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Labor Market Discrimination

I Title VII of the Civil Rights of 1964 prohibits employment discrimination
on the basis of race, sex, and other protected characteristics

I Empirical literature focuses on measuring market-level averages of
discrimination (Altonji and Blank, 1999; Guryan and Charles, 2013)

I Observational studies of “unexplained” gaps (Oaxaca, 1978)

I Audit/correspondence experiments (Bertrand and Mullainathan,
2004)

I Understanding variation in discrimination across employers is essential

I For enforcing the law – e.g. targeting of EEOC investigations

I For assessing effects on minority workers (Becker, 1957; Charles and
Guryan, 2008)

I We develop tools for using correspondence experiments to detect illegal
discrimination by individual employers



Agenda: Ensembles and Decisionmaking

I Correspondence studies send multiple applications to each job opening

I We view this as an ensemble of many small experiments

I Use the ensemble in service of two goals

I Learn about the distribution of discrimination across employers

I Interpret the evidence against particular employers (“indirect
evidence,” Efron, 2010)

I Take the perspective of hypothetical auditor (e.g. the EEOC) who must
make decisions about which employers to investigate

I Treat auditor’s problem as an exercise in large scale testing (Efron, 2012)

I We develop methods and apply them to 3 experimental data sets



Setup and Notation

I Sample of J jobs, each receiving Lw white and Lb black applications
(total L = Lb + Lw )

I Rj` ∈ {b,w} indicates race of application ` to job j (randomly
assigned)

I Yj` ∈ {0, 1} indicates a callback from job j to applicant `

I (Cjw ,Cjb) count callbacks for each race:

Cjw =
L∑

`=1

1{Rj` = w}Yj`, Cjb =
L∑

`=1

1{Rj` = b}Yj` .



Potential Outcomes

I Potential callback to application ` to job j as a function of race r :

Yj` (r) : {b,w} → {0, 1}

I Observed callback outcome is Yj` = Yj`(Rj`)

I Represent potential outcomes as job-specific function of race and other
factors Uj`:

Yj`(r) = Yj(r ,Uj`)

I Assumption 1: Stable job-specific callback rule:

Uj`|Rj1...RjL
iid∼ Uniform(0, 1)

I Distribution of Uj` does not depend on {Rjk}Lk=1 by virtue of random
assignment

I Key restriction is that the Uj` are independent – rules out e.g. firms
calling back first qualifed app and ignoring subsequent apps (test later)



Defining Discrimination

I Under Assumption 1, we have stable race-by-job callback probabilities in
repeat experiments:

pjr ≡
∫ 1

0

Yj (r , u) du, r ∈ {b,w}

I Define discrimination as Dj ≡ 1{pjb 6= pjw}

I Distinguish idiosyncratic/ex-post (Yj`(b) 6= Yj`(w)) vs.
systematic/ex-ante (pjb 6= pjw ) discrimination

I Systematic definition is relevant for prospective enforcement



Binomial Mixtures

I Under Assumption 1, callback counts Cj = (Cjw ,Cjb) at employer j are
generated by binomial trials:

Pr(Cj = c|pjw , pjb) =

(
Lw

cw

)
pcw
jw (1− pjw )Lw−cw ×

(
Lb

cb

)
pcb
jb (1− pjb)Lb−cb

≡ f (c|pjw , pjb)

I Assumption 2: Random sampling

(pjw , pjb)
iid∼ G (., .)

I Observed callback probabilities are a mixture of binomials:

Pr(Cj = c) =

∫
f (c|pw , pb)dG(pw , pb) ≡ f̄ (c)

I “Mixing distribution” G(·, ·) governs heterogeneity in callback rates
across employers



Importance of G (·, ·)

I One reason for interest in G(·, ·) is that it characterizes prevalence and
severity of discrimination in the population

I Fraction of jobs that are not discriminating:

π0 =

∫ 1

0

dG(p, p)

I Second reason: tool for deciding which jobs are discriminating

I By Bayes’ rule, fraction discriminating among jobs with callback
configuration Cj is:

Pr(Dj = 1|Cj) =

∫
pw 6=pb

f (Cj |pw , pb)dG(pw , pb)× (1− π0)

f̄ (Cj)



Indirect Evidence

Pr(Dj = 1|Cj) =

∫
pw 6=pb

f (Cj |pw , pb)dG(pw , pb)× (1− π0)

f̄ (Cj)

≡ P

 Cj︸︷︷︸
direct

,G (·, ·)︸ ︷︷ ︸
indirect

.

