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We propose a novel measure of the costs of aggregate economic
fluctuations, that does not require the specification of consumers’
preferences or the dynamics of the data generating process. Using
data on consumption and asset prices, we rely on an information-
theoretic approach to recover the information kernel (I-SDF). The
I-SDF accurately prices broad cross-sections of assets, in- and out-
of-sample, and has a strong business cycle component. Using the
I-SDF, we find that the welfare benefits of eliminating all con-
sumption fluctuations are large on average, and are strongly time-
varying and countercyclical. Moreover, the cost of business cycle
fluctuations is substantial, accounting for about a quarter to a
third of the cost of all consumption fluctuations.

JEL: E3, E2, G12, C5. Keywords: Aggregate Uncertainty, Busi-
ness Cycle Risk, Pricing Kernel, Empirical Likelihood, Smoothed
Empirical Likelihood.

I. Introduction

In his seminal 1987 monograph, Robert E. Lucas Jr. concludes that the welfare
benefit of eliminating all consumption fluctuations in the U.S. economy is triv-
ially small, hence challenging the desirability of policies aimed at insulating the
economy from cyclical fluctuations. As Lucas emphasizes,1 this result is obtained
without taking a stand on the origins of aggregate fluctuations, and it relies solely
on the specifications of preferences (a representative agent with time and state
separable power utility preferences with a constant coefficient of relative risk aver-
sion) and the data generating process (log-normal aggregate consumption growth
rate).

Nevertheless, it is exactly these two assumptions that make Lucas’ calculations
questionable. This is because evaluating the welfare cost of business cycles is tan-
tamount to pricing the risk that households face due to aggregate fluctuations,
and an extensive literature has documented how Lucas’ specification of prefer-
ences and the dynamics of the consumption process grossly underestimate the
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1“these calculations rest on assumptions about preferences only, and not about any particular mech-
anism equilibrium or disequilibrium – assumed to generate business cycles”, Lucas (1987).
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market price of risk in the U.S. economy: e.g., the average premium on a broad
U.S. stock market index over and above short-term Treasury Bills has been about
7% per year over the last century, while Lucas’ specification would imply a pre-
mium of less than 1%.2 Not only does Lucas’ specification grossly underestimate
the historically observed average return on the aggregate stock market index, it
also fails to explain the significant cross-sectional differences in average returns
between broad diversified portfolios formed by sorting individual stocks on the
basis of observable characteristics (e.g., market value of equity, book-to-market
equity) that have been identified to be proxies for underlying sources of system-
atic risk (see e.g., Lars Peter Hansen and Kenneth J. Singleton (1983), Martin
Lettau and Sydney Ludvigson (2001), Jonathan A. Parker and Christian Julliard
(2005), Christian Julliard and Anisha Ghosh (2012)).

Indeed, exactly due to the inability of the power utility, log-normal setting
to match households’ preferences toward risk revealed by the prices of financial
assets, a burgeoning literature, based on modifying the preferences of investors
and/or the dynamic structure of the economy, has developed. In these models,
the resulting pricing kernel (hereafter referred to as the stochastic discount factor
or SDF) can be factored into an observable component consisting of a parametric
function of consumption growth as with power utility, and a (potentially un-
observable) model-specific component. That is, the pricing kernel, M , in these
models is of the form

(1) Mt+1 = (Ct+1/Ct)
−γ ψt+1.

The Robert E. Lucas (1987) original setting is nested within this family in that
it corresponds to the case in which ψt is a positive constant and the parameter
γ is the Arrow-Pratt relative risk aversion coefficient. Prominent examples of
models in this class are: habit formation models (see, e.g., John Y. Campbell and
John H. Cochrane (1999), Lior Menzly, Tano Santos and Pietro Veronesi (2004));
long run risks models based on recursive preferences (e.g., Ravi Bansal and Amir
Yaron (2004)); models with complementarities in consumption (e.g., Monika Pi-
azzesi, Martin Schneider and Selale Tuzel (2007), Motohiro Yogo (2006)); models
in which ψt captures departures from rational expectations (e.g. Suleyman Basak
and Hongjun Yan (2010)), robust control behavior (e.g. Lars Peter Hansen and
Thomas J. Sargent (2010)), aggregation over heterogeneous agents who face unin-
surable idiosyncratic shocks to their labor income (e.g. George M. Constantinides
and Darrell Duffie (1996), George M. Constantinides and Anisha Ghosh (2017)),
as well as solvency constraints (e.g. Hanno N. Lustig and Stijn G. Van Nieuwer-
burgh (2005)).

Estimates of the cost of business cycles vary widely across these model spec-
ifications (see, e.g., Gadi Barlevy (2005) for a survey). More importantly, as
with Lucas’ original specification, in order for any of the more recent models to
constitute a good choice for welfare cost calculations, it should accurately price
broad categories of assets. Anisha Ghosh, Christian Julliard and Alex Taylor

2This discrepancy is the so-called Equity Premium Puzzle, first identified by Rajnish Mehra and
Edward C. Prescott (1985).
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(2016b) evaluate the pricing performance of several of these consumption-based
models and show that they perform quite poorly, producing large pricing errors
and low (and often negative) cross-sectional R2. Therefore, the shortcomings of
using Lucas’ specification for welfare cost calculations also apply to most of the
more recent advances.

In this paper, we do not take a stand on either the preferences of investors, or on
the dynamics of the underlying state variables. Rather, we rely on the insight that
asset prices contain information about the stochastic discounting of the different
possible future states and, therefore, use observed asset prices to recover the SDF.
Specifically, we assume that the underlying SDF has the multiplicative form in
Equation (1). We use financial asset returns and consumption data to extract,
non-parametrically, the minimum entropy estimate of the ψ-component of the
pricing kernel M such that the resultant M satisfies the unconditional Euler
equations for the assets, i.e. successfully prices broad cross sections of assets.
This information-theoretic approach, that has its origins in the physical sciences,
adds to the standard power utility kernel the minimum amount of additional
information needed to price assets perfectly, i.e. satisfy the Euler equations.
We refer to the estimated M as the information SDF (I-SDF) because of the
information-theoretic methodology used to recover it.

With this model-free SDF at hand, we obtain the cost of aggregate consump-
tion fluctuations as the ratio of the (shadow) prices of two hypothetical securities
– a claim to a stabilized version of the aggregate consumption stream from which
certain types of fluctuations (e.g., all fluctuations or fluctuations corresponding
to business cycle frequencies only) have been removed and a claim to the ac-
tual aggregate consumption stream. Fernando Alvarez and Urban J. Jermann
(2004) show that, in the context of a representative agent economy, the above
ratio measures the marginal cost of consumption fluctuations, defined as the per
unit benefit of a marginal reduction in consumption fluctuations, expressed as a
percentage of lifetime consumption. Our approach allows us to estimate the term
structure of the cost of fluctuations, i.e. how the cost (or, the welfare benefit of
removing fluctuations) rises with the elimination of aggregate fluctuations over
each additional future period.

Our information-theoretic approach to the recovery the SDF corresponds to the
empirical likelihood (EL) estimator of Art B. Owen (2001). Using this method-
ology to recover the (multiplicative) missing component of SDF in a model-free
way was originally proposed in Ghosh, Julliard and Taylor (2016b). We show that
the I-SDF, unlike Lucas’ original specification, accurately prices broad cross sec-
tions of assets.3 It, therefore, offers a more reliable choice for assessing investors’
attitude toward risk. Also, the I-SDF, unlike Lucas’ specification, has a signif-
icant business cycle component, suggesting that business cycle risk constitutes
an important source of priced risk. Therefore, not surprisingly, we show that the
I-SDF implies a larger cost of business cycle fluctuations than those obtained with

3See also Anisha Ghosh, Christian Julliard and Alex Taylor (2016a) who show that the I-SDF,
estimated in a purely out-of-sample fashion, accurately prices the aggregate stock market, broad cross-
sections of equity portfolios constructed by sorting stocks on the basis of different observable charac-
teristics (e.g., size, book-to-market-equity, prior returns, industry), as well as currency portfolios and
portfolios of commodity futures.
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Lucas’ specification.

We first apply our methodology to assess the welfare benefits of eliminating all
consumption fluctuations. This is obtained as the ratio of the price of a claim
to the aggregate consumption stream from which all uncertainty has been re-
moved (i.e., where the aggregate consumption growth in each period is replaced
with its unconditional mean) and the price of a claim to the risky actual ag-
gregate consumption stream. The I-SDF implies a substantially higher cost of
all consumption fluctuations compared to Lucas’ original specification. For in-
stance, when the I-SDF is extracted using nondurables and services consumption
and with the excess return on the market portfolio as the sole asset, the implied
costs of all consumption fluctuations over the next one to five years are 1.5%,
5.2%, 11.8%, 14.3%, and 14.4%, respectively. The corresponding costs for Lucas’
specification are typically an order of magnitude smaller at 0.8%, 1.1%, 1.4%,
1.7%, and 1.9%, respectively. These conclusions are robust to the measure of
aggregate consumption expenditure used (nondurables and services consumption
versus total consumption that also includes expenditure on durables) and the set
of test assets used to recover the I-SDF. Our results suggest that economic agents
perceive the cost of aggregate economic fluctuations to be quite substantial.

We next use our framework to estimate the costs of business cycle fluctuations.
This is obtained as the ratio of the price of a claim to the aggregate consumption
stream from which fluctuations corresponding to business cycle frequencies have
been removed (using the standard Hodrick-Prescott filter) and the price of a claim
to the actual aggregate consumption stream. We find that the cost of business
cycle fluctuations is large and constitutes between a quarter to a third of the cost
of all consumption fluctuations. For instance, when the I-SDF is extracted using
nondurables and services consumption and with the excess return on the market
portfolio as the sole asset, the cost of all fluctuations over a five-year period is
estimated at 14.4%, while the corresponding cost of business cycle fluctuations
is 3.6%. When total (instead of nondurables and services) consumption expendi-
ture is used to recover the SDF, the costs of all fluctuations and business cycle
fluctuations over a 5-year period are both estimated to be even higher at 19.7%
and 5.1%, respectively. Our results are in stark contrast to those in Alvarez and
Jermann (2004) who argue that, while the cost of all consumption fluctuations
is very high (they report a baseline value of 28.6% in the infinite-horizon case),
the cost of business cycle fluctuations in consumption is miniscule, varying from
0.1% to 0.5%. The difference can be attributed, at least in part, to the strong
business cycle component of the I-SDF.

Finally, note that, the above results pertain to the welfare benefits of economic
stabilization on average. We rely on an extension of the information-theoretic
methodology – specifically, the smoothed empirical likelihood (SEL) estimator of
Yuichi Kitamura, Gautam Tripathi and Hyungtaik Ahn (2004) – to recover the
missing component of the SDF, ψ, in a state-contingent fashion and use it to
obtain the cost of all consumption fluctuations in each time period (i.e., in each
possible state of the economy). This amounts to calculating the ratio of the time-
t prices of the claims to the stabilized consumption stream and the actual risky
consumption stream, for each time period t. As with the average cost obtained
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using the EL estimator, the time series of the cost estimated using the SEL
approach also does not require assumptions about the investors’ preferences or the
dynamics of the data generating process. We find that the cost of consumption
fluctuations is strongly time-varying and countercyclical. The cost of one-year
fluctuations varies from 0.15% to 8.0%. Also, the cost is strongly countercyclical,
rising sharply during recessionary episodes. The correlation between the cost
and a dummy variable that takes the value 1 in a year if there was an NBER-
designated recession in any of its quarters and 0 otherwise is 36.1%. This finding
also helps explain the high cost of business cycle fluctuations that we estimate on
average.

