Audits as Evidence: Experiments, Ensembles, and Enforcement

Pat Kline and Chris Walters UC Berkeley and NBER

July 2019

Labor Market Discrimination

- Title VII of the Civil Rights of 1964 prohibits employment discrimination on the basis of race, sex, and other protected characteristics
- Empirical literature focuses on measuring market-level averages of discrimination (Altonji and Blank, 1999; Guryan and Charles, 2013)
- Observational studies of "unexplained" gaps (Oaxaca, 1978)
- Audit/correspondence experiments (Bertrand and Mullainathan, 2004)
- Understanding variation in discrimination across employers is essential
- For enforcing the law - e.g. targeting of EEOC investigations
- For assessing effects on minority workers (Becker, 1957; Charles and Guryan, 2008)
- We develop tools for using correspondence experiments to detect illegal discrimination by individual employers

Agenda: Ensembles and Decisionmaking

- Correspondence studies send multiple applications to each job opening
- We view this as an ensemble of many small experiments
- Use the ensemble in service of two goals
- Learn about the distribution of discrimination across employers
- Interpret the evidence against particular employers ("indirect evidence," Efron, 2010)
- Take the perspective of hypothetical auditor (e.g. the EEOC) who must make decisions about which employers to investigate
- Treat auditor's problem as an exercise in large scale testing (Efron, 2012)
- We develop methods and apply them to 3 experimental data sets

Setup and Notation

- Sample of J jobs, each receiving L_{w} white and L_{b} black applications (total $L=L_{b}+L_{w}$)
- $R_{j \ell} \in\{b, w\}$ indicates race of application ℓ to job j (randomly assigned)
- $Y_{j \ell} \in\{0,1\}$ indicates a callback from job j to applicant ℓ
- $\left(C_{j w}, C_{j b}\right)$ count callbacks for each race:

$$
C_{j w}=\sum_{\ell=1}^{L} 1\left\{R_{j \ell}=w\right\} Y_{j \ell}, C_{j b}=\sum_{\ell=1}^{L} 1\left\{R_{j \ell}=b\right\} Y_{j \ell}
$$

Potential Outcomes

- Potential callback to application ℓ to $j o b j$ as a function of race r :

$$
Y_{j \ell}(r):\{b, w\} \rightarrow\{0,1\}
$$

- Observed callback outcome is $Y_{j \ell}=Y_{j \ell}\left(R_{j \ell}\right)$
- Represent potential outcomes as job-specific function of race and other factors $U_{j \ell}$:

$$
Y_{j \ell}(r)=Y_{j}\left(r, U_{j \ell}\right)
$$

- Assumption 1: Stable job-specific callback rule:

$$
U_{j \ell} \mid R_{j 1} \ldots R_{j L} \stackrel{i i d}{\sim} \operatorname{Uniform}(0,1)
$$

D Distribution of $U_{j \ell}$ does not depend on $\left\{R_{j k}\right\}_{k=1}^{L}$ by virtue of random assignment

- Key restriction is that the $U_{j \ell}$ are independent - rules out e.g. firms calling back first qualifed app and ignoring subsequent apps (test later)

Defining Discrimination

- Under Assumption 1, we have stable race-by-job callback probabilities in repeat experiments:

$$
p_{j r} \equiv \int_{0}^{1} Y_{j}(r, u) d u, r \in\{b, w\}
$$

- Define discrimination as $D_{j} \equiv 1\left\{p_{j b} \neq p_{j w}\right\}$
- Distinguish idiosyncratic/ex-post $\left(Y_{j \ell}(b) \neq Y_{j \ell}(w)\right)$ vs. systematic/ex-ante $\left(p_{j b} \neq p_{j w}\right)$ discrimination
- Systematic definition is relevant for prospective enforcement

Binomial Mixtures

- Under Assumption 1, callback counts $C_{j}=\left(C_{j w}, C_{j b}\right)$ at employer j are generated by binomial trials:

$$
\begin{gathered}
\operatorname{Pr}\left(C_{j}=c \mid p_{j w}, p_{j b}\right)=\binom{L_{w}}{c_{w}} p_{j w}^{c_{w}}\left(1-p_{j w}\right)^{L_{w}-c_{w}} \times\binom{ L_{b}}{c_{b}} p_{j b}^{c_{b}}\left(1-p_{j b}\right)^{L_{b}-c_{b}} \\
\equiv f\left(c \mid p_{j w}, p_{j b}\right)
\end{gathered}
$$

- Assumption 2: Random sampling

$$
\left(p_{j w}, p_{j b}\right) \stackrel{i i d}{\sim} G(., .)
$$

- Observed callback probabilities are a mixture of binomials:

$$
\operatorname{Pr}\left(C_{j}=c\right)=\int f\left(c \mid p_{w}, p_{b}\right) d G\left(p_{w}, p_{b}\right) \equiv \bar{f}(c)
$$

- "Mixing distribution" $G(\cdot, \cdot)$ governs heterogeneity in callback rates across employers

Importance of $G(\cdot, \cdot)$

- One reason for interest in $G(\cdot, \cdot)$ is that it characterizes prevalence and severity of discrimination in the population
- Fraction of jobs that are not discriminating:

$$
\pi^{0}=\int_{0}^{1} d G(p, p)
$$

- Second reason: tool for deciding which jobs are discriminating
- By Bayes' rule, fraction discriminating among jobs with callback configuration C_{j} is:

$$
\operatorname{Pr}\left(D_{j}=1 \mid C_{j}\right)=\int_{p_{w} \neq p_{b}} f\left(C_{j} \mid p_{w}, p_{b}\right) d G\left(p_{w}, p_{b}\right) \times \frac{\left(1-\pi^{0}\right)}{\bar{f}\left(C_{j}\right)}
$$