I “Posterior” blends direct evidence from an employer’s own behavior with
indirect evidence from the population from which it was drawn

I Key parameter: π0 serves the role of “prior” probability of innocence

I How best to use indirect evidence in decisionmaking?



Auditor’s Problem

I Consider an auditor (e.g. the EEOC) who knows G(·, ·) and must decide which
employers to investigate

I Decision rule δ(c) : {0...Lw} × {0...Lb} → {0, 1} maps callbacks to a binary
inquiry decision

I Loss function depends on number of type I and type II errors:

LJ (δ) =
∑J

j=1

δ
(
Cj

) (
1− Dj

)︸ ︷︷ ︸
Type I

κ+
[
1− δ

(
Cj

)]
Dj︸ ︷︷ ︸

Type II

γ

 .

I The Dj are unknown, so the auditor minimizes expected loss (i.e. risk),
RJ(G , δ) = E [LJ(δ)]

I Reasonable doubt: investigate when P(Cj ,G) > κ/(κ+ γ) details

I N.B.: Posterior threshold rule controls False Discovery Rate (FDR), while
classical hypothesis test does not (Benjamini and Hochberg, 1995; Storey, 2003)

details



Moments



Moments of G (·, ·)
I It turns out that some features of G(·, ·) are nonparametrically identified

I Observed callback frequencies are given by

f̄ (cw , cb) = E

[(
Lw

cw

)
pcw
jw (1− pjw )Lw−cw ×

(
Lb

cb

)
pcb
jb (1− pjb)Lb−cb

]

=

(
Lw
cw

)(
Lb
cb

) Lw−cw∑
x=0

Lb−cb∑
s=0

(−1)x+s

(
Lw − cw

x

)(
Lb − cb

s

)

×E
[
pcw +x
jw p

cb+s
jb

]
.

I Collect into system relating f̄ ’s to moments µ(m, n) = E [pm
jwp

n
jb]:

f̄ = Bµ =⇒ µ = B−1f̄

I Implies identification of all moments µ(m, n) with m ≤ Lw , n ≤ Lb.

I Example: Var(pjw − pjb) identified as long as min{Lw , Lb} ≥ 2.



Data

I Apply methods to data from three resume correspondence studies:

I Bertrand and Mullainathan (2004): Racial discrimination in
Boston/Chicago

I Nunley et al. (2015): Racial discrimination among recent college
graduates in the US

I Arceo-Gomez and Campos-Vasquez (2014): Gender discrimination
in Mexico

I Estimation: GMM, and “shape-constrained” GMM requiring moments to
be consistent with a coherent probability distribution details

I Standard errors based on “numerical bootstrap” of Hong and Li
(2017) details

I Test model restrictions using bootstrap method of Chernozhukov,
Newey, and Santos (2015) details



Bertrand & Arceo-Gomez &
Mullainathan Nunley et al. Campos-Vasquez

(1) (2) (3)
Number of jobs 1,112 2,305 802

Applications per job 4 4 8

Treatment/control Black/white Black/white Male/female

Design Stratified 2x2 Sample 4 names Stratified 4x4
w/out replacement

Callback rates:    Total 0.079 0.167 0.123

Treatment 0.063 0.154 0.108

Control 0.094 0.180 0.138

Difference -0.031 -0.026 -0.030
(0.007) (0.007) (0.008)

Table I: Descriptive statistics for resume correspondence studies



First Two Moments of G (·, ·) Are Identified in BM

Moment Estimate
0.094

(0.006)

0.063
(0.006)

0.040
(0.005)

0.023
(0.004)

0.028
(0.004)

0.015
(0.003)
0.012

(0.003)

0.010
(0.003)

Sample size 1,112

Table III: Moments of callback rate distribution, BM data

𝐸[𝑝$]