Our paper lies at the interface of two, albeit mostly distinct, strands of liter-
ature. It contributes to a growing literature that uses an information-theoretic
(or, relative-entropy minimizing) alternative to the standard generalized method
of moments approach to address a variety of questions in economics and finance.
Information-theoretic approaches were first introduced in financial economics by
Michael Stutzer (1995, 1996) and Y. Kitamura and M. Stutzer (1997) (see Yuichi
Kitamura (2006) for a survey of these methods). Subsequently, these approaches
have been used to assess the empirical plausibility of the rare disasters hypoth-
esis in explaining asset pricing puzzles (see, e.g., Julliard and Ghosh (2012)),
construct diagnostics for asset pricing models (see, e.g., Caio Almeida and Ren
Garcia (2012), David Backus, Mikhail Chernov and Stanley E. Zin (2013)), con-
struct bounds on the SDF and its components and recover the missing component
from a candidate kernel (see, e.g., Jaroslav Borovicka, Lars P. Hansen and Jose A.
Scheinkman (2016), Ghosh, Julliard and Taylor (2016b), Mirela Sandulescu, Fabio
Trojani and Andrea Vedolin (2018)), price broad cross sections of assets out of
sample (see, e.g., Ghosh, Julliard and Taylor (2016a)), and recover investors’
beliefs from observed asset prices (see, e.g., Lars Peter Hansen (2014), Anisha
Ghosh and Guillaume Roussellet (2019)).

Our paper also contributes to the literature that tries to assess the welfare costs
of aggregate economic fluctuations (see, e.g., Lucas (1987), Ayse Imrohoroglu
(1989), Andrew Atkeson and Christopher Phelan (1994), Maurice Obstfeld (1994),
James Pemberton (1996), Jim Dolmas (1998), Thomas Tallarini (2000), Paul
Beaudry and Carmen Pages (2001), Christopher Otrok (2001), Kjetil Storeslet-
ten, Chris I. Telmer and Amir Yaron (2001), Alvarez and Jermann (2004), Tom
Krebs (2007), Per Krusell and Anthony A. Smith (2009)). Most of this literature
assumes particular parametric forms for preferences as well as the dynamics of the
underlying data generating process. Our paper, on the other hand, is model-free,
not requiring us to take a stance on either of the above. Our approach is similar
in spirit to Alvarez and Jermann (2004) that, to the best of our knowledge, are
the first to have used asset prices to infer bounds on the welfare cost of business
cycle fluctuations. However, we do not need to impose parametric restrictions
on either the data generating process for consumption, or on the level and time
series variation of interest rates, and do not rely on approximation results.

The reminder of the paper is organized as follows. Section II defines the
cost of aggregate consumption fluctuations and describes an information-theoretic
methodology to estimate this cost. Section III provides simulation evidence on
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the power of the information-theoretic methodology to recover the underlying
pricing kernel accurately. Section IV contains a description of the data used.
The welfare gains from eliminating all consumption fluctuations and fluctuations
corresponding to business cycle frequencies are presented in Sections V and VI,
respectively. Section VII presents a host of robustness checks. Section VIII relies
on an extension of our information-theoretic methodology to provide evidence
that the welfare gains from eliminating all consumption uncertainty vary sub-
stantially over the business cycle, a finding that is subsequently used in Section
IX to explain the main factors driving our results. Finally, Section X concludes
with suggestions for future research.

II. Pricing Aggregate Economic Fluctuations

This section defines the cost of fluctuations in aggregate consumption and pro-
poses a novel procedure to measure the cost. Specifically, in Subsection II.A, we
define the cost of consumption fluctuations, for two alternative definitions of ag-
gregate consumption fluctuations. These definitions follow Alvarez and Jermann
(2004). In Subsection II.B, we propose a novel information-theoretic procedure
to measure the cost of fluctuations, for the two different definitions of the fluc-
tuations. Our methodology does not require taking a stance on either investors’
preferences or the dynamics of consumption, thereby delivering robust estimates
of the cost of consumption fluctuations.

A. The Cost of Aggregate Fluctuations

The cost (or, the market price) of consumption fluctuations, ω0, is defined as
the ratio of the prices of two securities: a claim to a stable version of the aggregate
consumption stream from which certain fluctuations have been removed, and a
claim to the actual aggregate consumption stream,

(2) ω0 =
V0

[{
Cstabt

}
t≥1

]
V0

[
{Ct}t≥1

] − 1.

In the above equation, V0

[
{Ct}t≥1

]
and V0

[{
Cstabt

}
t≥1

]
denote the time-0 prices

of claims to the future consumption stream and the future stabilized consumption
stream, respectively. Therefore, the cost of consumption fluctuations measures
how much extra investors would be willing to pay in order to replace the aggregate
consumption stream with its stabilized counterpart.

If stabilized consumption, Cstabt , is defined as the expected value of future
consumption, i.e. Cstabt = E0 (Ct), then Equation (2) measures the cost of all
consumption fluctuations. In other words, it measures the benefit of elimination
of all consumption uncertainty.

If, on the other hand, stabilized consumption, Cstabt , is defined as the long-term
trend consumption, from which fluctuations corresponding to business cycle fre-
quencies have been removed, then Equation (2) measures the cost of business cycle
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fluctuations in consumption. Business cycles are typically defined as fluctuations
that last for no longer than 8 years. A stabilized consumption series from which
fluctuations corresponding to business cycle frequencies have been removed can
be constructed using smoothing filters like the Hodrick-Prescott filter (see also
Morten O. Ravn and Harald Uhlig (2002)).

The absence of arbitrage opportunities implies that

(3) V0

[
{Ct}t≥1

]
=

∞∑
t=1

V0 (Ct) ,

where V0 (Ct) denotes the time-0 price of a claim to a single payoff equal to the

aggregate consumption at time t. Similarly, V0

[{
Cstabt

}
t≥1

]
can be written as the

sum, across all future periods, of the prices of claims to single payoffs equal to the
stabilized consumption in each future period. Therefore, the cost of one-period

fluctuations is given by
V0(Cstab1 )
V0(C1) − 1, the cost of two-period fluctuations is given

by
V0(Cstab1 )+V0(Cstab2 )

V0(C1)+V0(C2) − 1, and so on.

In the context of a representative agent economy, Alvarez and Jermann (2004)
show that ω0 in Equation (2) measures the marginal cost of consumption fluc-
tuations, defined as the per unit benefit of a marginal reduction in consumption
fluctuations expressed as a percentage of lifetime consumption. The marginal cost
provides an upper bound on the total cost of consumption fluctuations, where the
latter is defined as the additional lifetime consumption, expressed as a percentage
of consumption, that the representative agent would demand in order to be indif-
ferent between the risky aggregate consumption stream and a stabilized version of
the aggregate consumption stream from which certain types of fluctuations (e.g.,
all fluctuations or business cycle fluctuations) have been removed.4

The benefits of focusing on the marginal cost are two-fold. First, it can be esti-
mated using observed asset prices and the assumption of the absence of arbitrage
opportunities, unlike the total cost that requires a fully-specified utility function.
Second, it enables the assessment of the welfare benefits of a unit reduction in con-
sumption fluctuations when consumers are bearing all the fluctuations, thereby
shedding light on the desirability or lack thereof of policies aimed at only moving
partially in the direction of eliminating certain types of aggregate fluctuations.

Note that since neither of the two assets – namely, the claims to aggregate
consumption or its stabilized counterpart – that characterize the marginal cost of
consumption fluctuations (see Equation (2)) is directly traded in financial mar-
kets, their prices are not directly observed. Therefore, the values of these two
securities need to estimated in order to obtain the cost of consumption fluctu-
ations. Historically, this has involved taking a stance on investors’ preferences,
i.e. their stochastic discounting of the various possible future states of the world,
and the dynamics of the data generating process, i.e. the likelihood of the states
being realized. The resultant estimates of the cost of economic fluctuations have

4Alvarez and Jermann (2004) also provide an alternative interpretation of ω0 in the case of incomplete
markets economies with agents possibly subject to uninsurable idiosyncratic risks.
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proven to be quite sensitive to these two assumptions (see, e.g. Barlevy (2005)
for a survey of the literature). The following subsection outlines a novel econo-
metric methodology for estimating the cost of consumption fluctuations, that
does not require any specific functional-form assumptions either about investors’
preferences or the dynamics of the data generating process.

B. Measuring the Cost of Aggregate Fluctuations

Consider an economy characterized by an augmented state vector zt ∈ Z, aug-
mented by, adding to the beginning of period state variables, the time t realization
of the shocks that influence equilibrium quantities. Then, all equilibrium quanti-
ties can be viewed as functions of z. For instance, the equilibrium realization of
the aggregate consumption growth rate is simply Ct+1/Ct ≡ ∆ct+1 = ∆c(zt+1).
That is, consumption growth can be viewed as just a mapping from z to the
(positive) real line i.e. ∆c : z→ R+.

Note that the (shadow) value of a claim to the aggregate consumption next
period can be generally expressed as

(4) Vt (Ct+1) = Et [Mt+1Ct+1] ,

where Mt is the pricing kernel. The existence of a (strictly positive) pricing kernel
is guaranteed by the assumption of the absence of arbitrage opportunities. For
the particular case of a representative agent economy, M can be thought of as the
intertemporal marginal rate of substitution of a (fictitious) representative agent
who derives utility from the consumption flow C. Note, however, that such a
representation is not restricted to representative agent economies but can also
obtain in incomplete-markets economies inhabited by heterogeneous agents (as,
e.g., in Constantinides and Ghosh (2017)).

By the definition of z, we have Mt ≡ M(zt), i.e. in equilibrium M : z → R+.
Therefore, dividing Equation (4) by Ct to make both sides stationary, taking
unconditional expectations, and using the definition of z, we have

(5) p̃c1 := E
[
Vt (Ct+1)

Ct

]
=

∫
z
M(z)∆c(z)dP(z),

where P is the (true) underlying physical probability measure and we have used
the assumption that z has a time invariant unconditional distribution. p̃c1 can be
interpreted as the average price (expressed as a fraction of current consumption)
of an asset with a single payoff equal to the aggregate consumption next period.

Similarly, the (shadow) value of a claim to a stabilized version of the aggregate
consumption next period can be expressed as

(6) Vt

(
Cstabt+1

)
= Et

[
Mt+1C

stab
t+1

]
,
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implying that

(7) p̃cstab1 := E

[
Vt
(
Cstabt+1

)
Ct

]
=

∫
z
M(z)∆cstab(z)dP(z),

where ∆cstabt+1 =
Cstabt+1

Ct
. In the scenario where we want to obtain the cost of all

consumption uncertainty in the next period, we set Cstabt+1 = (1 + µc)Ct, where
µc denotes the unconditional mean of the aggregate consumption growth rate.
Therefore, in this case, ∆cstabt+1 = (1 + µc). On the other hand, to assess the cost

of removing business cycle fluctuations in consumption, we set Cstabt+1 = Cbct+1,

where Cbct+1 refers to a smoothed version of the aggregate consumption at time
t + 1 from which fluctuations corresponding to business cycle frequencies have
been removed.

Once the prices of the claims to the aggregate consumption and the stabilized
aggregate consumption next period have been obtained, the cost of one-period
consumption fluctuations is then given by

(8)
p̃cstab1

p̃c1

− 1.

If a history of M (zt) ≡ Mt, t = 1, ..., T , were observable, we could estimate
the prices in Equations (5) and (7) and, therefore, the cost of one-period con-
sumption fluctuations in Equation (8): in this case the integrals (unconditional
expectations) with respect to the physical measure would be replaced by the sums
of observations weighted by 1/T , invoking ergodicity of the processes involved. If
the pricing kernel M were a known function of a vector of unknown parameters,
these parameters could first be estimated using method of moments approaches,
prior to evaluating the cost as above.

For instance, assuming a representative agent endowed with power utility pref-
erences with a constant CRRA, p̃c1 can be estimated as 1

T

∑T
t=1 δ (∆ct)

1−γ , where
γ denotes the relative risk aversion coefficient and δ the subjective discount factor.
Moreover, assuming log-normality of aggregate consumption growth as in Lucas
(1987), we would have

p̃c1 = E
[
δ(∆ct)

1−γ] = eln(δ)+(1−γ)E[ln(∆ct)]+.5(1−γ)2V ar[ln(∆ct)].