Indirect Evidence

$$
\begin{aligned}
& \operatorname{Pr}\left(D_{j}=1 \mid C_{j}\right)= \int_{p_{w} \neq p_{b}} f\left(C_{j} \mid p_{w}, p_{b}\right) d G\left(p_{w}, p_{b}\right) \times \frac{\left(1-\pi^{0}\right)}{\bar{f}\left(C_{j}\right)} \\
& \equiv \mathcal{P}(\underbrace{C_{j}}_{\text {direct }}, \underbrace{G(\cdot, \cdot)}_{\text {indirect }})
\end{aligned}
$$

- "Posterior" blends direct evidence from an employer's own behavior with indirect evidence from the population from which it was drawn
- Key parameter: π^{0} serves the role of "prior" probability of innocence
- How best to use indirect evidence in decisionmaking?

Auditor's Problem

- Consider an auditor (e.g. the EEOC) who knows $G(\cdot, \cdot)$ and must decide which employers to investigate
\rightarrow Decision rule $\delta(c):\left\{0 \ldots L_{w}\right\} \times\left\{0 \ldots L_{b}\right\} \rightarrow\{0,1\}$ maps callbacks to a binary inquiry decision
- Loss function depends on number of type I and type II errors:

$$
\mathcal{L}_{J}(\delta)=\sum_{j=1}^{J}\{\underbrace{\delta\left(C_{j}\right)\left(1-D_{j}\right)}_{\text {Type I }} \kappa+\underbrace{\left[1-\delta\left(C_{j}\right)\right] D_{j}}_{\text {Type II }} \gamma\}
$$

- The D_{j} are unknown, so the auditor minimizes expected loss (i.e. risk), $\mathcal{R}_{J}(G, \delta)=E\left[\mathcal{L}_{J}(\delta)\right]$
- Reasonable doubt: investigate when $\mathcal{P}\left(C_{j}, G\right)>\kappa /(\kappa+\gamma)>$ details
- N.B.: Posterior threshold rule controls False Discovery Rate (FDR), while classical hypothesis test does not (Benjamini and Hochberg, 1995; Storey, 2003)

Moments

Moments of $G(\cdot, \cdot)$

- It turns out that some features of $G(\cdot, \cdot)$ are nonparametrically identified
- Observed callback frequencies are given by

$$
\begin{gathered}
\bar{f}\left(c_{w}, c_{b}\right)=E\left[\binom{L_{w}}{c_{w}} p_{j w}^{c_{w}}\left(1-p_{j w}\right)^{L_{w}-c_{w}} \times\binom{ L_{b}}{c_{b}} p_{j b}^{c_{b}}\left(1-p_{j b}\right)^{L_{b}-c_{b}}\right] \\
=\binom{L_{w}}{c_{w}}\binom{L_{b}}{c_{b}} \sum_{x=0}^{L_{w}-c_{w}} \sum_{s=0}^{L_{b}-c_{b}}(-1)^{x+s}\binom{L_{w}-c_{w}}{x}\binom{L_{b}-c_{b}}{s} \\
\times E\left[p_{j w}^{c_{w}+x} p_{j b}^{c_{b}+s}\right] .
\end{gathered}
$$

- Collect into system relating \bar{f} 's to moments $\mu(m, n)=E\left[p_{j w}^{m} p_{j b}^{n}\right]$:

$$
\bar{f}=B \mu \Longrightarrow \mu=B^{-1} \bar{f}
$$

- Implies identification of all moments $\mu(m, n)$ with $m \leq L_{w}, n \leq L_{b}$.
- Example: $\operatorname{Var}\left(p_{j w}-p_{j b}\right)$ identified as long as $\min \left\{L_{w}, L_{b}\right\} \geq 2$.

Data

- Apply methods to data from three resume correspondence studies:
- Bertrand and Mullainathan (2004): Racial discrimination in Boston/Chicago
- Nunley et al. (2015): Racial discrimination among recent college graduates in the US
- Arceo-Gomez and Campos-Vasquez (2014): Gender discrimination in Mexico
- Estimation: GMM, and "shape-constrained" GMM requiring moments to be consistent with a coherent probability distribution
- Standard errors based on "numerical bootstrap" of Hong and Li (2017)
- Test model restrictions using bootstrap method of Chernozhukov, Newey, and Santos (2015) © details

Table I: Descriptive statistics for resume correspondence studies

	 Mullainathan (1)	Nunley et al. (2)	 Campos-Vasquez (3)
Number of jobs	1,112	2,305	802
Applications per job	4	4	8
Treatment/control	Black/white	Black/white	Male/female
Design	Stratified 2x2	Sample 4 names w/out replacement	Stratified 4x4
Callback rates: Total	0.079	0.167	0.123
Treatment	0.063	0.154	0.108
Control	0.094	0.180	0.138
Difference	-0.031 (0.007)	-0.026	-0.030
(0.007)	(0.008)		

First Two Moments of $G(\cdot, \cdot)$ Are Identified in BM

Table III: Moments of callback rate distribution, BM data	
Moment	Estimate
$E\left[p_{w}\right]$	0.094
	(0.006)
$E\left[p_{b}\right]$	0.063
	(0.006)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\right]$	0.040
	(0.005)
$E\left[\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.023
	(0.004)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)\right]$	0.028
	(0.004)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)\right]$	0.015
	(0.003)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.012
	(0.003)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.010
	(0.003)
Sample size	1,112

