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1 Introduction

Do higher wages lead to more labor-saving innovations? And if so, by how much? At a

time of fast technological progress in automation technologies such as robotics and AI and

of political campaigns pushing for higher minimum wages, answering these questions is

of central importance. Even more so because the endogeneity of automation innovations

matters for the long-term effects of policy interventions (Hémous and Olsen, 2018). Yet,

the literature on the effect of wages on labor-saving technological change is still limited.

In fact the few existing papers (e.g. Lewis, 2011, Hornbeck and Naidu, 2014, or Acemoglu

and Restrepo, 2018a) focus on the effect of labor costs on the adoption of automation

technologies. Our paper is the first one to eDo higher wages lead to more automation

innovations? And if so, by how much? To answer this question, we build a firm-level

panel dataset on automation innovation. We use the frequency of certain keywords in

the text of patent data to identify automation patents in machinery. We validate our

measure by showing that it is correlated with a reduction in routine tasks in a cross-

sectoral analysis. We then use macroeconomic data on 40 countries and information

on geographical patent history to build firm-specific measures of low-skill and high-skill

wages. We find that an exogenous increase in low-skill wages leads to more automation

innovations with an elasticity between 1 and 2.2. An increase in high-skill wages tends

to reduce automation innovations. Placebo regressions show that the effect is specific to

automation innovations.stablish the causal effect of an increase in wages on automation

innovations.

Answering this question requires overcoming two challenges: identifying automation

innovations and finding a source of exogenous variation in wages from the perspective of

innovating firms. To overcome the first challenge, we build a new method for classifying

automation patents using the fact that patents are assigned to technological categories.

We use the text of European Patent Office (EPO) patents and compute the frequency

of certain keywords (such as “robot”, “automation” or “computer numerical control”) for

each technological categories. Because our identification strategy is ideally suited for

innovations in the equipment sector, we restrict attention to innovations in machinery.

We define “automation technological categories” as technological categories where the

frequency of use of the keywords is above a certain threshold. Finally, we identify as

automation patents those which belong to automation technological categories. Our

method presents at least two advantages: it is transparent and covers a wide range of

innovations across several sectors compared with more narrow measures such as robots.
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According to our laxer definition, the share of automation innovations among innovations

in machinery has recently been increasing from 13% in 1999 to 21% in 2015. We use

our measure in an exercise based on Autor, Levy and Murnane (2003). We find that

in the United States, sectors where the share of automation patents filed in machinery

was high, saw a decrease in routine tasks and an increase in the skill ratio. Our measure

is uncorrelated with computerization, so that it captures similar trends but a different

form of technological change.

At the country level, technology and wages are co-determined. Therefore, to iso-

late exogenous variation in wages, we exploit firm-level variations in the wages faced by

the potential customers of innovating firms by exploiting variations in innovating firms’

exposure to international markets. We expand on Aghion, Dechezleprêtre, Hémous,

Martin and Van Reenen (2016, henceforth ADHMV)’s methodology and use the PAT-

STAT database, which contains close to the universe of patents. For each firm which

undertakes automation innovations, we compute how much it has patented pre-sample

in machinery in each country. We take this information as a proxy for the firm’s inter-

national exposure and build firm-specific weighted averages of low- and high-skill wages

using country-level data. These firm-specific wages proxy for the average wage paid by

the customers of the firms. As a result, we identify the effect of an increase in wages on

automation innovations, by comparing how much more automation innovations increase

in, say, a German firm which has a high market exposure to the US relative to a German

firm with a low exposure to the US when US low-skill wages increase.

We conduct our analysis over the sample period 1997-2011 and use wage data for

40 countries. We find a substantial effect of wages on automation innovations: higher

low-skill wages lead to more automation innovations with an elasticity which we esti-

mate between 1 and 2.2 depending on our specification. Higher high-skill wages, on the

other hand, tend to reduce automation innovation with a smaller elasticity in line with

the capital-skill complementarity hypothesis (Krusell, Ohanian, Rios-Rull and Violante,

2000). We look separately at the effect of low-skill wages in the largest market (“the

domestic low-skill wage”) and in the other markets (“the foreign low-skill wage”) and

find that the coefficients are similar. Moreover, we use the geographical localization of

firms’ inventors to compute the local knowledge stocks which firms are exposed to. We

find strong evidence of local knowledge spillovers which suggest that the long-term effect

of an increase in wages on automation innovations are larger than the short-term effect.

Yet, we do not find evidence of path dependence at the firm level.
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The theoretical argument that higher wages should lead to more labor-saving tech-

nology adoption or innovation dates back to Habakkuk (1962) and has been at the core

of several theoretical papers (e.g. Zeira, 1998, Acemoglu, 2010). More recently, a small

growth literature has emerged where endogenous innovation can take the form of either

automation or another form of innovation (horizontal innovation) and where wages mat-

ter for the direction of innovation (Hémous and Olsen, 2018, Acemoglu and Restrepo,

2018b).

Yet, while there is an extensive literature on the effect of technological change on

wages and employment,1 the empirical literature on the reverse question is much more

limited. A few papers show that labor market conditions affect technology adoption:

Acemoglu and Finkelstein (2008) find that regulations which increase labor costs in

hospitals lead to the adoption of labor-saving technologies; Lewis (2011) shows that

low-skill immigration slows down the adoption of automation technology in manufac-

turing; Manuelli and Seshardi (2014) find that wages played a key role in the adoption

of tractors; Hornbeck and Naidu (2014) find that the emigration of black workers from

the American South favored the adoption of modern agricultural production techniques;

Clemens, Lewis and Postel (2018) similarly find that the effect of limiting farm workers

immigration on local wages and employment is consistent with the adoption of labor-

saving technology; Lordan and Neumark (2018) find that minimum wage hikes displace

workers in automatable jobs and Acemoglu and Restrepo (2018a) relate demographic

trends with robot adoption. Our paper differs in at least two ways. First, our analysis is

broader since it covers a range of automation technologies and 40 countries. Second, we

focus on innovation instead of adoption,2 which matters because the economic drivers

of innovation may differ from those of adoption: it may be less responsive to macroe-

conomic variables such as wages and knowledge spillovers are likely to play a greater

role. There is essentially no empirical literature on automation innovations: Alesina,

Battisti and Zeira (2018) find in cross-country regressions that labor market regulations

are correlated with innovation in low-skill intensive sectors, which is consistent with a

model where innovation is labor-saving; and a recent working paper by Bena and Sim-

1See for instance Autor, Katz and Krueger (1998), Autor, Levy and Murnane (2003), Bartel, Ich-
niowski and Shaw (2007) or Autor and Dorn (2013) for IT, Doms, Dunne and Totske (1997) for fac-
tory automation, Graetz and Michaels (2017) or Acemoglu and Restrepo (2017) for robots, Mann and
Püttmann (2018) for a broad measure of automation and Martinez (2018) or Aghion, Jones and Jones
(2017) for the effect on factor shares.

2To be more precise, Acemoglu and Restrepo (2018a) also show some cross-country correlations
between demographic trends and patents in robotics.
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intzi (2019) shows that firms with a better access to the Chinese labor market decrease

their share of process innovations after the 1999 U.S.-China trade agreement.3

This is perhaps surprising because a large literature shows that the direction of

innovation is endogenous in other contexts: Acemoglu and Linn (2004) in the pharma-

ceutical industry; Hanlon (2015) in the 19th century cotton industry and several papers

in the context of energy-saving or green innovations (Newell, Jaffe and Stavins, 1999,

Popp, 2002 and Calel and Dechezleprêtre, 2016). Here, we build more specifically on

the methodology of ADHMV, who build firm-level variations in gas prices to show that

higher gas prices lead firms in the auto industry to engage more in clean and less in dirty

innovations.4

Section 2 contains our first contribution: a classification of automation technologies

and compares it with existing measures. Section 3 introduces a simple model to motivate

the analysis. Section 4 describes our empirical strategy and the data we use. Section 5

contains the main results and Section 6 contains extensions and alternative specifications.

Section 7 concludes. Appendix B provides details on our automation classification and

additional robustness checks.

2 Identifying automation patents

In the following we describe the patent data that we use and how we identify patents as

automation patents. Our approach proceeds in two steps: we first identify categories of

automation technology and then automation patents as any patent belonging to an au-

tomation technology category. We then show how our measure of automation compares

to previous measures of automation, notably using the framework of Autor, Levy and

Murnane (2003).

3Process innovations and automation innovations are not the same: certain process innovations may
involve reducing other costs than labor costs (for instance materials costs) and certain automation
innovations can be product innovations (for instance a new industrial robot is a product innovation for
its maker).

4Two other papers have used ADHMV’s methodology: Noailly and Smeets (2015) use it to look at
innovation in electricity generation and Coelli, Moxnes and Ulltveit-Moe (2018) use it to look at the
effect of trade policy on innovation—as explained later in the text, we go further than these papers by
looking separately at the effect of the domestic and foreign variables.
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2.1 Patent data

We use two patent databases maintained by the European Patent Office (EPO). For most

of our empirical analysis, we use the World Patent Statistical Database (PATSTAT) from

2018 which contains the bibliographical information of patents from most patent offices

in the world, but not the text of individual patents. Since text analysis is essential to

our approach, we supplement with the EP full-text database from 2018, which contains

the full text of patent applications at the EPO. These are a subset of all of the patents

from PATSTAT.

PATSTAT allows us to identify “patent families”, a set of patent applications across

different patent offices which represent the same innovation. For each patent family,

we know the date of first application (which we use as the year of an innovation), the

patent offices where the patent is applied for (which indicates its geographical breadth),

the identity of the applicants and the inventors and the number of citations received by

the patent family. In addition, to identify the technological characteristics of patents we

use their IPC and their CPC codes (henceforth IPC/CPC codes).5 Importantly each

patent usually has several IPC/CPC codes. The IPC/CPC codes form a hierarchical

classification systems. For certain research purposes patents can be readily identified

as associated with a specific technology, say, green energy, using existing IPC/CPC

groupings. Such a grouping does not exist for automation and it is our goal in the

following to create it.

Our strategy to identify automation innovations relies on first identifying automation

IPC/CPC codes (and combinations thereof) and then, using this information to identify

automation patents. This allows us to include non-EPO patents in our analysis (since

PATSTAT does not contain the text of those patents). In addition, technological codes

by themselves are informative. Patents can be written in different styles, and often

do not expand on the purpose of the invention. The particular wording of a patent is

only a signal of its underlying characteristics, so that the same innovation could often

be described with or without using our keywords. In other words, if a patent does not

contain one of our keywords but belongs to an IPC/CPC code where patents most of the

time do, there is a high likelihood that it is actually an automation patent (see examples

in Figures 2a and 2b below). Conversely, if a patent uses one of our keywords but does

5The IPC is the International Patent Classification and the CPC the Cooperative Patent Classifi-
cation used by the USPTO and the EPO. The CPC is an extension of the IPC and contains around
250,000 codes in its most disaggregated form.
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not belong to any IPC/CPC codes where this is common, the inclusion of this keyword

is frequently uninformative about the nature of the innovation.

2.2 Choosing automation keywords

In the following we explain how we choose our keywords associated with automation.

We choose a few words, such as “automation”, directly, but largely rely on the words

used by Doms, Dunne and Troske (1997) and Acemoglu and Restrepo (2018) as well

as combinations of those words.6 Naturally, we seek to capture as many patents truly

associated with automation as possible without too many false positives. Keywords can

indicate that a patent corresponds to automation either directly or indirectly by referring

to technologies associated with automation.

Keywords that directly indicate that a patent corresponds to automation innovation

are “automation”, “automatization”, as well as words that describe the value of the in-

novation to reduce labor costs such as “laborious” or “labor”. Words which contain the

stem “automat” (denoted automat*) are often associated with automation patents as

well, but by themselves gather too many false positives such as “automatic transmis-

sion”. We resolve this in two ways: either by restricting attention to patents where the

frequency is 5 or more or by combining automat* with other words. Our list of these

words is based on the Survey of Manufacturing Technology (SMT) used in Doms et.

al. (1997) (such as operator, handling, welding, sensor, etc) and the description of the

HS-categories used by Acemoglu and Restrepo (2018) to denote imports of automation

technology (including weaving and knitting and conveyors). We add “manufacturing”,

“machine” and “equipment” ourselves.7 We count patents where automat* and one of

these words appear in the same sentence at least twice.

Keywords that indirectly refer to automation by using technologies associated with

automation are taken from Doms et al. (1997) and are: “robot”, “numerical control”,

“computer aided design”, “flexible manufacturing”, and “programmable logic controllers”

plus various extensions and conditions on those terms (see Appendix B.1 for details.) To

this list we add 3D printing, which were in their infancy when the SMT was administered.

6Doms, Dunne and Troske (1997) measure automation using the Survey of Manufacturing Technology
(SMT) from 1988 and 1993 conducted by the US Census. The survey asked firms about their use of
certain automation and information technologies. Acemoglu and Restrepo (2018) include imports of
automation technology and associate specific HS-categories from Comtrade with automation technology.

7The full list of words combined with automat* is: machine; manufacturing; machining; equipment;
apparatus; operator; handling; “vehicle system”; welding; knitting; weaving; convey*; storage; store;
regulat*; manipulat*; arm; sensor; inspect*; warehouse.
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A natural alternative procedure would have been to read and classify a subset of

patents and use machine learning techniques in order to classify patents (or technological

categories) as automation or not, which is the procedure chosen by Mann and Püttmann

(2018). We believe our approach has several advantages. First, we found that classifying

patents as automation is a difficult task: often looking at a single patent in isolation is not

enough, and one needs to look at several patents within the same technological grouping

to find patterns suggesting that a patent is likely an automation patent. Therefore, the

task of manually classifying patents cannot be easily outsourced. Second, patents are

written in a technical language and do not primarily discuss the goal of an innovation, so

that only a few words within the text are informative. Consequently, a machine-learning

algorithm would require a large set of classified data to classify patents correctly. Third,

once the classification is done it can easily be applied to patents for which researchers

do not have text or on future patents. Fourth, our method is much more transparent

and can easily be replicated or modified.