Similarly, the price of a claim to sure consumption next period, Cstabt+1 = (1 + µc)Ct,
is given by

p̃cstab1 = E
[
δ(∆ct)

−γ (1 + µc)
]

= (1 + µc) e
ln(δ)−γE[ln(∆ct)]+.5γ2V ar[ln(∆ct)].

The first two moments of log consumption growth, E[ln(∆ct)] and V ar[ln(∆ct)],
required to obtain p̃c1 and p̃cstab1 , can be estimated as the respective sample
analogs of the underlying unconditional expectations and, therefore, the price of
one-period consumption fluctuations can be obtained.

However, the pricing kernel M is not directly observable. Using the above
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specification of the pricing kernel and lognormal assumption for the dynamics
of consumption growth, Lucas estimates a very small cost of consumption fluc-
tuations. Subsequently, researchers have proposed alternative specifications of
preferences as well as the dynamics of the consumption growth rate and other
variables entering the pricing kernel. The resulting estimates of the cost of aggre-
gate fluctuations have proven to be quite sensitive to these assumptions, varying
wildly across these studies.

In this paper, we do not make any assumptions either about the preferences of
consumers, or the dynamics of the data generating process. Rather, our method-
ology is based on the observation that, albeit not directly observable, information
about M (z) is available in financial markets. This is because, for any vector of
excess returns Re

t ∈ RN on N traded assets, the following set of Euler equations
must hold in the absence of arbitrage opportunities:

0 = E [MtR
e
t ] =

∫
M(z)Re(z)dP(z) ≡

∫
Re(z)dQ(z) ≡ EQ [Re

t ]

where 0 is an N -dimensional vector of zeros and, by definition, Re : z → RN .
The so-called risk neutral measure Q (absolutely continuous with respect to the

physical measure P) satisfies the Radon-Nikodym derivative dQ(z)
dP(z) = M(z)

E[M(z)] . Note

also that, in absence of arbitrage opportunities, if a risk free asset exist, it must

satisfy E
[
1/Rft

]
= E [Mt].

Let p(z) and q(z) denote, respectively, the pdf’s associated with the measures
P and Q. We then have that, by the definition of the measure Q: q(z)E [M(z)] =
M(z)p(z). Therefore, Equation (5) can be rewritten as

(9) ˜pc1 = E [M(z)]

∫
∆c(z)q(z)dz.

The above formulation can be made operational, thanks to the fact that, using
asset returns data, we can actually estimate the q distribution. In particular,
the q distribution can be estimated to minimize the Kullback-Leibler Information
Criterion (KLIC) divergence (or the relative entropy) between the physical and
risk neutral measures:

(10) min
Q

∫
log

(
dP
dQ

)
dP =

∫
log

(
p(z)

q(z)

)
p(z)dz s.t. 0 =

∫
Re(z)q(z)dz.

Adding to the above problem the theoretical restriction that the pricing kernel,
M , is of the form:

(11) Mt+1 = (∆ct+1)−γ ψt+1,

leads to the reformulation of Equation (10) as:
(12)

min
F

∫
log

(
dP
dF

)
dP =

∫
log

(
p(z)

f(z)

)
p(z)dz s.t. 0 =

∫
Re(z) (∆c(z))−γ f(z)dz,
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where dF(z)
dP(z) = ψ(z)

E(ψ(z)) is the Radon-Nikodym derivative of F with respect to P,

and f(z) denotes the pdf associated with the measure F. This is the Empirical
Likelihood (EL) estimator of Owen (2001), originally proposed in Ghosh, Julliard
and Taylor (2016b) to recover the multiplicative missing component of the pricing
kernel. Once the F-measure, or, from the expression for the Radon-Nikodym
derivative, the missing component, ψ, of the pricing kernel, is estimated as the
solution to Equation (12), the pricing kernel, M , can be obtained using Equation
(11). We refer to this kernel as the Information-SDF, or I-SDF, because of the
information-theoretic approach used to recover it.

Ghosh, Julliard and Taylor (2016b) point out several reasons why relative en-
tropy minimization is an attractive criterion for recovering the pricing kernel.
These are restated here for convenience.

First, the KLIC minimization in Equation (12) is equivalent to maximizing
the (expected) ψ nonparametric likelihood function in an unbiased procedure
for finding the ψt component of the pricing kernel. To see this, note that the
maximization problem in Equation (12), after dropping redundant terms, can be
rewritten as

(13) max
ψ

EP [lnψ(z)] s.t. 0 =

∫
Re(z) (∆c(z))−γ ψ(z)p(z)dz.

Note also that this is the rationale behind the principle of maximum entropy (see
e.g. E. T. Jaynes (1957a, 1957b)) in physical sciences and Bayesian probability
that states that, subject to known testable constraints – the asset pricing Euler
restrictions in our case – the probability distribution that best represent our
knowledge is the one with maximum entropy, or minimum relative entropy in our
notation.

Second, the use of relative entropy, due to the presence of the logarithm in the
objective function in Equation (12), naturally imposes the non-negativity of the
pricing kernel.

Third, our approach to recover the ψt component of the pricing kernel satisfies
the Occam’s razor, or law of parsimony, since it adds the minimum amount of
information needed for the pricing kernel to price assets. This is due to the fact
that the relative entropy is measured in units of information. To provide some
intuition, suppose that the consumption growth component of the pricing kernel,
(∆ct)

−γ , is sufficient to price assets perfectly. Then ψt ≡ 1,∀t, and we have that
F ≡ P. However, if the consumption growth component is not sufficient to price
assets (as is the case in reality), then the estimated measure F is distorted relative
to the physical measure P. And, our estimator searches for a measure F that is
as close as possible, in an information-theoretic sense, to the physical measure
P. In other words, the approach distorts the physical probabilities as little as
possible in order to satisfy the Euler equation restrictions. And the estimator is
non-parametric in the sense that it does not require any parametric functional-
form assumptions about the ψ-component of the kernel or the distribution of the
data.

Fourth, there is no ex-ante restriction on the number of assets that can be used
in constructing ψt, and the approach can naturally handle assets with negative
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expected rates of return (cf. Fernando Alvarez and Urban J. Jermann (2005)).
Fifth, as implied by the work of Donald E. Brown and Robert L. Smith (1990),

the use of entropy is desirable if we think that tail events are an important com-
ponent of the risk measure.5

Sixth, this approach is numerically simple to implement. Given a sample of
size T and a history of excess returns and consumption growth {Re

t ,∆ct}
T
t=1,

Equation (13) can be made operational by replacing the expectation with a sample
analogue, as is customary for moment based estimators:6

(14) arg max
{ψt}Tt=1

1

T

T∑
t=1

lnψt s.t.
1

T

T∑
t=1

(∆ct)
−γ ψtR

e
t = 0.

A standard application of Fenchel’s duality theorem to the above problem (see,
e.g., Imre Csiszár (1975), Owen (2001)), delivers the estimates (up to a positive
constant scale factor):

(15) ψ̂t =
1

T (1 + θ̂′Re
t (∆ct)

−γ)
∀t,

where θ̂ ∈ RN is the vector of Lagrange multipliers that solves the unconstrained
dual optimization problem:

(16) θ̂ = arg min
θ

−
T∑
t=1

log(1 + θ′Re
t (∆ct)

−γ).

Seventh, and perhaps most importantly, the I-SDF successfully prices assets.
Note that this result is not surprising in sample, because the I-SDF is constructed
to price the test assets in-sample (see Equation (12)). However, Ghosh, Julliard
and Taylor (2016a) show that the good pricing performance of the I-SDF also
obtains out-of-sample for broad cross-sections of assets, including domestic and
international equities, currencies, and commodities. The out-of-sample perfor-
mance of the I-SDF is superior to not only the single factor CAPM and the
Consumption-CAPM, but also the more recent Fama-French 3 and 5 factor mod-
els. This suggests that the I-SDF is more successful at capturing the relevant
sources of priced risk and, therefore, offers a more reliable candidate kernel with
which to measure the cost of aggregate economic fluctuations.

Finally, we show, via simulation exercises, that the information-theoretic method-
ology is remarkably successful in recovering the ψ-component of the pricing ker-
nel. Details of the simulation design and the performance of the estimator are
presented in Section III.

Under the assumption that the physical measure can be approximated with
an empirical distribution that assigns probability weight 1/T to every sample

5Brown and Smith (1990) develop what they call “a Weak Law of Large Numbers for rare events;”
that is, they show that the empirical distribution observed in a very large sample converges to the
distribution that minimizes the relative entropy.

6This amounts to assuming ergodicity for both the pricing kernel and asset returns.
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realization t, dQ(z)
dP(z) = M(z)

E[M(z)] = (∆c(z))−γψ(z)
E[M(z)] implies that the risk neutral measure

is proportional to the pricing kernel M and that the proportionality constant can
be recovered from the Euler equation for the risk free rate. Thus, the risk neutral
measure is given by

(17) q̂t ≡ q̂(zt) = κ (∆c(zt))
−γ ψ(zt) =

κ (∆ct)
−γ

T (1 + θ̂′Re
t (∆ct)

−γ)
∀t,

where κ is a strictly positive normalization constant chosen such that
∑T

t=1 q̂t = 1.

Equation (17) makes clear that our estimator of the risk neutral measure, as
any Generalized Empirical Likelihood approach (see e.g. Kitamura (2006) for a
survey), approximates the true unknown q distribution with a multinomial with
support points given by the realizations of the observable variables (in this case,
consumption growth and asset returns) at the various dates in the sample.

The result in Equation (17) implies that the value of switching from the stochas-
tic consumption growth ∆c(z) to a constant growth (1 + µc) can be estimated,
given a history of consumption growth and asset returns of length T , via the
estimated percentage increase in the price-consumption ratio

(18) ̂pcstab1 / ˜pc1 =

∑T
t=1 (1 + µc) q̂t∑T

t=1 ∆ctq̂t
=

1 + µc∑T
t=1 ∆ctq̂t

.

Note that Equation (18) represents the value of eliminating all consumption
fluctuations in the next period. If aggregate consumption uncertainty is caused by
both business cycle and lower frequency fluctuations, the value of eliminating the
former can be estimated via a simple modification to Equation (18). Specifically,
we replace the constant consumption growth rate µc with a time-varying stabilized
consumption growth from which the business cycle variation has been removed.
This stabilized version of consumption, Cstab, can be obtained by an application
of the Hodrick-Prescott filter to the original consumption series. The value of
eliminating business cycle fluctuations can, therefore, be expressed as

(19) ̂pcstab1 / ˜pc1 =

∑T
t=1 ∆cstabt q̂t∑T
t=1 ∆ctq̂t

.

Note that Equations (18) and (19) represent the costs of all consumption fluc-
tuations and business cycle fluctuations, respectively, for one period alone. It
is straightforward to extend the analysis to obtain the cost of fluctuations for
multiple periods. For instance, the (shadow) value of a claim to the aggregate
consumption two periods into the future can be expressed as

Vt (Ct+2) = Et [Mt:t+2Ct+2] ,

where Mt:t+2 denotes the two-period SDF. Thus, the expected price-consumption
ratio of a security that delivers a single payoff equal to the two-period consumption
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is given by

p̃c2 := E
[
Vt (Ct+2)

Ct

]
= E

[
Mt:t+2

Ct+2

Ct

]
.

The one-period I-SDF recovered in Equation (17) can be compounded to estimate
p̃c2:7

Mt:t+2 =
2∏
j=1

Mt+j .

Similarly, we can estimate the price-consumption ratio p̃cj for a single consump-
tion claim j periods in the future, for any j = 2, 3, 4, .... Using the estimated
price-consumption ratios of the claims to single future payoffs, we can estimate
the price-consumption ratio of an asset that delivers the stochastic consumption
in each of the next J periods i.e. p̃c1:J :=

∑J
j=1 p̃cj . Hence, it is straightforward

to compute the value of removing all or business cycle fluctuations in consumption
over J periods with expressions analogous to the ones in Equations (18)-(19).

