Audits as Evidence: Experiments, Ensembles, and Enforcement

Pat Kline and Chris Walters UC Berkeley and NBER

July 2019

Labor Market Discrimination

- Title VII of the Civil Rights of 1964 prohibits employment discrimination on the basis of race, sex, and other protected characteristics
- Empirical literature focuses on measuring market-level averages of discrimination (Altonji and Blank, 1999; Guryan and Charles, 2013)
 - Observational studies of "unexplained" gaps (Oaxaca, 1978)
 - Audit/correspondence experiments (Bertrand and Mullainathan, 2004)
- Understanding variation in discrimination across employers is essential
 - ▶ For enforcing the law e.g. targeting of EEOC investigations
 - For assessing effects on minority workers (Becker, 1957; Charles and Guryan, 2008)
- We develop tools for using correspondence experiments to detect illegal discrimination by individual employers

Agenda: Ensembles and Decisionmaking

- Correspondence studies send multiple applications to each job opening
- We view this as an *ensemble* of many small experiments
- Use the ensemble in service of two goals
 - Learn about the distribution of discrimination across employers
 - Interpret the evidence against particular employers ("indirect evidence," Efron, 2010)
- Take the perspective of hypothetical auditor (e.g. the EEOC) who must make decisions about which employers to investigate
- Treat auditor's problem as an exercise in large scale testing (Efron, 2012)
- We develop methods and apply them to 3 experimental data sets

Setup and Notation

- Sample of J jobs, each receiving L_w white and L_b black applications (total L = L_b + L_w)
- *R_{jℓ}* ∈ {*b*, *w*} indicates race of application ℓ to job *j* (randomly assigned)
- ▶ $Y_{j\ell} \in \{0,1\}$ indicates a callback from job j to applicant ℓ
- (C_{jw}, C_{jb}) count callbacks for each race:

$$C_{jw} = \sum_{\ell=1}^{L} 1\{R_{j\ell} = w\}Y_{j\ell}, \ C_{jb} = \sum_{\ell=1}^{L} 1\{R_{j\ell} = b\}Y_{j\ell}.$$

Potential Outcomes

• Potential callback to application ℓ to job j as a function of race r:

 $Y_{j\ell}(r): \{b,w\} \rightarrow \{0,1\}$

- Observed callback outcome is $Y_{j\ell} = Y_{j\ell}(R_{j\ell})$
- Represent potential outcomes as job-specific function of race and other factors U_{jl}:

$$Y_{j\ell}(r) = Y_j(r, U_{j\ell})$$

Assumption 1: Stable job-specific callback rule:

$$U_{j\ell}|R_{j1}...R_{jL} \stackrel{iid}{\sim} Uniform(0,1)$$

- ▶ Distribution of $U_{j\ell}$ does not depend on $\{R_{jk}\}_{k=1}^{L}$ by virtue of random assignment
- ▶ Key restriction is that the U_{jℓ} are independent rules out e.g. firms calling back first qualifed app and ignoring subsequent apps (test later)

Defining Discrimination

Under Assumption 1, we have stable race-by-job callback probabilities in repeat experiments:

$$p_{jr}\equiv\int_{0}^{1}Y_{j}\left(r,u\right)du,\ r\in\left\{b,w\right\}$$

- Define discrimination as $D_j \equiv 1\{p_{jb} \neq p_{jw}\}$
- Distinguish idiosyncratic/ex-post (Y_{jℓ}(b) ≠ Y_{jℓ}(w)) vs. systematic/ex-ante (p_{jb} ≠ p_{jw}) discrimination
- Systematic definition is relevant for prospective enforcement

Binomial Mixtures

• Under Assumption 1, callback counts $C_j = (C_{jw}, C_{jb})$ at employer j are generated by binomial trials:

$$egin{aligned} & \mathsf{Pr}(\mathit{C}_{j}=c|\mathit{p}_{jw},\mathit{p}_{jb}) = \left(egin{aligned} L_{w} \ c_{w} \end{array}
ight) \mathit{p}_{jw}^{c_{w}} \left(1-\mathit{p}_{jw}
ight)^{L_{w}-c_{w}} imes \left(egin{aligned} L_{b} \ c_{b} \end{array}
ight) \mathit{p}_{jb}^{c_{b}} \left(1-\mathit{p}_{jb}
ight)^{L_{b}-c_{b}} \ & & \equiv f(c|\mathit{p}_{jw},\mathit{p}_{jb}) \end{aligned}$$

Assumption 2: Random sampling

$$(p_{jw}, p_{jb}) \stackrel{iid}{\sim} G(., .)$$

Observed callback probabilities are a mixture of binomials:

$$Pr(C_j = c) = \int f(c|p_w, p_b) dG(p_w, p_b) \equiv \overline{f}(c)$$

► "Mixing distribution" G(·, ·) governs heterogeneity in callback rates across employers

Importance of $G(\cdot, \cdot)$

One reason for interest in G(·, ·) is that it characterizes prevalence and severity of discrimination in the population

