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Abstract: We prove that local projections and Vector Autoregressions (VARs)
estimate the same impulse response functions. This nonparametric result only
requires the lag structures in the two specifications to be unrestricted. We dis-
cuss several implications: (i) Local projection and VAR estimators should not
be thought of as conceptually separate procedures; instead, they belong to a
spectrum of dimension reduction techniques that share the same estimand but
have different finite-sample bias-variance properties. (ii) VAR-based structural
estimation can equivalently be performed using local projections, and vice versa.
(iii) Valid structural estimation with an instrument (also known as a proxy vari-
able) can be carried out by ordering the instrument first in a recursive VAR, even
if the shock of interest is noninvertible. (iv) Linear local projections are not more
robust to non-linearities than linear VARs.

Keywords: external instrument, impulse response function, local projection, proxy variable,
structural vector autoregression. JEL codes: C32, C36.

1 Introduction

Modern dynamic macroeconomics studies the propagation of structural shocks (Frisch, 1933;
Ramey, 2016). Central to this impulse-propagation paradigm are impulse responses func-
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tions – the dynamic response of a macro aggregate to a structural shock. Following Sims
(1980), Structural Vector Autoregression (SVAR) analysis remains the most popular empir-
ical approach to impulse response estimation. Over the past decade, however, starting with
Jordà (2005), local projections (LPs) have become an increasingly widespread alternative
econometric approach. Unfortunately, so far there exists little guidance as to which method
is preferable in empirical practice. Applied to the same estimation problem, LP and VAR-
based approaches often give very different answers (Ramey, 2016), and existing simulation
evidence on their relative merits is conflicting (Meier, 2005; Kilian & Kim, 2011; Brugnolini,
2018; Nakamura & Steinsson, 2018; Choi & Chudik, 2019).

The central result of this paper is that linear local projections and VARs in fact estimate
the exact same impulse responses in population. Specifically, any LP impulse response func-
tion can be obtained through an appropriately ordered recursive VAR, and any (possibly
non-recursive) VAR impulse response function can be obtained through a LP with appropri-
ate control variables. This nonparametric result only requires the lag structures in the two
specifications to be unrestricted. Intuitively, a VAR model with sufficiently large lag length
captures all covariance properties of the data. Hence, iterated VAR(∞) forecasts coincide
with direct LP forecasts. Since impulse responses are just forecasts, LP and VAR impulse
response estimands coincide in population. Furthermore, we prove that if only a fixed num-
ber p of lags are included in the LP and VAR, then the two impulse response estimands still
agree out to horizon p (but not further), again without imposing any parametric assumptions
on the data generating process. The equivalence also holds in sample: LP and VAR impulse
response estimators coincide asymptotically if the lag lengths in the two specifications tend
to infinity with the sample size. In summary, if VAR and LP results differ in population or
in sample, it is due to extraneous restrictions on the lag structure.

The nonparametric equivalence of VAR and LP estimands has several implications for
structural estimation in applied macroeconometrics.

First, LP and VAR estimators are not conceptually different methods; instead, they
are best viewed as sharing the same estimand but lying on opposite ends of a spectrum of
finite-sample bias-variance choices for linear projection. Standard LPs effectively provide no
dimensionality reduction, while conventional low-order VARs extrapolate shock propagation
from the first few autocorrelations of the data. The relative mean-square error of the two
methods – and of intermediate dimension reduction techniques, such as shrinkage – neces-
sarily depends on assumptions about the data generating process (DGP). VAR estimators
are optimal if the true DGP is exactly a finite-order VAR, but this is rarely the case in
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theory or practice. In general, no single estimation method dominates, and in principle
neither low-dimensional VARs nor low-dimensional LPs should be treated as having special
status. The formal equivalence of LP and VAR estimation to direct and iterated forecasting,
respectively, means that extant results on mean-square error rankings from the forecasting
literature are also applicable to structural macroeconometrics (Schorfheide, 2005; Marcellino
et al., 2006).

Second, structural estimation with VARs can equally well be carried out using LPs, and
vice versa. Structural identification – which is a population concept – is logically distinct
from the choice of finite-sample dimension reduction technique. We give several examples
of classical “SVAR” identification schemes that are easily implemented using local projec-
tion techniques, including recursive, long-run, and sign identification. Ultimately, LP-based
structural estimation can succeed if and only if SVAR estimation can succeed.

Third, valid structural estimation with an instrument (IV, also known as a proxy variable)
can be carried out by ordering the IV first in a recursive VAR à la Ramey (2011). This is
because the LP-IV estimand of Stock & Watson (2018) can equivalently be obtained from a
recursive (i.e., Cholesky) VAR that contains the IV. Importantly, the “internal instruments”
strategy of ordering the IV first in a VAR yields valid impulse response estimates even if
the shock of interest is noninvertible, unlike the well-known “external instruments” SVAR-
IV approach (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013). In particular,
this result goes through even if the IV is contaminated with measurement error that is
unrelated to the shock of interest. In contemporaneous work, Noh (2018) derives a closely
related result; our formulation offers additional insights by tying the result to the general
equivalence between LPs and VARs.

Fourth, linear local projections are exactly as “robust to non-linearities” in the DGP as
VARs. We show that their common estimand may be formally interpreted as a best linear
approximation to the underlying, perhaps non-linear, data generating process.

While the existing literature has pointed out connections between LPs and VARs, our
contribution is to formally establish a nonparametric equivalence result and derive impli-
cations for estimation efficiency and structural identification. Jordà (2005) and Kilian &
Lütkepohl (2017, Ch. 12.8) show that, under the assumption of a finite-order VAR model,
VAR impulse responses can be estimated consistently through LPs. In this context, Kilian
& Lütkepohl also discuss the relative efficiency of the two estimation methods and mention
the literature on direct versus iterated forecasts. In contrast, our equivalence result is non-
parametric, and we further demonstrate how structural VAR orderings map into particular
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choices of LP control variables, and vice versa. Moreover, to our knowledge, our results on
long-run/sign identification, LP-IV, and best linear approximations have no obvious parallels
in the preceding literature.1

Before presenting our results, we need to mention a few caveats. First, we are primar-
ily interested in identification of impulse responses to a single shock, rather than system
identification. Second, we focus on impulse responses, not variance decompositions or his-
torical decompositions (see Plagborg-Møller & Wolf, 2019, for identification of these objects).
Third, we only explore linear estimators. The equivalence of VAR and LP estimators does
not apply if we augment the regressions with nonlinear terms, or if we are directly interested
in non-linearities stemming from stochastic volatility, say. Fourth, we restrict attention to
stationary time series and do not consider issues related to near-unit roots or cointegration.
Fifth, we only discuss the population properties of IV estimators and thus do not consider
weak IV issues. Finally, we do not comment on the ease of calculating standard errors for
different estimation methods, or on generalizations of these methods outside the aggregate
time series context.2

Outline. Section 2 presents our core result on the population equivalence of local projec-
tions and VARs. Finite-sample estimation is discussed in Section 3, while Section 4 traces out
implications for structural estimation. We illustrate our equivalence results with a practical
application to IV-based identification of monetary policy shocks in Section 5. Section 6 con-
cludes with several recommendations for empirical practice. Some proofs and supplementary
results are relegated to Appendix A.

2 Equivalence between Local Projections and VARs

This section presents our core result: Local projections and VARs estimate the same impulse
response functions in population. First we establish that local projections are equivalent
with recursively identified VARs when the lag structure is unrestricted. Then we extend the

1Kilian & Lütkepohl (2017, Ch. 12.8) present alternative arguments for why it is a mistake to assert that
finite-order LPs are generally more “robust to model misspecification” than finite-order VAR estimators.
They do not appeal to the nonparametric equivalence of the LP and VAR estimands, however.

2As is well known, low-order VAR and LP methods present somewhat different issues from the point of
view of inference. Frequentist and Bayesian inference in VARs is straight-forward (under the assumption that
the VAR bias is negligible). LP estimation requires Heteroskedasticity and Autocorrelation Robust inference,
and the lack of an explicit low-dimensional generating model makes Bayesian inference challenging. On the
other hand, LP inference can be easily applied to panel data settings using off-the-shelf software.
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argument to (i) non-recursive identification and (ii) finite lag orders. Finally, we illustrate
the results graphically. Our analysis in this section does not assume any specific underlying
structural model; we merely exploit properties of linear projections of stationary time series.

2.1 Main result

Suppose the researcher observes data wt = (r′t, xt, yt, q′t)′, where rt and qt are, respectively,
nr × 1 and nq × 1 vectors of time series, while xt and yt are scalar time series. We are
interested in the dynamic response of yt after an impulse in xt. The vector time series rt and
qt (which may each be empty) will serve as control variables. The distinction between them
relates to whether they appear as contemporaneous controls or not, as will become clear in
equations (1) and (2) below.

For now, we only make the following nonparametric assumption.

Assumption 1. The data {wt} are covariance stationary and purely non-deterministic, with
an everywhere nonsingular spectral density matrix. To simplify notation, we proceed as if
{wt} were a (strictly stationary) jointly Gaussian vector time series.