𝐸[𝑝&] 

𝐸 𝑝$ −𝐸[𝑝$] (

𝐸 𝑝& − 𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$] )(𝑝&− 𝐸[𝑝&] )

𝐸 𝑝$− 𝐸[𝑝$] ((𝑝& −𝐸[𝑝&] )

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& −𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$] ( 𝑝& − 𝐸[𝑝&] (



Shape Constraints Do Not Bind

No Shape 
constraints constraints

Moment (1) (2)
0.094 0.094

(0.006) (0.007)

0.063 0.063
(0.006) (0.006)

0.040 0.040
(0.005) (0.004)

0.023 0.023
(0.004) (0.003)

0.028 0.028
(0.004) (0.003)

0.015 0.014
(0.003) (0.002)
0.012 0.012

(0.003) (0.002)

0.010 0.010
(0.003) (0.002)
J -statistic: 0.00
P -value: 1.000

Sample size

Table III: Moments of callback rate distribution, BM data

1,112

𝐸[𝑝$]

𝐸[𝑝&] 

𝐸 𝑝$ −𝐸[𝑝$] (

𝐸 𝑝& − 𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$] )(𝑝&− 𝐸[𝑝&] )

𝐸 𝑝$− 𝐸[𝑝$] ((𝑝& −𝐸[𝑝&] )

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& −𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$] ( 𝑝& − 𝐸[𝑝&] (



Substantial Variation in Discrimination

p b p w p b  - p w

(1) (2) (3)
Mean 0.063 0.094 -0.031

(0.006) (0.007) (0.006)

Standard deviation 0.152 0.199 0.082
(0.011) (0.011) (0.012)

Correlation with p w 0.927 1.000 -0.717
(0.055) - (0.089)

Table VI.A: Treatment effect variation in BM (2004)



First Two Moments in Nunley et al. Data

(2,2)
Moment design

0.174
(0.010)

0.148
(0.010)

0.089
(0.007)

0.085
(0.007)

0.083
(0.006)

0.044
(0.004)
0.047

(0.005)

0.036
(0.004)

Sample size 1,146

Table IV: Moments of callback rate distribution, Nunley et al. data

𝐸[𝑝$]

𝐸[𝑝&]

𝐸 𝑝$ −𝐸[𝑝$] (

𝐸 𝑝& −𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$])(𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ −𝐸[𝑝$] ((𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& − 𝐸[𝑝&] (

𝐸 𝑝$ −𝐸[𝑝$] ( 𝑝& − 𝐸[𝑝&] (



Extra Designs Identify Extra Moments

(2,2) (3,1) (1,3)
design design design

Moment (1) (2) (3)
0.174 0.199 0.142

(0.010) (0.025) (0.015)

0.148 0.149 0.157
(0.010) (0.015) (0.013)

0.089 0.108 -
(0.007) (0.009)

0.085 - 0.083
(0.007) (0.008)

0.083 0.084 0.080
(0.006) (0.009) (0.009)

- 0.051 -
(0.008)

- - 0.044
(0.007)

0.044 0.043 -
(0.004) (0.007)
0.047 - 0.045

(0.005) (0.007)

- 0.034 -
(0.005)

- - 0.037
(0.006)

0.036 - -
(0.004)

Sample size 1,146 544 550

Table IV: Moments of callback rate distribution, Nunley et al. data

𝐸[𝑝$]

𝐸[𝑝&]

𝐸 𝑝$ −𝐸[𝑝$] (

𝐸 𝑝& −𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$])(𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ −𝐸[𝑝$] +

𝐸 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ −𝐸[𝑝$] ((𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& − 𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$] +(𝑝& −𝐸[𝑝&] )

𝐸 𝑝$ −𝐸[𝑝$] 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ −𝐸[𝑝$] ( 𝑝& − 𝐸[𝑝&] (



Joint Test of All Restrictions Does Not Reject more tests

(2,2) (3,1) (1,3) Combined
design design design P -value estimates

Moment (1) (2) (3) (4) (5)
0.174 0.199 0.142 0.027 0.177

(0.010) (0.025) (0.015) (0.007)

0.148 0.149 0.157 0.854 0.153
(0.010) (0.015) (0.013) (0.007)