2.3 Defining automation technological categories and automa-

tion patents

As discussed above we do not associate a single patent with automation through the

keywords, but instead a technological category consisting of many patents. These tech-

nological categories are defined as: 6-digit IPC/CPC codes, all pairs of 4-digit IPC/CPC

codes and pairs combining the union of the 3 digit codes G05 and G06 with any 4-digit

IPC/CPC codes (outside codes in G05, G06).8 The code G05 corresponds to “control-

ling; regulating” and G06 to “computing; calculating; counting”. Using combinations of

G05 and G06 code with 4-digit IPC/CPC codes is inspired by Aschhoff et al. (2010)

who use these codes to identify advanced manufacturing technologies. We restrict at-

tention to categories which contain at least 100 patents to ensure that the prevalence of

keywords measure is based on a sufficiently large number of patents.9

We then measure the prevalence of our keywords within technological categories for

8Technically, the structure of the IPC/CPC classification is as follows: IPC/CPC “classes” have 3
digit codes (for instance B25: “hand tools; portable power-driven tools; handles for hand implements;
workshop equipment and manipulators”), “subclasses” have 4 digit codes (for instance B25J: “manip-
ulators; chambers provided with manipulation devices”) and main groups have 5 to 7 digit codes (for
instance B25J 9: “programme-controlled manipulators”). In the following, we will abuse language and
refer to classes, subclasses and main groups as 3 digit, 4 digit and 6 digit codes respectively.

9We group 6-digit codes with less than 100 patents in catch-all codes made at the 4-digit level.
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patent applications from 1980 which contain a description in English (a total of 1,538,370

patent applications). We verify that the choice of the starting year does not much affect

our classification in Appendix B.1. To select automation IPC/CPC codes, we further

restrict attention to IPC/CPC codes which belong to technological fields which are

associated with equipment. There are 34 technological fields (see Figure A.4) and we

focus on “machine tools”, “handling”, “textile and paper machines” and “other special

machines”, which we refer to as the relevant technological fields or machinery patents.10

For pairs of 4 digit IPC codes, we assume that they belong to the relevant technological

field when at least one of the 4 digit code belongs to the relevant technological field.

Similarly, the combinations of 4 digit IPC code and G05 or G06 belong to the relevant

technological fields if the 4 digit code belongs to that group. We checked extensively the

IPC/CPC codes and sampled patents from each category to ensure that the procedure

delivered reasonable results.

Table 1 give some examples of 6-digit IPC/CPC codes in machinery with the preva-

lence of automation keywords, their rank within machinery 6 digit codes with at least 100

patents but also the prevalence of the most important subcategories (automat*, robots

and CNC). IPC/CPC codes associated with robotics (B25J) have the highest prevalence

numbers with up to 91% patents in B25J5 which contain at least one of the keywords.

Yet, there are also codes associated with machine tools at the top of the distribution

such as B23Q15 and codes associated with devices used in the agricultural sector such as

A01J7. B24B49 is a code close to the threshold we use to delimit automation patents (it

is contained in the broader definition but not the stricter one). The last four IPC/CPC

codes are examples with a low prevalence of automation keywords. The table also shows

that the different sub-measures do not capture the same technologies: the robotic codes

are ranked highly thanks to their share of patents with the word “robot”, B23Q15 is

high because a lot of patents contain words related to CNC, and B65G1, because a lot

of patents contain words associated with automation directly.

Figure 1 gives the histograms of the prevalence of automation keywords for all

IPC/CPC 6 digit codes (panel a) and IPC/CPC 6 digit codes in the “machinery” tech-

10In fact, we make some small modifications: We exclude F41 and F42 which correspond to weapons
and ammunition and are in “other special machines”. In addition, we include B42C which corresponds
to machines for book production and B07C which corresponds to machines for postal sorting as both
correspond to equipment technologies and contain 6-digit codes with a high prevalence of automation
keywords; the 6-digit code G05B19 which corresponds to “programme-control systems” and contains a
large number of NC and CNC (computer numerically controlled) machine tools which are not attributed
IPC codes in the machine tools technological field; and the 6-digit code B62D65 which concerns engine
manufacturing even though the rest of the B62D code is about the vehicle parts themselves.
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Code Description Number of All share Rank Robot Automat* CNC

patents (over 1009) share share share

B25J5 Manipulators mounted on wheels or on car-

riages.

504 0.91 1 0.87 0.27 0.01

B25J19 Accessories fitted to manipulators, e.g. for

monitoring or for viewing; safety devices

combined with or specially adapted for use

in connection with manipulators.

1001 0.89 2 0.85 0.22 0.04

B25J13 Controls for manipulators. 857 0.88 3 0.81 0.27 0.03

B25J9 Programme-controlled manipulators. 2809 0.86 4 0.79 0.29 0.07

B23Q15 Automatic control or regulation of feed

movement, cutting velocity or position of

tool or work.

591 0.79 7 0.09 0.36 0.65

A01J7 Accessories for milking machines or devices. 395 0.77 9 0.62 0.52 0

G05B19 Programme-control systems. 7133 0.70 16 0.22 0.39 0.25

B65G1 Storing articles, individually or in orderly ar-

rangement, in warehouses or magazines.

1064 0.58 29 0.18 0.46 0.01

B24B49 Measuring or gauging equipment for control-

ling the feed movement of the grinding tool

or work; Arrangements of indicating or mea-

suring equipment, e.g. for indicating the

start of the grinding operation.

608 0.42 75 0.12 0.18 0.19

B65H7 Controlling article feeding, separating, pile-

advancing, or associated apparatus, to take

account of incorrect feeding, absence of arti-

cles, or presence of faulty articles.

736 0.28 228 0.01 0.25 0.00

B23P6 Restoring or reconditioning objects. 613 0.26 266 0.07 0.06 0.05

A01B63 Lifting or adjusting devices or arrangements

for agricultural machines or implements.

264 0.24 306 0.01 0.20 0

B66D3 Portable or mobile lifting or hauling appli-

ances.

215 0.13 677 0.02 0.07 0.00

Table 1: Example of 6-digit IPC/CPC codes in relevant technological fields
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(a) For all IPC/CPC 6 digit codes (b) For IPC/CPC 6 digit codes in machinery
with at least 100 patents

Figure 1: Histogram of the prevalence of automation keywords for IPC/CPC 6 digit codes

nological field. The histograms show that most IPC/CPC codes have a low prevalence

of automation keywords and that the distribution is shifted to the right for the relevant

technological fields. Yet, a few codes have a high prevalence measure. Appendix B.1

gives additional statistics on the prevalence measures.

Consequently, we define technological groups with a prevalence measure above some

threshold. As our baseline we choose thresholds at the 90th and 95th percentiles of the

6 digit code distribution within the machinery technological field, which are given by

0.3864 and 0.4766 respectively. We then define a patent as an automation patent if it

belongs to at least one automation technological group (that is a 6 digit code, a pair of

4 digit codes, or a combination of 4 digit code and G05/G06).11 We refer to the two

classifications as auto90 and auto95 depending on the threshold used.

Figure 2 shows two automation patents, both are automated storage cabinet and are

counted as automation patents because they contain the IPC 6 digit code B65G 1. As

described in Table 1, B65G 1 corresponds to devices for storing articles and has a high

prevalence of automation keywords (0.58, which is above the 95th percentile threshold).

The patent of Figure 2a contains our keywords: a sentence with the words “automatic”

and “storing,” and another sentence with the word “robot.” The description strongly

suggests that this is indeed an automation patent. The patent of Figure 2b does not

11In practice, most automation patents in our dataset are automation patents because they belong
to at least one 6 digit automation code—see Appendix B.1 for more details.
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contain any of the keywords, but the description of the text still suggests a labor saving

innovation.

2.4 Measuring innovation and trends in automation innova-

tions

As already mentioned, an innovation in our empirical analysis corresponds to a patent

family. To ensure that we only capture innovations of a sufficiently high quality, we

restrict attention to patent families with patent applications in at least two countries,

which we refer to as biadic patents.12 Several studies have documented that patents

filed in several countries are of higher quality (e.g. Harhoff, Scherer and Vopel, 2003,

van Pottelsberghe de la Potterie and van Zeebroeck, 2008) and De Rassenfosse, Dernis,

Guellec, Picci and van Pottelsberghe de la Potterie (2013) and Dechezleprêtre, Ménière

and Mohnen (2017) show that biadic patents are already fundamentally different from

patents applied to in only one office and a better innovation indicator. In addition,

patents can be more or less broad across countries, for instance the same invention may

be covered by two patents in Japan but only one in the US. By focusing on biadic

patents, we only count such a case as one innovation.13

Figure 3 below shows the evolution of automation patents in the set of biadic patents.

Panel (a) shows that worldwide, the share of automation patents declines in the 90s

from 17% to 13% for the laxer auto90 measure and from 8.8% to 6.4% for the stricter

auto95 measure before increasing quickly to reach 21%for auto90 and 10.6% for auto95 in

2015—Figure A.5 in the Appendix shows that automation patents in machinery represent

between 1.9 and 3.6% of all patents with the auto90 definition. One interpretation is

that globalization made cheap low-skill labor abroad available in the 90s and contributed

to a temporary decline in automation, which has since reversed. Panel (b) computes the

share of automation patents for the auto95 measure for biadic patents conditional on

the patent being protected in certain countries. The graphs show that for UK, French,

German and US patents, the decline of the 90s is less pronounced and the rise of the 2000s

12The original definition of biadic patents correspond to patents in at least 2 of the 3 main offices
(EPO, USPTO and JPO), our definition is a generalization counting all patent offices. We check that
our results are robust to the original definition of biadic in section 5.6.

13We count patent applications and not granted patents because in certain patent office, notably
in Japan, a patent is only formally granted if the rights of the applicant are challenged. To restrict
attention to patent families of even higher quality, we carry robustness checks where we use patent
citations, or patents applied to more offices.
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(a) Example with keywords

(b) Example without keywords

Figure 2: Examples of automation patents from technological code B65G1, which are both
automated storage cabinets.
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Figure 3: Share of automation patents in machinery. Shares are computed for biadic patents.

is very stark. On the other hand, the decline of the 90s is more pronounced in Japan and

the recent growth more timid there. As a result while the share of automation patents

was the highest in Japan in the 80s and early 90s, it is now the lowest there. In the

Appendix, Figure A.5 reports the share of automation patents in machinery according

to the nationality of applicants, the trends are roughly similar but the share of Japanese

patents remains higher (suggesting that the relative decline in the share of automation

patents at the JPO is due to foreign firms). These country trends are similar with the

auto90 measure.

2.5 Validating our automation measure

To validate our automation measure, we use it in the framework of Autor, Levy and

Murnane (2003) (henceforth ALM), who show how computerization has been associated

with a decrease in routine tasks at the industry level in a cross-section analysis on U.S.

data from 1960 to 1998. Here, we provide a brief description of what we do, and we

refer the reader to Appendix B.2 for details. To measure automation innovations at the

sectoral level, we use USPTO patents which belong to the machinery technological field.

We then allocate patents to sectors according to their 4-digit IPC/CPC codes (at the

family level) using the concordance table provided by Lybbert and Zolas (2014). For

each sector j and each period θ, we compute the share of automation patents among

machinery patents applied for during this period. We denote this variable autjθ. We
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then run regressions of the type:

∆Tjkθ = β0 + βC∆Cj + βautautjkθ, (1)

where ∆Tjkθ represents the change in tasks of type k in industry j during period θ and

Cj is the measure of computerization in sector j (it is computed over the years 1984-1997

and used for all time periods θ). We take our tasks measures directly from ALM, and

therefore consider 5 types of tasks: nonroutine analytic, nonroutine interactive, routine

cognitive, routine manual and nonroutine manual. ∆Tjkθ is measured as 10 times the

annual within industry change in task input measured in percentile of the 1960 task

distribution (as in ALM). We consider 3 time periods for which we can compute our

automation intensity measure: 1970-1980, 1980-1990 and 1990-1998 (ALM also considers

1960-1970). The initial concordance mostly assigns codes to manufacturing sectors. As

a result, we can measure automation intensity for between 67 and 69 sectors (depending

on the time period) most of them in manufacturing (see full list in Table B.1). Our

automation measures are strongly correlated with each other (the coefficient is 0.86) but

not correlated with computerization (the coefficient is −0.04 for auto95 and −0.01 for

auto90).

Table 2, columns (1) to (5) reports the results for the auto95 measure. Columns

(3) and (4) show that sectors with a high share of automation patents in machinery

experienced a large reduction in both cognitive and manual routine tasks in each decade.