III. Performance of the EL Estimator: An Example Economy

In this section, we provide simulation evidence on the performance of the EL
estimator in recovering the ψ-component of the pricing kernel. Specifically, we
consider a hypothetical economy in which the representative investor’s subjective
beliefs diverge from the true underlying (or, physical) distribution of the data.
As we show below, in this economy, the ψ-component of the kernel captures
the divergence between the subjective and physical measures. We then show
that the EL estimator is remarkably successful in recovering ψ and, therefore,
the subjective beliefs of the investor. The details of the simulation design are
presented below.

We consider an endowment economy where a representative agent has power
utility preferences with a constant coefficient of relative risk aversion (CRRA).
Suppose that consumption growth is i.i.d. log-normal:

(20) log (∆ct)
P∼ N

(
µ, σ2

)
.

We assume that the representative investor is pessimistic and acts as if the mean
consumption growth were lower than µ. Specifically, she acts as if consumption
growth has a mean of (1− λ)µ, where λ ∈ (0, 1) is the severity of pessimism:

(21) log (∆ct)
P̃∼ N

(
µ̃, σ2

)
,

where µ̃ = (1− λ)µ and P̃ denotes the investor’s subjective measure. We assume

7Alternatively, using the approach in Equation (12), one could estimate directly the two period risk
neutral probability measure using a change of measure with respect to the variable Mt,t+1 := MtMt+1

and two period returns. In this case, the notation in Equation (12) would be reinterpreted as z being
the state vector for two contiguous periods and Re denoting two period excess returns.
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that there are no distortions in the beliefs about the volatility and the higher
moments of consumption growth.

In this economy, the following Euler equation holds in equilibrium:

(22) 0 = EP̃ [(∆ct+1)−γ (Rm,t+1 −Rf,t+1)
]
,

where Rm,t and Rf,t denote the market return and the risk free rate, respectively,
at time t. Note that, in Equation (22), the expectation is evaluated under the
investor’s subjective measure (instead of the physical measure P). Under weak
regularity conditions, Equation (22) may be rewritten as

(23) 0 = EP [(∆ct+1)−γ ψt+1 (Rm,t+1 −Rf,t)
]
,

where dP̃
dP = ψ

E(ψ) is the Radon-Nikodym derivative of P̃ with respect to P. Thus,

in this economy, the ψ-component of the kernel captures the divergence between
the subjective and physical measures.

Note that this example economy fits into the framework described in Section II.
Therefore, given time series data on consumption growth, the market return, and
risk free rate, the EL approach can be used to estimate (up to a strictly positive
constant scale factor) the ψ-component of the kernel:

(24){
ψ̂t

}T
t=1

= arg max
{ψt}Tt=1

T∑
t=1

log(ψt) s.t.
1

T

T∑
t=1

(∆ct+1)−γ ψt+1(Rm,t+1−Rf,t+1) = 0.

Using the recovered ψ and under the assumption that the physical measure can be
approximated with an empirical distribution that assigns probability weight 1/T

to every sample realization, i.e., P̂ = {p̂t}Tt=1 = 1
T , the subjective measure

̂̃P ={̂̃pt}T
t=1

can be obtained from the definition of the Radon-Nikodym derivative.

We show, via simulations, that the EL approach successfully recovers ψ and,
therefore, P̃. In order to perform the EL estimation in Equation (24), we need
the time series of consumption growth, the market return, and the risk free rate.
Note that, in this economy, equilibrium asset prices reflect the subjective beliefs
of the investor. In particular, the equilibrium price-dividend ratio is Pt

Dt
= z, a

constant, where

(25) z =

exp

[
log(δ) + (1− γ)µ̃+

(1− γ)2σ2

2

]
1− exp

[
log(δ) + (1− γ)µ̃+

(1− γ)2σ2

2

] ,
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and the equilibrium risk free rate is also constant at:

(26) Rf =
1

exp

(
log(δ)− γµ̃+

γ2σ2

2

) .

To perform our simulation exercise, we calibrate µ and σ2 to the sample mean
and variance, respectively, of (log) consumption growth in our data (real per
capita total consumption over 1929-2015). The preference parameters are cali-
brated at δ = 0.99 and γ = 10. We simulate a time series of consumption growth
using Equation (20). Using the simulated consumption growth, we obtain the
market return as:

Rm,t+1 =

Pt+1

Ct+1
+ 1

Pt
Ct

· Ct+1

Ct
=
z + 1

z
· Ct+1

Ct
,

where z is defined in Equation (25). The time series of the risk free rate is simply
a constant given by Equation (26).

Using the above time series, we recover the subjective beliefs using the EL ap-
proach. Armed with the subjective probabilities, we compute the mean, volatility,
and skewness of consumption growth. Note that these are the moments of con-
sumption growth that are consistent with the asset prices, i.e. the moments as
perceived by the representative investor. We repeat the above estimation for 500
simulated samples. We report the means and 90% confidence intervals of the
moments of consumption growth across these simulations. To demonstrate the
power of the estimation approach, we present results for different magnitudes
of the beliefs distortion, i.e. for λ = {0.10, 0.15, 0.20}, and for different simu-
lated sample sizes, i.e. Tsim = {85, 200, 500}. The first choice of sample size,
Tsim = 85, corresponds to the size of the historical sample that we use in our
empirical analysis.

The results are reported in Table 1. Panel A presents results for Tsim = 85.
Consider first Row 1, where investors are assumed to underestimate the mean of
consumption growth by 10%, i.e. the mean of 2.55% under subjective beliefs is
10% below the historical mean of 2.83%. The equilibrium market return and risk
free rate reflect these subjective beliefs of investors. Row 1 shows that the EL
method is successful at capturing these subjective beliefs of investors. Specifically,
the EL-implied mean of consumption growth has a mean of 2.61% across the 500
simulations, close to the true value of the mean under subjective beliefs. The
EL implied volatility of consumption growth has a mean of 3.47% across the 500
simulations – once again quite close to the historical value. Note that, in our
experiment, there are no beliefs distortions in the volatility and the EL method
successfully identifies the volatility observed in the historical data. Finally, the
average of the coefficient of skewness across the simulations is −0.003, very close
to the true value of 0.

Rows 2 and 3 show that similar, albeit stronger, results are obtained for more
severe beliefs distortions in the mean of consumption growth – the EL method
correctly identifies the subjective mean and the 90% confidence intervals do not
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contain the corresponding values of the mean under the physical measure, and
the estimated volatility and skewness are very close to their historical values with
tight confidence bands. Finally, Panels B and C show the effect of increasing
sample size on the performance of the EL estimator – the performance at samples
sizes of 200 and 500 are quite similar to those observed for available sample sizes
in the historical data in terms of the average mean, volatility, and skewness across
the simulations, although the confidence bands are tighter for longer sample sizes.

Table 1: Estimating Subjective Beliefs

Mean (%) Volatility (%) Skewness
true values

µ̃ = µ 2.83 3.39 0
µ̃ = 0.90µ 2.55 3.39 0
µ̃ = 0.85µ 2.41 3.39 0
µ̃ = 0.80µ 2.27 3.39 0

Panel A: T=85
µ̃ = 0.90µ 2.61

[2.35,2.89]
3.47

[3.09,3.84]
−.003

[−.45,.38]

µ̃ = 0.85µ 2.47
[2.23,2.76]

3.48
[3.15,3.86]

.008
[−.40,.41]

µ̃ = 0.80µ 2.35
[2.10,2.66]

3.51
[3.14,3.88]

.001
[−.43,.43]

Panel B: T=200
µ̃ = 0.90µ 2.60

[2.42,2.80]
3.46

[3.21,3.73]
−.011

[−.34,.29]

µ̃ = 0.85µ 2.50
[2.33,2.71]

3.52
[3.27,3.77]

−.049
[−.37,.26]

µ̃ = 0.80µ 2.40
[2.19,2.61]

3.56
[3.29,3.81]

−.063
[−.40,.24]

Panel C: T=500
µ̃ = 0.90µ 2.61

[2.49,2.73]
3.47

[3.31,3.63]
−.036

[−.24,.16]

µ̃ = 0.85µ 2.51
[2.39,2.64]

3.52
[3.36,3.68]

−.054
[−.26,.15]

µ̃ = 0.80µ 2.41
[2.26,2.57]

3.57
[3.39,3.75]

−.068
[−.33,.13]

The table presents the average of the mean (Column 2), volatility (Column 3), and skewness (Column 4)

of consumption growth, along with the 90% confidence intervals (in square brackets below), computed

from 500 simulated samples. The samples are simulated from a hypothetical endowment economy in

which a representative agent with power utility preferences is pessimistic and underestimates the mean

consumption growth. Panels A, B, and C present results for different sample sizes, whereas Rows 1-3 in

each panel present results for different degrees of pessimism. The expectations underlying the calculation

of the moments of consumption growth are evaluated under the subjective measure recovered using the

EL approach.

Overall, the results suggest that the EL estimator performs quite well at identi-
fying the ψ-component of the pricing kernel for empirically realistic sample sizes.
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This lends further support for its use in the recovery of the pricing kernel for
welfare cost calculations.

IV. Data Description

The extraction of the information kernel (I-SDF) for use in welfare cost calcula-
tions requires data on the aggregate consumption expenditures and returns on a
set of traded assets. Ideally, we would like to use the longest available time series
of these variables in the estimation. At the same time, to assess the robustness
of our key results, we would like to repeat our analysis for different measures of
consumption expenditures as well as different sets of assets. While data on total
consumption is available from 1890 onwards, disaggregated expenditures on dif-
ferent consumption categories (e.g., durables, nondurables, and services) are only
available from 1929 onwards. Moreover, data on broad cross sections of asset
returns are also not available prior to the late 1920s. Therefore, we focus on a
baseline data sample starting at the onset of the Great Depression (1929-2015).

For the 1929-2015 data sample, we consider two alternative measures of con-
sumption: (i) the personal consumption expenditure on nondurables and services,
and (ii) the personal consumption expenditure on durables, nondurables and ser-
vices. The consumption data are obtained from the Bureau of Economic Analysis.
Nominal consumption is converted to real using the Consumer Price Index (CPI).

We use different sets of assets to extract the I-SDF: (i) the market portfolio,
proxied by the Center for Research in Security Prices (CRSP) value-weighted
index of all stocks on the NYSE, AMEX, and NASDAQ, and (ii) the 6 equity
portfolios formed from the intersection of two size and three book-to-market-
equity groups. The proxy for the risk-free rate is the one-month Treasury Bill
rate. The returns on all the above assets are obtained from Kenneth French’s data
library. Annual returns for the assets are computed by compounding monthly
returns within each year and converted to real using the CPI. Excess returns on
the portfolios are then computed by subtracting the risk free rate.

To further assess the robustness of our results, we also repeat our analysis
using two alternative data sets: (i) total personal consumption expenditure over
the 1890-2015 sample and the excess return on the S&P500 as the sole asset,
and (ii) the personal consumption expenditure on nondurables and services along
with the excess return on the CRSP value-weighted market portfolio, over the
entire available quarterly sample 1947:Q1-2015:Q4.

V. The Market Value of Aggregate Uncertainty

In this section, we use the I-SDF, extracted using the information-theoretic
procedure outlined in Section II, to obtain the cost of all consumption fluctu-
ations, i.e. the welfare benefits of removing all fluctuations (or uncertainty) in
consumption.

Equation (18) defines the cost for one-period fluctuations, i.e. the benefit of
removing fluctuations in the next period alone. The cost is the ratio of the prices
of two hypothetical securities (expressed as a fraction of current consumption):
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a claim to a deterministic (or, sure) consumption in the next period, pcstab1 , and
a claim to the actual aggregate consumption next period, p̃c1. Equation (18)
reveals that the prices of the two securities and, therefore, the cost of one-period
consumption fluctuations, depend on the underlying risk neutral measure. The
risk neutral measure estimated using the EL procedure depends on the particu-
lar measure of the aggregate consumption expenditures as well as on the set of
assets used (see Equations (16)-(17)). To ensure that the results are robust, we
estimate the risk neutral measure using two different measures of consumption
expenditures and two alternative sets of assets.