Fraction of jobs that are not discriminating:

$$\pi^0 = \int_0^1 dG(p,p)$$

Second reason: tool for deciding which jobs are discriminating

By Bayes' rule, fraction discriminating among jobs with callback configuration C_j is:

$$\mathsf{Pr}(D_j = 1|C_j) = \int_{p_w \neq p_b} f(C_j|p_w, p_b) dG(p_w, p_b) \times \frac{(1 - \pi^0)}{\bar{f}(C_j)}$$

Indirect Evidence

$$\begin{aligned} \mathsf{Pr}(D_j = 1 | C_j) &= \int_{p_w \neq p_b} f(C_j | p_w, p_b) dG(p_w, p_b) \times \frac{(1 - \pi^0)}{\bar{f}(C_j)} \\ &\equiv \mathcal{P}\left(\underbrace{C_j}_{\text{direct}}, \underbrace{G(\cdot, \cdot)}_{\text{indirect}}\right). \end{aligned}$$

- "Posterior" blends direct evidence from an employer's own behavior with indirect evidence from the population from which it was drawn
- Key parameter: π^0 serves the role of "prior" probability of innocence
- How best to use indirect evidence in decisionmaking?

Auditor's Problem

- Consider an auditor (e.g. the EEOC) who knows G(·, ·) and must decide which employers to investigate
- ▶ Decision rule $\delta(c)$: $\{0...L_w\} \times \{0...L_b\} \rightarrow \{0,1\}$ maps callbacks to a binary inquiry decision

Loss function depends on number of type I and type II errors:

$$\mathcal{L}_{J}(\delta) = \sum_{j=1}^{J} \left\{ \underbrace{\delta\left(\mathcal{C}_{j}\right)\left(1-D_{j}\right)}_{\text{Type I}} \kappa + \underbrace{\left[1-\delta\left(\mathcal{C}_{j}\right)\right]D_{j}}_{\text{Type II}} \gamma \right\}.$$

The D_j are unknown, so the auditor minimizes expected loss (i.e. risk), $\mathcal{R}_J(G, \delta) = E [\mathcal{L}_J(\delta)]$

Reasonable doubt: investigate when $\mathcal{P}(C_j, G) > \kappa/(\kappa + \gamma)$ details

 N.B.: Posterior threshold rule controls False Discovery Rate (FDR), while classical hypothesis test does not (Benjamini and Hochberg, 1995; Storey, 2003)
 r details

Moments

Moments of $G(\cdot, \cdot)$

It turns out that some features of G(·, ·) are nonparametrically identified
 Observed callback frequencies are given by

$$\bar{f}(c_w, c_b) = E\left[\begin{pmatrix} L_w \\ c_w \end{pmatrix} p_{jw}^{c_w} (1 - p_{jw})^{L_w - c_w} \times \begin{pmatrix} L_b \\ c_b \end{pmatrix} p_{jb}^{c_b} (1 - p_{jb})^{L_b - c_b}\right]$$

$$= \begin{pmatrix} L_w \\ c_w \end{pmatrix} \begin{pmatrix} L_b \\ c_b \end{pmatrix} \sum_{x=0}^{L_w-c_w} \sum_{s=0}^{c_b-c_b} (-1)^{x+s} \begin{pmatrix} L_w-c_w \\ x \end{pmatrix} \begin{pmatrix} L_b-c_b \\ s \end{pmatrix} \times E \left[p_{jw}^{c_w+x} p_{jb}^{c_b+s} \right].$$

• Collect into system relating \bar{f} 's to moments $\mu(m, n) = E[p_{jw}^m p_{jb}^n]$:

$$\bar{f} = B\mu \implies \mu = B^{-1}\bar{f}$$

Implies identification of all moments μ(m, n) with m ≤ L_w, n ≤ L_b.
 Example: Var(p_{jw} − p_{jb}) identified as long as min{L_w, L_b} ≥ 2.

Data

Apply methods to data from three resume correspondence studies:

- Bertrand and Mullainathan (2004): Racial discrimination in Boston/Chicago
- Nunley et al. (2015): Racial discrimination among recent college graduates in the US
- Arceo-Gomez and Campos-Vasquez (2014): Gender discrimination in Mexico
- Estimation: GMM, and "shape-constrained" GMM requiring moments to be consistent with a coherent probability distribution requiring
 - Standard errors based on "numerical bootstrap" of Hong and Li (2017) details
 - Test model restrictions using bootstrap method of Chernozhukov, Newey, and Santos (2015) details

	Bertrand &		Arceo-Gomez &
	Mullainathan	Nunley et al.	Campos-Vasquez
	(1)	(2)	(3)
Number of jobs	1,112	2,305	802
Applications per job	4	4	8
Treatment/control	Black/white	Black/white	Male/female
Design	Stratified 2x2	Sample 4 names	Stratified 4x4
		w/out replacement	
		-	
Callback rates: Total	0.079	0.167	0.123
Treatment	0.063	0.154	0.108
Control	0.094	0.180	0.138
Difference	-0.031	-0.026	-0.030
	(0.007)	(0.007)	(0.008)