0.089 0.108 - 0.097 0.095
(0.007) (0.009) (0.004)

0.085 - 0.083 0.857 0.084
(0.007) (0.008) (0.004)

0.083 0.084 0.080 0.926 0.084
(0.006) (0.009) (0.009) (0.004)

- 0.051 - 0.106
(0.008) (0.006)

- - 0.044 0.092
(0.007) (0.006)

0.044 0.043 - 0.875 0.040
(0.004) (0.007) (0.002)
0.047 - 0.045 0.819 0.042

(0.005) (0.007) (0.002)

- 0.034 - - 0.035
(0.005) (0.002)

- - 0.037 - 0.037
(0.006) (0.002)

0.036 - - - 0.038
(0.004) (0.002)0

23.09
0.190

Sample size 1,146 544 550 2,240

Table IV: Moments of callback rate distribution, Nunley et al. data
Design-specific estimates

J -statistic:
P -value:

𝐸[𝑝$]

𝐸[𝑝&]

𝐸 𝑝$ −𝐸[𝑝$] (

𝐸 𝑝& −𝐸[𝑝&] (

𝐸 (𝑝$ −𝐸[𝑝$])(𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ −𝐸[𝑝$] +

𝐸 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ −𝐸[𝑝$] ((𝑝& − 𝐸[𝑝&] )

𝐸 𝑝$ − 𝐸[𝑝$] 𝑝& − 𝐸[𝑝&] (

𝐸 𝑝$ − 𝐸[𝑝$] +(𝑝& −𝐸[𝑝&] )

𝐸 𝑝$ −𝐸[𝑝$] 𝑝& −𝐸[𝑝&] +

𝐸 𝑝$ −𝐸[𝑝$] ( 𝑝& − 𝐸[𝑝&] (



Treatment Effects Are Variable and Skewed

p b p w p b  - p w

(1) (2) (3)
Mean 0.153 0.177 -0.023

(0.007) (0.007) (0.005)

Standard deviation 0.290 0.308 0.102
(0.008) (0.007) (0.009)

Correlation with p w 0.944 1.000 -0.336
(0.018) - (0.048)

Skewness 3.757 3.648 -4.450
(0.074) (0.087) (0.405)

Table VI.B: Treatment effect variation in Nunley et al. (2015)



Thick Tail of Extreme Discriminators in AGCV

p m p f p m  - p f

(1) (2) (3)
Mean 0.114 0.140 -0.025

(0.009) (0.009) (0.008)

Standard deviation 0.231 0.257 0.179
(0.011) (0.010) (0.011)

Correlation with p f 0.735 1.000 -0.483
(0.035) - (0.051)

Skewness 4.067 3.748 -1.403
(0.140) (1.161) (0.385)

Excess kurtosis 8.452 5.756 12.227
(1.458) (8.790) (2.291)

Table VI.C: Treatment effect variation in AGCV



Posteriors



Bounds on Priors and Posteriors

I Moments of G(·, ·) aren’t enough to compute posterior P(Cj ,G)

I Conservative approach: use what we know about G(·, ·) to bound prior π0

and posterior P(Cj ,G)

I Upper bound on prior share innocent:

π̄0 = max
G∈G

∫ 1

0
dG(p, p) s.t. f̄ = BµG

I Following Tebaldi et al. (2019), search over space G of discretized
bivarate CDFs

I Objective and constraints are linear in p.m.f associated with G(·, ·) =⇒
apply linear programming details

I Same approach can be used to bound other notions of discrimination, e.g.

share not discriminating against blacks:

∫
pb≥pw

dG(pb, pw ).