Table 2: Cumulative Cost of Nondurables & Services Consumption Fluctuations
All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr
Panel A: Market Portfolio

I-SDF 1.53 5.15 11.75 14.28 14.44 .556 1.48 3.39 3.90 3.57
CRRA Kernel .933 2.08 3.73 4.87 5.03 .457 .854 1.32 1.52 1.40
Lucas .751 1.09 1.40 1.68 1.94 - - - - -

Panel B: FF 6 Portfolios
I-SDF 1.29 3.52 6.65 10.63 11.20 .462 1.03 2.07 3.03 2.90
CRRA Kernel .933 2.08 3.73 4.87 5.03 .457 .854 1.32 1.52 1.40
Lucas .751 1.09 1.40 1.70 1.94 - - - - -

The table reports the (cumulative) cost of all aggregate consumption fluctuations (Columns 2-6) and

the cost of business cycle fluctuations in consumption (Columns 7-11), for 1-5 years. Consumption

denotes the real per capita personal consumption expenditure of nondurables and services. The costs are

calculated using the I-SDF (Row 1), the kernel implied by power utility preferences with a constant CRRA

(Row 2), and Lucas’ original specification that involves power utility preferences and i.i.d. lognormal

aggregate consumption growth dynamics (Row 3). Panel A presents results when the excess return on

the market portfolio is the sole asset used to recover the I-SDF. In Panel B, on the other hand, the I-SDF

is estimated using the 6 Fama-French size and book-to-market-equity sorted portfolios. The sample is

annual covering the period 1929-2015.

Table 2 presents the cost of consumption fluctuations when consumption refers
to the expenditure on nondurables and services. Panel A presents the results
when the market portfolio alone is used in the extraction of the risk neutral
measure with the EL approach while Panel B does the same when the six size
and book-to-market-equity sorted portfolios of Fama-French are used to extract Q.
Consider first Column 2 of Panel A. Row 1 shows that when the market portfolio
alone is used in the extraction of the I-SDF, the cost of one-period consumption
fluctuations is estimated to be 1.5%. Row 2 shows that the corresponding cost,
estimated using the pricing kernel implied by power utility preferences with a
constant CRRA (hereafter referred to as the CRRA kernel) equal to 10, is an
order of magnitude smaller at .93%.8 Row 3 shows that, if the assumption of
lognormal consumption growth is imposed on the CRRA kernel – this corresponds
to Lucas’ original specification – the cost of one-period consumption fluctuations
further reduces to .75%.

Note that the above results pertain to the cost of fluctuations in one-period
consumption alone. Columns 3, 4, 5, and 6 of Panel A present the cost of con-
sumption fluctuations over two, three, four, and five years, respectively. Row

8This result is robust to values of the CRRA between 1 and 10.
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1 shows that, using the I-SDF, the cost of consumption fluctuations over two,
three, four, and five years increases to 5.2%, 11.8%, 14.3%, and 14.4%, respec-
tively. Note that the cost of consumption fluctuations over two years is more
than three times higher than the cost of fluctuations over one year alone (5.2%
versus 1.5%). Similarly, the cost of consumption fluctuations over a three-year
period is more than seven times higher than the cost over one year alone (11.8%
versus 1.5%); and the costs over four- and five-year periods are each almost ten
times higher than the cost over one year (14.3% and 14.4%, respectively, versus
1.5%). This suggests that consumption responds slowly to news and that agents’
marginal utility and, therefore, the (true) underlying pricing kernel is a function
not only of current consumption but also expected future consumption, consistent
with the evidence in Parker and Julliard (2005).

Figure 1. Marginal Cost of All Consumption Fluctuations, 1929-2015
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Notes: The figure plots the cumulative cost of all aggregate consumption fluctuations over 1-5 years,

for different choices of the pricing kernel and measures of consumption. Panel A presents results when

consumption refers to the real per capita personal consumption expenditure of nondurables and services,

while Panel B does the same when consumption denotes real per capita total personal consumption

expenditure. The costs are presented for the I-SDF extracted using the excess return on the market

portfolio as the sole test asset (black line), the pricing kernel implied by power utility preferences with a

constant CRRA (red line), and Lucas’ original specification that involves power utility preferences and

i.i.d. lognormal aggregate consumption growth dynamics (green line).

Row 2 shows that the CRRA kernel implies much smaller costs of two, three,
four, and five year consumption fluctuations of 2.1%, 3.7%, 4.9%, and 5.0%,
respectively. In fact, the costs are an order of magnitude smaller than the costs
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implied by the I-SDF (with the exception of the two-year fluctuations that is also
less than half of that implied by the I-SDF). Lucas’ kernel in Row 3 implies even
smaller costs of two, three, four, and five years fluctuations at 1.1%, 1.4%, 1.7%,
and 1.9%, respectively. Figure 1, Panel A plots the cost of 1-5 year consumption
fluctuations implied by the I-SDF recovered using the market portfolio alone
(black line), CRRA kernel (red line), and Lucas’ specification of power utility
preferences and lognormal consumption growth (green line).

Figure 2. Marginal Cost of All Consumption Fluctuations, 1929-2015
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Notes: The figure plots the cumulative cost of all aggregate consumption fluctuations over 1-5 years,

for different choices of the pricing kernel and measures of consumption. Panel A presents results when

consumption refers to the real per capita personal consumption expenditure of nondurables and services,

while Panel B does the same when consumption denotes real per capita total personal consumption

expenditure. The costs are presented for the I-SDF extracted using the cross-section of 6 size and

book-to-market-equity sorted portfolios of Fama and French as test asset (black line), the pricing kernel

implied by power utility preferences with a constant CRRA (red line), and Lucas’ original specification

that involves power utility preferences and i.i.d. lognormal aggregate consumption growth dynamics

(green line).

Similar results are obtained in Table 2, Panel B when the six size and book-
to-market-equity sorted portfolios are used in the extraction of the I-SDF. The
information kernel implies a cost of 1.3% for one-period consumption fluctuations,
an order of magnitude bigger than the .9% implied by the CRRA kernel. The cost
of fluctuations for two-, three-, four-, and five-year periods are also substantially
higher for the I-SDF compared to the CRRA kernel – 3.5% versus 2.1% for two
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periods, 6.7% versus 3.7% for three periods, 10.6% versus 4.9% for four periods,
and 11.2% versus 5.0% for five periods. Lucas’ specification implies even smaller
costs. Figure 2, Panel A plots the cost of 1-5 year consumption fluctuations
implied by the I-SDF recovered using the 6 FF portfolios (black line), CRRA
kernel (red line), and Lucas’ specification (green line).

The results in Table 2 were obtained using personal consumption expenditures
on nondurables and services as the measure of consumption. Table 3, that uses
the total consumption expenditures (including durables) as the measure of con-
sumption, produces results qualitatively similar to those in Table 2. Note that,
not surprisingly, the costs of fluctuations are bigger with total consumption com-
pared to nondurables and services consumption. Figure 1, Panel B compares the
cost of 1-5 year consumption fluctuations implied by the I-SDF, the CRRA ker-
nel, and Lucas’ original specification, when the the market portfolio alone is used
in the extraction of the I-SDF. Figure 2, Panel B compares the cost for the three
kernel specifications, when the 6 FF portfolios are used to recover the I-SDF.

Table 3: Cumulative Cost of Total Consumption Fluctuations, 1929-2015
All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr
Panel A: Market Portfolio

I-SDF 2.15 6.77 16.13 19.65 19.73 .896 2.09 4.85 5.55 5.12
CRRA Kernel 1.42 3.08 5.80 7.63 7.77 .761 1.32 2.08 2.40 2.21
Lucas 1.15 1.68 2.16 2.61 3.03 - - - - -

Panel B: FF 6 Portfolios
I-SDF 1.88 4.89 9.46 15.00 15.57 .770 1.60 3.05 4.35 4.14
CRRA Kernel 1.42 3.08 5.80 7.63 7.77 .761 1.32 2.08 2.40 2.21
Lucas 1.15 1.68 2.16 2.61 3.03 - - - - -

The table reports the (cumulative) cost of all aggregate consumption fluctuations (Columns 2-6) and the

cost of business cycle fluctuations in consumption (Columns 7-11), for 1-5 years. Consumption denotes

the real per capita total personal consumption expenditure (includes durables, nondurables, and services).

The costs are calculated using the I-SDF (Row 1), the kernel implied by power utility preferences with

a constant CRRA (Row 2), and Lucas’ original specification that involves power utility preferences and

i.i.d. lognormal aggregate consumption growth dynamics (Row 3). Panel A presents results when the

excess return on the market portfolio is the sole asset used to recover the I-SDF. In Panel B, on the other

hand, the I-SDF is estimated using the 6 Fama-French size and book-to-market-equity sorted portfolios.

The sample is annual covering the period 1929-2015.

The results of this section suggest that economic agents perceive the cost of
aggregate economic fluctuations to be quite substantial. The cost is substantially
higher than that originally obtained by Lucas. Costs higher than Lucas’ estimates
have been more recently reported in the literature – Alvarez and Jermann (2004)
report a baseline average cost of 28.6% for all consumption fluctuations in all
future periods for an infinitely-lived agent. Our estimates of the cost are in line
with Alvarez and Jermann (2004). Specifically, our estimates of the cost of all
consumption fluctuations for 5 periods alone vary from 11.2%-19.7%, depending
on the measure of aggregate consumption expenditure or the set of assets used
to recover the I-SDF. Comparing our numbers with that in Alvarez and Jermann
(2004) suggests that the cost of 5-year fluctuations alone accounts for 39.2%-
68.9% of the cost of lifetime consumption fluctuations for an infinitely lived agent.
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Moreover, our approach also offers a term structure of the costs of fluctuations,
i.e. how the welfare benefits rise with the elimination of aggregate fluctuations
over each additional future period.

VI. Business Cycle vs. Long Run Uncertainty

While Section V focused on the cost of all consumption fluctuations, in this
section we obtain the cost of business cycle fluctuations in consumption. Just like
the cost of all consumption uncertainty, the cost of business cycle fluctuations
in consumption can be obtained as the ratio of the prices of two hypothetical
securities: a claim to a stabilized consumption path, pcstab, and a claim to the
actual aggregate consumption, p̃c. Stabilized consumption in this case refers
to the residual after the business cycle component has been removed from the
aggregate consumption series. We compute the stabilized consumption series
using the widely used Hodrick-Prescott filter. Since our empirical analysis uses
annual data, we use a smoothing parameter of 6.25 in the application of the
Hodrick-Prescott filter, following the suggestions in Ravn and Uhlig (2002).

Figure 3. Marginal Cost of All versus Business Cycle Consumption Fluctuations, 1929-2015
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Notes: The figure plots the cumulative cost of all aggregate consumption fluctuations (black line)

and business cycle fluctuations in consumption (red line), over 1-5 years, obtained using the I-SDF for

different choices of the measures of consumption. Panel A presents results when consumption refers to

the real per capita personal consumption expenditure of nondurables and services, while Panel B does

the same when consumption denotes real per capita total personal consumption expenditure. The I-SDF
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is extracted using the excess return on the market portfolio as the sole test asset. The sample is annual

covering the period 1929-2015.

The results are presented in the last five columns of Table 2, for nondurables and
services consumption. Panel A, Row 1 shows that, using the I-SDF extracted from
the market portfolio alone, the cost of business cycle fluctuations in consumption
over a one-year time horizon is estimated to be 0.6%. The costs of business cycle
fluctuations over two, three, four, and five year horizons increase to 1.5%, 3.4%,
3.9%, and 3.7%, respectively. Row 2 shows that, for the CRRA kernel, while the
cost of business cycle fluctuations over a one-year period is only slightly smaller
than that obtained with the I-SDF (0.5% versus 0.6%), the cost increases little
for multi-year horizons in case of the former. For instance, the cost of five-year
fluctuations is only 1.4% – less than half of the cost of 3.7% implied by the I-SDF.
Panel B shows that similar results are obtained when the six size and book-to-
market-equity sorted portfolios are used in the extraction of the I-SDF.

