence that the bias is, if existent, limited in our experiments.
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and Marsten, 2016). In normal times the slope is positive, which means that long-term

rates are higher than short-term rates. Investors incorporate expectations of the future

path of short term rates, as well as a risk premium (i.e. the term premium) for holding

an asset for a longer duration. An inverted yield curve, for which the short rate is larger

than the long term rate, would therefore be a signal of worsening expectations about

the future macroeconomic path of the economy (Zaloom, 2009). The slope differential is

relevant for the balance sheet of banks and other financial intermediaries (Adrian et al.,

2010; Borio et al., 2017). A flattening of the yield curve reduces net interest margins

and thus the profitability in the financial sector which can lead to a contraction in credit

supply and thus affect real economic activity. If this effect is severe enough, the term

spread might also prove a useful predictor for financial crises. Coleman et al. (2008) find

that the house prices in the United States rose with the flattening of the yield curve in

the build-up of the global crisis of 2008 and suggests that “the hunger for spread during

this period of a flat yield curve could have been fuelling sub-prime and other alternative

mortgage activity”, thus highlighting the role of search for yield behaviour in financial

markets. While a few empirical studies on early warning models for financial crises have

identified the slope of the yield curve as a crucial predictor (Babeckỳ et al., 2014; Joy

et al., 2017; Vermeulen et al., 2015), they have not discussed the rational behind its

predictive power in detail. Additional to the domestic slope, we also used a global slope

indicator. Several studies have shown strong dependencies of interest rates (Frankel et al.,

2004; Obstfeld et al., 2005) between countries and have found a systematic global factor

of the the yield curve (Diebold et al., 2008; Abbritti et al., 2013). Analogous to global

credit, we compute the global slope for a country-year pair ⟨c, y⟩ as the mean slope in all

countries except c in year y.

Another popular indicator are stock and housing prices, or asset prices in general

(Aliber and Kindleberger, 2015; Reinhart and Rogoff, 2008). Rapid rises of asset prices

could indicate the formation of a bubble. The eventual burst of that bubble would then

affect the economy via a reduction in investment, and a reduction in the balance sheet

and liquidity of households.

The debt service ratio has also been identified as a good early warning indicator

(Drehmann and Juselius, 2012). It measures interest payment relative to income which
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can serve as a useful approximation of how overextended borrowers are. The higher the

debt service ratio, the more vulnerable borrowers are to falls in their incomes or increases

in the interest rate. Overextension in borrowing could result in an increased rate of

defaults, a loss in consumption smoothing capabilities, and a lack of new investments.

The downside of our simplistic debt service ratio measure (debt × long-term interest rate

over GDP) is that it does not capture lending rates, which are important in the run-up

to crisis (Drehmann and Juselius, 2012), capital repayments, and maturity structure of

the debt.

To account for crises which could be caused by fiscal problems we include public debt.

We also control for general macroeconomic conditions, which could trigger a financial

crisis by including real consumption per capita, investment, and the consumer price

index (CPI).

Finally, we investigate the role of external factors via the current account. Current

account imbalances have often been found to be a strong cause of crises, especially for

developing countries due to capital flows pushing down the interest rates and thus en-

couraging risk-taking behaviour in less well regulated financial systems (Bernanke, 2009;

King, 2010).

We treat the prediction problem of identifying crises as a classification problem and

model the ⟨country, year⟩ pairs as independent observations. As the observations are

naturally not independent from each other, we require variable transformation to reduce

non-stationarity and ensure comparability of the different measures across countries. The

slope of the yield curve is left in levels, while CPI, stock prices, and real consumption

per capita are transformed into percentage 2-year growth rates. All other variables, i.e.

credit, money, public debt, debt servicing, investment, and current account, are scaled

by GDP and expressed in 2-year changes.7

After excluding observations with missing values, 1249 observations remain of which

95 have a positive value on our crisis outcome. These observations constitute our baseline

dataset.

A very basic test of how useful individual variables are for an early warning system

7Section 4.2.2 shows some of the experiments we conducted in order to select the variables and
transformations that we use in the main analysis.
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Crisis build-up Non-crises
Mean SD Mean SD Difference

Global slope 0.18 0.80 0.90 0.84 -0.72∗∗∗

Global credit 4.18 3.21 2.20 2.33 1.98 ∗∗∗

Domestic slope -0.34 1.59 0.85 1.75 -1.19 ∗∗∗

Nominal short rate 6.14 3.51 5.19 3.69 0.95 ∗∗

Nominal long rate 5.80 3.15 6.05 3.43 -0.25
Domestic credit 6.59 7.92 2.07 5.46 4.52 ∗∗∗

CPI 4.60 8.12 7.76 9.89 -3.16 ∗∗∗

Debt service ratio 0.55 1.07 -0.02 1.08 0.57 ∗∗∗

Consumption 3.27 5.23 4.74 4.77 -1.47 ∗∗∗

Investment 1.06 3.13 0.21 2.30 0.86 ∗∗

Public debt -0.37 8.84 -0.36 8.04 -0.02
Broad money 2.67 4.76 1.05 4.62 1.62 ∗∗∗

Stock market 18.16 28.38 19.46 41.25 -1.30
Current account -0.59 2.875 0.06 2.70 -0.64 ∗∗

Household loans� 3.69 4.96 1.62 3.29 2.07 ∗∗∗

Business loans� 4.45 5.62 0.45 4.05 4.00 ∗∗∗

Mortgage loans� 3.90 5.48 1.52 3.38 2.38 ∗∗∗

House prices�� 14.95 19.15 13.77 18.58 1.19

Table I: Descriptive statistics of the variables for observations one and two years
before a crises and non-crises observation. The unit of measurement is percentage

points for the interest rates, the slope and the growth in the indices CPI, stock market,
investment, and house prices. For the remaining variables, it is the ratio change × 100.

A t-test is used to determine whether the difference in the mean is statistically
significant with ∗p< 0.1; ∗∗p<0.05; ∗∗∗p<0.01. The statistics of the variables flagged with
� are based on a subset of 901 observations (52 with positive crisis outcome) and those

flagged with �� on 1081 observations (83 with positive crisis outcome) because of
additional missing values. The statistics of the remaining variables are based on our

baseline dataset with 1249 observations.

is to compare the values of the variables shortly before the crises and during normal

economic conditions. Table I show the mean values of the variables on observations with

positive (one and two years before the crisis) and negative values on our crisis indicator.

A t-test confirms that there are significant differences on nearly all of the variables. The

differences are often pronounced, such as more than one percentage point difference in

domestic slope.8

8The unit of measurement is percentage points for the interest rates, the slope, and the growth in
the indices CPI, stock market, investment, and house prices. For the remaining variables, it is the ratio
change × 100. The statistics of the variables flagged with � are based on a subset of 901 observations
(52 with positive crisis outcome) and those flagged with �� on 1081 observations (83 with positive crisis
outcome) because of additional missing values. The statistics of the remaining variables are based on
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3 Methodology

Logistic regression is arguably the most popular prediction method for a classification

problem like ours. It is easy to interpret, provides a statistical test of its parameters and

has low computational costs. Accordingly, we estimate a logistic regression model on our

complete data set as a baseline model. This approach, however, has substantial shortcom-

ings for our prediction problem. Logistic regression does not automatically account for

nonlinearities and interactions, which we both expect to be relevant during the build-up

of a crisis. For example, when predicting financial crises, Cesa-Bianchi et al. (2018) find

a significant nonlinear association between global credit and financial crises and Alessi

and Detken (2018) observed a significant interaction between domestic and global credit

growth. To account for nonlinearities and interactions in logistic regression, the modeller

explicitly needs to add polynomial or interactions term to the model. Choosing the right

terms is challenging; choosing many terms is problematic because it reduces the stability

of the model and the statistical power of finding an effect.

Also, fitting the model to the data does not tell us how well it fares in prediction. The

more parameters the model has, the more likely it will overfit to the data and predicts

less well on unseen instances.

We address these shortcomings by investigating a set of machine learning models that

automatically learn nonlinearities and interactions from the data without the need to

specify them explicitly. To evaluate their predictive performance, we conduct extensive

out-of-sample tests. First, we provide the relevant notation and terminology for our

classification problem and give a brief description of each model before we explain the

experimental out-of-sample procedure in detail. We then describe the Shapley framework

which enables us to address the black box critique of machine learning models and actually

decompose our results into the contributions of individual predictors. Using Shapley

regression (Joseph, 2019), we are also able to determine whether a predictor makes a

statistically significant contribution to the accuracy of the model.

our baseline dataset with 1249 observations.
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3.1 Machine Learning Models

Let f be a prediction model that predicts the probability of a financial crisis ŷ = f(X),
where Xn×k is the predictor matrix containing n observations and k variables. The

observed class label is denoted by y ∈ {0,1}n, where 1 indicates a crisis and is referred

to as the positive class and 0 indicates no crisis and is referred to as the negative class.

The predicted value of a model is the predicted probability of a crisis and is denoted by

ŷ ∈ [0,1]n. In our out-sample experiments, the models are learned on a subset of the

data, the training set and are evaluated on a different set of observations not overlapping

with the training set, the test set.

We compare a diverse set of classification algorithm ranging from simple interpretable

models such as decision trees and logistic regression to black box models such as random

forest and neural networks. In the following we provide a high level explanation of the

algorithms. A description of the implementation details is found in Appendix B.