Table I: Descriptive statistics for resume correspondence studies

First Two Moments of $G(\cdot, \cdot)$ Are Identified in BM

Moment	Estimate
$E[p_w]$	0.094
	(0.006)
$E[p_b]$	0.063
	(0.006)
$E[(p_{} - E[p_{}])^2]$	0.040
	(0.005)
-[(`
$E[(p_b - E[p_b])^2]$	0.023
	(0.004)
$E[(p_w - E[p_w])(p_b - E[p_b])]$	0.028
	(0.004)
$E[(n - E[n])^2(n - E[n])]$	0.015
	(0.003)
	(0.003)
$E[(p_w - E[p_w])(p_b - E[p_b])^2]$	0.012
	(0.003)
$E[(p_{w} - E[p_{w}])^{2}(p_{h} - E[p_{h}])^{2}]$	0.010
	(0.003)
	(1.505)
Sample size	1,112

	Table III: Moments	of callback rate	distribution.	BM data
--	--------------------	------------------	---------------	---------

Shape Constraints Do Not Bind

Table III: Moments of callback	Table III: Moments of callback rate distribution, BM data				
	No	Shape			
	constraints	constraints			
Moment	(1)	(2)			
$E[p_w]$	0.094	0.094			
	(0.006)	(0.007)			
$E[p_b]$	0.063	0.063			
	(0.006)	(0.006)			
$E[(p_w - E[p_w])^2]$	0.040	0.040			
	(0.005)	(0.004)			
$E[(p_{b} - E[p_{b}])^{2}]$	0.023	0.023			
	(0.004)	(0.003)			
$E[(p_w - E[p_w])(p_b - E[p_b])]$	0.028	0.028			
	(0.004)	(0.003)			
$E[(p_w - E[p_w])^2(p_h - E[p_h])]$	0.015	0.014			
	(0.003)	(0.002)			
$E[(p_w - E[p_w])(p_b - E[p_b])^2]$	0.012	0.012			
	(0.003)	(0.002)			
$E[(p_w - E[p_w])^2(p_b - E[p_b])^2]$	0.010	0.010			
	(0.003)	(0.002)			
	J-statistic:	0.00			
	P-value:	1.000			
Sample size	1,1	12			

Substantial Variation in Discrimination

	p_{b}	p_w	<i>p</i> _b - <i>p</i> _w
	(1)	(2)	(3)
Mean	0.063	0.094	-0.031
	(0.006)	(0.007)	(0.006)
Standard deviation	0.152	0.199	0.082
	(0.011)	(0.011)	(0.012)
Correlation with p_w	0.927	1.000	-0.717
	(0.055)	-	(0.089)

Table VI.A: Treatment effect variation in BM (2004)

First Two Moments in Nunley et al. Data

	ion, i came jet an aaca
	(2,2)
Moment	design
$E[p_w]$	0.174
	(0.010)
$E[p_b]$	0.148
	(0.010)
$E[(p_{w} - E[p_{w}])^{2}]$	0.089
	(0.007)
$E[(p_{h} - E[p_{h}])^{2}]$	0.085
	(0.007)
$E[(p_w - E[p_w])(p_h - E[p_h])]$	0.083
	(0.006)
$E[(p_{w} - E[p_{w}])^{2}(p_{b} - E[p_{b}])]$	0.044
	(0.004)
$E[(p_w - E[p_w])(p_b - E[p_b])^2]$	0.047
	(0.005)
$E[(p_w - E[p_w])^2(p_h - E[p_h])^2]$	0.036
	(0.004)
Sample size	1,146

Table IV: Moments of callback rate distribution, Nunley et al. data

Extra Designs Identify Extra Moments

Table IV: Moments of callback rate distribution, Nunley et al. data			
	(2,2)	(3,1)	(1,3)
	design	design	design
Moment	(1)	(2)	(3)
$E[p_w]$	0.174	0.199	0.142
	(0.010)	(0.025)	(0.015)
$E[p_b]$	0.148	0.149	0.157
	(0.010)	(0.015)	(0.013)
$E[(p_{w} - E[p_{w}])^{2}]$	0.089	0.108	-
	(0.007)	(0.009)	
$E[(p_{h} - E[p_{h}])^{2}]$	0.085	-	0.083
	(0.007)		(0.008)
$E[(p_w - E[p_w])(p_b - E[p_b])]$	0.083	0.084	0.080
	(0.006)	(0.009)	(0.009)
$E[(p_{w} - E[p_{w}])^{3}]$	-	0.051	-
		(0.008)	
$E[(p_{b} - E[p_{b}])^{3}]$	-	-	0.044
			(0.007)
$E[(p_w - E[p_w])^2(p_b - E[p_b])]$	0.044	0.043	-
	(0.004)	(0.007)	
$E[(p_w - E[p_w])(p_h - E[p_h])^2]$	0.047	-	0.045
	(0.005)		(0.007)
$E[(p_w - E[p_w])^3(p_b - E[p_b])]$	-	0.034	-
		(0.005)	
$E[(p_w - E[p_w])(p_h - E[p_h])^3]$	-	-	0.037
			(0.006)
$E[(p_w - E[p_w])^2(p_h - E[p_h])^2]$	0.036	-	-
	(0.004)		
Sample size	1.146	544	550