In particular, we assume nothing about the underlying causal structure of the economy,
as this section is concerned solely with properties of linear projections. The Gaussianity
assumption is made purely for notational simplicity, as this allows us to write conditional
expectations instead of linear projections. If we drop the Gaussianity assumption, all calcu-
lations below hold with projections in place of conditional expectations.3

We will show that, in population, the following two approaches estimate the same impulse
response function of yt with respect to an innovation in xt.

1. Local projection. Consider for each h = 0, 1, 2, . . . the linear projection

yt+h = µh + βhxt + γ′hrt +
∞∑
`=1

δ′h,`wt−` + ξh,t, (1)

where ξh,t is the projection residual, and µh, βh, γh, δh,1, δh,2, . . . the projection coefficients.
The LP impulse response function of yt with respect to xt is given by {βh}h≥0. Notice
that the projection (1) controls for the contemporaneous value of rt but not of qt.

3Throughout we write any linear projection on the span of infinitely many variables as an infinite sum.
This is justified under Assumption 1 if the Wold representation has absolutely summable coefficients, since
we can then invert it to obtain a VAR(∞) representation.
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2. VAR. Consider the multivariate linear “VAR(∞)” projection

wt = c+
∞∑
`=1

A`wt−` + ut, (2)

where ut ≡ wt−E(wt | {wτ}−∞<τ<t) is the projection residual, and c, A1, A2, . . . the pro-
jection coefficients. Let Σu ≡ E(utu′t), and define the Cholesky decomposition Σu = BB′,
where B is lower triangular with positive diagonal entries. Consider the corresponding
recursive SVAR representation

A(L)wt = c+Bηt,

where A(L) ≡ I −∑∞`=1A`L
` and ηt ≡ B−1ut. Notice that rt is ordered first in the VAR,

while qt is ordered last. Define the lag polynomial

∞∑
`=0

C`L
` = C(L) ≡ A(L)−1.

The VAR impulse response function of yt with respect to an innovation in xt is given by
{θh}h≥0, where

θh ≡ Cnr+2,•,hB•,nr+1,

since xt and yt are the (nr + 1)-th and (nr + 2)-th elements in wt. The notation Ci,•,h,
say, means the i-th row of matrix Ch, while B•,j is the j-th column of matrix B.

Note that our definitions of the LP and VAR estimands include infinitely many lags of wt in
the relevant projections. We consider the case of finitely many lags in Section 2.3, while all
finite-sample considerations are relegated to Section 3.

Although LP and VAR approaches are often viewed as conceptually distinct in the liter-
ature, they in fact estimate the same population impulse response function.

Proposition 1. Under Assumption 1, the LP and VAR impulse response functions are
equal, up to a constant of proportionality: θh =

√
E(x̃2

t ) × βh for all h = 0, 1, 2, . . . , where
x̃t ≡ xt − E(xt | rt, {wτ}−∞<τ<t).

That is, any LP impulse response function can equivalently be obtained as an appropriately
ordered recursive VAR impulse response function. Conversely, any recursive VAR impulse
response function can be obtained through a LP with appropriate control variables. We
comment on non-recursive identification schemes below. The constant of proportionality
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in the proposition depends on neither the impulse response horizon h nor on the response
variable yt. The reason for the presence of this constant of proportionality is that the
implicit LP innovation x̃t, after controlling for the other right-hand side variables, does not
have variance 1. If we scale the innovation x̃t to have variance 1, or if we consider relative
impulse responses θh/θ0 (as further discussed below), the LP and VAR impulse response
functions coincide.

The intuition behind the result is that a VAR(p) model with p→∞ is sufficiently flexible
that it perfectly captures all covariance properties of the data. Thus, iterated forecasts based
on the VAR coincide perfectly with direct forecasts E[wt+h | wt, wt−1, . . . ].

Proof. The proof of the proposition relies only on least-squares projection algebra. First
consider the LP estimand. By the Frisch-Waugh theorem, we have that

βh = Cov(yt+h, x̃t)
E(x̃2

t )
. (3)

For the VAR estimand, note that C(L) = A(L)−1 collects the coefficient matrices in the
Wold decomposition

wt = χ+ C(L)ut = χ+
∞∑
`=0

C`Bηt, χ ≡ C(1)c.

As a result, the VAR impulse responses equal

θh = Cnr+2,•,hB•,nr+1 = Cov(yt+h, ηx,t), (4)

where we partition ηt = (η′r,t, ηx,t, ηy,t, η′q,t)′ the same way as wt = (r′t, xt, yt, q′t)′. By ut = Bηt

and the properties of the Cholesky decomposition, we have4

ηx,t = 1√
E(ũ2

x,t)
× ũx,t, (5)

4B is lower triangular, so the (nr + 1)-th equation in the system Bηt = ut is Bnr+1,1:nrηr,t +
Bnr+1,nr+1ηx,t = ux,t, with obvious notation. Since ηx,t and ηr,t are uncorrelated, we find Bnr+1,nr+1ηx,t =
ux,t − E(ux,t | ηr,t) = ux,t − E(ux,t | ur,t) = ũx,t. Expression (5) then follows from E(η2

x,t) = 1.
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where we partition ut = (u′r,t, ux,t, uy,t, u′q,t)′ and define5

ũx,t ≡ ux,t − E(ux,t | ur,t) = x̃t. (6)

From (4), (5), and (6) we conclude that

θh = Cov(yt+h, x̃t)√
E(x̃2

t )
,

and the proposition now follows by comparing with (3).

In conclusion, LPs and VARs offer two equivalent ways of arriving at the same population
parameter (3), up to a scale factor that does not depend on the horizon h. Our argument
was nonparametric and did not assume the validity of a specific structural model.

2.2 Extension: Non-recursive specifications

Our equivalence result extends straightforwardly to the case of non-recursively identified
VARs. Above we restricted attention to recursive identification schemes, as the VAR directly
contains a measure of the impulse xt. In a generic structural VAR identification scheme, the
impulse is some – not necessarily recursive – rotation of reduced-form forecasting residuals.
Thus, let us continue to consider the VAR (2), but now we shall study the propagation of
some rotation of the reduced-form forecasting residuals,

η̄t ≡ b′ut. (7)

where b is a vector of the same dimension as wt. Under Assumption 1, we can follow the
same steps as in Section 2.1 to establish that the VAR-implied impulse response at horizon
h of yt with respect to the innovation η̄t equals – up to scale – the coefficient β̄h of the linear
projection

yt+h = µ̄h + β̄h(b′wt) +
∞∑
`=1

δ̄′h,`wt−` + ξ̄h,t, (8)

where the coefficients are least-squares projection coefficients and the last term is the pro-
jection residual. Thus, any recursive or non-recursive SVAR(∞) identification procedure is

5Observe that ux,t − x̃t = E(xt | rt, {wτ}−∞<τ<t)− E(xt | {wτ}−∞<τ<t) = E(ux,t | rt, {wτ}−∞<τ<t) =
E(ux,t | ur,t, {wτ}−∞<τ<t) = E(ux,t | ur,t).
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equivalent with a local projection (8) on a particular linear combination b′wt of the variables
in the VAR (and their lags). For recursive orderings, the equivalence takes the particularly
simple form in Section 2.1.

2.3 Extension: Finite lag length

Whereas our main equivalence result in Section 2.1 relied on infinite lag polynomials, we now
prove an equivalence result that holds when only finitely many lags are used. Specifically,
when p lags of the data are included in the VAR and as controls in the LP, the impulse
response estimands for the two methods agree out to horizon p, but generally not at higher
horizons. Importantly, this result is still entirely nonparametric, in the sense that we do not
impose that the true DGP is a finite-order VAR.

First, we define the finite-order LP and VAR estimands. We continue to impose the
nonparametric Assumption 1. Consider any lag length p and impulse response horizon h.

1. Local projection. The local projection impulse response estimand βh(p) is defined
as the coefficient on xt in a projection as in (1), except that the infinite sum is truncated
at lag p. Again, we interpret all coefficients and residuals as resulting from a least-
squares linear projection.

2. VAR. Consider a linear projection of the data vector wt onto p of its lags (and a
constant), i.e., the projection (2) except with the infinite sum truncated at lag p. Let
A`(p), ` = 1, 2, . . . , p, and Σu(p) denote the corresponding projection coefficients and
residual variance. Define A(L; p) ≡ I −∑p

`=1A`(p) and the Cholesky decomposition
Σu(p) = B(p)B(p)′. Define also the inverse lag polynomial ∑∞`=0C`(p)L` = C(L; p) ≡
A(L; p)−1 consisting of the reduced-form impulse responses implied by A(L; p). Then
the VAR impulse respond estimand at horizon h is defined as

θh(p) ≡ Cnr+2,•,h(p)B•,nr+1(p),

cf. the definition in Section 2.1 with p =∞.

Note that the VAR(p) model used to define the VAR estimand above is “misspecified”, in
the sense that the reduced-form residuals from the projection of wt on its first p lags are not
white noise in general.

We now state the equivalence result for finite p. The statement of the result is a simple
generalization of Proposition 1, which can be thought of as the case p =∞.
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Proposition 2. Impose Assumption 1. Define x̃t(`) ≡ xt − E(xt | rt, {wτ}t−`≤τ<t) for all
` = 0, 1, 2, . . . . Let the nonnegative integers h, p satisfy h ≤ p. If x̃t(p) = x̃t(p − h), then
θh(p) =

√
E(x̃t(p)2)× βh(p).

Proof. Please see Appendix A.1.