Decision trees

A decision tree is an interpretable model that successively splits the data into subsets by

testing a single predictor in each node (e.g. Credit growth > 1%). Starting at the root node

of the tree, all observations are divided into two child nodes, one for which the condition

in the node is true, one for which it is false. This process is recursively repeated in the

respective child nodes. Decision trees are very flexible models. However, the bigger a tree

grows, the less likely it will generalise well to out-of-sample data. Big trees tend to fit to

the specific noise of a data sample and therefore perform substantially worse on a new set

of observations drawn from the same population. This phenomenon is usually referred

to as overfitting. There exists a plethora of pruning techniques to reduce overfitting

by controlling the size of the decision trees (Rokach and Maimon, 2005). Nevertheless,

decision trees often have limited predictive power compared to more complex methods

such as random forest, especially when the data set is small.

We test the C5.0 algorithm (Quinlan, 1993; Kuhn et al., 2014) which uses Shannon

entropy as an impurity measure and a statistical heuristic to control the complexity of

the tree.
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Random forests

A random forest (Breiman, 2001) is a very popular general-purpose classification algo-

rithm. In a large-scale empirical comparison of 179 classification algorithms tested across

a diverse set of 121 real world data sets, it was the best performing algorithm, on av-

erage (Fernández-Delgado et al., 2014). A random forest is a collection of many, often

hundreds of decision trees. By averaging the predictions of the trees, random forests usu-

ally experience less overfitting than an individual tree. Each tree overfits differently and

averaging their predictions cancels out these noisy components and increases the ability

to generalise on unseen data. This only works if the trees are sufficiently different from

each other; similar trees fit to the noise in similar ways. To diversify the collection of

trees, the random forest algorithm uses two techniques: First each tree is trained on a

different subset of the data, drawn with the replacement from the training set.9 Second,

the random forest does not choose the best of all possible splits but randomly samples m

candidates from the k predictors, optimises the split for each of them and then chooses

the best split from this subset. In a forest, each individual tree predicts either the positive

or negative class for an observation. The mean prediction across all trees is a probability

estimate for how likely one objects belongs to one class or the other.

Random forests often perform substantially better than individual decision trees, but

this comes at the costs of interpretability. Aggregating the predictions of hundreds of

trees, a random forest is not decomposable into a simple set of rules as it is the case for

individual trees.

Extremely randomised trees

Extremely randomised trees (Geurts et al., 2006) are similar to random forest but tend

to produce a smoother classification function by introducing two major changes to the

random forest algorithm. First, each trees is trained on the complete training data and

not on a resampled subset of the data. Second, the splitting process in each tree is more

random. For each of the m candidate predictors that are randomly sampled, a split is

made completely at random across the range of the values of the indicator. Of these

9This approach is referred to as bagging (short for bootstrap aggregating) in the machine learning
literature and is a general technique to improve the stability of prediction models (Breiman, 1996).
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random splits, the best one is used in the tree. In the following we refer to this method

as extreme trees.

Support vector machines

A support vector machine (SVM, Cortes and Vapnik (1995)) uses a hyperplane to sepa-

rates the positive from the negative class. To avoid overfitting, it chooses the hyperplane

that maximises the distance to the nearest data points. Similar to random forests, SVMs

are very popular general purpose classification algorithms. In the study by Fernández-

Delgado et al. (2014), SVMs were on average the second best algorithm across 121 data

sets. The reason for their popularity and predictive strength is their capability to model

nonlinear classification problems in an efficient way by using a kernel: The data enters

the optimisation as an inner product of all pairs of observations and is implicitly trans-

formed into a higher dimensional nonlinear space. A popular kernel, which we also use in

the following analyses, is the radial basis function that transforms the data into infinite

dimensions. Using a nonlinear kernel, the model becomes a black box as each prediction

is not easily attributable to individual predictors as it is for a regression or simple decision

tree.

To obtain more stable predictions, we do not train a single SVM but average the

predictions of 25 models that are trained onttt. (see Appendix B).

Artificial neural networks

Artificial neural networks have been the most researched machine learning technique

in recent years and achieved landmark successes in classification problems such as face

(Schroff et al., 2015) and speech recognition (Amodei et al., 2016).

A neural network consists of an input layer that represents the values of the predictors,

at least one hidden layer10 and an output layer. The inputs are passed from layer to layer

as activations and are finally integrated as a prediction in the output layer.

The nodes in a hidden layer are connected to the previous and subsequent layer by

weights. For instance, given a data set with N predictors and a network with a single

hidden layer containing M nodes, N ×M weights are needed to fully wire the input layer

10Without a hidden layer, a neural network is a linear function of the input layer.
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to the hidden layer, and M weights are needed to connect the hidden layer with the

output layer, which only contains a single node in a binary classification task.

A neural networks has hyperparameters that control the structure of the model such

as the number of hidden layers and nodes or the activation function that transforms the

activations in a node before it is passed to the next layer. The high number of parameters

and hyperparameters and the networks’ sensitivity to these makes learning a predictive

and network with an appropriate architecture challenging, especially when the available

data is small. To obtain more stable predictions, we do not train a single SVM but

average the predictions of 25 models that are trained onttt. (see Appendix B).

3.2 Experimental procedure

As opposed to logistic regression, nonlinear machine learning models such as neural net-

works and random forest are flexible enough to obtain perfect in-sample accuracy on the

data on which they were trained. This does not mean they successfully learn the data

generating process, rather they perfectly fit to the unpredictable noise.

To meaningfully evaluate the performance of the prediction models, they need to be

tested out-of-sample. In our main experiment, we use cross-validation to evaluate the

predictive performance of the models.11 All observations between 1870 and 2016 are

randomly assigned to one of five different subsets that we refer to as folds. Each fold is

once used as a test set in which the performance of the prediction models is evaluated,

while the remaining folds are used for training the models.

Recall that each crisis observation in the raw data was recoded to two positive class

labels one and two years before the actual crisis. As these observations are highly similar,

we always assign them to the same fold. This avoids an overly optimistic performance

estimate.12 To obtain stable results, the random assignment of folds is repeated 100

times.

Some of the machine learning methods require to learn hyperparameters (see Ap-

pendix B). Hyperparameters control the flexibility of the model, such as the number

of layers or nodes in a neural network. These parameters cannot simply be optimised

11We will also show results for a forecasting approach in Section 5.
12Appendix C.1 examines this bias and other ways of cross-validation in detail.
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in the training set because the most flexible model structure would always obtain the

best fit. Instead, the hyperparameters need to be evaluated on out-of-sample data. To

achieve that, we employ nested cross-validation: Within each training set S of the 5-fold

cross-validation procedure, we apply 5-fold cross-validation to assess the performance of

all possible combinations of hyperparameters. The parameter combination that obtains

the best performance in this 5-fold cross-validation is then used to train a model on the

complete training set S. This procedure is computationally costly.13

3.3 Shapley framework

Machine learning models, like random forests, are non-parametric and error consistent

(Stone, 1977; Joseph, 2019). That is, they approximate any sufficiently well-behaved

function arbitrary close provided enough training data. Their high flexibility makes them

black box models: It is not straightforward to map model inputs to specific functional

dependencies of the model. In other words, the model does not tell us which variables

are driving its predictions in which way.

We address this problem by using the Shapley additive explanations framework (Lund-

berg and Lee, 2017; Strumbelj and Kononenko, 2010). It uses the concept of Shapley

values (Shapley, 1953; Young, 1985) from cooperative Game theory. Originally, Shapley

values are used to calculate the payoff distribution across a group of players. Analogously,

we use them to calculate the payoff distribution across predictors. More precisely, the

predicted value of each individual observation is decomposed into a sum of contributions

from each variable, namely its Shapley values. This enables us to make informative state-

ments about which variable is driving each prediction so that we can contribute in the

current debate on whether variables like credit growth, current account, and asset prices

have large predictive value or not.14

13For example, a SVM has two hyperparameters C and γ, for which we try 10 different values each.
This results in 100 combinations of parameter values and 500 models that are tested in the inner 5-fold
cross-validation in the training set just to obtain a single performance estimate in one of the five folds
of the outer cross-validation. A less rigorous approach to determine the hyperparameters only once by
doing cross-validation on the complete data set. This is problematic because the test data has already
leaked into process of training the models which leads to optimistically biased performance estimates
(Cawley and Talbot, 2010).

14There do exist other approaches to decompose the predictions of models into the contributions of
individual variables Ribeiro et al. (2016); Shrikumar et al. (2017), however only the Shapley framework
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Corresponding to the predictor matrix Xn×k described in Section 3.1, we define the

Shapley value matrix as Φn×k and φij as the Shapley value of observation i and predictor

j. The predicted value of the model is decomposed into the sum of the Shapley values

ŷi = ∑k
j=1 φij + c, where c is the base value that is usually set to the mean predicted value

in the training set.

How are the Shapley values calculated? For a linear model, the Shapley value of

feature j is simply the product of the regression coefficient wj, multiplied by the predictor

value Xij relative to the mean predictor value, E[xj]: wj(Xij − E[xj]). Computing the

Shapley values for a general model is computationally more challenging.