The coefficients of column (3) and (4) in panel B indicate that a 10 pp increase in the

share of automation patents is associated with a 3 centiles and 2.2 centiles annualized

decrease in labor input of routine cognitive and manual tasks in the 1980s. To interpret

a 10 pp increase, note that the standard deviation in the share of automation patents

in the 1980s is 0.09, so that a 1 standard deviation increase in the automation share

is associated with a decrease in routine cognitive and routine manual tasks of 2.7 and

1.9 centiles respectively. By comparison, the standard deviation of the computerization

variable is 0.06, so that a 1 standard deviation in computerization is associated with a

decrease in routine cognitive tasks of 0.8 centiles and essentially no change in routine

manual tasks (the computerization variable has a larger effect in the 90s).14

Since we are interested in the effect of low- and high- skill wages on automation and

do not measure the price of tasks directly, we also use the ratio of high-skill to low-

14The means of the share of automation in machinery are 0.06, 0.08 and 0.07 in the 70s, 80s and 90s,
and the standard deviations are 0.07, 0.09 and 0.09 (with the 95th percentile threshold).
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Table 2: Changes in task intensity and skill ratio across sectors and automation (auto95)

(1) (2) (3) (4) (5) (6)

Panel A: 1970 - 80, n=67

Share of automation -1.29 5.42 ***-17.27*** **-11.43** -1.15 ***0.27***

patents in machinery (5.10) (6.27) (6.59) (5.59) (7.46) (0.07)

D Computer use -6.86 -3.13 ***-19.51*** -3.46 *14.87* 0.07

1984 - 1997 (5.72) (7.04) (7.41) (6.28) (8.38) (0.08)

Intercept 1.06 **2.31** **3.07** ***2.69*** -1.75 ***0.05***

(0.95) (1.17) (1.23) (1.04) (1.39) (0.01)

R
2 0.02 0.01 0.20 0.07 0.05 0.21

Weighted mean D -0.05 2.17 -0.90 1.49 0.42 0.07

Panel B: 1980 - 90, n=67

Share of automation 10.09 **19.05** ***-30.00*** ***-21.61*** ***16.78*** ***1.33***

patents in machinery (7.14) (8.12) (6.76) (5.42) (6.04) (0.23)

D Computer use **24.80** *22.21* -13.24 -0.42 -6.49 0.29

1984 - 1997 (10.43) (11.85) (9.87) (7.91) (8.82) (0.33)

Intercept -2.62 -0.65 2.15 1.20 -2.13 -0.04

(1.70) (1.93) (1.61) (1.29) (1.44) (0.05)

R
2 0.12 0.14 0.27 0.20 0.11 0.37

Weighted mean D 1.86 4.17 -2.22 -0.59 -1.74 0.11

Panel C: 1990 - 98, n=67

Share of automation *11.06* *16.02* ***-22.81*** **-12.53** 6.66 ***0.77***

patents in machinery (6.08) (8.18) (6.54) (5.42) (6.28) (0.15)

D Computer use ***26.77*** **26.00** **-23.15** ***-24.87*** 7.48 ***0.66***

1984 - 1997 (8.35) (11.23) (8.98) (7.44) (8.62) (0.20)

Intercept *-2.36* -1.43 1.72 *2.27* *-2.40* *-0.06*

(1.37) (1.84) (1.47) (1.22) (1.41) (0.03)

R
2 0.19 0.15 0.25 0.23 0.03 0.41

Weighted mean D 2.45 3.79 -3.44 -2.36 -0.79 0.09

D H/L

Standard errors are in parentheses. Colums (1) to (5) of Panels A to C each presents a separate OLS regression of ten times the

annual change in industry-level task input between the endpoints of the indicated time interval (measured in centiles of the 1960 task

distribution) on the share of automation patents in machinery (defined with the 95th percentile threshold) and the annual percentage

point change in industry computer use during 1984 - 1997 as well as a constant. In Column (6), the dependent variable is the ratio of

high-skill (college graduates) to low-skill (high-school graduates and dropouts) workers. Estimates are weighted by mean industry share

of total employment in FTEs over the endpoints of the years used to form the dependent variable. * p<0.1; ** p<0.05; *** p<0.01

D Nonroutine

analytic

D Nonroutine

interactive

D Routine

cognitive

D Routine

manual

D Nonroutine

manual
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skill workers (defined as college graduates over high-school dropouts and high-school

graduates) as our dependent variable in cross-section regressions similar to 1.15 Column

(6) of Table 2 shows that sectors with a higher automation share also experienced a large

increase in the ratio of high-skill to low-skill workers. Panel B, for instance suggests that

a 10 pp increase in the share of automation patents is associated with an increase of 1.33

in the ratio of high-skill to low-skill workers in the 1980s.

In the Appendix, Table B.2 reproduces the same exercise for our laxer measure

(auto90) and obtains similar results. Figure B.3 provides scatter plots of the changes

in routine tasks and the share of automation patents in machinery. Finally, Table B.3

reproduces the same analysis separately for each education category (as ALM) and shows

that automation leads to a reduction of routine tasks and an increase in non-routine

manual tasks for high-school graduates (but in line with column (6) of Table 2 a large

share of the tasks changes at the industry level are explained by changes in educational

composition).

Overall, these results suggest that our automation measure captures a form of skill-

biased technical change, distinct from computerization and associated with a decrease

in routine tasks by low-skill workers. We can therefore use it to analyze the effect of

wages on automation innovation incentives.

3 A simple model

Before carrying our main empirical analysis, we now present a simple one period model

to clarify our argument. A manufacturing good is produced with a continuum of inter-

mediate inputs according to the Cobb-Douglas production function:

Y = exp

(∫ 1

0

ln y (i) di

)
,

where y(i) denotes the quantity of intermediate input i. The manufacturing good is

the numeraire. Each intermediate input is produced competitively with high-skill labor

(h1,i and potentially h2,i), low-skill labor li and potentially machines xi, according to the

production function:

yi = h1−β
1,i

(
γ (i) li + α (i) νν(1− ν)1−νxνi h

1−ν
2,i

)β
,

15The results are similar for the ratio of college graduates over high-school dropouts or college grad-
uates and some college over high school graduates and dropouts.
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where γ(i) is the productivity of low-skill workers and α(i) is an index which takes the

value 0 for non-automated intermediates and 1 for automated intermediates. ν and β

are fixed share parameters in (0, 1). Machines are specific to the intermediate input i.

If a machine is invented, it is produced monopolistically, 1 for 1 with the final good (so

that the monopolist charges a price px(i) ≥ 1.

At the beginning of the period, intermediate inputs are not automated, but for each

intermediate i, there is an innovator. The innovator manages to create a machine specific

to intermediate i with probability λ if she spends θλ2Y/2 units of manufacturing good,

where θ is a productivity parameter.

We solve the model in two steps, first we derive the profits realized by machines

producers, second we solve for the innovation decision. Consider an automated interme-

diate input (that is α(i) = 1), then the intermediate input producer is indifferent using

low-skill workers or machines together with high-skill workers in production whenever:

wνHp
1−ν
x = wL/γ(i).

As a result, the machine producer is in “Bertrand competition” with low-skill work-

ers. Given that a machine costs 1, the machine producer will charge a price px(i) =

max
(

(w/γ(i))
1

1−ν w
− ν

1−ν
H , 1

)
, and the intermediate input producer will use low-skill work-

ers whenever wL/γ(i) < wνH and machines otherwise. Therefore, the machine producer

can charge a higher price when low-skill wages are lower but has to charge a lower price

when high-skill wages are higher since high-skill workers and machines are complement.

Using that the manufacturing good is produced according to a Cobb-Douglas production

function, we have that p(i)y(i) = Y for all intermediates. Therefore, we can derive the

profits of the machine producer for intermediate i as:

πAi = max

(
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H , 0

)
νβY.

In turn, at the beginning of the period, the potential innovator solves maxλπAi −θ λ
2

2
Y ,

which gives the equilibrium innovation rate as:

λ =
νβ

θ
max

(
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H , 0

)
.
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As a result, the number of automation innovations is equal to:

Aut =
νβ

θ

∫ 1

0

(1− α (i)) max

((
1−

(
γ(i)

wL

) 1
1−ν

w
ν

1−ν
H

)
, 0

)
di.

This expression is increasing in the low-skill wage wL and decreasing in the high-skill

wage wH , with a smaller elasticity in absolute value. Intuitively, the incentive to replace

low-skill workers with machines (and high-skill workers) increases with low-skill wages

and decreases with high-skill wages.

4 Empirical Strategy and Data

4.1 Empirical strategy

We now take the predictions of our model to the data, but to conduct our analysis at the

firm level, we take advantage of the fact that many innovators sell to several countries.

We take the model of section 3 as a starting point, but think of the producers—the

target customers of the innovating firm’s automation machines—as being located in

different countries. The incentives of the producers to adopt automation technology is

determined by wages and other macroeconomic variables in their local market. As a

result, innovators’ decision to pursue automation research in the first place depends on

the wages that their potential customers face in different countries.16 Hence our problem

is similar to that of ADHMV and we follow a similar empirical approach.

In our baseline regression, we assume that a firm’s innovation in automation is given

by the following Poisson specification:

PATAut,i,t (2)

= exp

(
βwL lnwL,i,t−2 + βwH lnwH,i,t−2 + βXXi,t−2 + βKa lnKAut,i,t−2

+βKo lnKother,i,t−2 + βSa lnSPILLAut,i,t−2 + βSo lnSPILLother,i,t−2 + δi + δt

)
+ εi,t.

PATAut,i,t denotes the number of automation patents applied for by firm i in year t.

wL,i,t−2 and wH,i,t−2 denote the average low-skill and high-skill wages faced by the cus-

tomers of firm i at time t − 2 (we explain below how we proxy for them). Section 3

16If the automation innovation is internal to the firm, then the argument follows if one interprets the
innovator’s customers as the different downstream production sites of the same firm.
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predicts that βwL > 0: an increase in the average low-skill wage faced by the customers

of firm i leads firm i to undertake more automation innovations. It also predicts that

βwH < 0, an increase in the average high-skill wage faced by firm i’s customers reduce

the incentive to invest in automation technologies which are complementary to high-skill

workers. Xi,t represents a vector of additional controls (GDP per capita, GDP gap and

labor productivity), which are built similarly to the wage variables. Controlling for GDP

per capita or labor productivity allows us to control for changes in productivity in the

country where machines are potentially sold and controlling for the GDP gap allows us

to capture business cycle fluctuations and changes in demand. We include this control

because the literature finds that innovation in general is affected by the business cycle

(see for instance Aghion et al., 2010).

KAut,i,t−2 and Kother,i,t−2 denote the stocks of knowledge in automation and in other

technologies of firm i at time 2. These knowledge stocks are computed using the perpet-

ual inventory method.17 SPILLAut,i,t−2 and SPILLother,i,t−2 similarly denote the stocks

of external knowledge (spillovers) in automation and in other technologies which firm i

has access to at time 2 (we explain below how these are constructed). δi is a firm fixed

effect and δt is a time fixed effect. Finally, εi,t is an error term, which, we assume, is

uncorrelated with the other right-hand side variables. The right-hand side variables are

lagged by 2 years in the baseline regressions to reflect the delay between changes in R&D

investments and patent applications—we investigate the role of our timing assumption

below.

To control for firm-level fixed effects, we use several econometric techniques. Our

baseline specification uses the Hausman, Hall and Griliches (1984) method, denoted

HHG, which is the count data equivalent to the within groups estimator. Technically,

this method is inconsistent with equation (2) because it requires strict exogeneity and

therefore prevents the lagged dependent variable from appearing on the right-hand side

(which it does through the knowledge stock KAut,i,t−2). Yet, the bias is small with large

T , which is the case in our baseline regression (14 years). Second, we use the Blundell,

Griffith and Van Reenen (1999) method (henceforth BGVR), which proxies for the fixed

effect by using the pre-sample average of the dependent variable.

17Specifically we use a depreciation rate of 15%. In addition, to deal with the log specification, we
add two dummy indicator variables for when the knowledge stocks are zero.
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Table 3: Low-skill wages and the skill-premium in manufacturing sector for selected countries

Country Low-skill wages (2005$) Skill-premium (HS wages / LS wages)
1995 2009 1995 2009

India 0.21 0.31 4.79 4.98
China 0.50 0.95 1.56 2.00
Mexico 1.50 1.03 3.90 4.20
USA 12.50 14.70 2.46 3.02

Finland 19.40 36.20 1.20 1.46
U.K. 19.70 34.40 1.97 2.07

Belgium 29.50 41.90 1.56 1.46

Note: Wages data, taken from the World Input Output Database, covering 40 countries. Table shows
manufacturing low-skill wages deflated by (manufacturing) producer price index (indexed to 2005) and
converted to US dollars using average 2005 exchange rates. Skill-premium is the ratio of high-skill to
low-skill wages. Table shows the three countries with the lowest low-skill wages in 2009, the three with
the highest and the United States.

1

4.2 Macroeconomic data

Our macroeconomic variables come primarily from the 2013 release of the World Input

Output Tables, henceforth, WIOD (Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer,

R. and de Vries, G. J., 2015). The database contains information on hourly labor costs

across groups of educational attainment – low-skill, middle-skill and high-skill workers

– for the manufacturing sector from 1995 to 2009 as well as value added and producer

price indices. The dataset contains information on 40 countries, including all 27 EU

countries of 2009. For each skill-group country pair we construct real hourly labor costs

by dividing nominal labor costs by the producer price index for manufacturing (indexed

to 2009). We convert everything into dollars using the average exchange rate for 2005.

Although our measures cover all labor costs, we refer to those as wages from here on for

simplicity. The countries with the highest low-skill wages in 2005 are Belgium, Finland

and the U.K. with 41.9, 36.2 and 34.4 respectively (in 2005 dollars). The countries with

the lowest high-skill wages in 2009 are India, China and Mexico with $0.31, $0.95 and

$1.03, respectively. The corresponding number for the US is $14.7. Table 3 summarizes

these values for these seven countries. It further shows that the ratio of high-skill to low-

skill wages varies considerably across countries, even among those that have relatively

similar low-skill wages. The skill-premium in the United States rose from 2.46 to 3.02

during this period while it slightly declined in Belgium from 1.56 to 1.46.
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4.3 Computing firm’s market-specific wages and spillovers

To turn macroeconomic data such as wages and productivity which vary at the country

level into data which vary at the firm level, we would like to take advantage of firms’

different market exposure. That is we would like to write the average low-skill wage

faced by a firm’s customers wL,i,t as

wL,i,t =
∑
c

ωi,cwL,c,t, (3)

where wL,c,t is the low-skill wage in country c at time t and ωi,c is the weight of country

c for firm i. Firms may have different exposure to different markets because of trade

barriers, heterogeneous tastes of customers, or various historical accidents if exporting

involves sunk cost. In the absence of sales data for all firms involved in automation

innovations, we expand on the ADHMV method, and we look at the firm’s pre-sample

history of patent filing.