Joint Test of All Restrictions Does Not Reject Proce tests

Table IV: Mome	nts of caliba	ck rate distribut	ion, Nunicy (et al. data	
_	Design-specific estimates				
	(2,2)	(3,1)	(1,3)		Combined
	design	design	design	P-value	estimates
Moment	(1)	(2)	(3)	(4)	(5)
$E[p_w]$	0.174	0.199	0.142	0.027	0.177
	(0.010)	(0.025)	(0.015)		(0.007)
$E[p_h]$	0.148	0.149	0.157	0.854	0.153
11 01	(0.010)	(0.015)	(0.013)		(0.007)
P[(0.000	0.100	(,	0.007	0.005
$E[(p_w - E[p_w])^2]$	0.089	0.108	-	0.097	0.095
	(0.007)	(0.009)			(0.004)
$E[(p_{h} - E[p_{h}])^{2}]$	0.085	-	0.083	0.857	0.084
	(0.007)		(0.008)		(0.004)
$E[(n_{} - E[n_{}])(n_{b} - E[n_{b}])]$	0.083	0.084	0.080	0.926	0.084
	(0.006)	(0.009)	(0.009)	0.720	(0.004)
	(0.000)	(0.00))	(0.00))		(0.004)
$E[(p_w - E[p_w])^3]$	-	0.051	-		0.106
		(0.008)			(0.006)
$E[(p_{h} - E[p_{h}])^{3}]$	-	-	0.044		0.092
			(0.007)		(0.006)
$E[(n - E[n])^2(n - E[n])]$	0.044	0.043		0.875	0.040
	(0.004)	(0.007)		0.075	(0.002)
$\mathbf{r}(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3})$	0.047	(0.007)	0.045	0.010	0.042
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.047	-	0.045	0.819	0.042
	(0.005)		(0.007)		(0.002)
$E[(p_w - E[p_w])^3(p_b - E[p_b])]$	-	0.034	-	-	0.035
		(0.005)			(0.002)
$E[(n - E[n])(n - E[n])^3]$			0.027		0.037
$E[(p_w - E[p_w])(p_b - E[p_b])]$		-	(0.006)	-	(0.007)
			(0.000)		(0.002)
$E[(p_w - E[p_w])^2(p_b - E[p_b])^2]$	0.036	-	-	-	0.038
	(0.004)				(0.002)
				J-statistic:	23.09
				P-value:	0.190
Sample size	1.146	544	550		2.240

Table IV: Moments of callback rate distribution, Nunley et al. data

Treatment Effects Are Variable and Skewed

.

X 7 T T

T 11

Table VI.B: Treatment effect variation in Nunley et al. (2015)			
	p_{b}	p_w	p_b - p_w
	(1)	(2)	(3)
Mean	0.153	0.177	-0.023
	(0.007)	(0.007)	(0.005)
Standard deviation	0.290	0.308	0.102
	(0.008)	(0.007)	(0.009)
Correlation with p_w	0.944	1.000	-0.336
	(0.018)	-	(0.048)
Skewness	3.757	3.648	-4.450
	(0.074)	(0.087)	(0.405)

....

·

1

Thick Tail of Extreme Discriminators in AGCV

Table VI.C. Treatment effect variation in AGC V				
	p_m	p_f	$p_m - p_f$	
	(1)	(2)	(3)	
Mean	0.114	0.140	-0.025	
	(0.009)	(0.009)	(0.008)	
Standard deviation	0.231	0.257	0.179	
	(0.011)	(0.010)	(0.011)	
Correlation with p_f	0.735	1.000	-0.483	
	(0.035)	-	(0.051)	
Skewness	4.067	3.748	-1.403	
	(0.140)	(1.161)	(0.385)	
Excess kurtosis	8.452	5.756	12.227	
	(1.458)	(8.790)	(2.291)	

Table VI.C: Treatment effect variation in AGCV

Posteriors

Bounds on Priors and Posteriors

- Moments of $G(\cdot, \cdot)$ aren't enough to compute posterior $\mathcal{P}(C_j, G)$
- Conservative approach: use what we know about G(·, ·) to bound prior π⁰ and posterior P(C_j, G)

Upper bound on prior share innocent:

$$ar{\pi}^0 = \max_{G \in \mathscr{G}} \int_0^1 dG(p,p) \ s.t. \ ar{f} = B\mu_G$$

- ► Following Tebaldi et al. (2019), search over space 𝒴 of discretized bivarate CDFs
- Objective and constraints are linear in p.m.f associated with $G(\cdot, \cdot) \implies$ apply linear programming details

Same approach can be used to bound other notions of discrimination, e.g. share not discriminating against blacks: $\int_{p_k > p_w} dG(p_b, p_w)$.