An intuitive way to understand the computation of Shapley values is to regard the

problem that motivated their invention. Shapley values were first introduced in game

theory to determine how much a particular player contributes in a corporative game of

a group of players. The individual contribution is not directly observable but only the

payoff generated by the group as a whole is. To determine the contribution of player

j, groups can be formed sequentially and j’s contribution is measured by the marginal

contribution entering a group. A player’s contribution depends on the other players in a

group. Imagine player j joins a group in which player k has similar skills. In this case

j’s contribution is smaller than if he had joined the group when k was absent. Therefore,

all possible coalitions of players need to be evaluated to make a precise statement of j’s

contribution to the payoff. This requirement makes the computation of Shapley values

computationally expensive. Let N be the set of all players in the game, and f(S) be the

payoff of a coalition S, then the Shapley value for player j is computed by:

φj = ∑
S⊆N∖j

∣S∣!(∣N ∣ − ∣S∣ − 1)!
∣N ∣! [f(S ∪ {j} − f(S)]. (1)

In our case, the payoff fi is the predicted probability estimated by the model for a

particular observation i. The set of players N correspond to the predictors used in the

model. It follows that the computation of the Shapley values has to be done for each

individual observation for which we want to explain the predicted value. To compute

the exact Shapley value of variable j, one has to compute how much feature j adds to

has both a set of appealing analytical properties Lundberg and Lee (2017) and is applicable to any model
family.
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the predictive value (fi(S ∪ {j} − fi(S)) in all possible subsets of the other variables

(S ⊆ N ∖ j). Predictors not in S cannot be left out or set to missing values as this would

not allow the machine learning models to produce predictions. Instead, these predictors

are integrated out by replacing them with all observed values in the training set.15.

As in the horse race experiment, we use 5-fold cross-validation, construct the models

in the training set and compute the Shapley values for the objects in the test set. We

repeated the cross-validation procedure 100 times to obtain stable estimates.

Shapley regression

Shapley values measure how much variables drive the predictions of the model, indepen-

dent of the accuracy of the model. In other words, Shapley values do not show how well

the variables actually predict the true data.

To judge the economic and statistical significance of the predictors we use Shapley

regressions (Joseph, 2019). To the best of our knowledge, there does not exist another

statistical framework that estimates the significance of predictors, or hypothesis testing

more generally, for nonlinear models. The Shapley regression framework achieves this by

regressing the crisis indicator y on the Shapley values Φ. In this way, the nonlinear and

unobservable function of the predictors in a non-parametric black box model is trans-

formed into a parametric space which makes the estimation of p-values a simple logistic

regression exercise. The surrogate Shapley regression has the appealing property that if

the model is a linear function of the predictors, the Shapley regression will reproduce the

linear model.16
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(1) (2) (3) (4)
Baseline model

Domestic credit 0.420∗∗∗ 0.360∗∗∗ 0.362∗∗∗ 0.426∗∗∗

(0.127) (0.128) (0.135) (0.137)

Global credit 0.560∗∗∗ 0.668∗∗∗ 0.668∗∗∗

(0.117) (0.126) (0.127)

Domestic slope −0.786∗∗∗ −0.581∗∗∗

(0.131) (0.144)

Global slope −0.613∗∗∗

(0.151)

CPI −0.509∗∗∗ −0.561∗∗∗ −0.414∗∗ −0.238
(0.157) (0.163) (0.167) (0.170)

Broad money 0.124 0.136 −0.016 0.036
(0.138) (0.145) (0.154) (0.155)

Stock market 0.080 0.071 −0.093 −0.126
(0.148) (0.153) (0.158) (0.167)

Consumption −0.469∗∗∗ −0.448∗∗∗ −0.484∗∗∗ −0.418∗∗∗

(0.130) (0.131) (0.136) (0.139)

Public debt −0.044 −0.084 −0.055 −0.026
(0.132) (0.139) (0.134) (0.134)

Investment 0.322∗∗∗ 0.306∗∗ 0.379∗∗∗ 0.316∗∗

(0.121) (0.123) (0.131) (0.131)

Current account −0.166 −0.140 −0.083 −0.084
(0.126) (0.130) (0.131) (0.133)

Debt service ratio 0.615∗∗∗ 0.528∗∗∗ 0.355∗∗ 0.158
(0.150) (0.159) (0.166) (0.168)

Observations 1,249 1,249 1,249 1,249
Log Likelihood -287.997 -272.134 -257.605 -248.885
Akaike Inf. Crit. 595.994 566.268 539.211 523.769
Area under the curve 0.756 0.785 0.836 0.852

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table II: Logistic regression models fitted to all data points. The outcome variable is
our crisis indicator, which is set positive one and two year before the actual crisis.
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4 Results

4.1 The benchmark logistic regression model

Our first analysis shows the logistic regression model fitted to all observations in the

data.17 We include the variables we discussed in Section 2 highlighting in particular

credit growth and the slope of the yield curve both on the domestic and global level. The

first model in Table II shows that domestic credit growth is an important predictor for

financial crises even after controlling for all covariates. This is in line with the literature,

e.g. Schularick and Taylor (2012) found that a 2-year lag of credit growth is highly

predictive with a standardised regression coefficient of 0.50.

The second specification adds global credit to the model, which obtains a higher

weight than domestic credit. This confirms the study by Cesa-Bianchi et al. (2018) who

also find global credit to be more predictive of financial crises than domestic credit18.

Next, we add the slope of the yield curve. Its weight is negative, indicating that

a small or negative slope (long rate smaller than short rate) corresponds to a higher

predicted probability of crisis. The slope has a higher standardised weight than credit

but does not reduce the effect of the other variables substantially. Adding the global

slope in Model 4, the weight of the domestic slope decreases but both remain important

predictors19. Notably, the weight of CPI declines strongly after adding the global slope to

the model. Likelihood ratio tests confirm that each increment from model 1 to 4 improves

the goodness of fit of the models significantly (p < 0.001).

While credit growth is an established predictor for financial crises in the literature,

the slope of the yield curve has only been tangentially discussed (Babeckỳ et al., 2014;

15We use the shap Python package (Lundberg, 2018) to estimate the Shapley values. The study by
Lundberg and Lee (2017) provides a detailed explanation of how Shapley values are computed in the
context of explaining predictions of machine learning models.

16We include all 100 individual Shapley estimates for each observation in the regression to account for
their variability across replications. As observations are not independent, we estimate clustered standard
errors (Rogers, 1993) such that each country-year pair is assigned to its own cluster.

17To better compare the predictive power of the individual variables, we standardise all variables in
this and all following regression analyses such that they have a mean of 0 and a standard deviation of
1. This is equivalent to a standardisation of the regression coefficients suggested by Agresti (1996) and
recommended over other approaches by Menard (2004).

18Both variables have a medium correlation of 0.25 and an analysis of multicollinearity across all
variables does not indicate problematic levels.

19Collinearity between both variables does again not indicate problematic levels.
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Table III: Results

(5) (6) (7) (8)

Nominal short-term rate 0.698∗∗∗ 1.641∗∗∗ 0.405∗

(0.167) (0.272) (0.220)

Nominal long term rate 0.044 −1.367∗∗∗

(0.182) (0.313)

Domestic slope −1.105∗∗∗

(0.206)

Domestic slope × 0.482∗∗∗

nominal short term rate (0.147)

+ Covariates Domestic credit, global credit, CPI, debt service ratio,
broad money, stock market, consumption,
public debt, investment, current account,

Observations 1,249 1,249 1,249 1,249
Log Likelihood -267.668 -276.245 -257.305 -251.219
Akaike Inf. Crit. 559.336 576.489 540.610 530.438

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table IV: Logistic regression model of the nominal short- and long-term interest rates
and the other variables, except domestic and global slope of the yield curve.

Joy et al., 2017). To better understand its role as an indicator for crises we investigate its

components, i.e. the short and long-term nominal interest rates in Table IV. Model 5 and

6 respectively show how predictive nominal short and long-term rates are on their own,

after controlling for all other covariates, except domestic and global slope. The short-term

rate is a significant predictor, while the long rate is not. Model 7 uses both interest rates.

Compared to using the short-term rate alone, the goodness of fit improved significantly

(p < 0.001).Interestingly, the model implicitly learns a function of the interest rates that

closely mimics the slope. Let l and s be the long and short-term rate, respectively, the

model learns 1.641s − 1.367l = −1.367(l − 1.2s). This model is not significantly better

(p = 0.4383) than the model which only uses the slope (Model 4). This analysis confirms

the predictive power of the slope. We conjecture that a flat or negative slope is a stronger
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signal for a crisis if the short-term rate is slow. Model 8 test this hypothesis and establishes

a statistical significant interaction of the two interest rates. This model has a significantly

better fit than Model 4 (p < 0.001).

Figure I illustrates the effect of the interaction in Model 8. It shows the predicted

probability of crisis as a function of the domestic slope (horizontal axis), when the nom-

inal short-term rate is at the mean and one standard deviation above or below it. All

other predictors are held constant at their mean value. Given a low slope, the predicted

probability of crisis is substantially higher when the short-term interest rate is low (red

line).
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Figure I: Interaction effect in Model 8. The plot depicts the effect of the slope on the
predicted probability of crisis at three different levels of the short-term rate (mean, ± 1

standard deviation). All remaining predictors are held constant at their mean value.

Using real rates, the significance of the interaction of the slope with the short-term

rate disappears (see Appendix C.3). This is in line with the observation in Model 4

that the significance of CPI drops when controlling for the slope. Models 5–7 do not

qualitatively change when using real instead of nominal interest rates.

The interaction of the nominal short rate and the slope did not significantly improve

the performance of the logistic regression in the out-of-sample prediction experiments.

We therefore focus on the slope alone in the following horse race, as in Model 4 which

will be our benchmark.
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In the literature, the slope of the yield curve has been seen as a harbinger of recessions

(Estrella and Hardouvelis, 1991). Financial crises and recessions are correlated events that

regularly co-occur. To ensure we are not just predicting recessions but indeed financial

crises, we control for recession when testing the predictive power of the slope. We follow

Baker et al. (2018) who used the same annual data set and define a recession as a period

where the GDP declines after it has increased in the previous year.