When a firm applies for a patent, it applies for protection in a specific jurisdiction,

and it has to pay a fixed cost whenever it wants to expand the geographic coverage of

a patent. Therefore, whether a firm protects its innovations in a country or not reflects

its intent to sell or license its technology in that country (see e.g. Eaton and Kortum,

1996). Taking this into account, we compute for each firm, the fraction of its patents

in the relevant technological field of machinery (not only automation) protected in each

country c, ω̃i,c during a pre-sample period. We only count patents in the machinery

because some of the biggest innovators in automation technologies are large firms (Sony,

Siemens, etc...) which produce a wide array of products with different specialization

patterns across industries. We restrict attention to patent families with at least one

citation (not counting self-citations) to exclude the lowest quality patents.18

Patenting indicates whether the firm intends to sell in that market but each market

will be of different sizes. A larger market is likely to host more firms so that the market

size per firm will generally not grow 1 for 1 with size. To take this into account we

weight each market c by GDP 0.35
0,c , where GDP0,c is the 5 year average GDP of country

c at the end of the pre-sample period.19 As a result, we get that the weight of country

18Including all patents generally increases the weight of the country with the most patents, in line with
the finding that poor quality patents tend to be protected in fewer countries. However, further increasing
the threshold from 1 to more citations does not significantly change the distribution of weights.

19Here we use Eaton et al. (2011) who estimate that the elasticity of French exports to the GDP of
the destination country is 1 while the elasticity of the number of French exporters is 0.65, which gives
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c for firm i is given by:

ωi,c =
ω̃i,cGDP

0.35
0,c∑

c′
ω̃i,c′GDP 0.35

0,c′
.

The weights are computed pre-sample to ensure that they are weakly exogenous as patent

location could be influenced by shocks to innovation. We use patent data from 1997-2011,

which allows us to include data from 40 countries, and the weights are computed over

the pre-sample period 1970-1994. We use the same weights to compute firm customers’

average high-skill wage, productivity or GDP per capita.

ADHMV verify that a similar method account well for the sales distribution of major

auto manufacturers. Coelli, Moxnes and Ulltveit-Moe (2016) carry out a more systematic

exercise and verify that a similar method accounts well for firm exports across 8 country

groups in a representative panel of 15,000 firms from 7 European countries.20

We also follow ADHMV method to compute the spillover variables. Patent data

report where inventors are located, combining this information across patents from the

same firm, we obtain a measure of where a firm’s research centers are located. As

long as knowledge spillovers have a geographical component (as shown by Hall, Jaffe

and Trajtenberg, 1993), we can use this information to build a measure of the stock

of knowledge to which a firm is exposed. More specifically, we compute the stocks of

automation patents in each country, the stock of other patents, and the geographical

distribution of firms’ research centers pre-sample in 1970-1994. Then, for each firm, we

use those weights in order to build a weighted average of the knowledge stocks.21

To link patents with their owners, we use Orbis Intellectual Property, available under

a commercial license, which links 40 million patents to companies available in the Orbis

financial database. For each of these around 40 million patents, Orbis Intellectual Prop-

erty provides a link to a (usually) unique firm identifier. A complication arises when such

firms are members of a business group, in which case the R&D decision might happen

at either the group or the subsidiary level. The corporate ownership data in Bureau van

Dijk’s Orbis allow to identify the global owner of every firm. Yet, treating all firms in

a group as one agent deciding on innovation strategies is too aggressive in many cases

an elasticity of the average export by firm of 0.35. ADHMV use a power of 1 on GDP instead of 0.35.
We use different values in robustness checks.

20There are three differences between our weights and those of these previous papers: we use the
empirically founded exponent of 0.35 on GDP, we restrict attention to cited patent families and to
patents in certain technological fields.

21The country stocks are built using the perpetual inventory method with a depreciation rate of 15%.
We add dummy variables for when the spillover stocks are zero.
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Table 4: Descriptive statistics

Variable Auto90 Auto95
Automation patents per year 1997-2011 per year 1997-2011

Mean 0.69 11.02 0.60 9.63
Standard deviation 3.57 50.01 3.10 43.53
p50 0 2 0 2
p75 0 6 0 5
p90 1.33 17 1.2 15
p95 2.87 38 2.4 34
p99 11.47 159 10.13 141

Number of firms 6515 4323

Note: Summary statistics for the firms used in our baseline regression.

1

since not all subsidiaries act jointly or are in the same sector. Therefore, for firms within

the same business group, we normalize company names by removing non-firm specific

words such as country names or legal entity types from the name and then merge firms

with the same normalized name. All other firms are treated as separate entities.

4.4 Descriptive statistics

Our basic dataset consists of applicants who have applied to at least one biadic automa-

tion patents between 1997 and 2011 (included) and who have at least one patent prior

to 1995 which can be used to compute weights. This corresponds to a set of 4323 firms

when we consider the auto95 (using the 95th percentile cut-off for keywords) measure

and 6515 firms for the auto90 (using the 90th percentile) measure.. Table 4 gives some

descriptive statistics on the number of automation patents per year and the country

weights for the firms in our sample. Over the period 1997-2011, the median firm in the

sample has filed two automation patent applications (with either definition). The distri-

bution is very skewed and the 99th percentile firm in the sample has filed 159 automation

patents for auto90 and 141 for auto95.

5 Main Empirical Results

5.1 Baseline results

Our baseline results are contained in Table 5. The dependent variable is the number of

biadic patents that qualify as automation when we use a threshold of the 95th percentile

for 6 digit IPC/CPC codes (auto95). The regression is carried over the years 1997-2011

for the dependent variable and 1995-2009 for the independent variables, a constraint
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imposed by the availability of wage data for a large number of countries. Skill-dependent

wages are measured in the manufacturing sector and we deflate by the producer price

index in the same sector.

Table 5: Baseline regressions: effect of wage on automation innovations (auto95)

Dependent variable Auto95
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.6329*** 2.2244*** 1.8081*** 1.8224*** 2.1059*** 2.1728*** 2.2607*** 2.0408*** 2.2607***
(0.3363) (0.5141) (0.5032) (0.5056) (0.5049) (0.5229) (0.5414) (0.5687) (0.3357)

High-skill wage -0.9256* -1.0152** -1.1610** -1.3894*** -1.4557*** -1.3794*** -1.6030*** -1.3794***
(0.5312) (0.4669) (0.4837) (0.4879) (0.4947) (0.5110) (0.4994) (0.4307)

Stock automation -0.1596*** -0.1609*** -0.1759*** -0.1748*** -0.1736*** -0.1761*** -0.1736***
(0.0453) (0.0453) (0.0458) (0.0462) (0.0464) (0.0464) (0.0320)

Stock other 0.6506*** 0.6497*** 0.6566*** 0.6567*** 0.6577*** 0.6560*** 0.6577***
(0.0489) (0.0491) (0.0506) (0.0506) (0.0505) (0.0506) (0.0314)

GDP gap -3.8950* -3.8791** -2.8339 -4.1136** -2.8339*
(2.2398) (1.8985) (2.3664) (1.9061) (1.7047)

GDP per capita 0.4238 -0.6134 -0.6134
(0.6544) (0.8557) (0.9014)

Spillovers automation 0.4930* 0.5256** 0.6284** 0.5308** 0.6284**
(0.2530) (0.2548) (0.3123) (0.2534) (0.2459)

Spillovers other -0.2604 -0.2839 -0.3336 -0.3051 -0.3336*
(0.2066) (0.2071) (0.2106) (0.2074) (0.1842)

Labor productivity 0.4102
(0.6063)

Observations 64845 64845 64845 64845 64845 64845 64845 64845 64845
Firms 4323 4323 4323 4323 4323 4323 4323 4323 4323

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp.
spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level for columns (1)-(8) and at
the country level for column (9). * p < 0.1; ** p < 0.05; *** p < 0.01

1

Column (1) shows that without any controls, a higher (firm customer’s) low-skill

wage in manufacturing predicts more automation innovation. The estimated coefficient

is an elasticity so that an increase of 10% in the low-skill wage is associated with 16.3%

more automation patents. Column (2) introduces high-skill wages as a control. As pre-

dicted by the model, high-skill wages enter with a negative coefficient which is smaller

in magnitude than the low-skill wage. Column (3) adds control for the firm’s stock of

knowledge: a higher stock of automation knowledge within the firm reduces the amount

of automation innovation, suggesting that firms do not become more specialized in au-

tomation technologies over time. Column (4) controls for the GDP gap, automation

innovations appear to be countercyclical, in line with Jaimovich and Siu (2012)’s obser-

vation that “routine jobs” are eliminated during recessions; and GDP per capita which

is insignificant. Columns (5) and (7) repeat columns (3) and (4) but include knowledge

spillovers: here, we find evidence of path dependence, firms which are exposed to more

knowledge in automation technologies innovate more in automation (with an elasticity

between 0.49 and 0.63 depending on specifications). Column (6) removes the GDP per

capita control. Column (8) replaces GDP per capita with labor productivity (value
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added per hours worked in the manufacturing sector) as a control. Finally, Column

(9) repeats column (7) but clusters standard errors at the country level instead of the

firm level to capture correlated shocks at the country level. The coefficient on low-skill

wages is always highly significant. Once high-skill wages are included as a control, it is

also very consistent across specifications, with elasticities between 1.81 and 2.26. The

coefficient on high-skill wages is negative, with an elasticity between −1.38 and −1.6

once spillovers are introduced.

Table 6: Baseline regressions: effect of wage on automation innovations (auto90)

Dependent variable Auto90
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 1.4528*** 2.0365*** 1.4275*** 1.4430*** 1.7242*** 1.7646*** 1.8406*** 1.6118*** 1.8406***
(0.3001) (0.4369) (0.4430) (0.4515) (0.4397) (0.4459) (0.4642) (0.4670) (0.3661)

High-skill wage -0.8962** -0.6574* -0.6387* -1.0517*** -1.1011*** -0.8961** -1.3039*** -0.8961**
(0.4258) (0.3696) (0.3883) (0.3879) (0.3910) (0.4016) (0.4065) (0.4172)

Stock automation -0.0896** -0.0879** -0.1014*** -0.1007*** -0.1003*** -0.1019*** -0.1003***
(0.0370) (0.0372) (0.0366) (0.0367) (0.0369) (0.0368) (0.0362)

Stock other 0.5970*** 0.5963*** 0.6011*** 0.6009*** 0.6025*** 0.6003*** 0.6025***
(0.0428) (0.0428) (0.0435) (0.0435) (0.0432) (0.0435) (0.0585)

GDP gap -3.0549* -4.0904** -2.3914 -4.3637*** -2.3914**
(1.8304) (1.5943) (1.8418) (1.5844) (1.1484)

GDP per capita -0.1549 -1.0427* -1.0427
(0.5396) (0.5958) (0.6907)

Spillovers automation 0.8673** 0.9138*** 1.1212*** 0.9333*** 1.1212***
(0.3473) (0.3507) (0.3806) (0.3484) (0.2463)

Spillovers other -0.5616** -0.5979** -0.7299** -0.6360** -0.7299***
(0.2794) (0.2807) (0.2873) (0.2805) (0.1919)

Labor productivity 0.5181
(0.4584)

Observations 97725 97725 97725 97725 97710 97710 97710 97710 97710
Firms 6515 6515 6515 6515 6514 6514 6514 6514 6514

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional
Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables (resp.
spillover variables) include a dummy for no stock (resp. no spillover). Standard errors are clustered at the firm-level for columns (1)-(8) and
at the country level for column (9). * p < 0.1; ** p < 0.05; *** p < 0.01

1

Table 6 then repeats exactly Table 5 but for the auto90 measure of automation. The

results are very similar but the coefficients on low-skill wages tend to be of a smaller

magnitude: the elasticity is between 1.61 and 1.84 when spillovers are introduced versus

2.04 and 2.26 in the previous table. The magnitude of the coefficient on high-skill wages

is also smaller. These results are in line with the idea that the auto95 measure is a

stricter measure of automation.

5.2 Foreign versus domestic firms and wages

The key feature of our empirical approach is that by exploiting firm level variations in-

stead of country-level variations, we can avoid issues of reverse causality: since each firm

is small relative to a country, its own innovations should have little effect on the level
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of wages. This argument, however, requires that our firms are sufficiently diversified

geographically (i.e. if all German firms only patent in Germany, then we are back to

regressing country-level innovation on country-level macroeconomic variables). There-

fore, in Table 7, we restrict attention to sufficiently multinational firms for the auto95

measure (the results are similar with auto90). Column (1) reproduces Column (6) of

Table 5. Column (2) restricts attention to firms where the largest weight (the “domestic

weight”) is smaller than 0.9, Column (3), (4), (5) and (6) where it is smaller than 0.8,

0.7, 0.6 and 0.5 respectively. The coefficient on low-skill wages remains positive and

significant in columns (2), (3) and (4) with a similar magnitude. As we further restrict

the sample, the coefficient on low-skill wages declines and becomes insignificant. Column

(7) carries the regressions for firms where the domestic weight is between 0.3 and 0.7

and here again we recover a significant coefficient with an elasticity close to the one in

column (4). Therefore the non-significant coefficients of columns (5) and (6) are driven

by the behavior of the most international firms which appears to be noisier.22

Table 7: Restricting on multinational firms

Dependent Variable Auto95
(1) (2) (3) (4) (5) (6) (7)

Domestic weight all (100%) < 90% < 80% < 70% <60% <50% 70%-30%

Low-skill wage 2.1728*** 1.8408** 2.1559** 1.9698* 1.2568 0.4702 1.9523*
(0.5229) (0.8326) (0.8626) (1.0635) (1.1560) (1.4495) (1.1771)

High-skill wage -1.4557*** -0.7928 -0.8857 -0.8204 -0.6852 0.0176 -0.9269
(0.4947) (0.7120) (0.7175) (0.8475) (0.9208) (1.1601) (0.9501)

GDP gap -3.8791** -5.4895** -6.9538** -2.6282 -2.9073 -5.1267 -0.3997
(1.8985) (2.7530) (3.1956) (3.8563) (5.1079) (6.9579) (3.9897)

Stock automation -0.1748*** -0.1846*** -0.2356*** -0.2190*** -0.2277*** -0.2127*** -0.1985***
(0.0462) (0.0547) (0.0573) (0.0626) (0.0605) (0.0689) (0.0702)

Stock other 0.6567*** 0.6821*** 0.7469*** 0.7301*** 0.7387*** 0.7557*** 0.6598***
(0.0506) (0.0639) (0.0656) (0.0683) (0.0738) (0.0835) (0.0676)

Spillovers automation 0.5256** 0.5985* 0.7751** 0.9272** 1.1499*** 1.0586** 0.8149*
(0.2548) (0.3089) (0.3171) (0.3761) (0.3615) (0.4174) (0.4324)

Spillovers other -0.2839 -0.4228* -0.6331*** -0.7536*** -0.9693*** -1.0152*** -0.6165**
(0.2071) (0.2251) (0.2272) (0.2651) (0.2693) (0.3204) (0.2941)

Observations 64845 47670 44460 40680 35910 30345 26910
Firms 4323 3178 2964 2712 2394 2023 1794

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Es-
timation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year
dummies. All regressions include a dummy for no stock and no spillover. Column (1) contains all firms, (2) restricts
attention to firm with a domestic weight below 90%, (3) below 80%, (4) below 70%, (5) below 60%, (6) below 50%,
(7) between 70% and 30%. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01

1

To further assess the role played by domestic versus foreign wages, we separate do-

22A possible explanation may be that those firms have a less consistent trade pattern, so that the
presample weights may be a worse predictor of the wages of their potential customers, and following
changes in wages across countries, they may react by changing their trade pattern instead of their
innovation pattern.
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mestic from foreign variables in Table 8. Domestic variables correspond to the country

with the largest weight. Foreign variables correspond to the weighted average of country-

level variables excluding the domestic country (the weights are re-normalized to still sum

up to 1). Given that the domestic variables vary only at the country level, we system-

atically cluster at the country level for this table. Column (1) and (4) show the results

for the auto95 and auto90 measures respectively: we find a significant effect of low-skill

wages in the former case and a positive but non-significant effect in the second case.