In BM, At Most 87% of Jobs Are Innocent

At Most 56% Making Two Total Calls Are Innocent

Table VII: Upper bounds on shar	es not discriminating, BM data
	Share not
	discriminating:
	$\Pr(p_w = p_b)$
Callbacks	(1)
All	0.870
0	0.962
1	0.576
2	0.558
3	0.492
4	0.788
J-statistic:	29.26
P -value (bound = 1):	0.000

Cannot Reject Zero Discrimination Against Whites

Table VII: Upper bounds on shares not discriminating, BM data				
	Share not	Share not disc.	Share not disc.	
	discriminating:	against whites:	against blacks:	
	$\Pr(p_w = p_b)$	$\Pr(p_w \ge p_b)$	$\Pr(p_w \leq p_b)$	
Callbacks	(1)	(2)	(3)	
All	0.870	1.000	0.870	
0	0.962	1.000	0.962	
1	0.576	1.000	0.576	
2	0.558	1.000	0.558	
3	0.492	1.000	0.492	
4	0.788	1.000	0.788	
J-statistic:	29.26	0.00	29.26	
P-value (bound = 1):	0.000	1.000	0.000	

In BM, At Least 72% With $C_j = (2,0)$ Discriminate

Figure I: Lower bounds on posterior probabilities of discrimination, BM data

In Nunley et al., Cannot Reject $\Pr(p_{jw} \ge p_{jb}) = 1$

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data					
		Share not discriminating:	Share not disc. against whites:	Share not disc. against blacks:	
		$\Pr(p_w = p_b)$	$\Pr(p_w \ge p_b)$	$\Pr(p_w \leq p_b)$	
Design	Callbacks	(1)	(2)	(3)	
All	All	0.642	0.846	0.827	
(2,2)	0	0.848	0.907	0.952	
	1	0.328	0.815	0.567	
	2	0.309	0.984	0.325	
	3	0.179	0.933	0.264	
	4	0.579	0.743	0.872	
	J-statistic:	62.64	23.46	62.64	
P-value	e (bound = 1):	0.000	0.120	0.000	

At Most 33% That Make Two Calls Have $p_{jw} \leq p_{jb}$

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data					
		Share not	Share not disc.	Share not disc.	
		discriminating:	against whites:	against blacks:	
		$\Pr(p_w = p_b)$	$\Pr(p_w \ge p_b)$	$\Pr(p_w \leq p_b)$	
Design	Callbacks	(1)	(2)	(3)	
All	All	0.642	0.846	0.827	
(2,2)	0	0.848	0.907	0.952	
	1	0.328	0.815	0.567	
	2	0.309	0.984	0.325	
	3	0.179	0.933	0.264	
	4	0.579	0.743	0.872	
J-statistic: P value (bound = 1):		62.64 0.000	23.46	62.64 0.000	
i -valu		0.000	0.120	0.000	

Informative Bounds In Other Designs and Callback Strata

Table VIII: Opper bounds on snares not discriminating, Nunley et al. data					
		Share not	Share not Share not disc.		
		discriminating: against whites:		against blacks:	
		$\Pr(p_w = p_b) \qquad \Pr(p_w \ge p_b)$		$\Pr(p_w \leq p_b)$	
Design	Callbacks	(2)	(3)	(4)	
All	All	0.642	0.846	0.827	
(2,2)	0	0.848	0.907	0.952	
	1	0.328	0.815	0.567	
	2	0.309	0.984	0.325	
	3	0.179	0.933	0.264	
	4	0.579	0.743	0.872	
(3,1)	0	0.853	0.898	0.964	
	1	0.337	0.894	0.549	
	2	0.332	0.998	0.336	
	3	0.151	0.922	0.251	
	4	0.566	0.767	0.837	
(1,3)	0	0.839	0.916	0.936	
	1	0.323	0.754	0.594	
	2	0.326	0.958	0.369	
	3	0.204	0.955	0.262	
	4	0.581	0.723	0.893	
	J-statistic:	62.64	23.46	62.64	
P-value (bound = 1)		0.000	0.120	0.000	

Table VIII: Upper bounds on shares not discriminating. Numley at al. data

Lower Bounds on Posteriors Above 85%

Figure II: Lower bounds on posterior probabilities of discrimination, Nunley et al. data

In AGCV, Discrimination in Both Directions

Share not Share not disc Share not d				
	discriminating:	against women:	against men:	
	$\Pr(p_f = p_m)$	$\Pr(p_f > p_m)$	$\Pr(p_f < p_m)$	
Callbacks	(1)	(2)	(3)	
All	0.723	0.911	0.812	
0	0.864	0.960	0.905	
1	0.105	0.586	0.520	
2	0.284	0.740	0.544	
3	0.424	0.953	0.472	
4	0.497	0.945	0.553	
5	0.654	0.829	0.825	
6	0.591	0.788	0.803	
7	0.514	0.843	0.671	
8	0.924	0.989	0.935	
J-statistic:	369.66	33.88	359.95	
P-value (bound = 1):	0.000	0.005	0.000	

Table IX: Upper bounds on shares not discriminating, AGCV data

Lower Bounds on Posteriors Above 90%

Figure III: Lower bounds on posterior probabilities of discrimination, AGCV data

Decisions

- Consider auditor's decision problem under a particular parametric model for G(·, ·)
- Detection/error tradeoff (DET) curve: Tradeoff between false accusation and successful detection for a fixed number of apps
- Build DET curves for three versions of Nunley et al. experiment:
 - Two black/two white, random covariates
 - Five black/five white, random covariates
 - Optimal 10-app combination of race/covariates