Shape Constraints Do Not Bind

Table III: Moments of callback rate distribution, BM data

	No constraints (1)	Shape constraints
Moment	(2)	
$E\left[p_{w}\right]$	$(0.094$	0.094
	0.063	(0.007)
$E\left[p_{b}\right]$	(0.006)	0.063
	0.040	$0.006)$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\right]$	(0.005)	(0.004)
$E\left[\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.023	0.023
	(0.004)	(0.003)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)\right]$	0.028	0.028
	(0.004)	(0.003)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)\right]$	0.015	0.014
	(0.003)	(0.002)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.012	0.012
	(0.003)	(0.002)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.010	0.010
	(0.003)	(0.002)
	J-statistic:	0.00
	P-value:	1.000
		1,112

Substantial Variation in Discrimination

Table VI.A: Treatment effect variation in BM (2004)

	p_{b}	p_{w}	$p_{b}-p_{w}$
	(1)	(2)	(3)
Mean	0.063	0.094	-0.031
	(0.006)	(0.007)	(0.006)
Standard deviation	0.152	0.199	0.082
	(0.011)	(0.011)	(0.012)
Correlation with p_{w}	0.927	1.000	-0.717
	(0.055)	-	(0.089)

First Two Moments in Nunley et al. Data

Table IV: Moments of callback rate distribution, Nunley et al. data	
Moment	$(2,2)$
design	
$E\left[p_{w}\right]$	0.174
	(0.010)
$E\left[p_{b}\right]$	0.148
	(0.010)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\right]$	0.089
	(0.007)
$E\left[\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.085
	(0.007)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)\right]$	0.083
	(0.006)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)\right]$	0.044
	(0.004)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.047
	(0.005)
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	0.036
	(0.004)

Extra Designs Identify Extra Moments

Table IV: Moments of callback rate distribution, Nunley et al. data

Moment	$(2,2)$ design (1)	$(3,1)$ design	$(1,3)$ design
$E\left[p_{w}\right]$	$\begin{gathered} \hline 0.174 \\ (0.010) \end{gathered}$	$\begin{gathered} \hline 0.199 \\ (0.025) \end{gathered}$	$\begin{gathered} \hline 0.142 \\ (0.015) \end{gathered}$
$E\left[p_{b}\right]$	$\begin{gathered} 0.148 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.149 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.157 \\ (0.013) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\right]$	$\begin{gathered} 0.089 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.108 \\ (0.009) \end{gathered}$	-
$E\left[\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	$\begin{gathered} 0.085 \\ (0.007) \end{gathered}$	-	$\begin{gathered} 0.083 \\ (0.008) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)\right]$	$\begin{gathered} 0.083 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.084 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.009) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{3}\right]$	-	$\begin{gathered} 0.051 \\ (0.008) \end{gathered}$	-
$E\left[\left(p_{b}-E\left[p_{b}\right]\right)^{3}\right]$	-	-	$\begin{gathered} 0.044 \\ (0.007) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)\right]$	$\begin{gathered} 0.044 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.007) \end{gathered}$	-
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	$\begin{gathered} 0.047 \\ (0.005) \end{gathered}$	-	$\begin{gathered} 0.045 \\ (0.007) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{3}\left(p_{b}-E\left[p_{b}\right]\right)\right]$	-	$\begin{gathered} 0.034 \\ (0.005) \end{gathered}$	-
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{3}\right]$	-	-	$\begin{gathered} 0.037 \\ (0.006) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	$\begin{gathered} 0.036 \\ (0.004) \end{gathered}$	-	-
Sample size	1,146	544	550

Joint Test of All Restrictions Does Not Reject

Table IV: Moments of callback rate distribution, Nunley et al. data

	Design-specific estimates				Combined estimates (5)
Moment	$(2,2)$ design (1)	$(3,1)$ design (2)	$(1,3)$ design (3)	P-value (4)	
$E\left[p_{w}\right]$	$\begin{gathered} 0.174 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.199 \\ (0.025) \end{gathered}$	$\begin{gathered} 0.142 \\ (0.015) \end{gathered}$	0.027	$\begin{gathered} 0.177 \\ (0.007) \end{gathered}$
$E\left[p_{b}\right]$	$\begin{gathered} 0.148 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.149 \\ (0.015) \end{gathered}$	$\begin{gathered} 0.157 \\ (0.013) \end{gathered}$	0.854	$\begin{gathered} 0.153 \\ (0.007) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\right]$	$\begin{gathered} 0.089 \\ (0.007) \end{gathered}$	$\begin{gathered} 0.108 \\ (0.009) \end{gathered}$	-	0.097	$\begin{gathered} 0.095 \\ (0.004) \end{gathered}$
$E\left[\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	$\begin{gathered} 0.085 \\ (0.007) \end{gathered}$	-	$\begin{gathered} 0.083 \\ (0.008) \end{gathered}$	0.857	$\begin{gathered} 0.084 \\ (0.004) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)\right]$	$\begin{gathered} 0.083 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.084 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.009) \end{gathered}$	0.926	$\begin{gathered} 0.084 \\ (0.004) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{3}\right]$	-	$\begin{gathered} 0.051 \\ (0.008) \end{gathered}$	-		$\begin{gathered} 0.106 \\ (0.006) \end{gathered}$
$E\left[\left(p_{b}-E\left[p_{b}\right]\right)^{3}\right]$	-	-	$\begin{gathered} 0.044 \\ (0.007) \end{gathered}$		$\begin{gathered} 0.092 \\ (0.006) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)\right]$	$\begin{gathered} 0.044 \\ (0.004) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.007) \end{gathered}$	-	0.875	$\begin{gathered} 0.040 \\ (0.002) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	$\begin{gathered} 0.047 \\ (0.005) \end{gathered}$	-	$\begin{gathered} 0.045 \\ (0.007) \end{gathered}$	0.819	$\begin{gathered} 0.042 \\ (0.002) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{3}\left(p_{b}-E\left[p_{b}\right]\right)\right]$	-	$\begin{gathered} 0.034 \\ (0.005) \end{gathered}$	-	-	$\begin{gathered} 0.035 \\ (0.002) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)\left(p_{b}-E\left[p_{b}\right]\right)^{3}\right]$	-	-	$\begin{gathered} 0.037 \\ (0.006) \end{gathered}$	-	$\begin{gathered} 0.037 \\ (0.002) \end{gathered}$
$E\left[\left(p_{w}-E\left[p_{w}\right]\right)^{2}\left(p_{b}-E\left[p_{b}\right]\right)^{2}\right]$	$\begin{gathered} 0.036 \\ (0.004) \end{gathered}$	-	-	-	$\begin{gathered} 0.038 \\ (0.002) \\ \hline \end{gathered}$
				J-statistic: P-value:	$\begin{aligned} & 23.09 \\ & 0.190 \\ & \hline \end{aligned}$
Sample size	1,146	544	550		2,240