In BM, At Most 87% of Jobs Are Innocent

Share not
discriminating:
Pr(p w  = p b )

(1)
0.870

J -statistic: 29.26
P -value (bound = 1): 0.000

Table VII: Upper bounds on shares not discriminating, BM data



At Most 56% Making Two Total Calls Are Innocent

Share not
discriminating:
Pr(p w  = p b )

Callbacks (1)
All 0.870
0 0.962

1 0.576

2 0.558

3 0.492

4 0.788
J -statistic: 29.26

P -value (bound = 1): 0.000

Table VII: Upper bounds on shares not discriminating, BM data



Cannot Reject Zero Discrimination Against Whites

Share not Share not disc. Share not disc.
discriminating: against whites: against blacks:
Pr(p w  = p b ) Pr(p w  ≥ p b ) Pr(p w  ≤ p b )

Callbacks (1) (2) (3)
All 0.870 1.000 0.870
0 0.962 1.000 0.962

1 0.576 1.000 0.576

2 0.558 1.000 0.558

3 0.492 1.000 0.492

4 0.788 1.000 0.788
J -statistic: 29.26 0.00 29.26

P -value (bound = 1): 0.000 1.000 0.000

Table VII: Upper bounds on shares not discriminating, BM data



In BM, At Least 72% With Cj = (2, 0) Discriminate

Figure I: Lower bounds on posterior probabilities of discrimination, BM data



In Nunley et al., Cannot Reject Pr(pjw ≥ pjb) = 1

Share not Share not disc. Share not disc.
discriminating: against whites: against blacks:
Pr(p w  = p b ) Pr(p w  ≥ p b ) Pr(p w  ≤ p b )

Design Callbacks (1) (2) (3)
All All 0.642 0.846 0.827

(2,2) 0 0.848 0.907 0.952

1 0.328 0.815 0.567

2 0.309 0.984 0.325

3 0.179 0.933 0.264

4 0.579 0.743 0.872
J -statistic: 62.64 23.46 62.64

P -value (bound = 1): 0.000 0.120 0.000

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data



At Most 33% That Make Two Calls Have pjw ≤ pjb

Share not Share not disc. Share not disc.
discriminating: against whites: against blacks:
Pr(p w  = p b ) Pr(p w  ≥ p b ) Pr(p w  ≤ p b )

Design Callbacks (1) (2) (3)
All All 0.642 0.846 0.827

(2,2) 0 0.848 0.907 0.952

1 0.328 0.815 0.567

2 0.309 0.984 0.325

3 0.179 0.933 0.264

4 0.579 0.743 0.872
J -statistic: 62.64 23.46 62.64

P -value (bound = 1): 0.000 0.120 0.000

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data



Informative Bounds In Other Designs and Callback Strata

Share not Share not disc. Share not disc.
discriminating: against whites: against blacks:
Pr(p w  = p b ) Pr(p w  ≥ p b ) Pr(p w  ≤ p b )

Design Callbacks (2) (3) (4)
All All 0.642 0.846 0.827

(2,2) 0 0.848 0.907 0.952

1 0.328 0.815 0.567

2 0.309 0.984 0.325

3 0.179 0.933 0.264

4 0.579 0.743 0.872

(3,1) 0 0.853 0.898 0.964
1 0.337 0.894 0.549

2 0.332 0.998 0.336

3 0.151 0.922 0.251

4 0.566 0.767 0.837
(1,3) 0 0.839 0.916 0.936

1 0.323 0.754 0.594
2 0.326 0.958 0.369
3 0.204 0.955 0.262
4 0.581 0.723 0.893

J -statistic: 62.64 23.46 62.64
P -value (bound = 1): 0.000 0.120 0.000

Table VIII: Upper bounds on shares not discriminating, Nunley et al. data



Lower Bounds on Posteriors Above 85%

Figure II: Lower bounds on posterior probabilities of discrimination, Nunley et al. data



In AGCV, Discrimination in Both Directions

Share not Share not disc. Share not disc.
discriminating: against women: against men:
Pr(p f  = p m ) Pr(p f  ≥ p m ) Pr(p f  ≤ p m )

Callbacks (1) (2) (3)
All 0.723 0.911 0.812
0 0.864 0.960 0.905

1 0.105 0.586 0.520

2 0.284 0.740 0.544

3 0.424 0.953 0.472

4 0.497 0.945 0.553

5 0.654 0.829 0.825
6 0.591 0.788 0.803
7 0.514 0.843 0.671
8 0.924 0.989 0.935
J -statistic: 369.66 33.88 359.95