Figure 4. Marginal Cost of All versus Business Cycle Consumption Fluctuations, 1929-2015
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Notes: The figure plots the cumulative cost of all aggregate consumption fluctuations (black line)

and business cycle fluctuations in consumption (red line), over 1-5 years, obtained using the I-SDF for

different choices of the measures of consumption. Panel A presents results when consumption refers to

the real per capita personal consumption expenditure of nondurables and services, while Panel B does the

same when consumption denotes real per capita total personal consumption expenditure. The I-SDF is

extracted using the excess returns on the 6 Fama-French size and book-to-market-equity sorted portfolios.

The sample is annual covering the period 1929-2015.

An important point to note is that while the estimates of the cost of business
cycle fluctuations are smaller than the cost of all consumption uncertainty, the
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former, nonetheless, represents a substantial fraction of the latter. For instance,
Panel A, Row 1 shows that, when the market portfolio is used in the extraction of
the I-SDF, the cost of business cycle fluctuations constitutes 36.3% of the cost of
all consumption fluctuations over a one-year horizon. The cost of business cycle
fluctuations over two, three, four, and five years account for 28.7%, 28.9%, 27.3%,
and 24.7%, respectively, of the cost of all consumption fluctuations over these time
horizons. Figure 3, Panel A plots the cost of all consumption fluctuations (black
line) and the cost of business cycle fluctuations (red line) over 1-5 years.

Similar results are obtained in Table 2, Panel B when the six size and book-to-
market-equity sorted portfolios are used in the extraction of the I-SDF. Specif-
ically, the cost of business cycle fluctuations over one to five years accounts for
35.8%, 29.3%, 31.1%, 31.0%, and 25.9%, respectively, of the cost of all consump-
tion fluctuations over these time horizons. This is further demonstrated in Figure
4, Panel A.

Finally, the results remain largely unchanged when total consumption expendi-
ture (instead of nondurables and services expenditure) is used as the measure of
consumption in recovering the I-SDF. These are presented in Table 3, Rows 7-11.
Panel B of Figures 3-4 plot these costs of all and business cycle fluctuations when
the set of assets used to recover the I-SDF consists of the market alone and the
6 FF portfolios, respectively.

Overall, we find that the costs of business cycle fluctuations are large and con-
stitute between a quarter to a third of the cost of all consumption fluctuations.
Our results are in contrast to those in Alvarez and Jermann (2004) who argue
that while the cost of all consumption fluctuations is very high with a baseline
value of 28.6% for an infinitely lived agent, the cost of business cycle fluctuations
in consumption is miniscule, varying from 0.1% to 0.5%. Our estimates of the
costs of business cycle fluctuations over a cumulative five-year period alone are
as high as 5.1% – between ten and fifty times higher than the estimates in Al-
varez and Jermann (2004). Also note that the estimates in the latter, unlike our
estimates, correspond to eliminating business cycle fluctuations for all (infinite)
future periods, not just for a five-year time horizon.

VII. Robustness

In this section, we perform a number of checks to establish the robustness
of our estimates of the cost of all consumption uncertainty as well as the cost
of business cycle fluctuations in consumption reported in Sections V and VI.
For all the robustness tests, consumption refers to the per capital total personal
consumption expenditure.9 The results are presented in Table 4.

First, we present the estimates for an alternative definition of relative entropy.
Equation (12) reveals that relative entropy is not symmetric. Therefore, we can
reverse the roles of the physical measure P and the tilted measure F so as to obtain
an alternative definition of relative entropy. This alternative criterion function can
be minimized to estimate the measure, F, and, therefore, the missing component,

9Very similar results are obtained using nondurables and services consumption and are omitted for
brevity.
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ψ, of the pricing kernel:
(27)

min
F

∫
log

(
dF
dP

)
dF =

∫
log

(
f(z)

p(z)

)
f(z)dz s.t. 0 =

∫
Re(z) (∆c(z))−γ f(z)dz,

This is the Exponentially-Tilted (ET) estimator of Kitamura and Stutzer (1997)
(see also Susanne M. Schennach (2005)). As with the EL estimator, the ET
estimator is also numerically simple to implement. Specifically, the ψ-component
is estimated (up to a positive constant scale factor) as:

(28) ψ̂t =
eθ̂
′Re

t (∆ct)
−γ

1
T

∑T
t=1 e

θ̂′Re
t (∆ct)

−γ ∀t,

where θ̂ ∈ RN is the vector of Lagrange multipliers that solves the unconstrained
dual problem:

(29) θ̂ = arg min
θ

[
log

(
1

T

T∑
t=1

eθ̂
′Re

t (∆ct)
−γ

)]
.

We recover the I-SDF using the ET approach and use it to calculate the costs
of consumption fluctuations. The results are presented in Row 1 of each panel
in Table 4. Panel A, Row 1 reports the results when the market portfolio is the
sole test asset used to extract the I-SDF. The results are very similar to those
obtained using the EL approach in Table 3 – the cumulative costs of all 1 to
5 year fluctuations in consumption are 2.1%, 6.1%, 14.5%, 17.3%, and 17.3%,
respectively, remarkably close to the corresponding values (2.2%, 6.8%, 16.1%,
19.7%, and 19.7%, respectively) obtained using the EL approach. The costs of
1 to 5 year business cycle fluctuations in consumption are also very similar for
the two approaches – 0.90%, 2.0%, 4.5%, 5.0%, and 4.6%, respectively, for the
ET approach versus 0.90%, 2.1%, 4.9%, 5.6%, and 5.1%, respectively, for the EL.
Therefore, for both approaches, the cost of business cycle fluctuations constitutes
between a quarter to a third of the cost of all consumption fluctuations. Finally,
Panel B, Row 1 shows that the results for the two approaches remain quite similar
when the six size and book-to-market-equity sorted portfolios of Fama-french are
used to recover the I-SDF.

Table 4: Cumulative Cost of Total Consumption Fluctuations, Robustness Checks
All Fluctuations B. C. Fluctuations

1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr
Panel A: Market Portfolio

I-SDFET 2.07 6.13 14.68 17.32 17.31 .904 1.98 4.47 4.98 4.59
I-SDFAlt 1.83 4.92 10.87 12.75 12.70 .851 1.75 3.48 3.82 3.52
1890-2015 1.38 2.69 4.85 6.84 8.24 .931 1.39 2.08 2.54 2.69

Panel B: FF 6 Portfolios

I-SDFET 1.83 4.81 8.72 14.09 14.75 .691 1.43 2.73 4.01 3.83
I-SDFAlt 1.76 4.46 8.96 14.12 14.67 .764 1.61 3.02 4.20 4.00
1890-2015 - - - - - - - - - -

The table reports the (cumulative) cost of all aggregate consumption fluctuations (Columns 2-6) and

the cost of business cycle fluctuations in consumption (Columns 7-11), for 1-5 years. Consumption
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denotes the real per capita total personal consumption expenditure (includes durables, nondurables,

and services). The costs are calculated using the I-SDF extracted with the ET approach (Row 1), the

risk-neutral measure recovered by minimizing the distance from the CRRA model-implied risk-neutral

measure (Row 2), and the I-SDF extracted with the EL approach over the longer 1890-2015 sample (Row

3). Panel A presents results when the excess return on the market portfolio is the sole asset used to

recover the I-SDF. In Panel B, on the other hand, the I-SDF is estimated using the 6 Fama-French size

and book-to-market-equity sorted portfolios. The sample is annual covering the period 1929-2015.

Our second robustness check uses yet another definition of relative entropy.
Specifically, we recover the risk-neutral measure Q such that:
(30)

Q̂ = min
Q

∫
log

(
dQ
dQm

)
dQ =

∫
log

(
q(z)

qm(z)

)
q(z)dz s.t. 0 =

∫
Re(z)q(z)dz,

where dQm
dP = (∆c)−γ

E[(∆c)−γ]
. In other words, Qm is the risk neutral measure implied by

the power utility model with a constant CRRA. Thus, Equation (30) recovers the
risk neutral measure Q that is minimally distorted relative to the CRRA model
implied risk neutral measure Qm, while also successfully pricing the set of test as-
sets used in the estimation. Note that the main difference between Equation (30)
and the EL and ET estimators defined in Equations (10) and (27), respectively,
is that while the latter two minimize the relative entropy (or distance) between
the recovered measure and the physical measure, the former minimizes the dis-
tance between the recovered risk neutral measure and the measured implied by a
candidate model SDF.

The solution to Equation (30) is obtained as:

(31) q̂t =
eθ̂
′Re

t (∆ct)
−γ

1
T

∑T
t=1 e

θ̂′Re
t (∆ct)

−γ ∀t,

where θ̂ ∈ RN is the vector of Lagrange multipliers that solves the dual problem:

(32) θ̂ = arg min
θ

[
log

(
1

T

T∑
t=1

eθ̂
′Re

t (∆ct)
−γ

)]
.

We use the recovered risk neutral measure q̂t to calculate the cost of consump-
tion fluctuations. The results, reported in Row 2 of Panels A and B, for the
scenarios when the test assets consist of the market portfolio alone and the six
Fama-french portfolios, respectively, are very similar to those obtained with the
ET (Table 4, Row 1) and EL (Table 3, Row 1) approaches.

Third, we present the costs of fluctuations using the EL approach with data
going back as far as 1890. The excess return on the market is the sole test asset,
with the return on the S&P composite index used as a proxy for the market
return and the prime commercial paper rate as a proxy for the risk free rate. The
data are obtained from Robert Shiller’s website. The costs of all and business
cycle fluctuations in consumption, presented in Row 3 of Panel A, are smaller
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than those obtained using the baseline 1929-2015 sample (see Tables 2, 3 and
Rows 1-2 of Table 4). The smaller estimates of the cost obtained in this longer
data sample can be accounted for, at least partly, by the usage of the commercial
paper rate as a proxy for the risk free rate, thereby leading to an underestimation
of the magnitude of the equity premium puzzle in this sample. Specifically, the
average level of the equity premium is 7.9% in the baseline sample, more than
double the value of 3.1% in the longer 1890 onwards sample. Moreover, just as
with the baseline sample, the cost of business cycle fluctuations still accounts for a
substantial fraction (more than a third) of the cost of all consumption fluctuations
for all the horizons considered.10

Overall, our results suggest that the estimates of the cost of aggregate economic
fluctuations are robust to the measure of consumption expenditures, the set of test
assets used to recover the I-SDF, the choice of sample period, as well as the precise
definition of relative entropy. This lends further support to the quantitative
estimates in the paper.

VIII. Time-Varying Cost of Aggregate Fluctuations

Our analysis, so far, has focused on the expected cost of consumption fluctu-
ations, i.e. the average cost over all possible states. This is why the cost was
defined as the ratio of the expected (or, average) prices of a claim to a stabilized
consumption stream and a claim to the actual aggregate consumption stream
(see Equations (5) and (7)). In this section, we provide evidence that the cost of
fluctuations varies substantially over time. And, perhaps more importantly, the
precise nature of the time-variation helps shed some light on the reasons for the
substantial welfare benefits of eliminating not only all consumption uncertainty,
but also business cycle fluctuations in consumption that we estimate in Sections
V and VI. To our knowledge, this is the first attempt to recover the time-varying
cost of aggregate economic fluctuations, without taking a stance on investors’
preferences or the dynamics of the data generating process.

Subsection VIII.A describes an extension of the information-theoretic EL ap-
proach, namely the smoothed empirical likelihood (SEL) estimator of Kitamura,
Tripathi and Ahn (2004), that we use to recover the time-varying cost of fluctua-
tions. Subsection VIII.B presents simulation evidence on the performance of the
SEL estimator. Finally, Subsection VIII.C presents the estimated time series of
the cost of removing all consumption uncertainty over a one-period time horizon.