These coefficients are not really comparable to those of the baseline regressions though,

because first, a 1% increase in either the domestic or foreign component of wages is

not the same as a 1% increase in overall wages and second, firms vary in international

exposure so an increase in foreign wages will not matter equally to all firms. To take

this into account, in columns (3) and (6), we pre-multiply the log of domestic (or for-

eign) wages by the share of domestic (or foreign) wages in total wages averaged over

the sample period. We do the same thing with GDP per capita and since the GDP gap

variable is already in logs we simply interact the domestic (or foreign) GDP gap with

the domestic (or foreign) weight.23 As a result the coefficient on foreign low-skill wage

can be interpreted as the elasticity of automation with respect to low-skill wages from

a shock coming entirely through a change in the foreign component of low-skill wages.

The coefficient on foreign low-skill wages is now of a magnitude closer to that in column

9 of Tables 5 and 6 but it is only significant in the auto95 case. In columns (2) and (5),

the share of domestic (or foreign) wages is fixed at the beginning of the sample. The

results are very similar.

23Since our regressions include firm fixed effects, the coefficient in front of logwL,i,t in (2) corresponds
to the effect of a change in logwL,i,t on automation innovations. Denote ωi,D the domestic weight and
ωi,F = 1 − ωi,D the total foreign weight with wL,D,t the wage in the domestic country and wL,F,t the
average wage in the foreign country. Then we can decompose a small change in logwL,i,t as:

d logwL,i,t = d log (ωi,DwL,D,t + ωi,FwL,F,t) =
ωi,DwL,D,0

wL,i,0
d logwL,D,t +

ωi,FwL,F,0

wL,i,0
d logwL,F,t

where ωi,DwL,D,0/wL,i,0 denotes the values around which the change is computed—which we take as
the average value over the sample period or the value at the beginning of the period. This shows that
if

ωi,FwL,F,0

wL,i,0
d logwL,F,t increases by 0.01 then wL,i,t increases by 1%. The same reasoning applies to

high-skill wages or GDP per capita. In (2), GDP gap enters directly in levels as an average of logs so
we directly interact the domestic and foreign variables with ωi,D and ωi,F .
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Table 8: Separating domestic and foreign variables

Dependent variable Auto95 Auto90
(1) (2) (3) (4) (5) (6)

Domestic Low-skill wage 1.6035*** 3.1167*** 3.1416*** 1.1727*** 2.1766*** 2.3232***
(0.2409) (0.3863) (0.3762) (0.2706) (0.5242) (0.5175)

Foreign Low-skill wage 0.9413** 1.6473* 1.7323* 0.6237 1.4191 1.5079
(0.4428) (0.9881) (0.9798) (0.4793) (1.0964) (1.0565)

Domestic High-skill wage -0.6814*** -1.6779** -1.5802** -0.5472* -1.0204* -1.1113**
(0.2292) (0.7961) (0.7704) (0.2984) (0.5937) (0.5553)

Foreign High-skill wage -0.9958 -1.0067 -1.1805 -0.5636 -0.8075 -0.9260
(0.8532) (0.9227) (0.8469) (0.7625) (1.0807) (1.0045)

Domestic GDP gap -0.1097 -2.1162 -1.7671 -1.0121 -1.7032 -1.7645
(0.6047) (2.5420) (2.4605) (0.7161) (2.2561) (2.2712)

Foreign GDP gap -1.9222 5.2820** 5.4363** -0.7061 4.2047 4.2659
(3.1672) (2.4856) (2.4213) (1.7024) (2.6275) (2.6575)

Domestic GDP per capita -1.1872** -1.5208 -1.6642* -0.9786** -1.5229 -1.4590
(0.4735) (1.0012) (0.9474) (0.4919) (0.9665) (0.9232)

Foreign GDP per capita -0.6297 -2.9469*** -2.9139*** -0.2487 -3.0092*** -2.9803***
(1.4455) (1.0567) (0.9570) (1.0471) (0.5490) (0.5862)

Stock automation -0.1541*** -0.1534*** -0.1551*** -0.0529 -0.0574** -0.0588**
(0.0381) (0.0353) (0.0353) (0.0342) (0.0291) (0.0291)

Stock other 0.6508*** 0.6413*** 0.6412*** 0.5827*** 0.5755*** 0.5751***
(0.0480) (0.0542) (0.0539) (0.0707) (0.0772) (0.0770)

Spillovers automation 0.8699*** 1.2876*** 1.2605*** 1.2287*** 1.5698*** 1.5630***
(0.2853) (0.2490) (0.2545) (0.2540) (0.1660) (0.1596)

Spillovers other -0.5635** -0.8701*** -0.8480*** -0.9431*** -1.2362*** -1.2349***
(0.2807) (0.1963) (0.2021) (0.2939) (0.1738) (0.1871)

Observations 50025 50025 50025 73395 73395 73395
Firms 3335 3335 3335 4893 4893 4893

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods.
Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects
and year dummies. All regressions with stock variables include a dummy for no stock and no spillover. In
columns (2) and (5) domestic (resp. foreign) low-skill wages are interacted with the share of domestic (resp.
foreign) low-skill wages in total low-skill wages computed at the beginning of the sample, and similarly for
high-skill wages and GDP per capita. In columns (3) and (6), they are interacted with the average shares
over the sample period instead. In columns (2), (3), (5) and (6), domestic (resp. foreign) GDP gap is inter-
acted with the domestic (resp. foreign) weight. Standard errors are clustered at the country-level * p < 0:1;
** p < 0:05; *** p < 0:01
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Table 9: Alternative estimators

Dependent Variable Auto95 Auto90
(1) (2) (3) (4) (5) (6) (7) (8)

Poisson ZI Poisson Neg Bi ZI Neg Bi Poisson ZI Poisson Neg Bi ZI Neg Bi

Low-skill wage 1.6085*** 1.4610*** 0.8518*** 0.9538*** 1.2614*** 1.3168*** 0.6102** 0.6727***
(0.3520) (0.3560) (0.3181) (0.3192) (0.2845) (0.2886) (0.2411) (0.2420)

High-skill wage -0.5302 -0.5622 -0.3182 -0.3855 -0.2388 -0.4622* 0.0583 0.0040
(0.3464) (0.3529) (0.2886) (0.2888) (0.2601) (0.2670) (0.2180) (0.2181)

GDP gap -5.6892** -5.1981** -4.2473** -4.2617** -4.8190*** -4.3705** -5.1212*** -5.0264***
(2.3188) (2.3352) (2.0795) (2.0376) (1.8297) (1.8457) (1.5985) (1.5805)

Stock automation 1.1431*** 0.9004*** 1.1541*** 0.9641*** 1.1692*** 0.9353*** 1.2025*** 1.0303***
(0.0133) (0.0144) (0.0147) (0.0163) (0.0125) (0.0132) (0.0128) (0.0146)

Stock other 0.1100*** 0.0849*** 0.1528*** 0.1371*** 0.1046*** 0.0886*** 0.1532*** 0.1407***
(0.0077) (0.0077) (0.0063) (0.0064) (0.0059) (0.0059) (0.0050) (0.0050)

Spillovers automation 0.0375 0.0190 0.1545*** 0.1298*** 0.1081*** 0.0657 0.1437*** 0.1302***
(0.0450) (0.0463) (0.0436) (0.0425) (0.0393) (0.0418) (0.0364) (0.0357)

Spillovers other 0.0124 -0.0010 -0.1300*** -0.1034** -0.0733* -0.0514 -0.1192*** -0.1057***
(0.0456) (0.0469) (0.0439) (0.0429) (0.0384) (0.0413) (0.0355) (0.0349)

Observations 64845 64845 64845 64845 97710 97710 97710 97710
Firms 4323 4323 4323 4323 6514 6514 6514 6514

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. All Estimations
are BGVR. Columns (1) and (5) show the estimates of Poisson, Columns (2) and (6) Zero-Inflated Poisson, Columns (3) and (7)
Negative Binomial, Columns (4) and (8) Zero-Inflated Negative Binomial. All regressions include firm fixed effects and year dum-
mies. All regressions include a dummy for no stock and no spillover. Standard errors are clustered at the firm-level. * p < 0.1; **
p < 0.05; *** p < 0.01

1

5.3 Different estimators and country-year fixed effects

Table 9 reproduces the baseline regression of column (6) in Table 5 for different estimators

for the auto95 and auto90 measures. Columns (1) and (5) use the BGVR method to

proxy for firm fixed effects. This has the advantage of addressing Nickell’s bias (though

the inclusion of the stock of automation variable did not materially affect our results in

Table 5), but the disadvantage of not controlling well for firm’s heterogeneity if firms’

pre-sample average of the dependent variable is a poor proxy for firm’s future patenting

activity. We find a positive effect of low-skill wages with elasticities of 1.6 for auto95 and

1.3 for auto90, the coefficient on the high-skill wage is negative nearly significant at 10%

for auto95 and not significant for auto90. Columns (2) to (4) and (6) to (8), also use the

BGVR method but change the estimator to Zero-Inflated Poisson, Negative Binomial

and Zero-Inflated Negative Binomial, the results on low-skill wages stay similar (with

smaller coefficients for the negative binomial regressions).

The BGVR method allows us to introduce country-year fixed effects. We do so in

Table 10, where the country of a firm is still defined as the country with the largest

weight. This allows us to fully address the issue that the domestic component of wages

may be endogenous to firms’ behavior (Table 8 does not fully address the issue because

if domestic wages are endogenous, they would be a bad control). Columns (1) and (4)
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Table 10: Country-year fixed effects

Dependent variable Auto95 Auto90
(1) (2) (3) (4) (5) (6)

Low-skill wage 1.7718*** 1.4633***
(0.4661) (0.3779)

Foreign low-skill wage 3.5296*** 3.2784*** 1.9838*** 1.7355**
(0.8956) (0.8608) (0.7475) (0.7220)

High-skill wage -1.5385*** -1.0635***
(0.4657) (0.3823)

Foreign high-skill wage -2.8185*** -2.6335*** -1.6570** -1.4671*
(0.8856) (0.8561) (0.7920) (0.7686)

GDP gap 0.7801 0.0749
(4.7075) (3.6713)

Foreign GDP gap 0.2910 0.3056 -0.1523 -0.1109
(4.7918) (4.8020) (4.1079) (4.1197)

Stock automation 1.1825*** 1.1840*** 1.1841*** 1.1657*** 1.1714*** 1.1710***
(0.0143) (0.0154) (0.0154) (0.0124) (0.0133) (0.0134)

Stock other 0.1003*** 0.0920*** 0.0917*** 0.1028*** 0.0940*** 0.0938***
(0.0074) (0.0078) (0.0078) (0.0059) (0.0062) (0.0062)

Spillovers automation 0.0012 -0.0448 -0.0409 0.0323 -0.0008 0.0002
(0.0504) (0.0527) (0.0524) (0.0432) (0.0453) (0.0451)

Spillovers other 0.0419 0.0881 0.0846 0.0077 0.0394 0.0384
(0.0527) (0.0556) (0.0553) (0.0435) (0.0454) (0.0452)

Observations 64845 50025 50025 97710 73395 73395
Firms 4323 3335 3335 6514 4893 4893

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two pe-
riods. Estimation is by BGVR Poisson regressions. All regressions include country-year dummies. All
regressions with stock variables include a dummy for no stock and no spillover. In columns (2) and (5)
foreign low-skill wages are interacted with the share of foreign low-skill wages in total low-skill wages
computed at the beginning of the sample, and similarly for high-skill wages and GDP per capita. In
columns (3) and (6), they are interacted with the average shares over the sample period instead. In
columns (2), (3), (5) and (6), foreign GDP gap is interacted with the foreign weight. Standard errors are
clustered at the firm-level * p < 0:1; ** p < 0:05; *** p < 0:01

1reproduce our baseline regressions with total wages for the auto95 and auto90 measures.