We differentiate between three types of crises: (1) crisis that were preceded by a

recession one or two years ahead, (2) crisis that co-occur with a recession but were not

preceded by one, and (3) crises that do not co-occur or were preceded by a recession but

may be followed by one.

(9) (10) (11)

Crises preceded Crises that co-occur Remaining crises
by recession (n = 24) with recession (n = 38) (n = 33)

Domestic slope −0.283 −0.482∗ −0.793∗∗∗

(0.272) (0.258) (0.197)

Global slope −0.681∗∗ −0.791∗∗∗ −0.476∗∗

(0.312) (0.251) (0.221)

+ Covariates Global credit, domestic credit, CPI, debt service ratio, broad money
stock market, consumption, public debt, investment, current account

Observations 1,178 1,192 1,187
Log Likelihood -74.933 -109.632 -121.615
Akaike Inf. Crit. 175.866 245.263 269.230

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table V: Logistic regression predicting financial crises that are preceded by a recession
(Model 9), co-occur with a recession (Model 10), or neither of the two (Model 11).

We re-estimate our baseline Model 4 for each of the three types of crises. Concretely,

we conduct the regressions on the subset of crises of the respective type and all non-crisis

observations. The results of this exercise are summarised in Table V.

The domestic slope of the yield curve loses its predictive power when a crisis is pre-

ceded by a recession (Model 9). The is not surprising as a recession causes the yield
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curve to steepen on average. In line with the findings from Figure I, this leads to a lower

predicted probability of crisis despite a crisis occurring.20 On the contrary, the domestic

yield curve is particularly informative in the absence of a recession (Model 11). More-

over, the significance of the global slope in all three cases highlights the importance of

international market conditions when evaluation the likelihood of a crisis.

Our baseline logistic regression shown in Table II is a useful start for an early warning

system. However, as discussed before, it does not account for nonlinearities. We address

these shortcomings by investigating a set of machine learning models which automatically

learn nonlinearities and interactions from the data without the need to specify an explicit

functional form.21 We evaluate their predictive performance and conduct extensive out-

of-sample tests and variable inference analyses.

4.2 Machine learning model performance

All prediction models we investigate estimate the probability that a crisis occurs. There-

fore, we can evaluate their performance in the Receiver Operating Characteristic (ROC)

space. The ROC space depicts the the positive rate (i.e. proportion of crises correctly

identified as such) on the vertical axis and the false positive rate (proportion of non-crises

incorrectly identified as crises) on the horizontal axis. The perfect model would obtain a

hit rate of 1 and a false alarm rate of 0. However, generally, a higher hit rate comes at

the cost of a higher false alarm rate.

The trade-off between a high hit rate and a low false alarm rate can be controlled

by setting different thresholds on the probabilities predicted by the model. The main

advantage of the ROC analysis is that it does not force the modeller to specify the

relative costs of the two types of classification errors (missing to predict a crisis when

there is one and predicting a crisis when there is none), which is often, as in our case, a

non-trivial endeavour and usually depends on the actual application of the model. Figure

II shows how the models compare in out-of-sample prediction in the ROC space. Random

20The average steeping of the yield curve in the one and two years ahead of a crisis preceded by a
recession is about 0.3%. This accounts for the majority of the differences in domestic slopes relative to
crisis not associated with a recession.

21On a technical level, this is related to the consistency property of non-parametric models (Stone,
1977; Joseph, 2019).
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forest and extreme trees are consistently more accurate than their competitors, as their

curves are consistently above those of the other models.
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Figure II: ROC curves

The performance in the ROC space can be summarised by the Area Under the Curve

(AUC). This also has an intuitive interpretation besides the geometrical definition. It

is the probability that the model assigns a higher predicted value to a randomly drawn

objects from the positive crisis class than to a randomly drawn object from the negative

non-crisis class.

Table VI shows the mean AUC of the models in the cross-validation experiments.

Standard errors are omitted but are consistently below 0.001. The best performing model

in terms of AUC is, as implied by the ROC curves, extreme trees, followed by random

forest, and support vector machines. The decision tree performs worst. This is not

surprising, as individual decision trees tend to overfit and produce unreliable probability

estimates if the training data is small (Perlich et al., 2003).

Compared to a probabilistic model like a logistic regression, machine learning models
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AUC True positives False positives True negatives False negatives
(correctly pre- (false alarms) (correctly pre- (missed crises)
dicted crises) dicted non-crises)

Extreme trees 0.870 76 219 935 19
Random forest 0.855 76 286 868 19

SVM 0.832 76 320 834 19
Neural network 0.829 76 279 875 19

Logistic regression 0.822 76 367 787 19
Decision tree 0.759 76 244 910 19

Table VI: First column: Mean AUC in the cross-validation experiment across all
iterations 100 iterations. The standard error is not shown but is consistently below

0.001. Remaining columns: Mean predictions across the 100 replications at a hit rate of
0.8 as shown in Figure III.

such as random forest, often do not accurately estimate the true posterior probabilities

(Niculescu-Mizil and Caruana, 2005).22 Therefore, the reader should not interpret the

predicted values as actual probabilities of crises. Rather, the ranking of the predicted val-

ues is meaningful and is reflected in the ROC analysis and the AUC, which are insensitive

to the actual predicted probabilities but only considers their order.

4.2.1 Best Model for Crisis Prediction: Extremely Randomised Trees

To convey how well our best model, extreme trees, makes predictions on the individual

observations, we average the out-of-sample predictions across the 100 replications and

pick one plausible working point on the ROC curve, namely that with a hit rate of

80%. The corresponding probability threshold at which the model identifies a crisis is

a predicted probability of 9.6%, resulting in a false alarm rate of 19%. Extreme trees

reduce the false alarm rate by 40% compared to the logistic benchmark which has a false

alarm rate of 32%.23

Figure III depicts hits (correctly identified crises using green points), false negatives

(missed crises with red triangles), and false positives (false alarms with grey triangles) as

22In the machine learning literature there exist methods such as Platt scaling (Platt et al., 1999) and
isotonic regression (Zadrozny and Elkan, 2002) to calibrate the probability estimates.

23Note that the decision tree performs considerably better than logistic regression in this comparison
with a false alarm rate of 21% despite performing worse in the ROC space. The reason for this is that
averaging the tree predictions across the 100 replications (and therefore 100 different trees) makes the
predictions more robust—similar to the predictions of the tree ensembles random forest and extreme
trees.
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well as the predicted probability of crisis (black line) for all observations in our sample. To

improve legibility, the by far most prevalent outcome, true negatives (correctly identified

non-crisis in light green), are only shown in the pie charts at the right that depicts the

overall distribution of all four outcomes in each country.
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Figure III: Predicted probability of extremely randomised trees for all observations
and the classification (crisis vs. non-crisis) according to a prediction threshold of 0.096.

The model only fully misses six out of 48 distinct crisis events: United States (1984),

Sweden (1878), Japan (1997), United Kingdom (1890, 1972) and Spain (1977). For

another six crisis, the model only missed either one or two years ahead of the actual crisis

but not both of these observations. All of the missed crisis episodes can be related to

aspects not or only partially captured in our models.

The crisis Spain in 1977 was caused by the global oil price shock and the government’s

interventions to damp its effects which delayed firm consolidation and increased public

spendings (Betrán and Pons, 2013). The missed crisis in Japan is linked to the Asian

Financial crisis of 1997, to which Japan was exposed to (Wade, 1998). After an enor-

mous expansion of the Swedish railway industry in the early 1870s, Sweden’s economy

declined and caused substantial losses in the financial sector which had heavily invested
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in the railway industry. The crisis in the late 19th century in the UK was known as the

Baring crisis or the Panic of 1890 which was due to poor investments in Argentina that

led to bankruptcy of Baring bank (Mitchener and Weidenmier, 2008). The same poor

investments in Argentina also caused the Financial Panic in the United States (correctly

identified in our model) three years later. The Secondary Banking crisis in the UK (1972)

was linked to house prices which are not included in our baseline model (see section on

robustness checks below).

The high proportion of false alarms is misleading. Firstly, the model is by construction

more risk averse and calibrated to ensure less crises are missed at the cost of a higher

false alarm rate. In this case, the model predicted a crisis in 19% of the observations

where actually no crisis has occurred. Secondly, the false predictions often cluster around

periods which see a crisis a couple years later and therefore do provide a useful warning

signal. Thirdly, the false positives cluster around periods when other countries have

experienced financial crises which again can be seen as a valuable warning signal in line

with the importance of global variables we document. Lastly, the model is not taking into

account any policy actions that might have mitigated a crisis, so that the model might

have correctly detected an impeding crisis that was successfully averted. In either case,

even the false positives might provide useful information for policy makers by indicating

when vulnerabilities have been building up.

We should also say that our model seems to do better for some countries, e.g. Germany

and Switzerland, and worse with others, e.g. Japan, as indicated by the pie charts on

the right. Including more region specific variables might help to improve performance for

those specific countries.