Thus, under the conditions of the proposition, the LP and VAR impulse responses agree
at all horizons h ≤ p, although generally not at horizons h > p. This finding would not
be surprising if the true DGP were assumed to be a finite-order VAR (as in Jordà, 2005,
and Kilian & Lütkepohl, 2017, Ch. 12.8), but we allow for completely general covariance
stationary DGPs. The reason why the result still goes through is that a VAR(p) obtained
through least-squares projections perfectly captures the autocovariances of the data out to
lag p (but not further), and these are precisely what determine the LP estimand. Baek
& Lee (2019) prove a similar result for the related but distinct setting of single-equation
Autoregressive Distributed Lag models with a white noise exogenous regressor.

Proposition 2 assumes x̃t(p) = x̃t(p − h) to obtain an exact result, but the conclusion
is likely to hold qualitatively under more general conditions. If xt is a direct measure of
a “shock” and thus uncorrelated with all past data, then x̃t(`) = xt for all ` ≥ 0, so the
conclusion of the proposition holds exactly. More generally, the LP estimand projects yt+h
onto x̃t(p) (and controls); thus, the projection depends on the first p+ h autocovariances of
the data. The estimated VAR(p) generally does not precisely capture the autocovariances
of the data at lags p+ 1, . . . , p+ h, and so the LP and VAR potentially project on different
objects. However, at short horizons h� p, it will usually be the case in empirically relevant
DGPs that x̃t(p) ≈ x̃t(p − h), since it is typically only the first few lags of the data that is
useful for forecasting xt. In this case, the conclusion of Proposition 2 will hold approximately.
We provide an illustration in Section 2.4.

In conclusion, even if we use “too short” a lag length p, the LP and VAR impulse response
estimands only disagree at horizons longer than p. This is a comforting fact in applications
where the main questions of interest revolve around short-horizon impulse responses.

2.4 Graphical illustration

We finish the section by illustrating graphically the previous theoretical results. We do so
in the context of a particular data generating process: the structural macro model of Smets
& Wouters (2007). We abstract from sampling uncertainty and throughout assume that the
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Illustration: Population equivalence of VAR and LP estimands
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Figure 1: LP and VAR impulse response estimands in the structural model of Smets & Wouters
(2007). Left panel: response of output to a government spending innovation. Right panel: response
of output to an interest rate innovation. The horizontal line marks the horizon p after which the
finite-lag-length LP(p) and VAR(p) estimands diverge.

econometrician actually observes an infinite amount of data.6 Since this section is merely
designed to illustrate the properties of different projections, we do not comment on the
relation of the projection estimands to true structural model-implied impulse responses. We
formally discuss structural identification in Section 4.

The left panel of Figure 1 shows LP and VAR impulse response estimands of the response
of output to a government spending innovation. We assume the model’s government spending
innovation is directly observed by the econometrician, who additionally controls for lags of
output and government spending. This experiment is therefore similar in spirit to that of
Ramey (2011). As ensured by Proposition 1, the LP(∞) and VAR(∞) estimands – i.e., with
infinitely many lags as controls – agree at all horizons. Since by assumption the “impulse”
variable xt is a direct measure of the government spending innovation, we have x̃t(`) = xt

for all ` ≥ 0. Thus, any LP(p) estimand for finite p also agrees with the LP(∞) limit at all
horizons. Finally, we observe that the impulse responses implied by a VAR(4) exactly agree

6Our implementation of the Smets-Wouters model is based on Dynare replication code kindly provided
by Johannes Pfeifer. The code is available at https://sites.google.com/site/pfeiferecon/dynare. To
approximate the VAR(∞) representation of the DGP, we truncate the model-implied vector moving average
representation at a large horizon (H = 350), and then invert.
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with the true population projections up until horizon h = 4, as predicted by Proposition 2.
The right panel of Figure 1 shows LP and VAR impulse response estimands for the re-

sponse of output to an innovation in the nominal interest rate. Here the model’s innovation
is not directly observed by the econometrician, only the interest rate. The LP specifications
control for the contemporaneous value of output and inflation as well as lags of output, infla-
tion, and the nominal interest rate; as discussed, this set of control variables is equivalent to
ordering the interest rate last in the VAR. Thus, the experiment emulates the familiar mon-
etary policy shock identification analysis of Christiano et al. (2005), although we, at least for
the purposes of this section, interpret the projections purely in a reduced-form way. Again,
the LP(∞) and VAR(∞) estimands agree at all horizons. Now, however, the “impulse” x̃t(p)
upon which the different methods project is different. Hence, LP(p) and VAR(p) estimands
differ from each other, as well as from the population limit LP(∞)/VAR(∞) estimands. For-
mally, Proposition 2 only assures that the estimated impact impulse responses of LP(p) and
VAR(p) agree exactly. Nevertheless, and consistent with the intuition offered in Section 2.3,
all impulse response estimands are nearly identical until the truncation horizon p = 4.

3 Efficient estimation of impulse responses

This section discusses our equivalence result in the context of finite-sample estimation of
impulse responses. We first provide a sample analogue of our population equivalence result
when the lag length is large. Then we discuss the bias-variance trade-off associated with
estimation of impulse response functions.

3.1 Sample equivalence

In addition to being identical conceptually and in population, we show in Appendix A.2 that
local projection and VAR impulse response estimators are nearly identical in sample when
large lag lengths are used in the regression specifications. Formally, the sample analogue of
our result in Section 2 states that the least-squares estimators β̂h(p) and θ̂h(p) of the LP
and VAR specifications (1)–(2) are likely to be nearly identical (up to scale) at the fixed
horizon h, as long as we include a large number p of lags of the data on the right-hand side
of the local projection and in the VAR. This result requires certain standard nonparametric
regularity conditions, with details also relegated to Appendix A.2.
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3.2 Bias-variance trade-off

Empirically relevant short sample sizes force researchers to economize on the number of
lags, and the relative accuracy of LP and VAR estimators with a small/moderate number of
lags invariably depends on the underlying data generating process (DGP). This is perfectly
analogous to the choice between “direct” and “iterated” predictions in multi-step forecasting
(Marcellino et al., 2006). Schorfheide (2005) proves that the mean-square error ranking of LP
(i.e., direct) and VAR (i.e., iterated) forecasts depends on how large in magnitude the partial
autocorrelations of the DGP are at lags longer than the lag length used for estimation.7

Hence, although Meier (2005), Kilian & Kim (2011), and Choi & Chudik (2019) exhibit
simulation evidence that VAR estimators (or other iterated estimators) outperform the LP
estimator, this conclusion must necessarily depend on the choice of DGP. Indeed, Brugnolini
(2018) and Nakamura & Steinsson (2018) exhibit DGPs where the LP estimator instead
outperforms VARs.

More generally, effective finite-sample estimation of impulse responses involves an un-
avoidable bias-variance trade-off, and many dimension reduction or penalization approaches
may be sensible depending on the application. Low-order VARs resolve the bias-variance
trade-off by dimension reduction, effectively extrapolating longer-horizon impulse responses
from the first few autocorrelations of the data. Bayesian VARs reduce effective dimensional-
ity by imposing priors on longer-lag coefficients, e.g., through a Minnesota prior (Giannone
et al., 2015); model averaging across restricted and unrestricted VARs has similar effects
(Hansen, 2016). Dimension reduction can also be achieved through penalized local projection
(Plagborg-Møller, 2016, Ch. 3; Barnichon & Brownlees, 2018) or by shrinking unrestricted
local projections towards low-order VAR estimates (Miranda-Agrippino & Ricco, 2018b). Al-
ternatively, impulse response estimation could be based on plugging a shrinkage/regularized
autocovariance function estimate into the explicit formula (3) for the LP/VAR estimand.

We believe that the different estimation methods in the literature are best viewed as
sharing the same large-sample estimand but lying along a spectrum of small-sample bias-
variance choices. Low-order VAR(p) models only have a conceptually special status insofar
as we think the finite-p assumption is literally true, which is typically not the case. In
general, the relative accuracy of the methods depends on smoothness/sparsity properties of
the autocovariance function of the data. From the point of view of point estimation, no
single method is likely to dominate for all empirically relevant data generating processes.

7See also Chevillon (2007), McElroy (2015), and references therein.
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4 Structural identification

We now argue that our result on the equivalence of LP and VAR impulse response functions
has implications for structural identification. We have seen that LP and VAR methods only
differ to the extent that they represent different approaches to finite-sample dimensionality
reduction. The problem of structural identification is a population concept and is thus logi-
cally distinct from that of dimensionality reduction. In this section we apply our equivalence
result to popular SVAR and local projection identification schemes – including short-run re-
strictions, long-run restrictions, sign restrictions, and external instruments – and we discuss
how to think about non-linear models.

4.1 Structural model

Whereas our previous analysis did not impose any particular structural model, we now
impose a linear but otherwise general semiparametric Structural Vector Moving Average
(SVMA) model. This model does not restrict the linear transmission mechanism of shocks
to observed variables (we address non-linear models in Section 4.4). SVMA models have
been analyzed by Stock & Watson (2018), Plagborg-Møller & Wolf (2019), and many others.