Parametric Model: Mixed Logit

• Logit model for callback to application ℓ at job *j*:

$$\Pr\left(Y_{j\ell}=1|\alpha_j,\beta_j,R_{j\ell},X_{j\ell}\right) = \frac{\exp\left(\alpha_j - \beta_j \mathbf{1}\{R_{j\ell}=b\} + X'_{j\ell}\psi\right)}{1 + \exp\left(\alpha_j - \beta_j \mathbf{1}\{R_{j\ell}=b\} + X'_{j\ell}\psi\right)}$$

- R_{jl} indicates race, X_{jl} includes other randomly-assigned characteristics (GPA, experience, etc.)
- Normal/discrete type mixing distribution:

$$\alpha_j \sim N\left(\alpha_0, \sigma_\alpha^2\right),$$

$$\beta_j = \begin{cases} \beta_0, & \text{with prob.} \ \frac{\exp(\tau_0 + \tau_\alpha \alpha_j)}{1 + \exp(\tau_0 + \tau_\alpha \alpha_j)}, \\ 0, & \text{with prob.} \ \frac{1}{1 + \exp(\tau_0 + \tau_\alpha \alpha_j)}. \end{cases}$$

Discrimination is Rare But Intense

	0	Types		
	Constant	No selection	Selection	
	(1)	(2)	(3)	
Distribution of logit(p_w): α_0	-4.708	-4.931	-4.927	
	(0.223)	(0.242)	(0.280)	
σ_{lpha}	4.745	4.988	4.983	
	(0.223)	(0.249)	(0.294)	
Discrimination intensity: β_0	0.456	4.046	4.053	
	(0.108)	(1.563)	(1.576)	
Discrimination logit: τ_0	-	-1.586	-1.556	
		(0.416)	(1.098)	
$ au_{lpha}$	-	-	-0.005	
			(0.180)	
Fraction with $p_w \neq p_b$:	1.000	0.168	0.170	
Log-likelihood	-2,792.1	-2,788.2	-2,788.2	
Parameters	15	16	17	
Sample size	2,305	2,305	2,305	

Table X: Mixed logit estimates, Nunley et al. data

Discrimination is Not A "Luxury"

_

_

		T	ypes
	Constant	No selection	Selection
	(1)	(2)	(3)
Distribution of $logit(p_w)$:	α_0 -4.708	-4.931	-4.927
	(0.223)	(0.242)	(0.280)
c.	$\sigma_{\alpha} = 4.745$	4.988	4.983
	(0.223)	(0.249)	(0.294)
Discrimination intensity:	<i>B₀</i> 0.456	4.046	4.053
	(0.108)	(1.563)	(1.576)
Discrimination logit:	τ ₀ -	-1.586	-1.556
		(0.416)	(1.098)
	τ _α -	-	-0.005
			(0.180)
Fraction with $p_w \neq p_b$:	1.000	0.168	0.170
Log-likelihood	-2,792.1	-2,788.2	-2,788.2
Parameters	15	16	17
Sample size	2,305	2,305	2,305

Table X: Mixed logit estimates, Nunley et al. data

The Logit Model Fits Well

Figure IV: Mixed logit model fit

Covariates Generate Variation in Posteriors

Figure V: Mixed logit estimates of posterior discrimination probabilities, Nunley et al. data

With 2 Pairs, 80% Threshold Yields Few Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data

Sending 5 Pairs Boosts Detection Substantially

Optimizing Portfolio Yields Further Gains

Figure VI: Detection/error tradeoffs, Nunley et al. data

Fixing Size at 0.01 Yields More (Mostly False) Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data

Ambiguity

Auditing Under Ambiguity

- How would decisions change if the auditor admits that G(·, ·) might not be logit?
- Important (extreme) benchmark for decisionmaking under ambiguity: minimax decision rule
- Minimax risk function and decision rule when auditor knows G lies in some identified set Θ:

$$\mathcal{R}_{J}^{m}(\Theta, \delta) \equiv \sup_{G \in \Theta} \mathcal{R}_{J}(G, \delta), \ \delta^{mm} \equiv \arg \inf_{\delta} \mathcal{R}_{J}^{m}(\Theta, \delta)$$

Think of δ^{mm} as an estimator of unobserved D_j 's that "shrinks" towards a least favorable prior

Contrast risk and decisions based upon mixed logit prior with minimax decisions decisions

Logit Risk With $\kappa =$ 4, $\gamma = 1$

Figure VII: Logit and minimax risk, Nunley et al. data

Minimax Decision Rule Is More Aggressive!

Figure VII: Logit and minimax risk, Nunley et al. data

Concluding Thoughts

- This paper develops and applies methods for detecting illegal discrimination by specific employers
- We find tremendous heterogeneity in discrimination implies enforcement is a difficult inferential problem
- Nevertheless, favorable detection rates are achievable with relatively minor modifications to standard audit designs – suggests potential for real-time enforcement
- Methodological lessons:
 - Partial identification of response distribution does not preclude "borrowing strength" from the ensemble
 - Appropriate use of indirect evidence depends critically on investigator's loss function
- Question for future work: how do policy conclusions in other "empirical Bayes" evaluations of individual units (e.g. teachers, schools, hospitals, neighborhoods) vary with alternative notions of loss?