The figure shows that the number of false alarms is substantially higher before than

after World War 2 with respective false positive rates of 52% and 10%. The global

economy underwent substantial changes across time and a general model covering more

than 140 years may not predict well given time-specific idiosyncrasies. As we have fewer

observations before WW2 than after, the earlier period gets less weight when training

the model which means that it is geared to perform better on more recent observations.
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Experiments Crises Extreme Random Logistic Decision
trees forest regression tree

Baseline 95 0.87 0.86 0.82 0.76

Testing transformations
Growth rates only 95 0.86 0.85 0.81 0.76

Hamilton filter 89 0.86 0.84 0.82 0.76
* 87 0.89 0.85 0.81 0.76

Adding variables
Nominal rates 95 0.87 0.85 0.82 0.76
Real rates 95 0.86 0.85 0.82 0.76

Loans by sector 52 0.82 0.83 0.83 0.76
* 52 0.83 0.83 0.83 0.79

House prices 83 0.88 0.87 0.82 0.75
* 83 0.87 0.85 0.82 0.76

Changing the horizon
1 year 95 0.85 0.84 0.82 0.76
* 95 0.87 0.85 0.82 0.76

3 years 92 0.86 0.85 0.80 0.74
* 92 0.87 0.85 0.82 0.76

4 years 90 0.87 0.86 0.80 0.74
* 90 0.87 0.85 0.82 0.76

5 years 89 0.86 0.85 0.80 0.75
* 89 0.87 0.85 0.82 0.76

Table VII: Results of the robustness checks. Asterisks indicate the retrained baseline
experiment on exactly the same observations as the respective robustness check.

4.2.2 Robustness checks

We empirically tested different sets of variables and transformations before we chose the

experiment on which the main results are based. To show that the relative model ranking

is robust to the data specification we use, we report these robustness checks in Table III.

We did not test SVMs and neural networks because of the extensive computation time.

The baseline is the main experiment using the variables and transformations as described

in section 2 for which we have a total of 95 crises observations.

Adding new variables or changing the transformation may lead to a loss of observations

due to missing values. To provide a fair comparison, we need to retrain the baseline model
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on exactly the same observations as the robustness check is trained on. The retrained

baseline models are marked with an asterisk.24 All experiments are repeated 100 times

using 5-fold cross-validation.

Variable transformations. To ensure that our chosen variable transformation of

using GDP ratios is indeed superior, we checked the results for both growth rates and

filtered data to detrend the data. For the growth rate experiment, the slope is left in

levels, current account is scaled by GDP (as it contains positive and negative values)

and all other variables are transformed into 2-year percentage growth rates. Another

de-trending method used to identify the gap between the long term trend of a variable

and the observed change, is the regression filter proposed by (Hamilton, 2017). It is an

alternative to the Hodrick-and-Prescott filter (Hodrick and Prescott, 1997). We set the

parameters h = 2, and regress on the four most recent values. The filter is applied to

consumption and to the following variables after scaling them by GDP: domestic credit,

global credit, money, public debt, debt servicing, investment, and current account. Using

changes scaled by GDP (our baseline) leads to consistently more accurate predictions

than using growth rates or the Hamilton filter.

Additional variables. Next, we investigate how the performance changes if we use

additional variables, e.g. adding the real long and short-term interest rates, or replacing

the total credit growth variable by household and business loan growth separately. We

also add house prices to the list of predictors. Adding the interest rates does not improve

the performance of the models. This is in line with our previous observation that the

slope of the yield curve captures the predictive power of both interest rates.25

Replacing total loans by household and business loans does not improve the perfor-

mance of any model. Adding house prices does increase the performance of extreme

trees and random forest by one and two percentage points, respectively. This is in line

with the observation that credit growth after WW2 is strongly driven by the increase

in mortgage debt and that house price bubbles are predictive of financial crises (Jordà

24We trained the robustness check and the baseline on those observations that are complete in both
cases. If the pool of observations does not change in a robustness check (e.g. adding nominal rates) with
respect to the baseline the results can be directly compared with the baseline in the first row.

25While we found a statistically significant interaction between the short-term interest and the slope
when fitting the logistic regression to the whole dataset (Model 8 in Table IV), incorporating the inter-
action did not improve the out-of-sample performance.
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et al., 2015). However, we find that house prices do not obtain a significant weight in a

logistic regression when controlling for our covariates, including domestic credit growth.26

The inclusion of house prices also reduces the crisis sample considerable. Together, these

findings led to the decision to exclude them from the baseline model.

Horizon of growth rates The horizon of the growth rates and changes scaled by

GDP are set to 1, 3, 4, and 5 years for all respective variables rather than the 2 years in our

baseline. There are only small differences between horizons but the baseline consistently

produced the most accurate results for all prediction models.

Importantly, extreme trees and random forest performed best in each of these addi-

tional experiments which confirms their superiority in this prediction problem and justifies

our focus on the extreme trees in the analyses. All in all, the chosen baseline in terms of

variables, transformations and horizon, delivers the best model performance in the great

majority of cases, captures major economic signalling channels and provides a reasonable

reaction time for eventual policy actions.

Cross-validation procedure There are several cross-validation procedures we can

use for our problem. For example, in our main experiment, we make the constraint that

the two observations of the same crisis (1–2 years before the actual crisis observation) are

assigned to the same fold. In Appendix C.1 we compare four different approaches and

assess the robustness of the results both in terms of performance and variable importance.

Our results are qualitatively stable across the different types of cross-validation. Only

the performance levels across all algorithms change in line with the information provided

to a model during training.

4.3 Importance of individual variables

To assess the importance of the predictors across all observations, we compute the mean

absolute Shapley values (1) for each predictor. We refer to this measure as the predictive

share of a variable and show it in Figure IV for the different prediction models. The

variables are ordered by decreasing predictive share of extreme trees. The two variables

with the largest predictive shares are the global slope of the yield curve and global credit

26This also holds when we calibrate the model only on observations after WW2
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Figure IV: Mean absolute Shapley values.

growth. Both are consistently ranked as the top two across the five models. Domestic

slope and credit follow after that. CPI, the debt servicing ratio, consumption and in-

vestment come next with predictive shares between five and ten percent. The remaining

variables are less important to our models with average shares of less than five percent.

Despite the large variety and different nature of the models, the importance ranking of

the variables is quite consistent across models. Also, this ranking of the variables closely

matches the strength of the predictors in the in-sample logistic regression (Table II) and

strengthens the view that the key variables credit and slope are robust indicators for

predicting financial crises.

4.3.1 The predictive power of the slope of the yield curve

Our results corroborate earlier findings that stressed the importance of domestic (Schu-

larick and Taylor, 2012) and global credit to GDP growth (Alessi and Detken, 2018) as

predictors for financial crises. Furthermore, the results indicate that asset price growth,

money, and the current account are less predictive. The important role of the slope,
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both domestic, and global, is interesting and adds to the list of indicators prominently

discussed in the literature. There could be several interlinked explanations for the slope’s

predictive power: (1) on a domestic level, a flat slope could indicate compressed net in-

terest rate margins for banks (Borio et al., 2017). In this already fragile environment,

any small shock to the financial system can seriously impact this already reduced bank

profitability. This can lead to a contraction in credit supply and thus affect real economic

activity and, in the worst case, even result in a financial crisis (Adrian et al., 2010). (2) A

flat or inverted yield curve is usually accompanied by low risk premia, both domestically

and globally. With low nominal rates and low risk premia, investors might have to search

for riskier investment to achieve profitable returns without being properly compensated

for their increased risk exposure. This system-wide build-up of under-priced risk makes

diversification more difficult and could trigger a market correction with severe disruptions

in financial markets, which again, in the worst case, could lead to a financial crisis.

(3) The spread of optimism/pessimism may lead to a collective, exaggerated belief in

a low/high risk environment (Gennaioli et al., 2015). In the calm period before a crisis, a

globally flat yield curve may be associated with collectively underestimated risk premia.

This is in line with the view of shared narratives in financial markets (Gennaioli and

Shleifer, 2018). (4) On a global level, a flattening of the yield curve could point towards

a global economic slowdown, which could be a likely trigger for already present financial

vulnerabilities. Overall, our findings suggest a combination of low risk perception, strong

financial expansion and increasing financial fragility in the years preceding a crisis.

We will focus the subsequent on our best performing machine learning model, extreme

trees, and state results for other models when necessary.

4.3.2 Importance of variables across time and across countries

The financial and economic system has changed substantially over the period of time

covered in our dataset. We therefore expect that the prediction of crises is also subject

to changes over time. Predictors relevant before World War II might not be relevant

today. As we are interested in how well the predictors differentiate between a crisis and

non-crisis observation, we compute the Shapley difference, the mean Shapley value of

crisis observations subtracted by the mean Shapely values of non-crisis observations.
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Figure V: Mean difference of Shapley values (crisis - non-crisis observations) for
different periods

Figure V shows the Shapley differences for specific time periods in the data (i.e. pre

and post WW2, crises in the 1990s, and the global financial crisis 2008).

Before World War II, primarily the global slope and domestic credit differentiated

markedly between crisis and non-crisis observations. During the series of financial crises

that occurred in the 1990s, domestic credit, global slope, and the debt service ratio were

key predictors. During the global financial crisis, by far the most important predictor

was global credit. While domestic and global slope and domestic credit were crucial

predictors throughout our historic sample, the predictive power of global credit seems to

be a very recent phenomenon.

Cleary, global financial conditions have an effect on domestic financial stability. As

Cesa-Bianchi et al. (2018), we observe that the financial globalisation has magnified

the importance of international credit growth. For example, Germany and Switzerland

experienced negative domestic credit to GDP growth before the global financial crisis in
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2008. Nevertheless, both countries experienced a financial crisis because their banking

sectors have invested into the US subprime mortgages as well.

The global slope of the yield curve seems to be a crucial predictor across the whole

time period covered by our data set. This might be explained by two regimes. First,

pegged exchange rates established a close connection of macroeconomic policies between

countries (Obstfeld et al., 2005). Later, the globalisation of the world economy, especially

an enhanced global bond market integration (Diebold et al., 2008) cements the importance

of a global yield curve.