Treatment Effects Are Variable and Skewed

Table VI.B: Treatment effect variation in Nunley et al. (2015)

	p_{b} (1)	$\begin{aligned} & p_{w} \\ & (2) \\ & \hline \end{aligned}$	$p_{b}-p_{w}$ (3)
Mean	0.153	0.177	-0.023
	(0.007)	(0.007)	(0.005)
Standard deviation	0.290	0.308	0.102
	(0.008)	(0.007)	(0.009)
Correlation with p_{w}	0.944	1.000	-0.336
	(0.018)	-	(0.048)
Skewness	3.757	3.648	-4.450
	(0.074)	(0.087)	(0.405)

Thick Tail of Extreme Discriminators in AGCV

Table VI.C: Treatment effect variation in AGCV

	p_{m}	p_{f}	$p_{m}-p_{f}$
	(1)	(2)	(3)
Mean	0.114	0.140	-0.025
	(0.009)	(0.009)	(0.008)
Standard deviation	0.231	0.257	0.179
	(0.011)	(0.010)	(0.011)
Correlation with p_{f}	0.735	1.000	-0.483
	(0.035)	-	(0.051)
Skewness	4.067	3.748	-1.403
	(0.140)	(1.161)	(0.385)
Excess kurtosis	8.452	5.756	12.227
	(1.458)	(8.790)	(2.291)

Posteriors

Bounds on Priors and Posteriors

- Moments of $G(\cdot, \cdot)$ aren't enough to compute posterior $\mathcal{P}\left(C_{j}, G\right)$
- Conservative approach: use what we know about $G(\cdot, \cdot)$ to bound prior π^{0} and posterior $\mathcal{P}\left(C_{j}, G\right)$
- Upper bound on prior share innocent:

$$
\bar{\pi}^{0}=\max _{G \in \mathscr{G}} \int_{0}^{1} d G(p, p) \text { s.t. } \bar{f}=B \mu_{G}
$$

- Following Tebaldi et al. (2019), search over space \mathscr{G} of discretized bivarate CDFs
- Objective and constraints are linear in p.m.f associated with $G(\cdot, \cdot) \Longrightarrow$ apply linear programming - details
- Same approach can be used to bound other notions of discrimination, e.g. share not discriminating against blacks: $\int_{p_{b} \geq p_{w}} d G\left(p_{b}, p_{w}\right)$.

In BM, At Most 87\% of Jobs Are Innocent

Table VII: Upper bounds on shares not discriminating, BM data
Share not
discriminating:

$$
\operatorname{Pr}\left(p_{w}=p_{b}\right)
$$

(1)

| J-statistic: | 0.870 |
| ---: | :--- | :--- |
| P-value (bound $=1$): | 29.26 |
| | 0.000 |

At Most 56\% Making Two Total Calls Are Innocent

Table VII: Upper bounds on shares not discriminating, BM data
Share not discriminating:

$$
\operatorname{Pr}\left(p_{w}=p_{b}\right)
$$

Callbacks	(1)
All	0.870
0	0.962
1	0.576
2	0.558
3	0.492
4	0.788
	J-statistic:
P-value (bound $=1):$	29.26
	0.000

Cannot Reject Zero Discrimination Against Whites

Table VII: Upper bounds on shares not discriminating, BM data

	Share not discriminating: $\operatorname{Pr}\left(p_{w}=p_{b}\right)$ (1)	Share not disc. against whites: $\operatorname{Pr}\left(p_{w} \geq p_{b}\right)$ (2)	Share not disc. against blacks: $\operatorname{Pr}\left(p_{w} \leq p_{b}\right)$
Callbacks	0.870	1.000	(3)
All	0.962	1.000	0.870
0	0.576	1.000	0.962
1	0.558	1.000	0.576
2	0.492	1.000	0.558
3	0.788	1.000	0.492
4	29.26	0.00	0.788
P-statistic:	0.000	1.000	29.26

In BM, At Least 72% With $C_{j}=(2,0)$ Discriminate

Figure I: Lower bounds on posterior probabilities of discrimination, BM data

In Nunley et al., Cannot Reject $\operatorname{Pr}\left(p_{j w} \geq p_{j b}\right)=1$