Bonus

Posterior Threshold Rule

• Risk $\mathcal{R}_J(G, \delta)$ can be rewritten

$$J\sum_{c_w=0}^{L_w}\sum_{c_b=0}^{L_b}\int \{\delta(c_w,c_b)(1-\mathcal{P}(c_w,c_b,G))\kappa+[1-\delta(c_w,c_b)]\mathcal{P}(c_w,c_b,G)\gamma\}$$

$$\times f(c_w, c_b | p_w, p_b) dG(p_w, p_b)$$

Integrand is minimized by setting $\delta(c) = 0$ when $\mathcal{P}(c, G) \leq \frac{\kappa}{\kappa + \gamma}$ and $\delta(c) = 1$ otherwise

Risk-minimizing decision rule is therefore

$$\delta({m{c}}) = 1 \left\{ \mathcal{P}({m{c}},{m{G}}) > rac{\kappa}{\kappa+\gamma}
ight\}.$$

*pFDR*_J Control

• Let $N_J = \sum_{j=1}^J \delta(C_j)$ denote the total number of investigations

Positive False Discovery Rate of Storey (2003) is defined:

$$pFDR_J = E\left[N_J^{-1}\sum_{j=1}^J \delta(C_j)(1-D_j)|N_j \ge 1
ight]$$

Storey (2003) showed $pFDR_J = \Pr(D_j = 0 | \delta(C_j) = 1)$, so

$$pFDR_J = \Pr\left(D_J = 0 | \mathcal{P}(C_j, G) > \frac{\kappa}{\gamma + \kappa}\right)$$
$$\leq \Pr\left(D_j = 0 | \mathcal{P}(C_j, G) = \frac{\kappa}{\gamma + \kappa}\right) = \frac{\gamma}{\gamma + \kappa}.$$

Pr(N_J ≥ 1) ≤ 1, so posterior threshold rule also controls FDR_J = pFDR_J × Pr(N_J ≥ 1).

Discretization of G

• We approximate $G(p_w, p_b)$ with the discrete distribution:

$$G_{K}(p_{w}, p_{b}) = \sum_{k=1}^{K} \sum_{l=1}^{K} \pi_{kl} \mathbb{1} \{ p_{w} \leq \varrho(k, l), p_{b} \leq \varrho(l, k) \}$$

• $\{\pi_{kl}\}_{k=1,l=1}^{K,K}$ are probability masses

• $\{\varrho(k, l), \varrho(l, k)\}_{k=1, l=1}^{K, K}$ are a set of mass point coordinates generated by

$$\varrho\left(x,y\right) = \underbrace{\frac{\min\left\{x,y\right\} - 1}{K}}_{\text{diagonal}} + \underbrace{\frac{\max\left\{0,x-y\right\}^{2}}{K\left(1+K-y\right)}}_{\text{off-diagonal}}.$$

Gives a two-dimensional grid with K² elements, equally spaced along the diagonal and quadratically spaced off the diagonal according to distance from diagonal

Shape Constrained GMM

- Let \tilde{f} denote vector of empirical callback frequencies
- Shape constrained GMM estimator of π solves quadratic programming problem:

$$\hat{\pi} = rginf_{\pi} \; (ilde{f} - BM\pi)' W(ilde{f} - BM\pi) \; s.t. \; \pi \geq 0, \; \mathbf{1}'\pi = 1.$$

- *M* is a $dim(\mu) \times K^2$ matrix defined so that $M\pi = \mu$ for G_K
- Shape constrained moment estimates: $\hat{\mu} = M\hat{\pi}$
- W is weighting matrix use two-step optimal weighting
- Set K = 150 for GMM estimation

Hong and Li (2017) Standard Errors

Bootstrap μ^* solves QP problem replacing \tilde{f} with $(\tilde{f} + J^{-1/4}f^*)$, where elements of f^* given by:

$$\frac{J^{-1}\sum_{j}\omega_{j}^{*}1\{C_{jw}=c_{w},C_{jb}=c_{b}\}}{J^{-1}\sum_{j}\omega_{j}^{*}}$$

- Weights ω_j^{*} drawn iid from exponential distribution with mean 0 and variance 1
- Standard errors for φ(μ̂) computed as standard deviation of J^{-1/4}[φ(μ^{*}) − φ(μ̂)] across bootstrap replications

Chernozhukov et al. (2015) Goodness of Fit Test

"J-test" goodness of fit statistic:

$${\mathcal T}_n = \inf_\pi \left(ilde{f} - BM\pi
ight)' \hat{\Sigma}^{-1} (ilde{f} - BM\pi) \; s.t. \; \pi \geq 0, \; \mathbf{1}' \pi = 1$$