Figure VI shows the Shapley decomposition at the most granular level for the United

Kingdom and Spain, again for extreme trees. To retain legibility, only the Shapley values

of the slope and credit (both domestic and global) are shown in different colours, the

remaining predictors are summed up in grey bars. All Shapley values and the mean

predicted value in the training set (dotted horizontal line) add up to the predicted value,

shown by the black line. Crisis observations are highlighted with vertical bars in light

red.

In the United Kingdom, the crisis in the 1990s is correctly predicted by a joint con-

tribution of all four key indicators, while the global financial crisis in 2008 is mostly

predicted by global credit growth. In Spain, the latter crisis is flagged by domestic and

global credit growth. The marked false alarms in Spain’s early 1990s can be explained by

the effects of a severe recession affecting the Western world globally and Spain, locally.

In both the United Kingdom and Spain, the four key indicators correctly point to a

low probability of crisis during the golden age of capitalism (Marglin and Schor, 1990)

between the end of WW2 and the early 1970s.27

A similar pattern holds for the period after the global financial crisis in 2008. As

noted before, the predictions before the second world war are less accurate and stable.

4.3.3 Shapley regressions

The above discussion of the drivers of machine learning models had been qualitative.

Here we provide a rigorous statistical analysis of machine learning models. To our best

27Figure III shows that our model nearly makes no false positive predictions for any country in this
period.
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Figure VI: Shapley values as a function of time for the United States (top panel) and
Spain (bottom panel).

knowledge this is the first time this type of analysis has been provided.

The left half of Table VIII shows the output of Shapley regressions (Joseph, 2019)

where the crisis dummy is regressed on the model Shapley value decomposition (1).

The coefficients represent the effects of the Shapley values for a one standard deviation

change on the predicted log-odds. It is important to note that the sign of the coefficients

does not indicate the sign of the association between the predictors and the crisis class
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label. Rather, the coefficients are expected to be positive because high Shapley values

reflect an increase of the predictive probability of the positive class (crisis). A negative

coefficient indicates that the model has not well learned the information in that variable

and is considered non-significant. We obtained the direction of the association from our

baseline logistic regression in Table II as a measure of linear alignment between a variable

and the crisis label.

Consistent with our previous results, global and domestic credit and slope obtain the

highest coefficients and lowest p-values (measured against the null hypothesis), accord-

ingly. Consumption, investment and changes in stock market indices can also be judged

significant. This means that despite the small magnitude of their signals in terms of pre-

dictive shares, their values are significantly aligned with the crisis indicator providing a

useful signal. Variables like the debt servicing ratio, public debt and the current account

balance have some predictive weight but their signals can not be differentiated from the

null, i.e. there is no clear alignment with crises. The signs are in line with economic

intuition and previous results, namely that credit growth and investment are positively

associated with financial crises while the slope is negatively associated. Note, however,

that the coefficients for consumption and CPI are significant with a negative sign. This

points to real fragilities in the build-up of financial crises, which we will investigate in

more detail below.

It is informative to compare the Shapley coefficients to the coefficients of our logistic

regression using the raw inputs, not the Shapley values. The right hand side of Table VIII

reproduces our baseline regression (Model 4 in Table II). This model also gives highest

weight to the slope and credit but does produce some results which are qualitatively dif-

ferent for the remaining predictors. For instance, stocks and CPI are significant predictors

in the Shapley regression but not significant in the logistic regression. These differences

indicate that stocks and CPI are more predictive when they are not constrained to a

linear relation.
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Shapley regression Logit regression
Direction Coefficient p Share Coefficients p

Global slope - 0.55 0.000 0.23 -0.61 0.000
Global credit + 0.33 0.000 0.18 0.67 0.000
Domestic slope - 0.37 0.000 0.11 -0.58 0.000
Domestic credit + 0.34 0.000 0.11 0.43 0.002
CPI - 0.28 0.002 0.07 -0.24 0.160
Debt service ratio + 0.06 0.244 0.05 0.16 0.347
Consumption - 0.17 0.027 0.05 -0.42 0.003
Investment + 0.18 0.005 0.04 0.32 0.016
Public debt - -0.05 0.295 0.04 -0.03 0.845
Broad money + -0.12 0.081 0.04 0.04 0.817
Stock market - 0.16 0.020 0.04 -0.13 0.451
Current account - -0.05 0.296 0.03 -0.08 0.525

Table VIII: Left side: Shapley regression. Direction of alignment between predictor
and target (same as sign of logistics regression), coefficients, p-values against the null
hypothesis and predictive share of variable. Right side: Coefficients and p-values of a

logistic regression.

4.4 Nonlinearities

Using Shapley values, we can depict the nonlinearities learned by the machine learning

models. Figure VII shows the Shapley values of the key predictors as a function of the

actual predictor values for extreme trees. A Shapley value greater than zero indicates an

increase in the predicted probability of crisis. The crisis observations are marked in red,

while the non-crisis observations are shown in grey. The black and blue line show a linear

and cubic function fitted to the data.

To test the importance of nonlinearities, we fit linear (black line) and cubic polynomial

(blue line) regressions to the input-Shapley value relations. As expected the goodness-

of-fit is substantially better for nonlinear descriptions in terms of R2. The nonlinear

relationships are neither unintuitive nor complex. Rather, the relationships are generally

monotonic and match our expectation. A severe flattening or inversion of the yield curve

is associated with a higher probability of crisis, as are higher global and domestic credit

growth.The importance of nonlinearity is particularly pronounced for global credit with

little dispersion about the best-fit cubic regression.

Does modelling nonlinearity improve the predictive power of all predictors? To an-
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Figure VII: Indictor values plotted against Shapley values for the three most
predictive indicators. Crisis observations are highlighted in red.

swer this question, we conduct a simple test and regressed the crisis outcome on each

indictor independently, once on its actual values and once on the Shapley values.28 Table

IX compares both the AUC and log-likelihoods. We used the DeLong test (DeLong et al.,

1988) and the Vuong’s closeness test (Vuong, 1989) to evaluate whether the difference

in AUC and log-likelihood are significant. For our key indicators, the goodness-of-fit is

significantly better when we regress on Shapley values. The AUC score is also signifi-

cantly different for most variables but not for domestic credit which suggests that the

28It should be noted that the Shapley values of each predictor do not show the effect independent of
the other predictors but rather includes all interactions with the other predictors.
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nonlinearity in this variable is monotonic as the AUC score is not affected by a strictly

monotonic transformation.

AUC Log likelihood
Linear Shapley Linear Shapley

Global slope 0.736 0.812∗∗∗ -305 -273∗∗∗

Global credit 0.667 0.720∗ -309 -297∗∗∗

Domestic slope 0.710 0.765∗∗∗ -316 -307∗∗∗

Domestic credit 0.686 0.677 -312 -305∗∗

CPI 0.597 0.699∗∗∗ -331 -316∗∗∗

Debt service ratio 0.651 0.722∗∗∗ -322 -311∗∗∗

Investment 0.608 0.643 -330 -323
Stock market 0.470 0.628∗∗ -336 -301∗∗∗

Consumption 0.558 0.626∗∗ -332 -322∗∗

Broad money 0.606 0.594 -331 -332
Current account 0.572 0.594 -334 -335
Public debt 0.528 0.493 -336 -335

Table IX: AUC and log likelihood of univariate logistic regressions. The crisis
outcome is once regressed on the values of the variables (Linear) and once on the

Shapley values extracted from extreme trees. Bold cells indicate a significant
performance of one regression over the other (p < 0.05).

4.5 Interaction of predictors

The Shapley values shown in Figure IV show the overall effect of a variable on the pre-

diction. It does not tell us how much of the effect can be attributed to that variable

alone and how much to the interaction with other variables. Within the Shapley value

framework, we can explicitly measure how much a particular interaction drives the pre-

diction (Fujimoto et al., 2006; Lundberg et al., 2018).

To compute the Shapley interaction φi
r×s of variables r and s we use

φi
r×s = ∑

S⊆N∖{r,s}

∣S∣!(∣N ∣ − ∣S∣ − 2)!
2(∣N ∣ − 1)! ∇rs(S), (2)

where r ≠ s and ∇rs(S) is the contribution of the interaction without the contribution of

the predictors r and s on their own:

∇rs = f(S ∪ {r, s}) − f(S ∪ {r}) − f(S ∪ {s}) + f(S) (3)
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Interaction Direction Coefficient p-values
Domestic slope x Domestic credit - 0.08 0.154
Domestic slope x Investment - 0.11∗ 0.070
Domestic slope x Consumption + 0.17∗∗ 0.043
Domestic slope x CPI + 0.04 0.365
Domestic slope x Stock market + 0.09 0.109
Domestic credit x Investment + 0.21∗∗∗ 0.005
Domestic credit x Consumption - -0.20 0.005
Domestic credit x CPI + 0.17∗∗ 0.012
Domestic credit x Stock market + -0.17 0.009
Global slope x Global credit - 0.32∗∗∗ 0.002
Global slope x Domestic slope + 0.09 0.169
Global slope x Domestic credit - 0.24∗∗∗ 0.004
Global slope x Investment - 0.41∗∗∗ 0.000
Global slope x Consumption + 0.13∗ 0.058
Global slope x CPI + 0.26∗∗∗ 0.003
Global slope x Stock market - 0.09 0.185
Global credit x Domestic credit + 0.11∗ 0.083
Global credit x Domestic slope - 0.18∗∗ 0.027
Global credit x Investment + 0.14∗∗ 0.036
Global credit x CPI - 0.39∗∗∗ 0.001
Global credit x Consumption - 0.23∗∗∗ 0.002
Global credit x Stock market + 0.23∗∗ 0.014

Table X: Shapley regressions including interactions. Each row is based on a different
regression including the Shapley values of the respective interaction and the main

effects of the 12 predictors. Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

We investigate Shapley interactions in the extreme trees model. We do not consider

all 12×11
2 = 66 pairwise interactions but examine only interactions of global and domestic

credit growth and the slope with variables that have a major predictive share and a

significant main effect (see Table VIII).