Assumption 2. The data {wt} are driven by an nε-dimensional vector εt = (ε1,t, . . . , εnε,t)′

of exogenous structural shocks,

wt = µ+ Θ(L)εt, Θ(L) ≡ ∑∞`=0 Θ`L
`, (9)

where µ ∈ Rnw×1, Θ` ∈ Rnw×nε, and L is the lag operator. {Θ`}` is assumed to be absolutely
summable, and Θ(x) has full row rank for all complex scalars x on the unit circle. For
notational simplicity, we further assume normality of the shocks:

εt
i.i.d.∼ N(0, Inε). (10)

Under these assumptions wt is a nonsingular, strictly stationary jointly Gaussian time series,
consistent with Assumption 1 in Section 2. The SVMA model is more general than assuming
a (stationary) SVAR model or any particular discrete-time linearized DSGE model. The (i, j)
element Θi,j,` of the nw × nε moving average coefficient matrix Θ` is the impulse response of
variable i to shock j at horizon `.

The researcher is interested in the propagation of the structural shock ε1,t to the observed

14



macro aggregate yt. Since yt is the (nr + 2)-th element in wt, the parameters of interest are
Θnr+2,1,h, h = 0, 1, 2, . . . . We will also consider relative impulse responses Θnr+2,1,h/Θnr+1,1,0.
This may be interpreted as the response in yt+h caused by a shock ε1,t of a magnitude that
raises xt by one unit on impact. Such relative impulse responses are frequently reported in
applied work.

4.2 Structural identification and estimation

In this section we review the class of assumptions guaranteeing correct causal identification,
with the goal of illustrating how LP methods are as applicable as VAR methods when
implementing common identification schemes. Our main result in Section 2.1 implies that
LP-based causal estimation can succeed if and only if SVAR-based estimation can succeed,
as we now demonstrate.

Identification under invertibility. Standard SVAR analysis assumes (partial) in-
vertibility – that is, the ability to recover the structural shock of interest, ε1,t, as a function
of only current and past macro aggregates:

ε1,t ∈ span ({wτ}−∞<τ≤t) . (11)

A given SVAR identification scheme then identifies as the candidate structural shock a
particular linear combination of the Wold forecasting errors:

ε̃1,t ≡ b′ut, (12)

where the chosen identification scheme gives the vector b as a function of the reduced-form
VAR parameters (A(L),Σu), or equivalently the Wold decomposition parameters (C(L),Σu).
Under invertibility, there must exist a vector b such that ε̃1,t = ε1,t, so SVAR identification
can in principle succeed (Fernández-Villaverde et al., 2007; Wolf, 2018).

We now illustrate that common SVAR identification schemes are equally as simple to
implement using LP methods. We first consider a standard recursive scheme covered by our
benchmark analysis in Section 2.1, and then two more sophisticated approaches requiring
the general equivalence result of Section 2.2.

Example 1 (Recursive identification). Christiano et al. (2005) identify monetary policy
shocks through a recursive ordering, with the federal funds rate ordered after output, con-
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sumption, investment, wages, productivity, and a price deflator, and before profits and money
growth. In the notation of Section 2.1, this ordering corresponds to the federal funds rate as
the impulse variable xt, all aggregates ordered before the federal funds rate as the controls
rt, and all other variables in the vector qt. Under these definitions, the estimand of the
local projection (2) is exactly identical to the SVAR estimand of Christiano et al. (2005). In
finite samples, the mean-square error ranking of finite-order VAR estimators and finite-order
LP estimators (or other equally plausible dimension reduction techniques) is ambiguous, as
discussed in Section 3.

Example 2 (Long-run identification). Blanchard & Quah (1989) identify the effects of
demand and supply shocks using long-run restrictions in a bivariate system. Let gdpt and
unr t denote log real GDP (in levels) and the unemployment rate, respectively. Then ∆gdpt ≡
gdpt − gdpt−1 is log GDP growth. Assume wt ≡ (∆gdpt, unr t)′ follows the SVMA model in
Assumption 2 with nε = 2 shocks, where the first shock is a supply shock and the second
shock a demand shock. Following Blanchard & Quah, assume that both shocks are invertible,
cf. (11), and that the long-run effect of the demand shock on the level of output is zero, i.e.,∑∞
`=0 Θ1,2,` = 0. Given a large horizon H, consider the linear projection

gdpt+H − gdpt−1 = µ̃H +∑∞
`=0 δ̃

′
H,`wt−` + ξ̃H,t. (13)

We show in Appendix A.3 that, in the limit as H → ∞, the impulse responses Θi,1,` with
respect to the supply shock can be obtained – up to scale – from the local projection (8) with
b = δ̃H,0 and with yt given by the response variable of interest (either ∆gdpt or unr t). The
scale factor does not depend on the impulse horizon or on the response variable.8 Hence,
relative impulse responses Θi,1,h/Θ1,1,0 are correctly identified.9 In finite samples, the mean-
square error performance of the proposed procedure relative to the conventional SVAR(p)
approach of Blanchard & Quah (1989) will depend on the tuning parameters H and p, and
on whether the low-frequency properties of the data are well approximated by a low-order
VAR model.10

8The impulse responses with respect to the demand shock are also readily obtained once the supply shock
has been identified. Up to scale and sign, the researcher can consider any vector b̃ such that b̃′b = 0, and
then implement the local projection (8) with b̃ in lieu of b.

9Absolute impulse responses can be identified by rescaling the identified shock so it has variance 1.
10Christiano et al. (2006) and Mertens (2012) make the related point that SVAR-based long-run identifi-

cation need not rely on the VAR-implied long-run variance matrix. Alternative nonparametric estimators of
the latter may have attractive bias-variance properties, depending on the true DGP.
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Example 3 (Sign identification). Uhlig (2005) set-identifies the effects of monetary policy
shocks by sign-restricting impulse responses. Suppose we assume invertibility, and we are
interested in the impulse response of yt to a monetary shock at horizon h. Following the
logic in Section 2.2, this impulse response is given by ν ′β̌h for some unknown vector ν ∈ Rnw ,
where the coefficient vector β̌h is obtained from the least-squares projection

yt+h = µ̌h + β̌′hwt +
∞∑
`=1

δ̌′h,`wt−` + ξ̌h,t.

As a simple example of sign restrictions, suppose we restrict the variable rt (here assumed
to be a scalar) to respond positively to a monetary shock at all horizons s = 0, 1, . . . , H̄. For
each horizon s = 0, 1, . . . , H̄, store the coefficient vector β̈s from the projection

rt+s = µ̈s + β̈′swt +
∞∑
`=1

δ̈′s,`wt−` + ξ̈s,t.

Then the largest possible response of yt+h to a monetary shock that raises rt by one unit on
impact can be obtained as the solution to the linear program

sup
ν∈Rnw

ν ′β̌h subject to β̈′0ν = 1,

β̈′sν ≥ 0, s = 1, . . . , H̄.

To compute the smallest possible impulse response, replace the supremum with an infimum.11

It is straight-forward to implement more complicated identification schemes by adding ad-
ditional equality or inequality constraints of the above type.12

These three examples demonstrate that invertibility-based identification need not be
thought of as “SVAR identification”, contrary to standard practice in textbooks and parts of
the literature. We acknowledge, however, that certain identification schemes may be easier
to implement in practice using low-order VARs than using LPs, and vice versa.

11We focus on computing the bounds of the identified set. An alternative approach is to sample from the
identified set, as is commonly done in the Bayesian SVAR literature (Rubio-Ramírez et al., 2010).

12To consider impulse responses to a one-standard-deviation monetary shock, replace the equality con-
straint in the linear program by the constraint ν′Var(ut)−1ν = 1. The resulting linear-quadratic program
with inequality constraints is similar to those in Gafarov et al. (2018) and Giacomini & Kitagawa (2018).
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Beyond invertibility. If the invertibility assumption (11) is violated, then identifi-
cation strategies that erroneously assume invertibility – independent of whether they are
implemented using VARs, LPs, or any other dimensionality reduction technique – will not
measure the true impulse responses.13 Instead, these methods will measure the impulse re-
sponses to a white noise disturbance that is a linear combination of current and lagged true
structural shocks:

ε̃1,t = ϑ(L)εt. (14)

The properties of the lag polynomial ϑ(L) are characterized in detail in Fernández-Villaverde
et al. (2007) and Wolf (2018). Combining (9) and (14), we see that, in general, both LP
and VAR impulse response estimands are linear combinations of contemporaneous and lagged
true impulse responses. Thus, projection on a given identified impulse ε̃1,t correctly identifies
impulse response functions (up to scale) if and only if ε̃1,t affects the response variable yt only
through the contemporaneous true structural shock ε1,t. Trivially, this is the case if ε̃1,t is a
function only of ε1,t (the invertible case); less obviously, the same is also true if ε̃1,t is only
contaminated by shocks that do not directly affect the response variable yt.14 Instrumental
variable identification, discussed next, is the leading example of this second case.

Summary. Structural identification and estimation can be carried out using either LP
or VAR techniques, provided that the correct control variables are used. As a matter of
identification (i.e., in population), the two methods succeed or fail together. The performance
of different dimension reduction techniques in finite samples, as discussed in Section 3, is
logically distinct from structural identification. There is therefore no conceptual or practical
reason to limit discussion of structural identification to finite-order SVAR(p) models, as
commonly done in the literature.