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data

		Share not discriminating: $\operatorname{Pr}\left(p_{w}=p_{b}\right)$ (1)	Share not disc. against whites: $\operatorname{Pr}\left(p_{w} \geq p_{b}\right)$ (2)	Share not disc. against blacks: $\operatorname{Pr}\left(p_{w} \leq p_{b}\right)$ (3)
All	All	0.642	0.846	0.827
$(2,2)$	0	0.848	0.907	0.952
	1	0.328	0.815	0.567
	2	0.309	0.984	0.325
	3	0.179	0.933	0.264
	4	0.579	0.743	0.872
	J-statistic:	62.64	23.46	62.64
P-value (bound $=1):$	0.000	0.120	0.000	

At Most 33\% That Make Two Calls Have $p_{j w} \leq p_{j b}$

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data Share not Share not disc. Share not disc. discriminating: against whites: against blacks:

$$
\operatorname{Pr}\left(p_{w}=p_{b}\right) \quad \operatorname{Pr}\left(p_{w} \geq p_{b}\right) \quad \operatorname{Pr}\left(p_{w} \leq p_{b}\right)
$$

Design	Callbacks	(1)	(2)	(3)
All	All	0.642	0.846	0.827
$(2,2)$	0	0.848	0.907	0.952
	1	0.328	0.815	0.567
	2	0.309	0.984	0.325
	3	0.179	0.933	0.264
	4	0.579	0.743	0.872
	J-statistic:	62.64	23.46	62.64
	P-value (bound $=1):$	0.000	0.120	0.000

Informative Bounds In Other Designs and Callback Strata

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data

Design	Callbacks	Share not discriminating: $\begin{gathered} \operatorname{Pr}\left(p_{w}=p_{b}\right) \\ (2) \end{gathered}$	Share not disc. against whites: $\operatorname{Pr}\left(p_{w} \geq p_{b}\right)$ (3)	Share not disc. against blacks: $\operatorname{Pr}\left(p_{w} \leq p_{b}\right)$ (4)
All	All	0.642	0.846	0.827
$(2,2)$	0	0.848	0.907	0.952
	1	0.328	0.815	0.567
	2	0.309	0.984	0.325
	3	0.179	0.933	0.264
	4	0.579	0.743	0.872
(3,1)	0	0.853	0.898	0.964
	1	0.337	0.894	0.549
	2	0.332	0.998	0.336
	3	0.151	0.922	0.251
	4	0.566	0.767	0.837
$(1,3)$	0	0.839	0.916	0.936
	1	0.323	0.754	0.594
	2	0.326	0.958	0.369
	3	0.204	0.955	0.262
	4	0.581	0.723	0.893
P-val	J-statistic: (bound $=1$):	$\begin{aligned} & 62.64 \\ & 0.000 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.46 \\ & 0.120 \\ & \hline \end{aligned}$	$\begin{aligned} & 62.64 \\ & 0.000 \\ & \hline \end{aligned}$

Lower Bounds on Posteriors Above 85\%

Figure II: Lower bounds on posterior probabilities of discrimination, Nunley et al. data

In AGCV, Discrimination in Both Directions

Table IX: Upper bounds on shares not discriminating, AGCV data
Share not Share not disc. Share not disc. discriminating: against women: against men:

$$
\operatorname{Pr}\left(p_{f}=p_{m}\right) \quad \operatorname{Pr}\left(p_{f} \geq p_{m}\right) \quad \operatorname{Pr}\left(p_{f} \leq p_{m}\right)
$$

Callbacks	(1)	(2)	(3)
All	0.723	0.911	0.812
0	0.864	0.960	0.905
1	0.105	0.586	0.520
2	0.284	0.740	0.544
3	0.424	0.953	0.472
4	0.497	0.945	0.553
5	0.654	0.829	0.825
6	0.591	0.788	0.803
7	0.514	0.843	0.671
8	0.924	0.989	0.935
J-statistic:	369.66	33.88	359.95
P-value (bound = 1):	0.000	0.005	0.000

Lower Bounds on Posteriors Above 90\%

Figure III: Lower bounds on posterior probabilities of discrimination, AGCV data

Decisions

Decisions

- Consider auditor's decision problem under a particular parametric model for $G(\cdot, \cdot)$
- Detection/error tradeoff (DET) curve: Tradeoff between false accusation and successful detection for a fixed number of apps
- Build DET curves for three versions of Nunley et al. experiment:
- Two black/two white, random covariates
- Five black/five white, random covariates
- Optimal 10-app combination of race/covariates

Parametric Model: Mixed Logit

- Logit model for callback to application ℓ at job j :

$$
\operatorname{Pr}\left(Y_{j \ell}=1 \mid \alpha_{j}, \beta_{j}, R_{j \ell}, X_{j \ell}\right)=\frac{\exp \left(\alpha_{j}-\beta_{j} 1\left\{R_{j \ell}=b\right\}+X_{j \ell}^{\prime} \psi\right)}{1+\exp \left(\alpha_{j}-\beta_{j} 1\left\{R_{j \ell}=b\right\}+X_{j \ell}^{\prime} \psi\right)}
$$

$-R_{j \ell}$ indicates race, $X_{j \ell}$ includes other randomly-assigned characteristics (GPA, experience, etc.)