We find positive and significant effects for low-skill wages with magnitudes similar to

those in Tables 5, 6 and 9, the coefficient on high-skill wages is also significant and

negative. In the other columns we isolate the foreign component of wages (or the GDP

gap) as we did Table 8. The foreign wages are pre-multiplied by the share of foreign

wages in total wages computed at the beginning of the sample (columns (2) and (5)) or

averaged over the sample (columns (3) and (6)). Low-skill wages have a positive and

significant coefficient with elasticities of 3.5 and 3.3 for the auto95 measure and 2 and

1.7 for the auto90 measure. Table A.15 in the Appendix reproduces this Table but with

standard errors clustered at the country level. The results are very similar.

5.4 Non-automation innovations

In contrast with our baseline result, we now look at the effect of wages on innovations

that score lower on our automation metric. To find non-automation patents (or more
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Table 11: Non-automation innovations

Dependent Variable Placebo Pharma Placebo Chemistry Placebo Machinery
(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage -0.2312 -0.1384 -0.0663 0.1988 0.6091 0.6718 0.3534 0.5942
(0.7932) (0.7943) (0.6707) (0.6148) (0.4207) (0.4231) (0.5843) (0.5949)

High-skill wage 1.0371 1.4451* 0.3344 0.9683* -0.4274 -0.1100 0.3070 0.6743
(0.7285) (0.7836) (0.5825) (0.5679) (0.4293) (0.4480) (0.5994) (0.6380)

GDP gap -4.7732** -2.1480 -2.5938 1.1431 -1.3796 0.5604 -6.4535*** -1.1372
(2.1242) (2.2471) (1.8288) (1.7038) (1.2385) (1.4474) (1.6663) (2.2951)

GDP per capita -1.8040* -2.0323** -1.3922** -3.0917***
(0.9600) (0.8906) (0.5885) (1.0967)

Stock own 0.4669*** 0.4697*** 0.2993*** 0.3082*** 0.0550 0.0568 0.0325 0.0380
(0.0558) (0.0558) (0.0476) (0.0466) (0.0398) (0.0391) (0.0457) (0.0456)

Stock other 0.1295** 0.1353** 0.2856*** 0.2867*** 0.4848*** 0.4852*** 0.4897*** 0.4891***
(0.0627) (0.0631) (0.0481) (0.0478) (0.0430) (0.0429) (0.0504) (0.0504)

Spillovers own -0.6814** -0.7405** 1.0873*** 0.9920*** 2.5132*** 2.1191*** 2.5214*** 1.8569***
(0.3059) (0.3086) (0.3789) (0.3659) (0.3614) (0.3863) (0.4258) (0.4604)

Spillovers other 1.1699*** 1.2204*** -0.3170 -0.1748 -2.0696*** -1.6143*** -2.3173*** -1.5852***
(0.3243) (0.3239) (0.3463) (0.3430) (0.4437) (0.4918) (0.5372) (0.5769)

Observations 31980 31980 69720 69720 158955 158955 97174 97174
Firms 2132 2132 4648 4648 10597 10597 6941 6941

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is
by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regres-
sions include a dummy for no stock and no spillover. Stock and Spillovers variables are estimated according to the referred
dependent variable. Columns (7) and (8) restrict attention to firm with a domestic weight below 90%. Standard errors are
clustered at the firm-level. *p < 0:1; **p < 0:05; ***p < 0:01

1

accurately, low-automation patents), we look at innovations in certain technological

fields, and we exclude patents which have a technological category in that field (defined

as in section 2.3) with a prevalence of automation keywords measure above a certain

threshold. We choose as a threshold the 60th percentile of the distribution of IPC/CPC

6 digit codes in the machinery technological fields (0.2091). We then carry out the

same exercise as before.24 Table 11 reports regressions results for placebos computed in

the technological field of pharmacy (columns (1) and (2)), those of chemistry (columns

(3) and (4), corresponding to the technical fields of organic and macro chemistry) and

machinery (columns (5) to (8)). Columns (1) to (4) show that low-skill wages do not

have an effect on placebo innovations in pharmaceuticals and chemistry. In column (5)

and (6), the effect of low-skill wages on low-automation innovation in machinery is much

smaller than for the auto90 and auto95 measures and is below conventional levels of

significance. In addition the coefficients become smaller and far from significant when

we restrict attention to firms with a domestic weight below 0.9 (columns (7) and (8)).

24In particular, we recompute knowledge stocks and spillover variables for the placebo innovations
and we recompute weights for all firms for the technological fields associated with each regression.
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Table 12: Lags and leads

Dependent variable Auto95
(1) (2) (3) (4) (5) (6) (7) (8)

Lags (Leads) -5 -4 -3 -2 -1 0 1 2

Low-skill wage 1.1712** 1.6327*** 1.8693*** 2.1728*** 1.9810*** 1.9811*** 1.4830*** 0.9023
(0.5333) (0.4869) (0.4837) (0.5229) (0.5512) (0.5746) (0.5472) (0.5677)

High-skill wage 0.0386 -0.7443 -1.1434** -1.4557*** -1.7288*** -2.2426*** -2.0029*** -1.8096***
(0.4912) (0.4737) (0.4835) (0.4947) (0.4895) (0.5586) (0.5176) (0.5385)

GDP gap -2.8726 -1.6974 -1.3977 -3.8791** -2.4716 0.9948 3.2157 0.1748
(1.7565) (1.7570) (1.7233) (1.8985) (2.4320) (2.0456) (2.2744) (2.1317)

Stock Automation -0.1545*** -0.1814*** -0.1792*** -0.1748*** -0.1778*** -0.1821*** -0.1538*** -0.1442***
(0.0483) (0.0456) (0.0452) (0.0462) (0.0464) (0.0461) (0.0456) (0.0464)

Stock other 0.6559*** 0.6377*** 0.6376*** 0.6567*** 0.6479*** 0.6659*** 0.6586*** 0.6769***
(0.0545) (0.0519) (0.0503) (0.0506) (0.0503) (0.0500) (0.0483) (0.0471)

Spillovers automation -0.0786 0.1416 0.3104 0.5256** 0.7620*** 1.0501*** 1.0089*** 0.9578***
(0.2832) (0.2646) (0.2487) (0.2548) (0.2501) (0.2698) (0.2760) (0.3023)

Spillovers other 0.1353 0.0701 -0.0385 -0.2839 -0.3343 -0.5068** -0.3900 -0.3073
(0.2598) (0.2353) (0.2164) (0.2071) (0.2084) (0.2310) (0.2398) (0.2574)

Observations 61575 62655 64035 64845 65700 66315 68370 70170
Firms 4105 4177 4269 4323 4380 4421 4558 4678

Note: Marginal effects; Standard errors in parentheses. The independent variables (wages, GDP and GDP gap) are lagged by the
number of periods indicated in lag, except for the stock variables which are always lagged by 2 periods. Estimation is by condi-
tional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions include
a dummy for no stock and no spillover. Standard errors are clustered at the firm-level * p < 0.1; ** p < 0.05; *** p < 0.01

1

5.5 Timing

Our baseline regressions assume a lag of 2 years between wages and patent applications.

We look at alternative lags in Table 12—we keep a lag of 2 between patent applications

and the stocks of patents from the firm because otherwise the dependent variable would

be included in the stock of automation when we consider contemporaneous regressions

or leads. Column (4) reproduces the baseline result of Column (6) of Table 5 and

corresponds to a 2 year lag between patent applications and the independent variables.

The regressions show that the largest coefficient is obtained for a 2 year lag, but remains

relatively stable between a 4 year lag and a 1 year lead, which suggests that our effect

is identified by long-term trends in wages instead of short-run fluctuations. At a 5 year

lag, the coefficient is still significant but smaller, and with a 2 year lead, the coefficient

on low-skill wages is not significant.

5.6 Robustness checks

This section presents several robustness checks.

Skill premium. Low-skill and high-skill wages are correlated, therefore one might

worry that our regressions are affected by multicollinearity issues—although controlling

for firm fixed effects, year fixed effects and the stocks and spillovers variables, the cor-

relation coefficient is 0.85 and drops to 0.69 after controlling for GDP per capita for
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Table 13: Skill premium

Dependent variable Auto95 Auto90
(1) (2) (3) (4) (5) (6)

Low-skill / High-skill wage 1.7315*** 1.7962*** 1.7964*** 1.3553*** 1.3999*** 1.3602***
(0.3434) (0.3797) (0.3832) (0.4155) (0.4282) (0.4020)

GDP gap -3.8695** -3.7045** -4.1325*** -3.3022***
(1.7607) (1.8359) (1.3006) (0.8898)

GDP per capita -0.0972 -0.5181
(1.0136) (0.7415)

Stock automation -0.1767*** -0.1758*** -0.1756*** -0.1024*** -0.1017*** -0.1017***
(0.0319) (0.0324) (0.0324) (0.0369) (0.0369) (0.0369)

Stock other 0.6547*** 0.6547*** 0.6548*** 0.5991*** 0.5990*** 0.5994***
(0.0316) (0.0315) (0.0313) (0.0579) (0.0579) (0.0576)

Spillovers own 0.5150*** 0.5471*** 0.5642** 0.9008*** 0.9469*** 1.0572***
(0.1975) (0.1818) (0.2645) (0.2628) (0.2515) (0.2677)

Spillovers other -0.1932 -0.2162 -0.2216 -0.5077* -0.5447** -0.5989***
(0.2199) (0.2135) (0.2050) (0.2609) (0.2505) (0.2200)

Observations 64845 64845 64845 97710 97710 97710
Firms 4323 4323 4323 6514 6514 6514

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods.
Estimation is by conditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects
and year dummies. All regressions include a dummy for no stock and no spillover. Standard errors are clus-
tered at the country-level * p < 0.1; ** p < 0.05; *** p < 0.01

1

the auto95 sample (and 0.84 and 0.69 for the auto90 sample). To deal with this issue,

Table 13 regresses automation innovation on the log of the ratio of low-skill to high-skill

wages (the inverse of the skill premium) for both classifications. Unsurprisingly given

the results of Table 5, we obtain a positive and significant coefficient with an elasticity

of 1.8 for auto95 with both controls included and 1.4 for auto90. It is worth mentioning

that regressing our non-automation innovation in machinery measure (from Table 11)

on the ratio of low-skill to high-skill wages gives an insignificant coefficient.

Other robustness checks. Appendix A contains additional robustness checks.

Table A.16 investigates whether our results are robust when focusing on patents of

higher quality. We look at patents which have been applied for at 2 of the 3 main patent

offices (EU, Japan and US), or at triadic patents which have been applied for at the 3

offices. Triadic patents are generally considered to be patents of very high quality. The

results are similar to our baseline.

6 Alternative specifications

6.1 Middle skill wages

Table 14 adds middle-skill wages to the regressions with the auto95 measure. We regress

automation innovations on middle-skill wages, combined with low-skill, high-skill or both
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Table 14: Including middle-skill wages

Dependent Variable Auto95
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.9849*** 3.2275*** 4.0403*** 3.2278*** 3.9803*** 3.2091***
(1.1539) (1.1044) (1.1599) (1.0996) (1.2006) (1.1080)

Middle-skill wage -3.1868*** 2.2234*** -1.5571 -3.2287*** 2.3155*** -1.4689 -2.9902** 2.4337*** -1.3337
(1.2063) (0.6192) (1.3069) (1.2021) (0.6404) (1.2914) (1.2867) (0.6645) (1.3101)

High-skill wage -1.5914*** -1.0437* -1.6777*** -1.1272** -1.6343*** -1.0884*
(0.5704) (0.5516) (0.5819) (0.5588) (0.5967) (0.5609)

GDP gap -3.3298* -3.7728** -3.7909** -2.2430 -2.7860 -2.8677
(1.9593) (1.9038) (1.9307) (2.3536) (2.3908) (2.3573)

GDP per capita -0.6595 -0.5805 -0.5488
(0.9660) (0.9192) (0.8697)

Stock automation -0.1743*** -0.1698*** -0.1777*** -0.1731*** -0.1685*** -0.1767*** -0.1718*** -0.1671*** -0.1754***
(0.0457) (0.0458) (0.0457) (0.0462) (0.0463) (0.0460) (0.0464) (0.0465) (0.0462)

Stock other 0.6583*** 0.6527*** 0.6580*** 0.6582*** 0.6525*** 0.6580*** 0.6592*** 0.6534*** 0.6588***
(0.0505) (0.0503) (0.0507) (0.0505) (0.0503) (0.0507) (0.0504) (0.0501) (0.0506)

Spillovers automation 0.4587* 0.4154* 0.5159** 0.4811* 0.4460* 0.5461** 0.5918* 0.5420* 0.6361**
(0.2524) (0.2523) (0.2551) (0.2529) (0.2537) (0.2565) (0.3120) (0.3157) (0.3113)

Spillovers other -0.3196 -0.1623 -0.2959 -0.3396 -0.1830 -0.3168 -0.3881* -0.2280 -0.3581*
(0.2124) (0.2038) (0.2126) (0.2127) (0.2038) (0.2128) (0.2111) (0.2080) (0.2135)

Observations 64845 64845 64845 64845 64845 64845 64845 64845 64845
Firms 4323 4323 4323 4323 4323 4323 4323 4323 4323

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Pois-
son regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables include a
dummy for no stock and no spillover. Standard errors are clustered at the country-level * p < 0.1; ** p < 0.05; *** p < 0.01

1

wages. First, low-skill wages always enter with a positive and very significant coefficient

between 3.2 and 4.0 (higher therefore than in regressions which do not include middle-

skill wages). Middle-skill wages appear negatively when low-skill wages are present

but positively otherwise (because low-skill wages are an omitted variable). Columns

(3), (6) and (9) which contain the three wages are particularly instructive, they show

that higher low-skill wages lead to more automation innovations and higher high-skill

wages to less automation innovations. The effect of middle-skill wages is less clear:

the coefficient is negative but not significant, therefore our measure of automation in

machinery seems to capture technologies which are strong substitute for low-skill but

not middle-skill workers. Note that middle-skill wages are very strongly correlated with

low- and high-skill wages: controlling for firm and year fixed effects, plus the stock and

spillover variables, the correlation coefficients are 0.95 and 0.96, and they drop to 0.9

and 0.9 when controlling for GDP per capita. The results are similar with the auto90

measure except that the coefficient on middle-skill wages becomes significant when the

two other wages are included (see Table A.17 in the Appendix).
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7 Conclusion

In this paper, we have used patent text data to identify patents which correspond to

automation innovations. We use this classification to analyze for the first time the effect

of wages on automation innovations in machinery. We find that automation innova-

tions are very responsive to changes in low-skill wages as we estimate an elasticity of

automation innovation with respect to low-skill wages typically between 1 and 2.