A. Smoothed Empirical Likelihood (SEL)

Following the notation in Section II, the time-t cost of all one-period consump-
tion fluctuations is defined as

(33)

Vt(Cstabt+1 )
Ct

Vt(Ct+1)
Ct

− 1 =

EPt
[
Mt+1

Cstabt+1

Ct
|Ft
]

EPt
[
Mt+1

Ct+1

Ct
|Ft
] − 1 =

EPt
[
Mt+1 (1 + µc) |Ft

]
EPt

[
Mt+1

Ct+1

Ct
|Ft
] − 1,

10Since the size and book-to-market-equity sorted portfolios are not available prior to the late 1920s,
we cannot recover the I-SDF using these portfolios over the 1890-2015 sample.
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where Ft = {Ft,Ft−1, . . .} denotes the investors’ information set at time t,

EPt
[
.|Ft

]
refers to the expectation with respect to the physical measure P con-

ditional on the investors’ time-t information set, and the second equality follows
from the definition of stabilized consumption as one from which all uncertainty
has been removed: Cstabt+1 = (1 + µc)Ct.

As in Section II, we assume that the pricing kernel M has a multiplicative
form, Mt+1 = (∆ct+1)−γ ψt+1. We then rely on an extension of our information-
theoretic methodology to estimate the ψ-component of the pricing kernel that
now satisfies the conditional (not just the unconditional) Euler equation restric-
tions for a chosen cross section of assets. Recall that our information-theoretic EL
approach in Section II recovers a pricing kernel that prices assets unconditionally,
i.e. satisfies the unconditional Euler equations producing zero unconditional pric-
ing errors. The extension of the methodology considered in this section recovers
an SDF that satisfies the more stringent conditional Euler equation restrictions,
thereby producing zero conditional pricing errors. The recovered SDF, therefore,
must also price assets unconditionally. Specifically, we use the smoothed empirical
likelihood (SEL) estimator of Kitamura, Tripathi and Ahn (2004). As described
below, the SEL estimator relies on the same principles as the EL estimator, but
incorporates additional constraints through conditional moment restrictions.

The absence of arbitrage opportunities implies the following conditional pricing
restrictions:

(34) EPt [Mt+1R
e
t+1|Ft

]
= EPt [(∆ct+1)−γ ψt+1R

e
t+1|Ft

]
= 0,

where the first equality follows from the assumed multiplicative decomposition of
the SDF. Under weak regularity conditions, we have

(35) EPt
[
(∆ct+1)−γ

ψt+1

EPt(ψt+1|Ft)
Re
t+1|Ft

]
= EFt [(∆ct+1)−γ Re

t+1|Ft
]

= 0,

where dFt
dPt = ψt+1

EPt (ψt+1|Ft)
is the Radon-Nikodym derivative of F with respect to P.

We assume that the time-t information set of the investors, Ft, can be summa-
rized by a finite vector of random variables, that we denote by Xt ∈ Rm. Suppose
that the historical realizations of consumption growth, excess returns, and the
conditioning variables are given by (∆ct, r

e
t , xt)

T
t=1,11 and that these realizations

characterize the (finite number of) possible states of the world. Let fi,j denote
the conditional probability (under the measure F) of observing the joint outcome
(∆cj , r

e
j , xj) at time t + 1, i.e. the probability of state j being realized at time

t+ 1, given that state i was realized at time t.

The SEL estimator of the transition matrix {fi,j ; i, j = 1, . . . , T} is such that it

11Throughout this section, uppercase letters are used to denote random variables and the correspond-
ing lowercase letters to particular realizations of these variables.
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belongs to the simplex:

∆ := ∪Ti=1∆i = ∪Ti=1

(fi,1, ..., fi,T ) :
T∑
j=1

fi,j = 1, fi,j ≥ 0


and that: ∀i ∈ {1, . . . , T}, ∀γ ∈ Θ,

(36)
(
f̂SELi,· (γ)

)
= arg max

(fi,·)∈∆i

T∑
j=1

ωi,j log(fi,j) s.t.
T∑
j=1

fi,j × (∆cj)
−γ rej = 0,

where fi,· denotes the T -dimensional vector (fi,1, ..., fi,T ), Θ is the set of all ad-
missible parameters γ, and ωi,j are non-negative weights used to smooth the
likelihood objective function. In the spirit of non-parametric estimators:

(37) ωi,j =

K
(
xi − xj
bT

)
T∑
t=1

K
(
xi − xt
bT

) ,

where K is a kernel function belonging to the class of second order product ker-
nels,12 and the bandwidth bT is a smoothing parameter.13

Note that the objective function in Equation (36) is simply a ‘smoothed’ log-
likelihood, with the constraints enforcing the conditional Euler equation restric-
tions in Equation (35). The weights ωi,j used to smooth the log-likelihood are
standard non-parametric kernel weights. The intuition behind the estimator may
be understood as follows. Note that we are interested in recovering fi,j , for
i, j = 1, 2, ..., T . For each value of the current state xi, the SEL estimator focuses
on a fixed neighbourhood around xi, where the neighbourhood is defined in terms
of the distance of other possible values of the state from the current state, i.e.
|xi−xj |, and not in terms of proximity in time. The estimator then assigns posi-
tive weights ωi,j only to those states that lie within the fixed neighbourhood of the
current state, with the exact values of the weights determined by the kernel func-
tion, the distance |xi − xj |, and the bandwidth parameter bT (see Equation 37).
The states that lie outside the fixed neighbourhood each receive a weight of zero.
Finally, the SEL approach determines the conditional probability of each state
with non-zero weight, ωi,j > 0, so as to maximize the smoothed log-likelihood of
the data, subject to the constraint that the estimated conditional distribution,{
f̂SELi,j ; j = 1, 2, ..., T

}
, satisfies the conditional Euler equation restrictions (see

Equation 36). The states with zero weight, ωi,j = 0, each receive a conditional
probability of zero.

12K should satisfy the following. For X = (X(1), X(2), ..., X(m)), let K =
∏m
i=1 k(X(i)). Here k : R→

R is a continuously differentiable p.d.f. with support [−1, 1]. k is symmetric about the origin, and for
some α ∈ (0, 1) is bounded away from zero on [−a, a].

13In theory, bT is a null sequence of positive numbers such that TbT →∞.
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The solution to Equation (36) is analytical and given by:

∀i, j ∈ {1, . . . , T},

(38) f̂SELi,j (γ) =
ωi,j

1 + (∆cj)
−γ λ̂i(γ)′ rej

,

where λ̂i(γ) ∈ Rn : i = {1, . . . , T} are the Lagrange multipliers associated with
the conditional Euler equation constraints, and solve the following unconstrained
problem:

(39) λ̂i(γ) = arg max
λi∈Rn

T∑
j=1

ωi,j log
[
1 + (∆cj)

−γ λ′i r
e
j

]
.

Equations (38) and (39) show that the SEL procedure delivers a (T ×T ) matrix

of probabilities
(
f̂SELi,j (γ)

)
for each value of the parameter γ. Each row i : i =

{1, 2, ..., T} contains the probabilities of transitioning to each of the T possible
states j : {j = 1, 2, ..., T} in the subsequent period, conditional on state i having
been realized in the current period. Therefore, the approach recovers the entire
conditional distribution of the data, under the measure F, that is consistent with
observed asset prices, i.e. that satisfies the conditional Euler equations. Moreover,
it does so without the need for any parametric functional-form assumptions on
the form of the distribution, i.e. on the form of the ψ-component of the SDF.
Rather, it approximates the conditional distribution, for each possible value of
the current state, as a multinomial on the observed data sample.

Note that the SEL estimator in Equation (36) can also be reformulated as:

(40)
(
f̂SELi,· (γ)

)
= arg min

(fi,·)∈∆i

T∑
j=1

log

(
ωi,j
fi,j

)
ωi,j s.t.

T∑
j=1

fi,j × (∆cj)
−γ rej = 0,

The objective function in Equation (40) is the KLIC divergence between the

measure Ft ≡ (ft,j)
T
j=1 that is consistent with asset prices, i.e. satisfies the con-

ditional Euler equations for the test assets, and the physical measure proxied

by Pt ≡ (ωt,j)
T
j=1.

ft,j
ωt,j

=
ψt,j

EPt (ψt,j |Ft)
is the Radon-Nikodym derivative of Ft

with respect to Pt. Suppose that the consumption growth component of the
pricing kernel, (∆c)−γ , is sufficient to price assets perfectly. Then the second
component of the pricing kernel ψt,j ≡ 1, ∀j = 1, 2, ..., T , and we have that
ft,j = ωt,j ,∀j = 1, 2, ..., T , the latter being the physical measure. However, if
the consumption growth component is not sufficient to price assets (as is the case
in reality), the estimated measure Ft is distorted relative to the physical measure
Pt. And, the SEL estimator searches for a measure Ft that is as close as possible,
in an information-theoretic sense, to the physical measure Pt. In other words, the
approach distorts the physical probabilities as little as possible in order to satisfy
the conditional Euler equation restrictions.

Using the SEL-estimated conditional distribution, the cost of one-period con-
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sumption fluctuations at each date (or state) t can be calculated as:
(41)
Vt(Cstabt+1 )

Ct
Vt(Ct+1)

Ct

−1 =
EFt

[
(∆ct+1)−γ (1 + µc) |Ft

]
EFt

[
(∆ct+1)−γ (∆ct+1) |Ft

]−1 =
(1 + µc)

∑T
j=1 f̂

SEL
t,j × (∆cj)

−γ∑T
j=1 f̂

SEL
t,j × (∆cj)

1−γ −1.

B. Performance of the SEL Estimator

Ghosh and Roussellet (2019) show, via simulation exercises, that the SEL ap-
proach is quite successful at recovering the conditional distribution of the data
that is consistent with asset prices, i.e. F in our notation. Specifically, they
consider a Bansal and Yaron (2004) long run risks economy. Thus, the following
conditional Euler equation holds in equilibrium for the excess return on the stock
market:

(42) EFt

(∆ct+1)
− θ
ρ Rθ−1

c,t+1︸ ︷︷ ︸
Mt+1

(Rm,t+1 −Rf,t+1) |Ft

 = 0,

where Rc,t denotes the return on total wealth, ρ the elasticity of intertemporal

substitution (EIS), and θ = 1−γ
1− 1

ρ

. The investors’ information set at time-t consists

of the two model-implied state variables: Ft =
{
νt, σ

2
t

}
, where νt denotes the

expected consumption growth rate and σ2
t its stochastic variance. Thus, the SDF

in this economy depends not only on consumption growth (as in the standard
time and state separable power utility model), but also on the return on total
wealth.

Ghosh and Roussellet (2019) set the preference parameters and the parameters
governing the dynamics of the consumption and dividend growth processes to the
authors’ calibrated values. They then simulate a time series, of the same length
T as the historical sample, of the two state variables and, therefore, consumption
growth and the return on total wealth to recover the time series of the SDF;
and they also simulate a time series of the market return and the risk free rate.
Using the simulated sample, they then recover the distribution F using the SEL
approach. Note that the implementation of the SEL approach requires specifica-
tion of two inputs – the test assets and the conditioning set. The authors’ use
the excess return on the market as the sole test asset and the two model-implied
state variables as constituting the conditioning set. Also, the SEL estimation
approach, like all other nonparametric procedures, requires specification of the
kernel function and the associated bandwidth parameter. All the authors’ results
are computed with the Epanechnikov kernel function and with the bandwidth
parameter bv,T = 3σ̂v, where σ̂v is the empirical standard deviation of the condi-
tioning variable v.14

14The results are robust to alternative choices of the kernel function and the smoothing parameter
within four standard deviations of the volatility of the conditioning variable.
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This leads to the following estimate of the conditional distribution F: ∀i ∈
{1, . . . , T},
(43)(

f̂SELi,·

)
= arg max

(fi,·)∈∆i

T∑
j=1

ωi,j log(fi,j) s.t.