- Normal/discrete type mixing distribution:

$$
\begin{gathered}
\alpha_{j} \sim N\left(\alpha_{0}, \sigma_{\alpha}^{2}\right), \\
\beta_{j}= \begin{cases}\beta_{0}, & \text { with prob. } \frac{\exp \left(\tau_{0}+\tau_{\alpha} \alpha_{j}\right)}{1+\exp \left(\tau_{0}+\tau_{\alpha} \alpha_{j}\right)}, \\
0, & \text { with prob. } \frac{1}{1+\exp \left(\tau_{0}+\tau_{\alpha} \alpha_{j}\right)} .\end{cases}
\end{gathered}
$$

Discrimination is Rare But Intense

Table X: Mixed logit estimates, Nunley et al. data

	Constant (1)	Types	
		No selection (2)	Selection (3)
Distribution of $\operatorname{logit}\left(p_{w}\right): \alpha_{0}$	$\begin{aligned} & \hline-4.708 \\ & (0.223) \end{aligned}$	$\begin{aligned} & \hline-4.931 \\ & (0.242) \end{aligned}$	$\begin{aligned} & \hline-4.927 \\ & (0.280) \end{aligned}$
σ_{α}	$\begin{gathered} 4.745 \\ (0.223) \end{gathered}$	$\begin{gathered} 4.988 \\ (0.249) \end{gathered}$	$\begin{gathered} 4.983 \\ (0.294) \end{gathered}$
Discrimination intensity: β_{0}	$\begin{gathered} 0.456 \\ (0.108) \end{gathered}$	$\begin{gathered} 4.046 \\ (1.563) \\ \hline \end{gathered}$	$\begin{gathered} 4.053 \\ (1.576) \end{gathered}$
Discrimination logit:	-	$\begin{aligned} & -1.586 \\ & (0.416) \end{aligned}$	$\begin{aligned} & -1.556 \\ & (1.098) \end{aligned}$
	-	-	$\begin{gathered} -0.005 \\ (0.180) \end{gathered}$
Fraction with $p_{w} \neq p_{b}$:	1.000	0.168	0.170
Log-likelihood	-2,792.1	-2,788.2	-2,788.2
Parameters	15	16	17
Sample size	2,305	2,305	2,305

Discrimination is Not A "Luxury"

Table X: Mixed logit estimates, Nunley et al. data

			Types	
		Constant	No selection	Selection
Distribution of logit $\left(p_{w}\right):$	α_{0}	-4.708	-4.931	-4.927
		(0.223)	(0.242)	(0.280)
	σ_{α}	4.745	4.988	4.983
		(0.223)	(0.249)	(0.294)
Discrimination intensity: β_{0}	0.456	4.046	4.053	
		(0.108)	(1.563)	(1.576)
Discrimination logit:	τ_{0}	-	-1.586	-1.556
			(0.416)	(1.098)

The Logit Model Fits Well

Figure IV: Mixed logit model fit

Covariates Generate Variation in Posteriors

Figure V: Mixed logit estimates of posterior discrimination probabilities, Nunley et al. data

With 2 Pairs, 80\% Threshold Yields Few Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data

Sending 5 Pairs Boosts Detection Substantially

Figure VI: Detection/error tradeoffs, Nunley et al. data

Optimizing Portfolio Yields Further Gains

Figure VI: Detection/error tradeoffs, Nunley et al. data

Fixing Size at 0.01 Yields More (Mostly False) Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data

Ambiguity

Auditing Under Ambiguity

- How would decisions change if the auditor admits that $G(\cdot, \cdot)$ might not be logit?
- Important (extreme) benchmark for decisionmaking under ambiguity: minimax decision rule
- Minimax risk function and decision rule when auditor knows G lies in some identified set Θ :

$$
\mathcal{R}_{J}^{m}(\Theta, \delta) \equiv \sup _{G \in \Theta} \mathcal{R}_{J}(G, \delta), \delta^{m m} \equiv \arg \inf _{\delta} \mathcal{R}_{J}^{m}(\Theta, \delta)
$$

- Think of $\delta^{m m}$ as an estimator of unobserved D_{j} 's that "shrinks" towards a least favorable prior
- Contrast risk and decisions based upon mixed logit prior with minimax decisions

Logit Risk With $\kappa=4, \gamma=1$

Figure VII: Logit and minimax risk, Nunley et al. data

Minimax Decision Rule Is More Aggressive!

Figure VII: Logit and minimax risk, Nunley et al. data

Concluding Thoughts

- This paper develops and applies methods for detecting illegal discrimination by specific employers
- We find tremendous heterogeneity in discrimination - implies enforcement is a difficult inferential problem
- Nevertheless, favorable detection rates are achievable with relatively minor modifications to standard audit designs - suggests potential for real-time enforcement
- Methodological lessons:
- Partial identification of response distribution does not preclude "borrowing strength" from the ensemble
- Appropriate use of indirect evidence depends critically on investigator's loss function
- Question for future work: how do policy conclusions in other "empirical Bayes" evaluations of individual units (e.g. teachers, schools, hospitals, neighborhoods) vary with alternative notions of loss?

Bonus

Posterior Threshold Rule

- Risk $\mathcal{R}_{J}(G, \delta)$ can be rewritten

$$
J \sum_{c_{w}=0}^{L_{w}} \sum_{c_{b}=0}^{L_{b}} \int\left\{\delta\left(c_{w}, c_{b}\right)\left(1-\mathcal{P}\left(c_{w}, c_{b}, G\right)\right) \kappa+\left[1-\delta\left(c_{w}, c_{b}\right)\right] \mathcal{P}\left(c_{w}, c_{b}, G\right) \gamma\right\}
$$

$$
\times f\left(c_{w}, c_{b} \mid p_{w}, p_{b}\right) d G\left(p_{w}, p_{b}\right)
$$