4.3 Identification and estimation with instruments

Instruments (also known as proxy variables) are popular in semi-structural analysis. We here
use our main result in Section 2 to show that the influential Local Projection Instrumental

13Several recent papers have demonstrated how to perform valid semi-structural identification without
assuming invertibility, cf. the references in Plagborg-Møller & Wolf (2019). Often such methods rely on LP
or VAR techniques to compute relevant linear projections, without interpreting the VAR disturbances (i.e.,
Wold innovations) as linear combinations of the contemporaneous true shocks.

14In particular, this means that neither invertibility nor recoverability (as defined in Plagborg-Møller &
Wolf, 2019) are necessary for successful semi-structural inference on impulse response functions.
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Variable estimation procedure is equivalent to estimating a VAR with the instrument ordered
first. This is true irrespective of the underlying structural model.

An instrumental variable (IV) is defined as an observed variable zt that is contemporane-
ously correlated only with the shock of interest ε1,t, but not with other shocks that affect the
macro aggregate yt of interest (Stock, 2008; Stock & Watson, 2012; Mertens & Ravn, 2013).15

More precisely, given Assumption 2, the IV exclusion restrictions are that E(ztεj,τ ) 6= 0 if
and only if both j = 1 and t = τ . Without loss of generality, we can use projection notation
to phrase these restrictions as follows.

Assumption 3.
zt = cz +∑∞

`=1(Ψ`zt−` + Λ`wt−`) + αε1,t + vt, (15)

where α 6= 0, cz,Ψ` ∈ R, Λ` ∈ R1×nw , vt i.i.d.∼ N(0, σ2
v), and vt is independent of εt at all

leads and lags. The lag polynomial 1 −∑∞`=1 Ψ`L
` is assumed to have all roots outside the

unit circle, and {Λ`}` is absolutely summable.

Crucially, the assumption allows the IV to be contaminated by the independent measurement
error vt. In some applications, we may know by construction of the IV that the lag coefficients
Ψ` and Λ` are all zero; obviously, such additional information will not present any difficulties
for any of the arguments that follow.

The Local Projection Instrumental Variable (LP-IV) approach estimates the impulse
responses to the first shock using a two-stage least squares version of LP. Loosely, Mertens
(2015), Jordà et al. (2015, 2018), Leduc & Wilson (2017), Ramey & Zubairy (2018), and
Stock & Watson (2018) propose to estimate the LP equation (1) using zt as an IV for xt.
To describe the two-stage least-squares estimand in detail, define Wt ≡ (zt, w′t)′ and consider
the “reduced-form” IV projection

yt+h = µRF ,h + βRF ,hzt +
∞∑
`=1

δ′RF ,h,`Wt−` + ξRF ,h,t (16)

for any h ≥ 0. Consider also the “first-stage” IV projection16

xt = µFS + βFSzt +
∞∑
`=1

δ′FS ,`Wt−` + ξFS ,t. (17)

15We focus on the case of a single IV. If multiple IVs for the same shock are available, Plagborg-Møller &
Wolf (2019) show that (i) the model is testable, and (ii) all the identifying power of the IVs is preserved by
collapsing them to a certain (single) linear combination.

16As always, the coefficients and residuals in (16)–(17) should be interpreted as linear projections.
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Notice that the first stage does not depend on the horizon h. As in standard cross-sectional
two-stage least-squares estimation, the LP-IV estimand is then given by the ratio βLPIV ,h ≡
βRF ,h/βFS of reduced-form to first-stage coefficients (e.g. Angrist & Pischke, 2009, p. 122).17

Stock & Watson (2018) show that, under Assumptions 2 and 3, the LP-IV estimand
βLPIV ,h correctly identifies the relative impulse response Θnr+2,1,h/Θnr+1,1,0. Importantly,
this holds whether or not the shock of interest ε1,t is invertible in the sense of equation (11).

We now use our main result from Section 2.1 to show that the LP-IV impulse responses
can equivalently be estimated from a recursive VAR that orders the IV first. As in Section 2,
this result is nonparametric and assumes nothing about the underlying structural model or
about the IV zt.

Corollary 1. Let Assumption 1 hold for the expanded data vector Wt ≡ (zt, w′t)′ in place of
wt. Consider a recursively ordered SVAR(∞) in the variables (zt, w′t)′, where the instrument
is ordered first (the ordering of the other variables does not matter). Let θ̃y,h be the SVAR-
implied impulse response at horizon h of yt with respect to the first shock. Let θ̃x,0 be the
SVAR-implied impact impulse response of xt with respect to the first shock.

Then θ̃y,h/θ̃x,0 = βLPIV ,h.

Proof. Let z̃t ≡ αε1,t + vt and a ≡
√
E(z̃2

t ) =
√
α2 + σ2

v . Proposition 1 states that θ̃y,h =
a× βRF ,h for all h, and θ̃x,0 = a× βFS . The claim follows.

This nonparametric result implies that, given the structural Assumptions 2 and 3, valid
identification of relative impulse responses can be achieved through either LP-IV or through
a recursive SVAR with the IV ordered first.18 Importantly, under Assumptions 2 and 3,
these equivalent estimation strategies are valid even when the shock of interest ε1,t is not
invertible (Stock & Watson, 2018). Intuitively, when the IV zt is added to the VAR, the only
reason that the shock ε1,t may be non-invertible with respect to the expanded information
set {zτ , wτ}−∞<τ≤t is the presence of the measurement error vt in the IV equation (15).19

17In the over-identified case with multiple IVs, the IV estimand can no longer be written as this simple
ratio; we focus on a single IV as in most of the applied literature. Moreover, in this subsection we discuss
only population equivalence and abstract from finite-sample issues such as weak instruments.

18Plagborg-Møller & Wolf (2019) show that point identification of absolute impulse responses – and thus
variance decompositions – can be achieved under a further recoverability assumption that is mathematically
and substantively weaker than assuming invertibility.

19Note that, even though Assumption 3 allows zt to be correlated with lags of wt, non-invertibility of ε1,t
is entirely consistent with Theorem 1 of Stock & Watson (2018). That theorem merely states that if the
shock is non-invertible, then it is possible to construct an example of an IV žt satisfying E(žtεj,t) = 0 for all
j 6= 1 and E(žtεj,t−` | {wτ}τ<t) 6= 0 for some j and ` ≥ 1 (so žt does not satisfy Assumption 3).
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But this independent measurement error merely leads to attenuation bias in the estimated
impulse responses, and the bias (in percentage terms) is the same at all response horizons
and for all response variables. Thus, it does not contaminate estimation of relative impulse
responses. Noh (2018, Proposition 3) derives a result that is similar to our corollary, but
his proof method does not exploit the general nonparametric equivalence we establish in
Section 2.

IV identification is therefore an example of a setting where SVAR analysis works even
though invertibility fails (including the partial invertibility notion of Forni et al., 2018, and
Miranda-Agrippino & Ricco, 2018a).20 Our result implies that it is valid to include an
externally identified shock in a SVAR even if the shock is measured with (independent)
error, as long as the noisily measured shock is ordered first.21

Unlike the non-invertibility-robust procedure of ordering the IV first in a VAR, the pop-
ular SVAR-IV procedure of Stock & Watson (2012) and Mertens & Ravn (2013) is only valid
under invertibility. This procedure uses an SVAR to identify the shock of interest as

ε̃1,t ≡
1√

Var(z̃†t )
× z̃†t ,

where z̃†t is computed as a linear combination of the reduced-form residuals ut from a VAR
in wt alone (i.e., excluding the IV from the VAR):

z̃†t ≡ E(z̃t | ut) = E(z̃t | {wτ}−∞<τ≤t).

If Assumptions 2 and 3 and the invertibility condition (11) hold, then SVAR-IV is valid. In
fact, in this case SVAR-IV removes any attenuation bias, thus correctly identifying absolute
(not just relative) impulse responses.22 However, in the general non-invertible case, SVAR-
IV mis-identifies the shock as ε̃1,t 6= ε1,t.23 Plagborg-Møller & Wolf (2019, Appendix B.4)

20Note that if the invertibility condition (11) fails, then also ε1,t /∈ span ({zτ , wτ}−∞<τ≤t) due to the
presence of the measurement error vt in equation (15).

21Romer & Romer (2004) and Barakchian & Crowe (2013) include an externally identified monetary shock
in a SVAR, but they order it last, which assumes additional exclusion restrictions. Kilian (2006), Ramey
(2011), Miranda-Agrippino (2017), and Jarociński & Karadi (2018), among others, mention the strategy of
ordering an IV first in a SVAR, but these papers do not consider the non-invertible case.

22Consistent with our analytical results, Carriero et al. (2015) observe in a calibrated simulation study that,
under invertibility, SVAR-IV correctly identifies absolute impulse response functions, while direct projections
on the IV suffer from attenuation bias.

23The VARX procedure of Paul (2018) has the same estimand as SVAR-IV under his assumptions.
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characterize the bias of SVAR-IV under non-invertibility and show that the invertibility
assumption can be tested using the IV.

To summarize, the relative impulse responses obtained from the LP-IV procedure of Stock
& Watson (2018) are nonparametrically identical to the relative impulse responses from a
recursive SVAR with the IV ordered first (an “internal instruments” approach). Assuming an
SVMA model and the IV exclusion restrictions, these procedures correctly identify relative
structural impulse responses, irrespective of the invertibility of the shock of interest. In
contrast, the SVAR-IV procedure of Stock & Watson (2012) and Mertens & Ravn (2013)
(an “external instruments” approach) requires invertibility.