To test the significance of the interactions we estimate Shapley regression models.

Each regression includes the Shapley values of a single interaction as well as the general

Shapley values of all other predictors.29 We do not include all interactions at once because

of collinearity issues which also reflect the dependence of different economic channels, e.g.

total credit and investment.

29We control for the interactions when computing the Shapley values of the involved indicators. For
example, when testing the interaction of domestic credit and domestic slope we adjust the main ef-
fect of the two variables: φ̂Dom. credit = φDom. credit − φ

i
Dom. credit×Dom. slope, φ̂Dom. slope = φDom. slope −

φiDom. credit×Dom. slope.
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Table X shows the summary statistics for the interaction terms in the Shapley re-

gression models.30 Three conditions emerge for the increased likelihood of a crisis: (i)

Including global factors for both credit and the slope provide stronger interaction signals

than domestic variables. This again suggests the importance of internationally shared

narratives around risk perception in line with (Gennaioli and Shleifer, 2018).

(ii) The positively significant contributions of domestic and global credit and invest-

ment growth point to overconfidence about future expectations in financial markets and

the supply side of the economy. (iii) This overconfidence seems to be matched by restraint

on the demand side, as shown by the negatively significant interactions with consumption.

Again, this is particularly true for the interaction between global and domestic factors

pointing to the importance of both when assessing the likelihood of future financial crises.

The above findings are in line with historical accounts about the build-up of crises

from exuberant expectations in credit markets (Aliber and Kindleberger, 2015) and the

financial instability hypothesis (Minsky, 1977). However, not all credit booms result in

a financial crisis (Dell’Ariccia et al., 2012). A credit boom might be more detrimental

when recession expectations (negative slope of the yield curve) are high and consumption

is declining than during normal global economic conditions (positive slope of the yield

curve and consumption growth). Similarly, growth in investment is a higher risk factor

for a crisis when the slope is low while a decline in investment might be problematic when

the slope is high.

We show three significant interactions of the global slope of the yield curve and various

domestic factors in Figure VIII. The values of the input variables are shown on the

horizontal and vertical axis. The grey lines represent the means of variables, indicating

four quadrants of low/high value combinations. The value of the Shapley interaction is

shown by the colour with red indicating a higher probability of crisis.

In the left and middle panel, we observe an increase in the predicted probability of

crisis when the global slope is low and growth in credit and investment are high, respec-

tively. Indeed most crises fall into the lower right quadrant of both figures highlighting

the importance of conditions (i) and (ii). In the right panel we see that the combination

30As noted before, the sign of the coefficients are expected to be positive. We therefore do not interpret
the interactions with a negative coefficients which point to a bad model fit for this variable. We estimate
the sign by correlating the interaction of the input variables with the crisis outcome.
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Figure VIII: Shapley interactions. Each scatter plot shows all observations (filled
circles) as a function of their values on two predictors. The colour of the observations
denotes the value of the Shapley interaction, with red indicating a higher predicted

probability of crisis. Crisis observations are additionally highlighted with black symbols.

of a low global slope and sluggish consumption growth also indicates the build-up of fi-

nancial crises (lower left quadrant). This highlights the importance of condition (iii).The

weakening of consumption may be associated with an increased leverage of the household

sector as evidenced by significantly elevated household credit and mortgage growth in the

years before a crisis (see Table I).

It is important to stress again that the analyses in Table X and Figure VIII only shows

interaction effects additional to main effects and higher order interactions. We therefore

cannot expect that the interactions account well for all crises.

5 Forecasting experiment

All results shown so far are based on cross-validation. One may argue that cross-validation

is not an adequate empirical test for an early warning model. By randomly sampling

training and test sets from the whole time period, we predict crises in the past with data

from the future. Therefore, our performance estimates do not reflect the performance of

an early warning model at actual deployment that aims at predicting crises in the future.

Notwithstanding, there are good reasons for using cross-validation instead of forecasting
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crises with past data only. For example, our analysis has shown that the global financial

crisis is qualitatively different from previous crisis in that global credit plays a very cru-

cial role. In a forecasting experiment, we cannot reliably test a model that learned from

the global financial crisis, as our dataset does not contain many observations after that

crisis. In general, due to the limited number of crises in the data, a comparison of the

forecasting performance across models will suffer from low statistical power. Neverthe-

less, we conducted a recursive forecasting experiment to compare the different prediction

methods.

We use all observations up to year t − 2 to train the models and test them on obser-

vations of year t31, where 1946 ≤ t ≤ 2016.

In this way, the models learn from training samples with very different proportions

of crises at different points in time. For example, after the global financial crisis, the

proportion of crises in the training data is substantially higher than before that crisis.

As the predicted probability, and therefore the AUC estimate, is highly sensitive to the

proportion of classes in the training set, we resampled all training sets such that they

contain the same number of crisis and non-crisis observations.32

Table XI compares the forecasting performance of the models. It shows the AUC on

all observations between 1945–2016, and for the period before and after 2004.

Across the entire forecasting period, the best model is the neural network, followed by

extreme tress and the SVM. Generally, the machine learning models—except the decision

trees—perform better than logistic regression in forecasting, also when predicting the

global financial crisis (2004–2016). However, it is important to note that the test set is

small and all performance differences in all three periods are not significant (p < 0.05)

according to a DeLong test (DeLong et al., 1988).

31Note that we do not use observations at t−1 to make a prediction at time t. As in the cross-validation
experiment, we avoid positively biased performance estimates that may occur if one observation of a crisis
(two years before actual crisis) is in the training set and the other observation of that crisis (one year
before crisis) in the test set.

32For all algorithms, we apply two techniques of resampling: upsampling and downsampling. Let
n+ and n− be the number of crisis and non-crisis observations in the training set. Using upsampling,
we increase the number of crisis observations by drawing n− observations with replacement. Using
upsampling, we use a subsample (without replacement) of n+ non-crisis observations. To obtain stable
results we repeat the resampling and model estimation 50 times and average the predictions across the
iterations. For each model, we do only report the maximum performance obtained by using up- or
downsampling.
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Figure IX shows the forecasting performance at a hit rate of 80% of the neural network.
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Forecasting period
1945–2016 1945–2003 2004–2016

Extreme trees 0.813 0.748 0.870
Random forest 0.792 0.735 0.846
Logistic regression 0.789 0.704 0.867
SVM 0.808 0.700 0.911
Neural network 0.833 0.770 0.872
Decision tree 0.788 0.727 0.867

Table XI: Forecasting performance (AUC) on all observations after 1944 and those
before and after the global financial crisis.

6 Conclusion

In this paper, we built early warning models based on machine learning approaches. We

show that machine learning models outperform logistic regression in predicting financial

crises in a macroeconomic dataset covering 17 countries between 1870–2016. The most

accurate models are decision tree based ensembles, such as random forest, followed by

support-vector machines and neural networks. A simple decision tree is the only machine

learning model that falls behind the benchmark logistic regression. The gains in predictive

accuracy justify the use of initially complex black box machine learning models. To

understand their predictions, we use the Shapley value framework.

We observe that all models, including the logistic regression, consistently identify the

same predictors for financial crises, namely domestic and global credit, as well as the

domestic and global slope of the yield curve as key predictors. While the crucial role

of credit is an established result, we want to highlight the predictive power of the slope,

which has only obtained little attention as an early warning indicator for financial crises in

the literature. With the Shapley regression approach we confirm that the contribution of

our key predictors is statistically significant, even after controlling for the other covariates.

We also inspect nonlinearities and interactions learned by the machine learning models.

Nonlinearities are ubiquitous in the models but they are mostly relatively simple, e.g.

monotonic kink-type form.

We observe several significant interactions point to a coherent narrative that might be

useful for policy makers. Three common themes emerge around the build-up of financial

crises. A shared global narrative as indicated by the importance of global variables,
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particularly the slope of the yield curve, throughout time. Prolonged high growth in

credit relative to GDP and a flat/inverted yield curve are often go hand-in-hand before a

financial crisis. A third observation is what one may call a disconnect between financial

and real factors in the built-up phase of a crisis. Namely, consumption is generally slowing

while credit continues to expand within a perceived low risk environment. The slowing

of consumption and a potential weakening of demand may be associated with increased

leverage in the household sector. Both loans to household and mortgage lending are

significantly increased in the period preceding a crisis (see Table I).

Given the large time horizon of the data, it is not surprising that the importance

of the variables change across time, reflecting historical change in the global monetary

financial architecture but also more recent developments. The most salient time-varying

effect is that of global credit growth, which is the most crucial indicator for the global

crisis in 2008 but only marginally predictive before.

There are two appealing advantages of classical parametric modelling over machine

learning modelling, namely the interpretability of the models and the availability of sta-

tistical inference tests. However, with the the application of the Shapley values and

Shapley regressions, these shortcomings can be overcome. In fact, our study shows an

important advantage of machine learning on top of the gains in predictive accuracy: The

flexibility of the machine learning models helps us to uncover important patterns such as

nonlinearities and interactions that would have been concealed using only a linear model.