These results suggest that policies which increase labor costs for low-skill workers will

lead to an increase in innovations which aim at saving on low-skill workers. Therefore,

with endogenous technological change, such policies are likely to be less costly for the

economy in terms of overall welfare, but they introduce additional negative effects for

low-skill workers. By how much then would an exogenous increase in low-skill wage

be undone in a couple of years through innovation? Answering this question requires

finding the effect of an increase in automation patents on low-skill wages. This is the

next step of our research agenda.
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Figure A.5: Share of automation patents (for biadic patents).

Table A.15: Country-year fixed effects

Dependent variable Auto95 Auto90
(1) (2) (3) (4) (5) (6)

Low-skill wage 1.7718*** 1.4633***
(0.4697) (0.4892)

Foreign low-skill wage 3.5296*** 3.2784*** 1.9838*** 1.7355**
(0.5586) (0.4499) (0.7074) (0.7252)

High-skill wage -1.5385** -1.0635*
(0.7501) (0.6068)

Foreign high-skill wage -2.8185*** -2.6335*** -1.6570* -1.4671*
(0.5630) (0.5430) (0.8752) (0.8886)

GDP gap 0.7801 0.0749
(2.5883) (3.2654)

Foreign GDP gap 0.2910 0.3056 -0.1523 -0.1109
(5.1144) (5.0935) (3.9844) (3.9599)

Stock automation 1.1825*** 1.1840*** 1.1841*** 1.1657*** 1.1714*** 1.1710***
(0.0103) (0.0059) (0.0059) (0.0169) (0.0298) (0.0303)

Stock other 0.1003*** 0.0920*** 0.0917*** 0.1028*** 0.0940*** 0.0938***
(0.0159) (0.0169) (0.0163) (0.0130) (0.0123) (0.0120)

Spillovers automation 0.0012 -0.0448 -0.0409 0.0323 -0.0008 0.0002
(0.0923) (0.0761) (0.0781) (0.0748) (0.0551) (0.0563)

Spillovers other 0.0419 0.0881 0.0846 0.0077 0.0394 0.0384
(0.0737) (0.0620) (0.0640) (0.0693) (0.0568) (0.0586)

Observations 64845 50025 50025 97710 73395 73395
Firms 4323 3335 3335 6514 4893 4893

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two
periods. Estimation is by BGVR Poisson regressions. All regressions include country-year dummies.
All regressions with stock variables include a dummy for no stock and no spillover. In columns (2)
and (5) foreign low-skill wages are interacted with the share of foreign low-skill wages in total low-skill
wages computed at the beginning of the sample, and similarly for high-skill wages and GDP per capita.
In columns (3) and (6), they are interacted with the average shares over the sample period instead. In
columns (2), (3), (5) and (6), foreign GDP gap is interacted with the foreign weight. Standard errors
are clustered at the country-level * p < 0:1; ** p < 0:05; *** p < 0:01
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Table A.16: Other innovation indicators

Dependent Variable Auto95 Auto90
Biadic (US, JP, EU) Triadic Biadic (US, JP, EU) Triadic
(1) (2) (3) (4) (5) (6) (7) (8)

Low-skill wage 1.8574*** 1.8479*** 2.1177** 2.0080** 1.6460*** 1.5640** 1.7247** 1.6118**
(0.6903) (0.6844) (0.9180) (0.9277) (0.6239) (0.6152) (0.7856) (0.7872)

High-skill wage -1.4357** -0.8827 -2.0390** -1.1414 -1.1733** -0.5892 -1.5555** -0.8430
(0.6372) (0.6329) (0.9379) (0.9188) (0.5222) (0.5147) (0.7311) (0.7395)

GDP gap -3.9765* -1.0072 -13.3860*** -8.3251** -3.3403* -0.5206 -10.0603*** -6.0539*
(2.3487) (2.5753) (3.9369) (4.2402) (1.9751) (2.1922) (2.9136) (3.3147)

GDP per capita -2.1119** -3.5100** -1.9317*** -2.6313**
(0.9200) (1.4179) (0.6970) (1.0510)

Stock automation -0.2159*** -0.2193*** -0.4261*** -0.4367*** -0.1496*** -0.1538*** -0.2497*** -0.2600***
(0.0552) (0.0555) (0.0721) (0.0723) (0.0432) (0.0430) (0.0542) (0.0540)

Stock other 0.6791*** 0.6845*** 0.7093*** 0.7138*** 0.6414*** 0.6450*** 0.6409*** 0.6452***
(0.0577) (0.0575) (0.0786) (0.0785) (0.0521) (0.0519) (0.0615) (0.0615)

Spillovers automation 0.5108 0.8674** 0.9510* 1.0923** 0.8066* 1.1148** 0.9081* 0.9041*
(0.3669) (0.4294) (0.5200) (0.5216) (0.4525) (0.4597) (0.5144) (0.5059)

Spillovers other -0.5266** -0.6288*** -0.3856 -0.6728 -0.6844** -0.8768*** -0.3417 -0.4893
(0.2413) (0.2433) (0.4519) (0.4903) (0.2773) (0.2836) (0.4783) (0.4874)

Observations 50370 50370 31635 31635 74655 74655 47040 47040
Firms 3358 3358 2109 2109 4977 4977 3136 3136

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by con-
ditional Poisson regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions include a
dummy for no stock and no spillover. Column (1)-(2) and (5)-(6) consider biadic patents in at least two countries among US, JP, EU.
Column (3)-(4) and (7)-(8) consider triadic patents. Standard errors are clustered at the firm-level. * p < 0.1; ** p < 0.05; *** p < 0.01

1

Table A.17: Including middle-skill wages

Dependent Variable Auto90
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Low-skill wage 3.6406*** 3.2072*** 3.6751*** 3.1959*** 3.4011*** 3.0289***
(0.8780) (0.8365) (0.8825) (0.8348) (0.9109) (0.8454)

Middle-skill wage -3.0155*** 1.6967*** -2.0731** -3.0480*** 1.7562*** -2.0038** -2.4914*** 1.9070*** -1.6742*
(0.9129) (0.5486) (0.9955) (0.9125) (0.5554) (0.9857) (0.9500) (0.5780) (0.9899)

High-skill wage -1.1348** -0.5898 -1.1985*** -0.6529 -1.0345** -0.5406
(0.4600) (0.4377) (0.4648) (0.4402) (0.4784) (0.4418)

GDP gap -3.7921** -4.0274** -3.9954** -2.1942 -2.2473 -2.4907
(1.6010) (1.5879) (1.6011) (1.8279) (1.8573) (1.8329)

GDP per capita -1.0208 -1.0965* -0.9381
(0.6306) (0.6418) (0.6010)

Stock automation -0.1022*** -0.0975*** -0.1035*** -0.1014*** -0.0967*** -0.1028*** -0.1009*** -0.0961*** -0.1021***
(0.0364) (0.0366) (0.0365) (0.0366) (0.0368) (0.0366) (0.0368) (0.0371) (0.0368)

Stock other 0.6031*** 0.5990*** 0.6024*** 0.6030*** 0.5987*** 0.6022*** 0.6043*** 0.6004*** 0.6035***
(0.0433) (0.0436) (0.0434) (0.0433) (0.0436) (0.0434) (0.0431) (0.0433) (0.0432)

Spillovers automation 0.8576** 0.7648** 0.9095*** 0.8935** 0.8100** 0.9530*** 1.0999*** 1.0295*** 1.1327***
(0.3448) (0.3475) (0.3487) (0.3475) (0.3509) (0.3520) (0.3767) (0.3824) (0.3796)

Spillovers other -0.6141** -0.4425 -0.6200** -0.6450** -0.4770* -0.6532** -0.7648*** -0.6171** -0.7621***
(0.2855) (0.2761) (0.2842) (0.2869) (0.2772) (0.2855) (0.2897) (0.2840) (0.2895)

Observations 97710 97710 97710 97710 97710 97710 97710 97710 97710
Firms 6514 6514 6514 6514 6514 6514 6514 6514 6514

Note: Marginal effects; Standard errors in parentheses. The independent variables are lagged by two periods. Estimation is by conditional Pois-
son regressions fixed-effects (HHG). All regressions include firm fixed effects and year dummies. All regressions with stock variables include a
dummy for no stock and no spillover. Standard errors are clustered at the country-level * p < 0.1; ** p < 0.05; *** p < 0.01
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B Appendix

B.1 Details on the classification of automation patents

B.1.1 List of keywords

For each technological category, we compute the following share of patents:25

1. Automat* patents. Share of patents which contain the words:

(a) Automation or automatization;

(b) or automat* at least 5 times;

(c) or (automat* or autonomous) in the same sentence as (machine or manufac-

turing or machining or equipment or apparatus or operator or handling or

“vehicle system” or welding or knitting or weaving or convey* or storage or

store or regulat* or manipulat* or arm or sensor or inspect* or warehouse)

at least twice.

2. Labor patents. Share of patents which contain the words: laborious, labourious,

labor or labour.

3. Robot patents. Share of patents which contain the word robot* but not (surgical

or medical).

4. Numerical control patents. Share of patents which contain the words:

(a) CNC or “numerically controlled” or “numeric control” or “numerical control”

or the same terms but with hyphens;

(b) or NC in the same sentence with (machine or manufacturing or machining

or equipment or apparatus).

5. Computer aided design and manufacturing patents. Share of patents which contain

the words:

(a) “computer aided”, “computer assisted” or “computer supported” or the same

terms with hyphens) in the same patent with (machine or manufacturing or

machining or equipment or apparatus);

25x* indicates any word which starts with x, for instance automat* corresponds to the words auto-
matic, automatically, automate, automates, etc...
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(b) or (CAD or (CAM and not “content addressable memory”)) in the same

sentence with (machine or manufacturing or machining or equipment or ap-

paratus).

6. Flexible manufacturing. Share of patents which contain the words: “flexible man-

ufacturing”.

7. PLC patents. Share of patents which contain the words: “programmable logic

controller” or (PLC and not (powerline or “power line”)).

8. 3D printing patents. Share of patents which contain the words: “3D print* ” or

“additive manufacturing” or “additive layer manufacturing”.

9. Automation patents. Share of patents which satisfy any of the previous criteria.

We derived this exact list after experiencing extensively with variations around those

words and looking at the resulting classification of technological codes and the associated

patents. For instance, the thresholds (5 and 2) used in the definition of the share

of automat* patents where chosen so that the distribution of the share of automat*

patents is comparable to the distribution of the share of numerical control patents across

technological codes. Similarly, requiring that NC be in the same sentence as words such

as machine, ensures that NC is short fort numerical control instead of North Carolina.

Relative to the original list of technologies given in the SMT, we did not include

keywords related to information network, as these seem less related to the automation

of the production process and the patents containing words such as “local area network”

do not appear related to automation. We also did not directly count all laser related

technologies as not all of these are related to automation—but we obtain patent related

to automation using laser technologies thanks to our other keywords.

B.1.2 Statistics on the classification

Figure B.1 gives the histograms of the prevalence of automation keywords for all pairs

of IPC/CPC 4 digit codes (panel a) and all pairs with at least one member in the

the relevant technological fields (panel b). The histograms are very similar to those of

IPC/CPC 6 digit codes in Figure 1. Figure B.2 shows the histograms for all combinations

of IPC 4 digit codes with G05 or G06 (panel a), or when the IPC 4 code is in the relevant

technological field (panel b). Both distributions are considerably shifted to the right,

in line with expectations since G05 proxies for control and G06 for algorithmic, two
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(a) For all pairs of IPC/CPC 4 digit codes (b) For all pairs of IPC/CPC 4 digit codes within ma-
chinery with 100 patents

Figure B.1: Histogram of the prevalence of automation keywords for IPC/CPC pairs of 4
digit codes

set of technologies which have been used heavily in automation. There are, however,

much fewer combination of these types (in part because all histograms only consider

groups with at least 100 patents), and accordingly few patents can be characterized as

automation innovations this way.

B.2 Redoing ALM

In this Appendix, we provide details on the analysis conducted in section 2.5. We use

granted patents at the USPTO between 1970 and 1998. To assign patents to sectors, we

first use Lybbert and Zolas (2014) who provide a concordance table between IPC codes at

the 4 digit level and NAICS 1997 6 digits industry codes (mostly in manufacturing). The

concordance table is probabilistic (so that each code is associated with a sector with a cer-

tain probability). In this exercise we are interested in matching patents with a sector of

use and not the inventing sector (which is what is provided by the Eurostat concordance

table for instance). The Lybbert and Zolas concordance tables are derived by matching

patents texts with industry descriptions, and as such they cannot a priori distinguish

between sector of use and industry of manufacturing. We checked, however, that patents

associated with “textile and paper machines” for instance are associated with the textile
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(a) For all combinations of IPC4 with G05 G06 (b) For combinations of IPC4 in machinery with G05
G06 and at least 100 patents

Figure B.2: Histogram of the prevalence of automation keywords for combinations of IPC 4
digit codes with G05 G06

and paper sectors and not with the equipment sector (as is the case with the Eurostat

concordance table). We attribute patents to sectors fractionally in function of their IPC

codes. To assign patents to the consistent Census industry codes used by ALM, we first

use a Census concordance table (https://www.census.gov/topics/employment/industry-

occupation/guidance/code-lists.html) to go from NAICS 1997 to Census industry codes

1990, then we use the concordance table of ALM to get to the consistent Census indus-

try codes of ALM. Finally, for each sector and each time period, we compute the sums

of automation patents and machinery patents and take the ratio to be our measure of

automation intensity. We exclude sectors with less than 50 machinery patents (which is

why the number of sectors varies across time periods). We are left with 66 to 68 sectors,

with only 7 of them not in manufacturing.