4.4 Estimands in non-linear models

Our main result in Section 2.1 implies that linear local projections are exactly as “robust
to non-linearities” as VAR methods, in large samples. We now show that the common
LP/VAR estimand can be given a mathematically well-defined “best linear approximation”
interpretation when the true underlying structural DGP is in fact non-linear.

Assume that the underlying structural DGP has the nonparametric causal structure

wt = g(εt, εt−1, εt−2, . . . ), (18)

where g(·) is any non-linear function that yields a well-defined covariance stationary process
{wt}, and {εt} is an nε-dimensional i.i.d. process with Cov(εt) = Inε . The number of
structural shocks εt may exceed the number of variables in wt.

We show formally in Appendix A.4 that we can represent the process (18) as the linear
Structural Vector Moving Average model

wt = µ∗ +∑∞
`=0 Θ∗`εt−` +∑∞

`=0 Ψ∗`ζt−`,

where ζt is an nw-dimensional white noise process that is uncorrelated at all leads and
lags with the structural shocks εt. The argument exploits the Wold decomposition of the
residual of wt after projecting on the structural shocks. Hence, the linear SVMA model (9)
in Assumption 2 should not be thought of as restrictive, provided we do not restrict the
number of “shocks” relative to the number of variables.

The linear SVMA impulse responses Θ∗` corresponding to the structural shocks εt have a
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“best linear approximation” interpretation. Specifically,

(Θ∗0,Θ∗1, . . . ) ∈ argmin
(Θ̃0,Θ̃1,... )

E
[(
g(εt, εt−1, . . . )−

∑∞
`=0 Θ̃`εt−`

)2
]
. (19)

Thus, if a second-moment LP/VAR identification scheme is known to correctly identify the
impulse responses in a linear SVMA model (9), and there is doubt about whether the true
underlying DGP is in fact linear, the population estimand of the identification procedure
can be given a formal “best linear approximation” interpretation. This is analogous to the
“best linear predictor” property of Ordinary Least Squares in cross-sectional regression. In
contrast, identification approaches that depart from standard linear projections – such as
identification through higher moments or through heteroskedasticity – may not have a clear
interpretation under functional form misspecification.

We do not take a stand on whether the best linear approximation (19) is of structural
interest. In some applications the non-linearities of the true underlying DGP may be of
interest per se. In such cases, non-linear VAR or LP estimators can be applied, for example
by adding interaction or polynomial terms, regime switching, stochastic volatility, etc. Such
issues are outside the scope of this paper, which deals exclusively with linear estimators.

5 Empirical application

We finally illustrate our theoretical equivalence results by empirically estimating the dynamic
response of corporate bond spreads to a monetary policy shock. We adopt the specification
of Gertler & Karadi (2015), who, using high-frequency financial data, obtain an external
instrument for monetary policy shocks.24 Because of possible non-invertibility (Ramey, 2016;
Plagborg-Møller & Wolf, 2019), we do not consider the external SVAR-IV estimator, but
instead implement direct projections on the IV through (i) local projections and (ii) an
“internal instruments” recursive VAR, following the logic of Corollary 1. In both cases, our
vector of macro control variables exactly follows Gertler & Karadi (2015); it includes output
growth (log growth rate of industrial production), inflation (log growth rate of CPI inflation),
the 1-year government bond rate, and the Excess Bond Premium of Gilchrist & Zakrajšek

24The external IV zt is constructed from changes in 3-month-ahead futures prices written on the Federal
Funds Rate, where the changes are measured over short time windows around Federal Open Market Com-
mittee monetary policy announcement times. See Gertler & Karadi (2015) for details on the construction of
the IV and a discussion of the exclusion restriction.
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Response of bond spread to monetary shock: VAR and LP estimates
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Figure 2: Estimated impulse response function of the Excess Bond Premium to a monetary policy
shock, normalized to increase the 1-year bond rate by 100 basis points on impact. Left panel: lag
length p = 4. Right panel: p = 12. The horizontal line marks the horizon p after which the VAR(p)
and LP(p) estimates may diverge substantially.

(2012) as a measure of the non-default-related corporate bond spread. The data is monthly
and spans January 1990 to June 2012.

Figure 2 shows that LP-IV and “internal instruments” VAR impulse response estimates
agree at short horizons, but diverge at longer horizons, consistent with Proposition 2. The
figure shows point estimates of the response of the Excess Bond Premium to the monetary
policy shock, for different projection techniques and different lag lengths. For all specifica-
tions, the Excess Bond Premium initially increases after a contractionary monetary policy
shock, consistent with the results in Gertler & Karadi (2015). The left panel shows results for
LP(4) and VAR(4) estimates. Up until horizon h = 4, the estimated impulse responses are
closely aligned. At longer horizons, the iterated VAR structure enforces a smooth return to
0, while direct local projections give more erratic impulse responses. The right panel shows
an analogous picture for LP(12) and VAR(12) estimates: The estimated impulse responses
agree closely until horizon h = 12, but they diverge at longer horizons.

These results provide a concrete empirical illustration of our earlier claim that LP and
VAR estimates are closely tied together at short horizons, not just in population but also in
sample. The larger the lag length used for estimation, the more impulse response horizons
will exhibit agreement between LP and VAR estimates. As this exercise is merely meant to
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illustrate our theoretical results, we refrain from conducting formal statistical tests of the
relative finite-sample efficiency of the different estimation methods.

6 Conclusion

We demonstrated a general nonparametric equivalence of local projection and VAR impulse
response function estimands. This result has several implications for empirical practice:

1. VAR and local projection estimators of impulse responses should not be regarded as
conceptually distinct methods – in population, they estimate the same thing, as long
as we control flexibly for lagged data.

2. Efficient finite-sample estimation requires navigating a bias-variance trade-off. Low-
order VAR and local projection estimators resolve this trade-off differently, and several
other recently proposed methods also lie on the continuum of possible dimension re-
duction or regularization approaches. Neither low-order VARs nor low-order local
projections should be treated as having special status generally.

3. The bias-variance trade-off is equivalent to the well-known trade-off between direct
and iterated forecasts. Thus, the finite-sample mean-square error ranking of different
impulse response estimation methods depends on smoothness/sparsity properties of the
autocovariance function of the data. No single method dominates for all empirically
relevant data generating processes.

4. At short impulse response horizons, the various estimation methods are likely to ap-
proximately agree, but at longer horizons the bias-variance trade-off is unavoidable.
A VAR estimator with large lag length will give similar results as a local projection,
except at very long horizons.

5. It is a useful diagnostic to check if different estimation methods reach similar conclu-
sions. If estimated impulse responses from VARs and local projections differ substan-
tially at longer horizons, it must mean that the sample partial autocorrelations at long
lags are not small. This possibly calls into question the validity of the VAR approx-
imation to the distribution of the data, depending on the noisiness of the estimated
impulse responses.
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6. Structural identification is logically distinct from the dimension reduction choices that
must be made for estimation purposes. It may be counterproductive to follow stan-
dard practice in assuming a finite-order SVAR model whenever the discussion turns
to structural identification, as this conflates the population identification analysis and
the dimension reduction technique of using a low-order VAR estimator.

7. Any structural estimation method that works for SVARs can be implemented with local
projections, and vice versa. For example, if a paper already relies on local projections
for parts of the analysis, then an additional sign restriction identification exercise, say,
can also be implemented in a local projection fashion.

8. If an instrument/proxy for the shock of interest is available, structural impulse re-
sponses can be consistently estimated by ordering the instrument first in a recursive
VAR (an “internal instruments” approach), even if the shock of interest is noninvertible.
In contrast, the popular SVAR-IV estimator (an “external instruments” approach) is
only consistent under invertibility.

9. Linear local projections are exactly as “robust to non-linearities” in the underlying
data generating process as linear VARs.

This paper has focused entirely on identification and estimation of impulse responses using
linear methods. Identification of other objects, such as variance/historical decompositions,
is more involved, as shown in Plagborg-Møller & Wolf (2019). It is a promising area of
future research to apply and adapt the results in the present paper to nonlinear estimation
approaches and to questions of inference about impulse responses, including in problematic
cases such as weak instruments and near-unit roots.
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A Appendix

A.1 Equivalence result with finite lag length

We here prove Proposition 2 from Section 2.3. We proceed mostly as in the proof of Propo-
sition 1. As a first step, the Frisch-Waugh theorem implies that

βh(p) = Cov(yt+h, x̃t(p))
E(x̃t(p)2) . (20)

We now introduce the notation Covp(·, ·), which denotes covariances of the data {wt} as
implied by the (counterfactual) stationary “fitted” SVAR(p) model

A(L; p)wt = B(p)η̄t, η̄t ∼WN (0, I), (21)

i.e., where η̄t is truly white noise (unlike the residuals from the VAR(p) projection on the
actual data). For example Covp(yt, xt−1) denotes the covariance of yt and xt−1 that would
obtain if wt = (r′t, xt, yt, q′t)′ were generated by the model (21) with parameters A(L; p) and
B(p) obtained from the projection on the actual data, as defined in Section 2.3. We similarly
define any covariances that involve η̄t. Note that stationarity of the VAR model (21) follows
from Brockwell & Davis (1991, Remark 2, pp. 424–425).