These patterns may now, after the fact, also be explicitly included in a standard model,

such as logistic regression.

From an applied perspective, our results help policy makers to anticipate a financial

crises in advance. The ability to do so is crucial given the enormous economic, political,

and social consequences that financial crises entail. By having models and reliable in-

dicators, policy makers can anticipate these events in advance and can put measures in

place to avoid or at least lessen the consequences of a financial crisis.
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Jordà, Òscar, Moritz Schularick, and Alan M Taylor (2015) “Betting the house,” Journal of
International Economics, Vol. 96, pp. S2–S18.

(2017) “Macrofinancial history and the new business cycle facts,” NBER Macroeco-
nomics Annual, Vol. 31, No. 1, pp. 213–263.

49



Joseph, Andreas (2019) “Shapley regressions: A universal framework for statistical inference on
machine learning models,” Bank of England Staff Working Paper Series, No. 784.
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A Data Appendix

Figure A.I depicts which observations are discarded from the analysis. Note the order of

plotting: the drop out due to missing feature values is plotted first, the post-crisis bias

second, and the world wars and the aftermath of the great depression last.
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Figure A.I: Excluded data points.

53



B Models Appendix

B.1 Implementational details

We list the implementation and the parameter settings of the machine learning algorithms.

If a parameter is not specified in the following, we used its default value. We tested all

models described below in three configurations: (1) training the models on the training

set as given, (2) randomly upsampling the minority class (financial crisis events) such

that both classes have the same share in the training set, and (3) weighting the objects

such that both classes contribute equally to the training set. Concretely, the objects in

the positive class were weighted by 0.5/ N+
N++N− and the objects in the negative class by

0.5/(1 − N+
N++N− ).

For each algorithm we only report the results for the configuration that performs best

in the cross-validation experiment. If the models are not trained on the objects as given,

we explicitly state it in the list below.

Logistic regression. We used the SGDCClassifier implementation from the Python

package sklearn with penalty = None and loss = log. We also tried regularized

logistic regression (Lasso, Elastic-net) but did not observe an improvement in per-

formance.

Random forest. We used the RandomForestClassifier implementation from the Python

package sklearn with n estimators= 1000. Random forests are known to be not

very sensitive to the choice of hyperparameters. Nevertheless, we also tested a

version of random forest for which we searched for hyperparamters max features

∈ {1,2, ..10} and max depth ∈ {2,3,4,5,7,10,12,15,20} using cross-validation in the

training set. It did not improve the performance.

Extremely randomised trees. We used the ExtraTreesClassifier implementation

from the Python package sklearn with n estimators=1000. We also tested a version

for which we searched for hyperparamters max features ∈ {1,2, ..10} and max depth

∈ {2,3,4,5,7,10,12,15,20} using cross-validation in the training set. However, it

did not improve the performance.
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Support vector machine. We used the SVC implementation from the Python package

sklearn and searched for hyperparameters C ∈ {2−5+15×
0
9 ,2−5+15×

1
9 , ...,2−5+15×

9
9} and

gamma ∈ {2−10+13×
0
9 ,2−10+13×

1
9 , ...,2−10+13×

9
9}. We weight the objects such that both

classes contribute equally to the training set. We trained 25 SVMS in each training

sample. For each model we randomly upsampled the training data. The hyperpa-

rameter search was conduced for each model independently. The final prediction is

the mean predicted value across all models.

Neural network. We used the MLPClassifier implementation from the Python pack-

age sklearn with solver=lbfgs and searched for hyperparameters alpha=∈ {10−3+6×
0
9 ,

2−3+6×
1
9 , ...,2−3+6×

9
9}, activation ∈ {tanh, relu}, and hidden layer sizes ∈ {n/3, n/2,

n, (n,n/2), (n,n), (10,5), (20,10)}, where n is the number of features tested with

numbers all round to the nearest integers. We trained 25 networks in the training

sample. We trained 25 neural networks on bootstrapped samples of each training

set. The hyperparameter search was conduced for each model independently. The

final prediction is the mean predicted value across all models.

Decision Tree C5.0 We used the C5.0 implementation from the R package C50 with

trials= 1, noGlobalPruning = False, and minCases= 1. We weight the objects such

that both contribute equally to the training set.

CART We used the rpart implementation from the R package rpart with maxdepth= 10

and cross-validated the complexity parameter. We weight the objects such that both

contribute equally to the training set. We do not report results about CART in the

study because it performed inferior to the other decision tree algorithm C5.0.

Gradient boosting We used the SGBCClassifer implementation from the Python pack-

age xgboost and searched for hyperparameters learning rate ∈ {0.01,0.05,0.1,0.15,0.2},

min child weight ∈ {1,5,10}, and n estimators ∈ {50,100,250,500}. We upsampled

the training set when training this algorithm. We do not report results about CART

in the study because it performed inferior to the other tree ensembles random forest

and extremely randomised trees.
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C Results Appendix

C.1 Four types of cross-validation

In our main experiment, we use 5-fold cross-validation to estimate the out-of-sample per-

formance of the prediction models. There are different constraints that can be made when

assigning the observations to the folds. Here, we investigate whether these constraints

qualitatively change our results, both in terms of predictive performance and in terms

of variable importance. We test four types of cross-validation. First, in unconstrained

cross-validation, country-year pairs are randomly assigned to the five folds. Second, we

make the constraint that the two observations of the same crisis (two years before the

actual crisis observation) are assigned to the same fold. This type of cross-validation was

used in our baseline experiment. Third, we assign all observations of the same year to

the same fold. Fourth, we combine the two constraints and require that observations of

the same year and crisis are in the same fold.
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Figure C.I: Shapley difference for extreme trees for the four different cross-validation
experiments.
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In the empirical test of these four types of cross-validation, we use the variables and

transformations of our baseline experiment and report the performance of the most ac-

curate model, extreme trees. We obtained the highest accuracy using unconstrained

cross-validation (AUC = 0.91). This high performance compared to our baseline experi-

ment (AUC = 0.87) confirms that the two years before a crisis are highly similar to each

other and should be assigned to the same fold to avoid overly optimistic performance

estimates. Assigning all observation of the same year to the same fold gives an AUC of

0.88. Assigning both the year and crisis to the same fold reduces the AUC to 0.77. This

pronounced decline in performance is mostly driven by the reduced accuracy on the global

financial crisis in 2007–2008: Both years before the global financial (2005–2006) are in the

same fold such that the models cannot learn the predictive importance of global credit

growth for that crisis. The Shapley analysis in Figure C.I confirms this explanation. It

shows the mean absolute Shapley values for the four types of cross-validation. Generally,

the four types of cross-validation show highly similar patterns. However, the global credit

variable is a less important predictor for the constrained cross-validation with the year

& crisis constraint.

C.2 Global variables

The most straightforward operationalisation of global credit to GDP growth is the mean

credit to GDP growth across all countries in a particular year. Similarly, the global slope

could be measured as the mean slope of the yield curve across all countries. However,

this implementation is problematic, as it creates a data leakage between training and test

set.

For example, assume that half of the observations of year 2007 are in the training and

set and the other half in the test set. As most countries in 2007 experienced a crisis, a

flexible machine learning model learns to associate the exact value of the global variable in

that year with a high probability of crisis. It implicitly learns the year, instead of learning

a trend form the values of the variable. To confirm that, we trained extreme trees on each

of the global variables separately. We randomly shuffled the actual values of the global

variables across years and just made sure that all observations of the same year had the
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same value. The out-of-sample AUC was 0.82 for both global variables. By implicitly

learning an association between year and country, without any actual information about

the level of global credit, or global slope we obtain a very high predictive performance.
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Figure C.II: Depiction of the global variables. The grey circles show the actual
values, the vertical lines show the range of values in each year.

To avoid this effect, we defined the global variable for country c in year y as the value

of the domestic variable in year y for all countries except c. Several checks confirm that

this operationalisation of the global variables is not prone to the same problem as the

the simple average across all countries and that our cross-validation results are therefore

not positively biased.

First, Figure C.II shows our global variables (circles). The range of the values overlaps

between years such that the model cannot infer the year from the variable.

Second, we used our global variables as the only predictor in the cross-validation

experiment. Now, extreme trees obtained an AUC of only 0.58 and 0.62 for global credit

and slope, which confirms that our variable does not directly map to years.

Third, the Shapley analysis in Figure VII depicts that extreme trees learns a smooth

monotonic association between the actual value of the global variables and the probability

of financial crises and not a direct mapping of values to probability of crisis.

Fourth, the constrained cross-validation (Figure C.I) and the forecasting experiment
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confirm the crucial role of the global variables. In these experiments an implicit learning

of the year can be ruled out as observations of the same year are constrained to be all in

the training or test set but not distributed among them.
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C.3 Logistic regression with real rates

Table C.I: Results

(5) (6) (7) (8)

Real short rate 0.552∗∗∗ 1.835∗∗∗ 0.307
(0.151) (0.303) (0.189)

Real long rate 0.097 −1.607∗∗∗

(0.156) (0.330)

Domestic slope −0.780∗∗∗

(0.154)

Domestic slope × 0.156
real short rate (0.110)

+ Covariates Domestic credit, global credit, CPI, debt service ratio,
broad money, stock market, consumption,
public debt, investment, current account,

Observations 1,249 1,249 1,249 1,249
Log Likelihood -269.507 -276.084 -257.062 -256.039
Akaike Inf. Crit. 563.014 576.168 540.123 540.077

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table C.II: Logistic regression model of the real short- and long-term interest rates
and the other variables, except domestic and global slope of the yield curve.
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