P -value (bound = 1): 0.000 0.005 0.000

Table IX: Upper bounds on shares not discriminating, AGCV data



Lower Bounds on Posteriors Above 90%

Figure III: Lower bounds on posterior probabilities of discrimination, AGCV data



Decisions



Decisions

I Consider auditor’s decision problem under a particular parametric model
for G(·, ·)

I Detection/error tradeoff (DET) curve: Tradeoff between false accusation
and successful detection for a fixed number of apps

I Build DET curves for three versions of Nunley et al. experiment:

I Two black/two white, random covariates

I Five black/five white, random covariates

I Optimal 10-app combination of race/covariates



Parametric Model: Mixed Logit

I Logit model for callback to application ` at job j :

Pr (Yj` = 1|αj , βj ,Rj`,Xj`) =
exp

(
αj − βj1{Rj` = b}+ X ′j`ψ

)
1 + exp

(
αj − βj1{Rj` = b}+ X ′j`ψ

)
I Rj` indicates race, Xj` includes other randomly-assigned characteristics

(GPA, experience, etc.)

I Normal/discrete type mixing distribution:

αj ∼ N
(
α0, σ

2
α

)
,

βj =

{
β0, with prob.

exp(τ0+τααj )

1+exp(τ0+τααj )
,

0, with prob. 1
1+exp(τ0+τααj )

.



Discrimination is Rare But Intense

Constant No selection Selection
(1) (2) (3)

      Distribution of logit(pw):   𝛼0 -4.708 -4.931 -4.927
(0.223) (0.242) (0.280)

𝜎𝛼 4.745 4.988 4.983
(0.223) (0.249) (0.294)

  Discrimination intensity:  𝛽0 0.456 4.046 4.053
(0.108) (1.563) (1.576)

   Discrimination logit:      𝜏0 - -1.586 -1.556
(0.416) (1.098)

𝜏𝛼 - - -0.005
(0.180)

Fraction with p w  ≠ p b  : 1.000 0.168 0.170

Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17
Sample size 2,305 2,305 2,305

Table X: Mixed logit estimates, Nunley et al. data
Types



Discrimination is Not A “Luxury”

Constant No selection Selection
(1) (2) (3)

      Distribution of logit(pw):   𝛼0 -4.708 -4.931 -4.927
(0.223) (0.242) (0.280)

𝜎𝛼 4.745 4.988 4.983
(0.223) (0.249) (0.294)

  Discrimination intensity:  𝛽0 0.456 4.046 4.053
(0.108) (1.563) (1.576)

   Discrimination logit:      𝜏0 - -1.586 -1.556
(0.416) (1.098)

𝜏𝛼 - - -0.005
(0.180)

Fraction with p w  ≠ p b  : 1.000 0.168 0.170

Log-likelihood -2,792.1 -2,788.2 -2,788.2
Parameters 15 16 17
Sample size 2,305 2,305 2,305

Table X: Mixed logit estimates, Nunley et al. data
Types



The Logit Model Fits Well
Figure IV: Mixed logit model fit



Covariates Generate Variation in Posteriors
Figure V: Mixed logit estimates of posterior discrimination probabilities, Nunley et al. data



With 2 Pairs, 80% Threshold Yields Few Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data



Sending 5 Pairs Boosts Detection Substantially
Figure VI: Detection/error tradeoffs, Nunley et al. data



Optimizing Portfolio Yields Further Gains

Figure VI: Detection/error tradeoffs, Nunley et al. data



Fixing Size at 0.01 Yields More (Mostly False) Accusations

Figure VI: Detection/error tradeoffs, Nunley et al. data



Ambiguity



Auditing Under Ambiguity

I How would decisions change if the auditor admits that G(·, ·) might not
be logit?

I Important (extreme) benchmark for decisionmaking under ambiguity:
minimax decision rule

I Minimax risk function and decision rule when auditor knows G lies in
some identified set Θ:

Rm
J (Θ, δ) ≡ sup

G∈Θ
RJ(G , δ), δmm ≡ arg inf

δ
Rm

J (Θ, δ)

I Think of δmm as an estimator of unobserved Dj ’s that “shrinks” towards a
least favorable prior

I Contrast risk and decisions based upon mixed logit prior with minimax
decisions details



Logit Risk With κ = 4, γ = 1
Figure VII: Logit and minimax risk, Nunley et al. data



Minimax Decision Rule Is More Aggressive!