- Integrand is minimized by setting $\delta(c)=0$ when $\mathcal{P}(c, G) \leq \frac{\kappa}{\kappa+\gamma}$ and $\delta(c)=1$ otherwise
- Risk-minimizing decision rule is therefore

$$
\delta(c)=1\left\{\mathcal{P}(c, G)>\frac{\kappa}{\kappa+\gamma}\right\} .
$$

$p F D R_{J}$ Control

- Let $N_{J}=\sum_{j=1}^{J} \delta\left(C_{j}\right)$ denote the total number of investigations
- Positive False Discovery Rate of Storey (2003) is defined:

$$
p F D R_{J}=E\left[N_{J}^{-1} \sum_{j=1}^{J} \delta\left(C_{j}\right)\left(1-D_{j}\right) \mid N_{j} \geq 1\right]
$$

- Storey (2003) showed $p F D R_{J}=\operatorname{Pr}\left(D_{j}=0 \mid \delta\left(C_{j}\right)=1\right)$, so

$$
\begin{aligned}
& p F D R_{J}=\operatorname{Pr}\left(D_{J}=0 \left\lvert\, \mathcal{P}\left(C_{j}, G\right)>\frac{\kappa}{\gamma+\kappa}\right.\right) \\
& \leq \operatorname{Pr}\left(D_{j}=0 \left\lvert\, \mathcal{P}\left(C_{j}, G\right)=\frac{\kappa}{\gamma+\kappa}\right.\right)=\frac{\gamma}{\gamma+\kappa} .
\end{aligned}
$$

$\rightarrow \operatorname{Pr}\left(N_{J} \geq 1\right) \leq 1$, so posterior threshold rule also controls $F D R_{J}=p F D R_{J} \times \operatorname{Pr}\left(N_{J} \geq 1\right)$.

Discretization of G

- We approximate $G\left(p_{w}, p_{b}\right)$ with the discrete distribution:

$$
G_{K}\left(p_{w}, p_{b}\right)=\sum_{k=1}^{K} \sum_{l=1}^{K} \pi_{k l} 1\left\{p_{w} \leq \varrho(k, I), p_{b} \leq \varrho(I, k)\right\}
$$

- $\left\{\pi_{k l}\right\}_{k=1, l=1}^{K, K}$ are probability masses
- $\{\varrho(k, l), \varrho(I, k)\}_{k=1, l=1}^{K, K}$ are a set of mass point coordinates generated by

$$
\varrho(x, y)=\underbrace{\frac{\min \{x, y\}-1}{K}}_{\text {diagonal }}+\underbrace{\frac{\max \{0, x-y\}^{2}}{K(1+K-y)}}_{\text {off-diagonal }} .
$$

- Gives a two-dimensional grid with K^{2} elements, equally spaced along the diagonal and quadratically spaced off the diagonal according to distance from diagonal

Shape Constrained GMM

- Let \tilde{f} denote vector of empirical callback frequencies
- Shape constrained GMM estimator of π solves quadratic programming problem:

$$
\hat{\pi}=\arg \inf _{\pi}(\tilde{f}-B M \pi)^{\prime} W(\tilde{f}-B M \pi) \text { s.t. } \pi \geq 0, \mathbf{1}^{\prime} \pi=1
$$

- M is a $\operatorname{dim}(\mu) \times K^{2}$ matrix defined so that $M \pi=\mu$ for G_{K}
- Shape constrained moment estimates: $\hat{\mu}=M \hat{\pi}$
- W is weighting matrix - use two-step optimal weighting
- Set $K=150$ for GMM estimation

Hong and Li (2017) Standard Errors

- Bootstrap μ^{*} solves QP problem replacing \tilde{f} with $\left(\tilde{f}+J^{-1 / 4} f^{*}\right)$, where elements of f^{*} given by:

$$
\frac{J^{-1} \sum_{j} \omega_{j}^{*} 1\left\{c_{j w}=c_{w}, c_{j b}=c_{b}\right\}}{J^{-1} \sum_{j} \omega_{j}^{*}}
$$

- Weights ω_{j}^{*} drawn iid from exponential distribution with mean 0 and variance 1
- Standard errors for $\phi(\hat{\mu})$ computed as standard deviation of $J^{-1 / 4}\left[\phi\left(\mu^{*}\right)-\phi(\hat{\mu})\right]$ across bootstrap replications

Chernozhukov et al. (2015) Goodness of Fit Test

- "J-test" goodness of fit statistic:

$$
T_{n}=\inf _{\pi}(\tilde{f}-B M \pi)^{\prime} \hat{\Sigma}^{-1}(\tilde{f}-B M \pi) \text { s.t. } \pi \geq 0, \mathbf{1}^{\prime} \pi=1
$$

- Letting F^{*} denote (centered) bootstrap analogue of \tilde{f} and W^{*} a weighting matrix, bootstrap test statistic is

$$
T_{n}^{*}=\inf _{\pi, h}\left(F^{*}-B M \pi\right)^{\prime} W^{*}\left(F^{*}-B M \pi\right)
$$

s.t. $(\tilde{f}-B M \pi)^{\prime} W(\tilde{f}-B M \pi)=T_{n}, \pi \geq 0, \mathbf{1}^{\prime} \pi=1, h \geq-\pi, 1^{\prime} h=0$.