It follows from the argument in Brockwell & Davis (1991, p. 240) that Covp(wt, wt−h) =
Cov(wt, wt−h) for all h ≤ p (see also Brockwell & Davis, 1991, Remark 2, pp. 424–425 for the
multivariate generalization of the key step in the argument). In words, the autocovariances
implied by the “fitted” SVAR(p) model (21) agree with the autocovariances of the actual
data out to lag p, although generally not after lag p.

Under the counterfactual model (21), we have the moving average representation wt =
C(L; p)B(p)η̄t, and thus

θh(p) = Cnr+2,•,h(p)B•,nr+1(p) = Covp(yt+h, η̄x,t), (22)

where η̄x,t is the (nr + 1)-th element of η̄t. Since B(p) is lower triangular by definition, it is
straight-forward to show from (21) that

Bnr+1,nr+1(p)η̄x,t = xt−Ep(xt | rt, {wτ}t−p≤τ<t) = xt−E(xt | rt, {wτ}t−p≤τ<t) = x̃t(p), (23)

where Ep(· | ·) denotes linear projection under the inner product Covp(·, ·), the third in-
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equality follows from the above-mentioned equivalence of Covp(·, ·) and Cov(·, ·) out to lag
p, and the last equality follows by definition. Since Covp(η̄x,t, η̄x,t) = 1, equation (23) implies

Bnr+1,nr+1(p)2 = Covp(x̃t(p), x̃t(p)) = E(x̃t(p)2),

where the last equality again uses the equivalence of Covp(·, ·) and Cov(·, ·) out to lag p.
Putting together (22), (23), and the above equation, we have shown that

θh(p) = 1√
E(x̃t(p)2)

× Covp(yt+h, x̃t(p)).

Under the stated assumption that x̃t(p) = x̃t(p − h), the covariance on the right-hand side
above depends only on autocovariances of the data wt at lags ` = 0, 1, 2, . . . , p. Hence, we
can again appeal to the equivalence of Covp(·, ·) with the covariance function of the actual
data, and the expression (20) yields the desired conclusion.

A.2 In-sample near-equivalence of LP and VAR impulse responses

Complementing the informal discussion in Section 3, here we prove that local projections and
recursively identified VARs estimate nearly the same impulse response functions in sample,
provided the lag lengths used in the specifications are large enough. Assume we observe the
data w1, w2, . . . , wT (recall the notation in Section 2.1). For all lag lengths p ≤ T , define the
following:

• Let x̂t(p) be the residual from a regression of xt on an intercept, rt, and wt−1, . . . , wt−p.

• Let β̂h(p) denote the OLS estimator of the local projection parameter βh in the sample
version of regression equation (1), where we include p lags of wt on the right-hand side
instead of the infeasible infinite distibuted lag. By the Frisch-Waugh theorem,

β̂h(p) =
∑T−h
t=p+1 yt+hx̂t(p)∑T−h
t=p+1 x̂t(p)2 .

• Let θ̂h(p) denote the horizon-h impulse response of yt to an innovation in xt in a
Cholesky-identified VAR(p) model (with intercept) estimated by least squares on the
data points t = p+ 1, p+ 2, . . . , T .
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In detail, the VAR estimator θ̂h(p) is defined as follows. Let Â`(p) denote the usual least-
squares VAR(p) coefficient matrix estimator at lag `, and let ĉ(p) denote the corresponding
intercept vector estimator. Let ût(p) denote the residual vector. Define the innovation
covariance matrix estimator Σ̂(p) ≡ 1

T−p
∑T
t=p+1 ût(p)ût(p)′ and let Σ̂(p) = B̂(p)B̂(p)′ denote

its lower triangular Cholesky decomposition. Define the reduced-form impulse response
matrices by Ĉ0(p) = Inw and Ĉm(p) = ∑m

`=1 Â`(p)Ĉm−`(p) for m = 1, . . . , h. Then θ̂h(p) is
given by the (nr + 2, nr + 1) element of Ĉh(p)B̂(p).

Note that the VAR(p) residuals

ût(p) ≡ wt − ĉ(p)−
p∑
`=1

Â`(p)wt−`, t = p+ 1, p+ 2, . . . , T,

satisfy
T∑

t=p+1
ût(p) = 0nw×1,

T∑
t=p+1

ût(p)wt−` = 0nw×nw , ` = 1, 2, . . . , p. (24)

We adopt the convention that ût(p) ≡ 0 whenever t ≤ p.
We are now ready to state the near-equivalence result for LP and VAR impulse response

estimators. Let ‖ · ‖ denote the Frobenius norm.

Proposition 3. In the following, the lag length p = p(T ) used for estimation is implicitly a
function of T . Assume the following:

i) {wt} is covariance stationary and has a VAR(∞) representation (2), where ∑∞`=1 ‖A`‖ <
∞, and the Wold innovations ut have finite and positive definite covariance matrix Σ.
(We do not assume that the innovations are necessarily Gaussian.)

ii) ‖ĉ(p) − c‖ = op(1), ‖Â(p) − A(p)‖ = op(1), and ‖Σ̂(p) − Σ‖ = op(1), where we have
defined Â(p) ≡ (Â1(p), . . . , Âp(p)) and A(p) ≡ (A1, . . . , Ap).

Then

θ̂h(p) =
1

T−p
∑T−h
t=p+1 yt+hx̂t(p)(

1
T−p

∑T
t=p+1 x̂t(p)2

)1/2 +Op(R̂(p)),

where

R̂(p) ≡
max{1, sup1≤t≤T ‖wt‖}2

T − p
+
 p∑
`=p−h+1

‖Â`(p)‖2

1/2

.

Proof. See Appendix A.5.
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Thus, the VAR impulse response estimator θ̂h(p) approximately equals the LP impulse
response estimator β̂h(p) up to a scale factor that does not depend on the horizon h. The
approximation error is of an order Op(R̂(p)) that is likely to be small unless the data is so
persistent that the estimated VAR coefficients at the very longest lags are non-negligible.

Assumptions (i) and (ii) of the proposition are easily satisfied under standard nonpara-
metric regularity conditions on the data generating process and a restriction on how quickly
the lag length p can grow with T . See for example Lewis & Reinsel (1985) and Gonçalves &
Kilian (2007).

A.3 Long-run identification using local projections

Here we show that the LP-based long-run identification approach in Example 2 is valid.
Define the Wold innovations ut ≡ wt − E(wt | {wτ}−∞<τ<t) and Wold decomposition

wt = χ+ C(L)ut, C(L) ≡ I2 +∑∞
`=1C`L

`. (25)

Since both structural shocks are assumed to be invertible, there exists a 2×2 matrix B such
that εt = But. Comparing (9) and (25), we then have Θ(1)B = C(1). Let e1 ≡ (1, 0)′. Note
that the Blanchard & Quah assumption e′1Θ(1) = (Θ1,1(1), 0) implies

e′1C(1) = e′1Θ(1)B = Θ1,1(1)e′1B,

and therefore
e′1C(1)ut = Θ1,1(1)× e′1But = Θ1,1(1)× ε1,t.

By the result in Section 2.2, the claim in Example 2 follows if we show that

lim
H→∞

δ̃′H = e′1C(1). (26)

Define Σu ≡ Var(ut). Applying the Frisch-Waugh theorem to the projection (13), and using
w1,t = ∆gdpt, we find

δ̃′H = Cov(gdpt+H−gdpt−1, ut)Σ−1
u = Cov

(
H∑
`=0

w1,t+`, ut

)
Σ−1
u =

H∑
`=0

Cov(w1,t+`, ut)Σ−1
u . (27)
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On the other hand, the Wold decomposition (25) implies (recall that ut is white noise)

∞∑
`=0

Cov(wt+`, ut)Σ−1
u =

∞∑
`=0

C` = C(1). (28)

Comparing (27) and (28), we get the desired result (26).

A.4 Best linear approximation under non-linearity

Here we give the technical details behind the “best linear approximation” interpretation of
a non-linear model, cf. Section 4.4. Assume the nonparametric model (18), and that {wt}
is covariance stationary and purely nondeterministic. Let the linear projection of wt on
the orthonormal basis (εt, εt−1, εt−2, . . . ) be denoted ∑∞

`=0 Θ∗`εt−`, with projection residual
vt. Assume vt is either identically zero or purely non-deterministic. Then it has a Wold
decomposition

vt = µ∗ +∑∞
`=0 Ψ∗`ζt−`,

where {ζt} is nw-dimensional white noise with Cov(ζt) = Inw . Since vt is a function of
{ετ}τ≤t, and {εt} is i.i.d., we have Cov(εt+`, vt) = 0nε×nw for all ` ≥ 1. Moreover, since vt is
a residual from a projection onto {ετ}τ≤t, we also have Cov(εt+`, vt) = 0nε×nw for all ` ≤ 0.
By the Wold decomposition theorem, ζt lies in the closed linear span of {vτ}τ≤t, so we must
have Cov(εt+`, ζt) = 0nε×nw for all ` ∈ Z. Finally, the best linear approximation property
(19) is a standard consequence of linear projection. We have thus verified all claims made
in Section 4.4.

A.5 Proof of Proposition 3

We split the proof into several steps.