Figure VII: Logit and minimax risk, Nunley et al. data



Concluding Thoughts

I This paper develops and applies methods for detecting illegal
discrimination by specific employers

I We find tremendous heterogeneity in discrimination – implies enforcement
is a difficult inferential problem

I Nevertheless, favorable detection rates are achievable with relatively
minor modifications to standard audit designs – suggests potential for
real-time enforcement

I Methodological lessons:

I Partial identification of response distribution does not preclude
“borrowing strength” from the ensemble

I Appropriate use of indirect evidence depends critically on
investigator’s loss function

I Question for future work: how do policy conclusions in other “empirical
Bayes” evaluations of individual units (e.g. teachers, schools, hospitals,
neighborhoods) vary with alternative notions of loss?



Bonus



Posterior Threshold Rule

I Risk RJ(G , δ) can be rewritten

J

Lw∑
cw =0

Lb∑
cb=0

∫
{δ(cw , cb)(1− P(cw , cb,G))κ+ [1− δ(cw , cb)]P(cw , cb,G)γ}

×f (cw , cb|pw , pb)dG(pw , pb)

I Integrand is minimized by setting δ(c) = 0 when P(c,G) ≤ κ
κ+γ

and
δ(c) = 1 otherwise

I Risk-minimizing decision rule is therefore

δ(c) = 1
{
P(c,G) > κ

κ+γ

}
.

back



pFDRJ Control

I Let NJ =
∑J

j=1 δ(Cj) denote the total number of investigations

I Positive False Discovery Rate of Storey (2003) is defined:

pFDRJ = E
[
N−1

J

∑J
j=1 δ(Cj)(1− Dj)|Nj ≥ 1

]
I Storey (2003) showed pFDRJ = Pr(Dj = 0|δ(Cj) = 1), so

pFDRJ = Pr
(
DJ = 0|P(Cj ,G) > κ

γ+κ

)
≤ Pr

(
Dj = 0|P(Cj ,G) = κ

γ+κ

)
= γ

γ+κ
.

I Pr(NJ ≥ 1) ≤ 1, so posterior threshold rule also controls
FDRJ = pFDRJ × Pr(NJ ≥ 1).

back



Discretization of G

I We approximate G(pw , pb) with the discrete distribution:

GK (pw , pb) =
K∑

k=1

K∑
l=1

πkl1 {pw ≤ % (k, l) , pb ≤ % (l , k)}

I {πkl}K ,Kk=1,l=1 are probability masses

I {% (k, l) , % (l , k)}K ,Kk=1,l=1 are a set of mass point coordinates generated by

% (x , y) =
min {x , y} − 1

K︸ ︷︷ ︸
diagonal

+
max {0, x − y}2

K (1 + K − y)︸ ︷︷ ︸
off-diagonal

.

I Gives a two-dimensional grid with K 2 elements, equally spaced along the
diagonal and quadratically spaced off the diagonal according to distance
from diagonal



Shape Constrained GMM

I Let f̃ denote vector of empirical callback frequencies

I Shape constrained GMM estimator of π solves quadratic programming
problem:

π̂ = arg inf
π

(f̃ − BMπ)′W (f̃ − BMπ) s.t. π ≥ 0, 1′π = 1.

I M is a dim(µ)× K 2 matrix defined so that Mπ = µ for GK

I Shape constrained moment estimates: µ̂ = Mπ̂

I W is weighting matrix – use two-step optimal weighting

I Set K = 150 for GMM estimation

back



Hong and Li (2017) Standard Errors

I Bootstrap µ∗ solves QP problem replacing f̃ with (f̃ + J−1/4f ∗), where
elements of f ∗ given by:

J−1 ∑
j ω
∗
j 1{Cjw =cw ,Cjb=cb}
J−1

∑
j ω
∗
j

.