- As in the full sample, conduct two-step GMM estimation in bootstrap replications
- Calculate p-value as fraction of bootstrap samples with $T_{n}^{*}>T_{n}$
- Solve via Second Order Cone Programming

No Evidence That Callbacks Are Rival

Table II: Tests for dependence across trials

Nunley et al. data			AGCV data		
Variable	Main effect	Leave-out mean	Variable	Main effect	Leave-out mean
	(1)	(2)		(3)	(4)
Black	$\begin{gathered} -0.028 \\ (0.010) \end{gathered}$	$\begin{gathered} -0.019 \\ (0.027) \end{gathered}$	Married	$\begin{gathered} 0.001 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.033) \end{gathered}$
Female	$\begin{gathered} 0.010 \\ (0.010) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.027) \end{gathered}$	Age	$\begin{gathered} 0.003 \\ (0.003) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.005) \end{gathered}$
High SES	$\begin{gathered} -0.233 \\ (0.174) \end{gathered}$	$\begin{gathered} -0.674 \\ (0.522) \end{gathered}$	Scholarship	$\begin{gathered} -0.003 \\ (0.010) \end{gathered}$	$\begin{gathered} -0.060 \\ (0.050) \end{gathered}$
GPA	$\begin{gathered} -0.043 \\ (0.066) \end{gathered}$	$\begin{gathered} -0.153 \\ (0.198) \end{gathered}$	Predicted callback rate	$\begin{gathered} -0.644 \\ (0.504) \end{gathered}$	$\begin{gathered} -0.136 \\ (0.888) \end{gathered}$
Business major	$\begin{gathered} 0.008 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.021) \end{gathered}$			
Employment gap	$\begin{gathered} 0.011 \\ (0.009) \end{gathered}$	$\begin{gathered} 0.034 \\ (0.023) \end{gathered}$			
Current unemp.: $3+$	$\begin{gathered} 0.013 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.005 \\ (0.032) \end{gathered}$			
$6+$	$\begin{gathered} -0.008 \\ (0.012) \end{gathered}$	$\begin{gathered} -0.038 \\ (0.029) \end{gathered}$			
$12+$	$\begin{gathered} 0.001 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.021 \\ (0.032) \end{gathered}$			
Past unemp.: 3+	$\begin{gathered} 0.029 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.065 \\ (0.031) \end{gathered}$			
$6+$	$\begin{gathered} -0.011 \\ (0.012) \end{gathered}$	$\begin{gathered} -0.016 \\ (0.033) \end{gathered}$			
$12+$	$\begin{gathered} -0.004 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.019 \\ (0.031) \end{gathered}$			
Predicted callback rate	$\begin{gathered} 0.476 \\ (0.248) \end{gathered}$	$\begin{gathered} -0.041 \\ (0.626) \end{gathered}$			
Joint p-value Sample size	0.452		Joint p-value Sample size		89
	9,220				16

Linear Programming

- Optimization problem for computing upper bound on share innocent:

$$
\max _{\left\{\pi_{k l}\right\}} \sum_{l=0}^{K} \sum_{k=0}^{K} \pi_{k l} \varrho(k, l) \text { s.t. } \sum_{k=1}^{K} \sum_{l=1}^{K} \pi_{k l}=1, \quad \pi_{k l} \geq 0
$$

- Additional moment constraints for all $\left(c_{w}, c_{b}\right)$:

$$
\begin{gathered}
\bar{f}\left(c_{w}, c_{b}\right)=\binom{L_{w}}{c_{w}}\binom{L_{b}}{c_{b}} \sum_{k=1}^{K} \sum_{l=1}^{K} \pi_{k l} \\
\times \varrho(k, I)^{c_{w}}(1-\varrho(k, I))^{L_{w}-c_{w}} \varrho(I, k)^{c_{b}}(1-\varrho(I, k))^{L_{b}-c_{b}} .
\end{gathered}
$$

- Set $K=900$ for computing bounds

Computing Maximum Risk

- Letting H and L refer to high and low quality covariate values, we approximate $G\left(p_{w}^{H}, p_{w}^{L}, p_{b}^{H}, p_{b}^{L}\right)$ with

$$
\begin{gathered}
G_{K}\left(p_{w}^{H}, p_{w}^{L}, p_{b}^{H}, p_{b}^{L}\right)=\sum_{k=1}^{K} \sum_{l=1}^{K} \sum_{k^{\prime}=1}^{K} \sum_{l^{\prime}=1}^{K} \pi_{k \mid k^{\prime} \prime^{\prime}} \\
\times 1\left\{p_{w}^{H} \leq \varrho(k, l), p_{w}^{L} \leq \varrho\left(k^{\prime}, I^{\prime}\right), p_{b}^{H} \leq \varrho(I, k), p_{b}^{L} \leq \varrho\left(I^{\prime}, k^{\prime}\right)\right\} .
\end{gathered}
$$

- Maximal risk function for posterior cutoff q :

$$
\begin{gathered}
\mathcal{R}_{j}^{m}(q)=J \max _{\left\{\pi_{k \mid k^{\prime} l^{\prime}}\right\}_{a \in \mathscr{A}_{1}} w_{a}} \times\left\{\operatorname{Pr}\left(\delta\left(C_{j}, a, q\right)=1, D_{j}=0\right) \kappa+\operatorname{Pr}\left(\delta\left(C_{j}, a, q\right)=0, D_{j}=1\right) \gamma\right\}
\end{gathered}
$$

- \mathscr{A}_{1} is list of possible quality configurations with corresponding probabilities w_{a}
- Constraints: $\pi_{k l k^{\prime} \prime \prime}$ positive and sum to 1 , along with matching a list of logit-smoothed callback frequencies
- Joint probabilities $\operatorname{Pr}\left(\delta\left(C_{j}, a, q\right)=1, D_{j}=d\right)$ linear in $\pi_{k \mid k^{\prime} \|^{\prime}}$ (see Appendix D)
- Set $K=30$ when computing maximal risk in practice