The other variables are directly taken from ALM. We refer the reader to that paper

for a detailed explanation. The task measures are computed using the 1977 Dictionary

of Occupational Titles (DOT) which measure the tasks content of occupations. Occupa-

tions are then matched to industries using the Census Integrated Public Micro Samples

one percent extracts for 1960, 1970 and 1980 (IPUMS) and the CPS Merged Outgoing

Rotation Group files for 1980, 1990 and 1998 (MORG). The task change measure at the

industry level reflects changes in occupations holding the task content of each occupa-
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tion constant, which ALM refer to as the extensive margin. Since tasks measures do not

have a natural scale, ALM converted them into percentile values corresponding to their

rank in the 1960 distribution of tasks across sectors, so that the employment-weighted

means of all tasks measure across sectors in 1960 is 50. Our analysis only uses manu-

facturing sectors and starts in 1970 but we kept the original ALM measure to facilitate

comparison. As in ALM, the dependent variable in Table 2 corresponds to 10 times the

annualized change in industry’s tasks inputs to favor comparison across periods of differ-

ent lengths. Computerization ∆Cj is measured as the annual change in the percentage

of industry workers using a computer at their jobs between 1984 and 1997 (estimated

from the October Current Population Survey supplements), multiplied by 10 to ensure

that all variables are over the same time length. For all regressions, observations are

weighted by the employment share in each sector. In Table 2, the ratio of high-skill to

low-skill workers are measured as the ratio of college graduates (and more than college)

to high-school dropouts and graduates, taken from ALM—knowing that their data in

turn come from IPUMS and MORG.

Table B.2 reproduces Table 2 but with the laxer auto90 measure. The results are

very similar—the only difference is that the coefficient on routine manual tasks is not

significant at the usual levels in the 90s.26

Figure B.3 provides scatter plots of the changes in routine tasks and the share of

automation patents in machinery (according to the auto95 definition) over the years

1980-1998. Tasks changes are still measured as 10 times the annual change in centiles

of the 1960 distribution between 1980 and 1998. The share of automation patents is

computed as an average over those years. The list of sectors plotted (which are also the

sectors in the regressions) is given in Table B.1.

Table B.3 reproduces the Table 5 of ALM by carrying the analysis of Table 2 for each

education groups over the time period 1980-1998 with the auto95 measure (the results

are very similar with auto90). The table shows that automation reduces the amount of

routine tasks undertaken by high-school dropouts and high-school graduates. Following

ALM, Panel F computes the average effect of automation in tasks changes (from Panel

A) and how much of this average effect can be explained by changes within educational

groups (from Panels B to E). We find that changes within educational categories explain

a significant share of the overall reduction in routine tasks but changes in educational

composition also play a role, in line with Colmun 6 of Table 2. In contrast, ALM found

26To interpret the effect of the automation variable, note that the means are 0.13, 0.15 and 0.14 in
the 70s, 80s and 90s, and the standard deviations are 0.10, 0.12 and 0.11 with the auto90 definition.
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ind6090 Title ind6090 Title

201 Misc. petroleum and coal products

30 Forestry

31 Fishing, hunting and trapping

40 Metal mining

41 Coal mining

42 Crude petroleum and natural gas extraction

50 Nonmetallic mining & quarrying, except fuel

66 Construction 212 Misc. plastic products

100 Meat products 220 Leather tanning and finishing

101 Dairy products 221 Footwear, except rubber and plastic

102 Canned and preserved fuits and vegetables 222 Leather products, except footwear

110 Gain mill products 230 Logging

111 Bakery products 231 Sawmills, planning mills, and millwork

112 Sugar and confectionary products

120 Beverage industries

121 Misc. food preparations, kindred products

130 Tobacco manufactures 241 Misc. wood products

132 Knitting mills 242 Furniture and fixtures

141 Floor coverings, except hard surfaces 250 Glass products

142 Yarn, thread, and fabric mills 251 Cement, concrete, gypsum & plaster 

products

252 Structural clay products

261 Pottery and related products

150 Misc. textile mill products 262 Misc. nonmetallic mineral & stone products

151 Apparel and accessories, except knit 270 Blast furnaces, steelworks, rolling and 

finishing mills

152 Misc. fabricated textile products 271 Iron and stell foundaries

160 Pulp, paper, and paperboard mills 281 Cutlery, handtools, and other hardware

161 Misc. paper and pulp products 282 Fabricated structural metal products

162 Paperboard containers and boxes

351 Transporation equipment

360 Ship and boat building and repairing

362 Guided missiles, space vehicles, and parts, 

380 Photographic equipment and supplies

381 Watches, clocks, and clockwork operated 

391 Misc. manufacturing industries and toys, 

181 Drugs 460 Electric light and power

462 Eletric and gas, and other combinations

470 Water supply and irrigation

190 Paints, varnishes, and related products 471 Sanitary services

200 Petroleum refining 636 Grocery stores; Retail bakeries; Food 

stores, n.e.c.

Scientific and controlling instruments; 

Opcial and health service supplies

246

Plastics, synthetics & resins; Soaps & 

cosmetics; Agricultural chemicals; Industrial 

& miscellaneous chemicals

346

Engine and turbines; Construction & material 

handling machines; Metalworking machinery; 

Machinery, except electrical, n.e.c.; Not 

specified machinery

176

Household appliances; Radio, TV & 

communications equipment; Electric 

machinery, equipment & supplies, n.e.c., not 

specified electrical machinery, equipment & 

supplies

206

Other rubber products, and plastics 

footwear and belting + tires & inner tubes

211

Primary aluminum and other primary metal 

industries

146

Printing, publishing, and allied industries 

except newspapers

172

Electronic computing equipment; Office and 

accounting machines

186

Screw machine products; Metal forgings & 

stampings; Misc. fabricated metal products

166

Ag production crops & livestock; 

Ag services; Horticultural services

16

Dyeing and finishing textiles, except wool 

and knit goods

140

Railroad locomotives & equipment; Cycles 

& misc transporation equipment; Wood 

buildings & mobile homes

236

Table B.1: List of sectors in the ALM regressions

48



Table B.2: Changes in task intensity and skill ratio across sectors and automation (auto90)

(1) (2) (3) (4) (5) (6)

Panel A: 1970 - 80, n=67

Share of automation 0.78 3.58 ***-17.72*** ***-10.55*** -0.84 **0.11**

patents in machinery (3.48) (4.28) (4.19) (3.71) (5.09) (0.05)

D Computer use -7.16 -2.99 ***-18.92*** -3.26 *14.86* 0.08

1984 - 1997 (5.71) (7.03) (6.88) (6.09) (8.36) (0.09)

Intercept 0.93 *2.14* ***4.32*** ***3.39*** -1.71 ***0.04***

(1.00) (1.23) (1.21) (1.07) (1.47) (0.02)

R
2 0.02 0.01 0.31 0.12 0.05 0.08

Weighted mean D -0.05 2.17 -0.90 1.49 0.42 0.07

Panel B: 1980 - 90, n=67

Share of automation *8.94* **13.25** ***-25.33*** ***-13.78*** **9.70** ***0.73***

patents in machinery (5.39) (6.20) (4.94) (4.26) (4.70) (0.19)

D Computer use **24.76** *22.96* -13.42 -1.55 -5.38 0.39

1984 - 1997 (10.34) (11.90) (9.48) (8.17) (9.02) (0.37)

Intercept *-3.15* -1.22 **3.56** 1.70 -2.40 -0.06

(1.77) (2.03) (1.62) (1.40) (1.54) (0.06)

R
2 0.13 0.13 0.32 0.14 0.06 0.21

Weighted mean D 1.86 4.17 -2.22 -0.59 -1.74 0.11

Panel C: 1990 - 98, n=67

Share of automation **9.20** *10.64* ***-13.40*** -6.22 3.91 ***0.42***

patents in machinery (4.56) (6.20) (5.11) (4.18) (4.75) (0.12)

D Computer use ***27.30*** **28.17** ***-25.09*** ***-26.11*** 8.05 0.73

1984 - 1997 (8.27) (11.25) (9.27) (7.58) (8.61) (0.22)

Intercept **-2.93** -1.94 2.23 *2.41* *-2.55* **-0.08**

(1.44) (1.96) (1.61) (1.32) (1.50) (0.04)

R
2 0.20 0.14 0.20 0.19 0.03 0.29

Weighted mean D 2.45 3.79 -3.44 -2.36 -0.79 0.09

D H/L

Standard errors are in parentheses. Colums (1) to (5) of Panels A to C each presents a separate OLS regression of ten times the

annual change in industry-level task input between the endpoints of the indicated time interval (measured in centiles of the 1960 task

distribution) on the share of automation patents in machinery (defined with the 90th percentile threshold) and the annual percentage

point change in industry computer use during 1984 - 1997 as well as a constant. In Column (6), the dependent variable is the ratio of

high-skill (college graduates) to low-skill (high-school graduates and dropouts) workers. Estimates are weighted by mean industry share

of total employment in FTEs over the endpoints of the years used to form the dependent variable. * p<0.1; ** p<0.05; *** p<0.01

D Nonroutine

analytic

D Nonroutine

interactive

D Routine

cognitive

D Routine

manual

D Nonroutine

manual
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(a) Change in routine cognitive tasks and
automation intensity
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(b) Change in routine manual tasks and au-
tomation intensity

Figure B.3: Scatter plots of routine tasks changes and automation intensity (auto 95) in
1980-1998 in the United States. The list of sectors is given in Table B.1

that nearly all of the decline in routine tasks due to computerization came from within

educational group changes.
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Table B.3: Changes in task intensity and skill ratio across sectors and automation (auto95)
by skill groups

(1) (2) (3) (4) (5)

Panel A: Aggregated within-industry change

Share of automation **9.53** ***17.97*** ***-26.66*** ***-17.09*** ***12.57***

patents in machinery (4.53) (5.39) (4.83) (3.90) (4.30)

D Computer use ***24.91*** ***23.81*** ***-17.75*** **-11.53** 0.47

1984 - 1997 (6.36) (7.56) (6.79) (5.48) (6.03)

Intercept **-2.36** -1.01 *2.05* *1.73* **-2.37**

(1.03) (1.22) (1.10) (0.89) (0.98)

R
2 0.26 0.27 0.39 0.29 0.12

Weighted mean D 2.05 3.88 -2.62 -1.29 -1.34

Panel B: Within industry: High school dropouts

Share of automation 2.41 13.61 ***-26.19*** -5.80 4.56

patents in machinery (7.89) (10.85) (6.94) (6.22) (6.35)

D Computer use 11.70 18.08 15.84 8.68 -9.95

1984 - 1997 (11.08) (15.24) (9.74) (8.73) (8.91)

Intercept **-4.47** ***-8.45*** 0.87 0.55 1.16

(1.79) (2.47) (1.58) (1.41) (1.44)

R
2 0.02 0.05 0.19 0.02 0.02

Weighted mean D -2.56 -4.73 1.20 1.39 0.04

Panel C: Within industry: High school graduates

Share of automation -7.08 6.50 ***-26.09*** ***-13.43*** *9.62*

patents in machinery (5.47) (7.05) (5.64) (4.25) (5.37)

D Computer use 9.30 -0.76 *-14.39* -2.86 6.71

1984 - 1997 (7.69) (9.90) (7.92) (5.96) (7.54)

Intercept **-2.86** 2.19 *2.25* 0.00 -1.43

(1.24) (1.60) (1.28) (0.97) (1.22)

R
2 0.04 0.01 0.30 0.14 0.06

Weighted mean D -2.03 2.57 -1.88 -1.45 0.30

Panel D: Within industry: Some College

Share of automation -11.94 -7.49 -4.92 -5.92 *12.48*

patents in machinery (8.04) (7.31) (6.01) (5.72) (6.56)

D Computer use 7.05 13.85 *-14.68* *-14.11* 9.14

1984 - 1997 (11.29) (10.26) (8.44) (8.03) (9.20)

Intercept -1.10 0.31 0.38 *2.21* *-2.74*

(1.83) (1.66) (1.37) (1.30) (1.49)

R
2 0.04 0.04 0.06 0.07 0.07

Weighted mean D -0.97 1.78 -2.17 -0.33 -0.43

Panel E: Within industry: College graduates

Share of automation -6.54 **-7.28** *-11.58* -7.70 ***16.00***

patents in machinery (4.25) (3.59) (6.48) (7.74) (6.03)

D Computer use **14.44** *9.29* -5.55 -7.69 11.14

1984 - 1997 (6.00) (5.06) (9.14) (10.91) (8.50)

Intercept -0.94 0.17 -1.22 -0.14 ***-5.35***

(0.97) (0.82) (1.48) (1.77) (1.38)

R
2 0.01 0.09 0.06 0.03 0.14

Weighted mean D 0.69 0.99 -2.93 -1.86 -2.40

Panel F: Decomposition of automation effects into within and between education group

Explained task D 0.73 1.38 -2.04 -1.31 0.96

Within educ groups (%) -64.01 15.75 72.28 54.60 80.78

Between educ groups (%) 164.01 84.25 27.72 45.40 19.22

D Routine

manual

D Nonroutine

manual

n in Panels A-D is 69 and in Panel E it is 68 consitent CIC industries. Standard errors are in parentheses. Each column of

panels A - E presents a separate OLS regression of ten times the annual change in industry-level task input for the

relevant education group (measured in centiles of the 1960 task distribution) during 1980 - 1998 on the the share of

automation patents in machinery (defined with the 95th percentile threshold) and the annual percentage point change in

industry computer use during 1984 - 1997 as well as a constant. Estimates are weighted by mean industry share of total

employment (in FTEs) in 1980 and 1998. The 'explained' component in Panel F is the within-industry change in the task

measure predicted by the share of automation patents in regression models in Panel A.   * p<0.1; ** p<0.05; *** p<0.01

D Nonroutine

analytic

D Nonroutine

interactive

D Routine

cognitive
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