Letting F* denote (centered) bootstrap analogue of f̃ and W* a weighting matrix, bootstrap test statistic is

$$T_n^* = \inf_{\pi,h} (F^* - BM\pi)' W^* (F^* - BM\pi)$$

s.t.
$$(\tilde{f} - BM\pi)'W(\tilde{f} - BM\pi) = T_n, \ \pi \ge 0, \ \mathbf{1}'\pi = 1, \ h \ge -\pi, \ 1'h = 0.$$

- As in the full sample, conduct two-step GMM estimation in bootstrap replications
- Calculate *p*-value as fraction of bootstrap samples with $T_n^* > T_n$
- Solve via Second Order Cone Programming

No Evidence That Callbacks Are Rival

Nunley et al. data			AGCV data		
	Main effect	Leave-out mean		Main effect	Leave-out mean
Variable	(1)	(2)	Variable	(3)	(4)
Black	-0.028	-0.019	Married	0.001	0.002
	(0.010)	(0.027)		(0.008)	(0.033)
Female	0.010	0.009	Age	0.003	0.002
	(0.010)	(0.027)		(0.003)	(0.005)
High SES	-0.233	-0.674	Scholarship	-0.003	-0.060
	(0.174)	(0.522)		(0.010)	(0.050)
GPA	-0.043	-0.153	Predicted callback rate	-0.644	-0.136
	(0.066)	(0.198)		(0.504)	(0.888)
Business major	0.008	0.010			
	(0.008)	(0.021)			
Employment gap	0.011	0.034			
	(0.009)	(0.023)			
Current unemp.: 3+	0.013	0.005			
-	(0.012)	(0.032)			
6+	-0.008	-0.038			
	(0.012)	(0.029)			
12+	0.001	0.021			
	(0.012)	(0.032)			
Past unemp.: 3+	0.029	0.065			
	(0.012)	(0.031)			
6+	-0.011	-0.016			
	(0.012)	(0.033)			
12+	-0.004	0.019			
	(0.012)	(0.031)			
Predicted callback rate	0.476	-0.041			
	(0.248)	(0.626)			
Joint p -value	0	.452	Joint p -value	0	.589
Sample size	9	,220	Sample size	6	,416

Table II: Tests for dependence across trials

Linear Programming

Optimization problem for computing upper bound on share innocent:

$$\max_{\{\pi_{kl}\}} \sum_{l=0}^{K} \sum_{k=0}^{K} \pi_{kl} \varrho(k, l) \ s.t. \sum_{k=1}^{K} \sum_{l=1}^{K} \pi_{kl} = 1, \quad \pi_{kl} \ge 0$$

Additional moment constraints for all (c_w, c_b):

$$\bar{f}(c_w, c_b) = \begin{pmatrix} L_w \\ c_w \end{pmatrix} \begin{pmatrix} L_b \\ c_b \end{pmatrix} \sum_{k=1}^K \sum_{l=1}^K \pi_{kl}$$

$$\times \varrho\left(k,l\right)^{c_{w}}\left(1-\varrho\left(k,l\right)\right)^{L_{w}-c_{w}}\varrho\left(l,k\right)^{c_{b}}\left(1-\varrho\left(l,k\right)\right)^{L_{b}-c_{b}}$$

Set K = 900 for computing bounds

Computing Maximum Risk

Letting *H* and *L* refer to high and low quality covariate values, we approximate $G(p_w^H, p_w^L, p_b^H, p_b^L)$ with

$$G_{K}(p_{w}^{H}, p_{w}^{L}, p_{b}^{H}, p_{b}^{L}) = \sum_{k=1}^{K} \sum_{l=1}^{K} \sum_{k'=1}^{K} \sum_{l'=1}^{K} \pi_{klk'l'}$$

 $\times 1 \left\{ p_{w}^{H} \leq \varrho\left(k,l\right), p_{w}^{L} \leq \varrho\left(k',l'\right), p_{b}^{H} \leq \varrho\left(l,k\right), p_{b}^{L} \leq \varrho\left(l',k'\right) \right\}.$

Maximal risk function for posterior cutoff q:

$$\mathcal{R}_{J}^{m}(q) = J \max_{\left\{\pi_{klk'l'}\right\}_{a \in \mathscr{A}_{1}}} \sum_{a \in \mathscr{A}_{1}} w_{a}$$

$$\times \left\{ \mathsf{Pr}\left(\delta\left(\mathit{C}_{j}, \mathit{a}, \mathit{q} \right) = 1, \mathit{D}_{j} = 0 \right) \kappa + \mathsf{Pr}\left(\delta\left(\mathit{C}_{j}, \mathit{a}, \mathit{q} \right) = 0, \mathit{D}_{j} = 1 \right) \gamma \right\}$$

 \blacktriangleright \mathscr{A}_1 is list of possible quality configurations with corresponding probabilities w_a

- Constraints: \(\pi_{klk'l'}\) positive and sum to 1, along with matching a list of logit-smoothed callback frequencies
- Joint probabilities $\Pr\left(\delta\left(C_{j}, a, q\right) = 1, D_{j} = d\right)$ linear in $\pi_{klk'l'}$ (see Appendix D)
- Set K = 30 when computing maximal risk in practice