T∑
j=1

fi,j × (∆cj)
− θ
ρ rθ−1

c,j rem,j = 0.

Note that, since the SDF is fully specified and not missing any components and
there are no beliefs distortions, the measure F in Equation (42) coincides with
the physical measure P. Ghosh and Roussellet (2019) show that Equation (43)

identifies the physical measure very well, i.e.
{
f̂SELi,j

}T
i,j=1

recovers the time series

of the conditional moments of the consumption growth rate with a high degree
of accuracy.

C. Empirical Results

Having shown that the SEL approach is quite successful at recovering the con-
ditional distribution of the data, we now proceed to use the method to estimate
the cost of aggregate consumption fluctuations in different states (or, times).

We first estimate the time series of the cost of one-period consumption fluc-
tuations in Equation (41) in our baseline sample covering the period 1930-2015.
Each year corresponds to a particular state and the SEL approach estimates the
welfare benefits of eliminating consumption uncertainty in the subsequent year.
In our implementation, we use nondurables and services consumption as the mea-
sure of the aggregate consumption expenditures, the excess return on the market
portfolio as the sole test asset, and an exponentially-weighted moving average of
lagged consumption growth as the conditioning variable.

Figure 5 presents the time series of the cost. Several features are immediately
evident from the figure. First, the cost is strongly time-varying – it varies from
0.15% to 8.0% a year, with an average of 0.75%. Second, the cost is strongly
countercyclical, rising sharply during recessionary episodes. The average of the
cost over a subsample that corresponds to recession years, where a year is classified
as a recession year if there is an NBER-designated recession in any of its quarters,
is 1.17%. The estimated costs are particularly high during the period of the Great
Depression 1930-1933, with a mean of 5.8% and the maximum as high as 8.0%.
As a contrast, the average cost over the subsample comprised of expansionary
episodes alone is less than half of that during recessions at 0.53%. The correlation
between the cost and a dummy variable that takes the value 1 in a given year if
there is an NBER-designated recession in any of its quarters and 0 otherwise is
36.1%. Finally, the estimates of the cost are large, given that they represent the
welfare benefits of eliminating consumption uncertainty for one period alone.

Note that the above results are obtained using a weighted average of past con-
sumption growth as the sole conditioning variable. This may potentially raise
concerns about the robustness of the findings. In unreported results, we repeat
the SEL estimation using additional conditioning variables, such as weighted av-
erages of past inflation, labor market variables, and the stock market return. The
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results remain largely unaltered, both qualitatively as well as quantitatively.15

Figure 5. Time-Varying Cost of One-Period Consumption Fluctuations, 1929-2015
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Notes: The figure plots the time series of the cost of one-period consumption uncertainty. The cost

is estimated using the SEL approach, using nondurables and services consumption as the measure of

the consumption expenditures, the excess return on the market portfolio is the sole test asset, and an

exponentially-weighted moving average of lagged consumption growth as the conditioning variable. The

sample is annual, covering the period 1930-2015.

Overall, our results suggest that the cost of consumption fluctuations is strongly
countercyclical and this offers, at least a partial, explanation of the high costs of
business cycle fluctuations that we estimate in Sections V and VI.

IX. What Drives the Results?

Our results suggest that the welfare benefits of eliminating all consumption
uncertainty as well business cycle fluctuations in consumption are substantially
bigger than those obtained with the CRRA kernel or with Lucas’ original specifica-
tion that imposes the additional assumption of lognormal consumption growth to
the CRRA kernel. Moreover, the cost of consumption uncertainty is strongly time-
varying and countercyclical, rising sharply during economic downturns. These re-
sults are robust to the precise measure of the aggregate consumption expenditure

15These results are available from the authors upon request.
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as well as the set of traded assets used to recover the I-SDF. A natural question
arises as to which features of the I-SDF drive these results. In this section, we
highlight two characteristics of the I-SDF that can help interpret our findings.

First, the I-SDF can successfully explain the historically observed average re-
turns on both the aggregate stock market index as well as returns on broad
diversified portfolios formed by sorting stocks on the basis of observable charac-
teristics such as size and the book-to-market-equity ratio, i.e. it accurately prices
assets. The CRRA kernel and Lucas’ specification, on the other hand, produce
large average pricing errors for these assets. Figure 6 plots the historical average
excess returns (y-axis) along with the average excess returns implied by a par-
ticular pricing kernel (x-axis), for the six size-and book-to-market-equity sorted
portfolios of Fama and French. For a candidate pricing kernel M , the average

excess return on portfolio i implied by the kernel is obtained as −Cov(Mt,Rei,t)
E(Mt)

.

The average excess returns on these portfolios implied by the I-SDF are denoted
by black circles, while those implied by the CRRA kernel are denoted by red
triangles.

Figure 6. Unconditional Pricing Errors, 1929-2015
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Notes: The figure plots the historical average excess returns (y-axis) along with the average excess

returns implied by candidate pricing kernels (x-axis), for the six size-and book-to-market-equity sorted

portfolios of Fama and French. The average excess returns on these portfolios implied by the I-SDF are

denoted by black circles, while those implied by the CRRA kernel are denoted by red triangles. The

sample is annual, covering the period 1930-2015.

The figure shows that the CRRA kernel grossly underestimates the average
excess returns. Specifically, the historical average excess return across the 6 port-
folios is 10.8%, whereas the CRRA kernel implies an average of only 2.0%. Also,
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the kernel fails to explain the substantial cross-sectional differences in average re-
turns across the portfolios. The historical average excess return varies from 7.3%
for the portfolio comprised of large market cap and growth stocks to more than
double at 15.4% for the portfolio of small market cap and value stocks. To the
contrary, the average excess returns implied by the CRRA kernel are 1.4% and
2.3%, respectively, for these two portfolios. The cross-sectional R2, defined as
the ratio of the cross-sectional variance of the average excess returns implied by
the CRRA model and the cross-sectional variance of the historical average excess
returns is only 1.8%. These shortcomings of the CRRA model have been widely
documented in the literature and our results confirm these findings.

The above observations suggest that the CRRA model misses important com-
ponents of the underlying sources of systematic risk. Since the welfare costs of
consumption fluctuations depend critically on people’s attitudes towards differ-
ent sources of risk, the estimates of this cost obtained using the CRRA ker-
nel should, at best, be interpreted with caution. Moreover, Ghosh, Julliard
and Taylor (2016b) evaluate the pricing performance of several other prominent
consumption-based models (that were intended to overcome the shortcomings of
the CRRA model) and show that they too perform quite poorly, producing large
pricing errors and low (and often negative) cross-sectional R2. This may partly
account for the wildly different costs of fluctuations obtained using these alterna-
tive model specifications. More importantly, it suggests that the concerns with
using the CRRA kernel to estimate the cost of aggregate fluctuations may carry
over to many of the more recent pricing kernel specifications as well.

Figure 6 shows that the I-SDF, on the other hand, accurately prices assets. This
result, per se, is hardly surprising because the I-SDF was constructed to price the
assets in-sample (see Equation (12)). This may potentially raise concerns regard-
ing over-fitting and spurious inference. In this regard, Ghosh, Julliard and Taylor
(2016a) show that the good pricing performance of the I-SDF also obtains out-
of-sample for broad cross-sections of assets, including domestic and international
equities, currencies, and commodities. The out-of-sample performance of the I-
SDF is superior to not only the single factor CAPM and the Consumption-CAPM,
but also to the more recent Fama-French 3 and 5 factor models.

Also, not only does the I-SDF price assets unconditionally delivering zero av-
erage pricing errors, it also produces zero conditional pricing errors. Figure 7
plots the time series of the conditional pricing errors for the excess stock market
return implied by the I-SDF (red line) and the CRRA kernel (green line). The
SEL approach, described in Section VIII, can be used to compute the conditional
pricing errors implied by the I-SDF. Specifically, the conditional pricing error for
the excess market return at each date t is given by

∑T
j=1 f̂

SEL
t,j × (∆cj)

−γ rem,j ,

where f̂SELt,j = ψt,jωt,j . Figure 7 shows that the pricing errors are identically equal
to zero at each time period, demonstrating the strength of the SEL method. The
conditional pricing error at date-t implied by the CRRA kernel, on the other hand
is given by

∑T
j=1 ω

SEL
t,j × (∆cj)

−γ rem,j . The figure shows that the pricing errors

are economically large in this case, varying from −7.0% to 6.3%. The CRRA ker-
nel fails to match even the historically observed average level of the stock market
return, producing a large unconditional pricing error. Not surprisingly, it also
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generates large conditional pricing errors for the market return.

Figure 7. Conditional Pricing Errors, 1929-2015
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Notes: The figure plots the time series of conditional pricing errors for the excess stock market return,

implied by the I-SDF (red line) and the CRRA kernel (green line). The I-SDF is extracted using the SEL

method, with nondurables and services consumption as the measure of the consumption expenditures,

the excess return on the market portfolio as the sole test asset, and an exponentially-weighted moving

average of past consumption growth as the conditioning variable. The sample is annual, covering the

period 1930-2015.

Overall, the I-SDF seems to more effectively capture the relevant sources of
priced risk and is, therefore, likely to provide more reliable estimates of the welfare
costs of aggregate fluctuations.

A second important feature of the I-SDF is that it has a strong business cy-
cle component. Figure 8 plots the time series of the I-SDF (red line) and the
CRRA kernel (black line). The more pronounced business cycle component of
the I-SDF relative to the CRRA kernel is immediately apparent. The I-SDF is
typically substantially higher than the CRRA kernel during recessionary episodes
and lower than the former during the expansionary phase of the business cycle.
This suggests that business cycle risk is an important source of priced risk, helping
interpret our finding that the cost of business cycle fluctuations in consumption
constitutes a substantial proportion of the cost of all consumption fluctuations.

Notes: The figure plots the time series of the I-SDF (red line) and the CRRA kernel (black line). The

I-SDF is extracted using the EL approach, with nondurables and services consumption as the measure of
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Figure 8. Time Series of the SDF, 1929-2015
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the consumption expenditures and the excess return on the market portfolio as the sole test asset. The

sample is annual, covering the period 1930-2015.

X. Conclusion

We propose a novel approach to measure the welfare costs of aggregate economic
fluctuations. Our methodology does not require specific assumptions regarding
either the preferences of consumers or the dynamics of the data generating pro-
cess. Instead, using data on consumption growth and returns on a chosen set
of assets, we rely on an information-theoretic (or relative entropy minimization)
approach to estimate the pricing kernel. We refer to the resulting kernel as the
information kernel or the I-SDF because of the information-theoretic approach
used in its recovery. Unlike the CRRA kernel or Lucas’ original specification that
imposes the additional assumption of lognormality of consumption growth on the
CRRA model, the I-SDF accurately prices a broad set of assets, thereby success-
fully capturing the relevant sources of systematic risk in the economy. Using the
I-SDF, we show that the welfare benefits from the elimination of all consumption
uncertainty are very large – typically, an order of magnitude bigger than those im-
plied by Lucas’ specification. Moreover, contrary to existing literature, the costs
of business cycle fluctuations in consumption constitute a substantial fraction –
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typically between one-fourth to one-third – of the costs of all consumption uncer-
tainty. These results are robust to the precise measure of consumption used, the
cross-section of assets used to extract the I-SDF, and the choice of sample period.
Finally, using an extension of our methodology, we present evidence that the wel-
fare benefits of aggregate consumption fluctuations are strongly time-varying and
countercyclical.

The difference in the results from earlier literature can be attributed, at least in
part, to two factors. First, the I-SDF correctly prices broad cross sections of as-
sets, and thereby identifies the relevant sources of priced risk more effectively than
existing approaches. Second, the I-SDF has a strong business cycle component,
suggesting that business cycle risk is an important source of priced risk.
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