I Weights ω∗j drawn iid from exponential distribution with mean 0 and
variance 1

I Standard errors for φ(µ̂) computed as standard deviation of
J−1/4[φ(µ∗)− φ(µ̂)] across bootstrap replications

back



Chernozhukov et al. (2015) Goodness of Fit Test
I “J-test” goodness of fit statistic:

Tn = inf
π

(f̃ − BMπ)′Σ̂−1(f̃ − BMπ) s.t. π ≥ 0, 1′π = 1

I Letting F ∗ denote (centered) bootstrap analogue of f̃ and W ∗ a
weighting matrix, bootstrap test statistic is

T ∗n = inf
π,h

(F ∗ − BMπ)′W ∗(F ∗ − BMπ)

s.t. (f̃ − BMπ)′W (f̃ − BMπ) = Tn, π ≥ 0, 1′π = 1, h ≥ −π, 1′h = 0.

I As in the full sample, conduct two-step GMM estimation in bootstrap
replications

I Calculate p-value as fraction of bootstrap samples with T ∗n > Tn

I Solve via Second Order Cone Programming

back



No Evidence That Callbacks Are Rival

Main effect Leave-out mean Main effect Leave-out mean
Variable (1) (2) Variable (3) (4)

Black -0.028 -0.019 Married 0.001 0.002
(0.010) (0.027) (0.008) (0.033)

Female 0.010 0.009 Age 0.003 0.002
(0.010) (0.027) (0.003) (0.005)

High SES -0.233 -0.674 Scholarship -0.003 -0.060
(0.174) (0.522) (0.010) (0.050)

GPA -0.043 -0.153 Predicted callback rate -0.644 -0.136
(0.066) (0.198) (0.504) (0.888)

Business major 0.008 0.010
(0.008) (0.021)

Employment gap 0.011 0.034
(0.009) (0.023)

Current unemp.: 3+ 0.013 0.005
(0.012) (0.032)

6+ -0.008 -0.038
(0.012) (0.029)

12+ 0.001 0.021
(0.012) (0.032)

Past unemp.:    3+ 0.029 0.065
(0.012) (0.031)

6+ -0.011 -0.016
(0.012) (0.033)

12+ -0.004 0.019
(0.012) (0.031)

Predicted callback rate 0.476 -0.041
(0.248) (0.626)

Joint p -value Joint p -value
Sample size Sample size9,220 6,416

Table II: Tests for dependence across trials
Nunley et al. data AGCV data

0.452 0.589

back



Linear Programming

I Optimization problem for computing upper bound on share innocent:

max
{πkl}

K∑
l=0

K∑
k=0

πkl%(k, l) s.t.
K∑

k=1

K∑
l=1

πkl = 1, πkl ≥ 0

I Additional moment constraints for all (cw , cb):

f̄ (cw , cb) =

(
Lw

cw

)(
Lb

cb

)∑K
k=1

∑K
l=1 πkl

×% (k, l)cw (1− % (k, l))Lw−cw % (l , k)cb (1− % (l , k))Lb−cb .

I Set K = 900 for computing bounds

back



Computing Maximum Risk
I Letting H and L refer to high and low quality covariate values, we approximate

G(pHw , p
L
w , p

H
b , p

L
b ) with

GK (pHw , p
L
w , p

H
b , p

L
b ) =

K∑
k=1

K∑
l=1

K∑
k′=1

K∑
l′=1

πklk′ l′

×1
{
pHw ≤ % (k, l) , pLw ≤ % (k ′, l ′) , pHb ≤ % (l , k) , pLb ≤ % (l ′, k ′)

}
.

I Maximal risk function for posterior cutoff q:

Rm
J (q) = J max

{πklk′ l′}

∑
a∈A1

wa

×
{

Pr
(
δ
(
Cj , a, q

)
= 1,Dj = 0

)
κ+ Pr

(
δ
(
Cj , a, q

)
= 0,Dj = 1

)
γ
}

I A1 is list of possible quality configurations with corresponding probabilities wa

I Constraints: πklk′ l′ positive and sum to 1, along with matching a list of
logit-smoothed callback frequencies

I Joint probabilities Pr
(
δ
(
Cj , a, q

)
= 1,Dj = d

)
linear in πklk′ l′ (see Appendix D)

I Set K = 30 when computing maximal risk in practice

back
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