Step 1. We will show that ∑p
`=1 ‖Â`(p)‖ = Op(1). The statement follows from

p∑
`=1
‖Â`(p)‖ ≤

p∑
`=1
‖A`‖+

p∑
`=1
‖Â`(p)− A`‖ ≤

∞∑
`=1
‖A`‖+ ‖Â(p)− A(p)‖

and then exploiting assumptions (i) and (ii).
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Step 2. We will show that supp+1≤t≤T ‖ût(p)‖ = sup1≤t≤T ‖wt‖ ×Op(1). Observe that

sup
p+1≤t≤T

‖ût(p)‖ = sup
p+1≤t≤T

∥∥∥∥∥wt −
p∑
`=1

Â`(p)wt−`
∥∥∥∥∥

≤
(

sup
1≤t≤T

‖wt‖
)(

1 +
p∑
`=1
‖Â`(p)‖

)
.

Step 1 then gives the desired result.

Step 3. We will show that, for any m = 0, 1, . . . , h,

1
T − p

T∑
t=p+1

ût−m(p) = Op

(
supt ‖wt‖
T − p

)
.

We have
T∑

t=p+1
ût−m(p) =

T∑
t=p+1

ût(p)−
T∑

t=T−m+1
ût(p).

The first sum on the right-hand side is exactly zero by the orthogonality conditions (24).
The second sum consists of m terms, each of which is Op(supt ‖wt‖) by Step 2.

Step 4. We will show that, for any m = 1, 2, . . . , h,

1
T − p

T∑
t=p+1

ût(p)ût−m(p)′ = Op


 p∑
`=p−h+1

‖Â`(p)‖2

1/2
 .

ût−m(p) is a linear function of wt−m, wt−1−m, . . . , wt−p−m. By the orthogonality conditions
(24), ût(p) is orthogonal to wt−m, wt−1−m, . . . , wt−p (and a constant). Thus,

∥∥∥∥∥∥ 1
T − p

T∑
t=p+1

ût(p)ût−m(p)′
∥∥∥∥∥∥ =

∥∥∥∥∥∥ 1
T − p

T∑
t=p+m+1

ût(p)
p∑

`=p−m+1
w′t−m−`Â`(p)′

∥∥∥∥∥∥
≤

 p∑
`=p−m+1

‖Â`(p)‖2

1/2
 p∑
`=p−m+1

∥∥∥∥∥∥ 1
T − p

T∑
t=p+m+1

ût(p)w′t−m−`

∥∥∥∥∥∥
2


1/2

.
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Note that ∑p
`=p−m+1 ‖Â`(p)‖2 ≤ ∑p

`=p−h+1 ‖Â`(p)‖2 since m ≤ h. Finally,

∥∥∥∥∥∥ 1
T − p

T∑
t=p+m+1

ût(p)w′t−m−`

∥∥∥∥∥∥ ≤
 1
T − p

T∑
t=p+m+1

‖ût(p)‖2

1/2 1
T − p

T∑
t=p+m+1

‖wt−m−l‖2

1/2

≤

 1
T − p

T∑
t=p+1

‖ût(p)‖2

1/2 (
1

T − p

T∑
t=1
‖wt‖2

)1/2

≤ ‖Σ̂(p)‖
(

1
T − p

T∑
t=1
‖wt‖2

)1/2

.

The first factor on the right-hand side above is Op(1) by assumption (ii), while the second
factor is Op(1) since E‖wt‖2 <∞.

Step 5. Let `,m ≥ 0 satisfy m ≤ h and ` ≤ p. If m ≤ `, then

1
T − p

T∑
t=p+1

ût−m(p)w′t−` = 1
T − p

T∑
t=p+1

ût(p)w′t−(`−m) +Op

(
supt ‖wt‖2

T − p

)
, (29)

while if m > `, then

1
T − p

T∑
t=p+1

ût−m(p)w′t−` = 1
T − p

T∑
t=p+1

ût−(m−`)(p)w′t +Op

(
supt ‖wt‖2

T − p

)
, (30)

where the Op(·) terms are uniform in ` and m. Claim (30) is proven in the same way as (29),
so we only prove the latter. Simply note that

T∑
t=p+1

ût−m(p)w′t−` =
T∑

t=p+1
ût(p)w′t−(`−m) −

T∑
t=T−m+1

ût(p)w′t−(`−m),

and the second sum consists of m terms, each of which is Op(supt ‖wt‖2) by Step 2.

Step 6. We will show that, for any `,m ≥ 0 such that m ≤ h and m < ` ≤ p,

1
T − p

T∑
t=p+1

ût−m(p)w′t−` = Op

(
supt ‖wt‖2

T − p

)
,
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where the Op(·) term is uniform in ` and m. By Step 5,

1
T − p

T∑
t=p+1

ût−m(p)w′t−` = 1
T − p

T∑
t=p+1

ût(p)w′t−(`−m) +Op

(
supt ‖wt‖2

T − p

)
.

Since 1 ≤ ` −m ≤ p, the sum on the right-hand side is precisely zero by the orthogonality
conditions (24).

Step 7. Define for all m = 0, 1, . . . , h the matrix Ĥm(p) ≡ 1
T−p

∑T
t=p+1wtût−m(p)′. We will

show that
Ĥm(p) =

m∑
`=1

Â`(p)Ĥm−`(p) +Op(R̂(p)), m = 1, 2, . . . , h.

Let m = 1, . . . , h be arbitrary. Since

wt = ĉ(p) +
p∑
`=1

Â`(p)wt−` + ût(p),

we obtain

Ĥm(p) = 1
T − p

T∑
t=p+1

wtût−m(p)′

=
p∑
`=1

Â`(p)
1

T − p

T∑
t=p+1

wt−`ût−m(p)′

+ ĉ(p) 1
T − p

T∑
t=p+1

ût−m(p)′

+ 1
T − p

T∑
t=p+1

ût(p)ût−m(p)′.

By Step 3, the second term above is Op( 1
T−p supt ‖wt‖). By Step 4, the third term is

Op((
∑p
`=p−h+1 ‖Â`(p)‖2)1/2). As for the first term above, we split it up as follows:

p∑
`=1

Â`(p)
1

T − p

T∑
t=p+1

wt−`ût−m(p)′ =
m∑
`=1

Â`(p)
1

T − p

T∑
t=p+1

wt−`ût−m(p)′

+
p∑

`=m+1
Â`(p)

1
T − p

T∑
t=p+1

wt−`ût−m(p)′.
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By Steps 1 and 6, the second term above is Op( 1
T−p supt ‖wt‖2). By Steps 1 and 5, the first

term above equals

m∑
`=1

Â`(p)
1

T − p

T∑
t=p+1

wt−`ût−m(p)′ =
m∑
`=1

Â`(p)
1

T − p

T∑
t=p+1

wtût−(m−`)(p)′ +Op

(
supt ‖wt‖2

T − p

)

=
m∑
`=1

Â`(p)Ĥm−`(p) +Op

(
supt ‖wt‖2

T − p

)
.

Step 8. We will show that Ĥm(p) = Ĉm(p)Σ̂(p) + Op(R̂(p)) for all m = 0, . . . , h. We
proceed by induction on m. The claim is true by definition for m = 0. Assume the claim is
true for all m ≤ m̃− 1. Then Step 7 implies

Ĥm̃ =
m̃∑
`=1

Â`(p)Ĥm̃−`(p) +Op(R̂(p))

=
m̃∑
`=1

Â`(p){Ĉm̃−`(p)Σ̂(p) +Op(R̂(p))}+Op(R̂(p))

=
(

m̃∑
`=1

Â`(p)Ĉm̃−`(p)
)

Σ̂(p) +Op(R̂(p))

= Ĉm̃(p)Σ̂(p) +Op(R̂(p)).

Here the penultimate equality uses Step 1, and the last equality uses the recursive definition
of Ĉm̃(p).

Step 9. We will show that ‖B̂(p)−1‖ = Op(1). This follows from assumption (ii), the
continuity of the Cholesky decomposition at any positive definite matrix, and the assumption
(i) that Σ is positive definite.

Step 10. Let ex be the (nr + 2)-th nw-dimensional unit vector, i.e., xt = e′xwt. Then

e′xB̂(p)−1ût(p) = 1
( 1
T−p

∑T
t=p+1 x̂t(p)2)1/2 x̂t(p)

for all t = p + 1, p + 2, . . . , T . This is just the sample analogue of the population result
(5)–(6), so we refrain from giving the details of the proof.
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Step 11. We will show that

Ĉh(p)B̂(p)ex = 1
( 1
T−p

∑T
t=p+1 x̂t(p)2)1/2 ×

1
T − p

T∑
t=p+1

wtx̂t−h(p)′ +Op(R̂(p)).

By Steps 8 and 9,

Ĉh(p)B̂(p) = Ĉh(p)Σ̂(p)B̂(p)−1′ = ĤmB̂(p)−1′ +Op(R̂p).

Hence,

Ĉh(p)B̂(p)ex = 1
T − p

T∑
t=p+1

wt
(
e′xB̂(p)−1ût−h(p)

)′
+Op(R̂p),

so the claim follows from Step 10.

Step 12. The statement of the proposition follows from Step 11 and the fact that θ̂h(p)
by definition equals the (nr + 2)-th element of Ĉh(p)B̂(p)ex.
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