Monopsony and Concentration in the Labor Market: Evidence from Vacancy and Employment Data

Brad Hershbein* Claudia Macaluso† Chen Yeh†

*W.E. Upjohn Institute for Employment Research
†UIUC

NBER SI 2019 — CRIW
Any opinions and conclusions expressed herein are those of the authors and do not represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed.
Employer Market Power

Is the U.S. labor market monopsonistic?
Is the degree of monopsony increasing over time?

- answer may affect labor market fluidity, wage growth, and inequality, as well as characteristics of jobs (wages, tasks)

- degree of monopsony affects evaluation of policies altering workers’ compensation and mobility
 - minimum wage increases
 - regulations limiting growth of large firms

Hershbein, Macaluso and Yeh (2019)
Measurement matters

Despite relevance of the monopsony question . . .

- few *direct* measures of employer market power
 - how to address this gap?
Measurement matters

Despite relevance of the monopsony question...

- few *direct* measures of employer market power
 - how to address this gap?

→ estimate *plant-level markdowns*
Measurement matters

Despite relevance of the monopsony question . . .

- few direct measures of employer market power
 - how to address this gap?

→ estimate plant-level markdowns

- indirect measures of concentration are commonly used, but:
 - is concentration a good proxy for monopsony?
Measurement matters

Despite relevance of the monopsony question...

- Few *direct* measures of employer market power
 - How to address this gap?

→ Estimate plant-level markdowns

- *Indirect* measures of concentration are commonly used, but:
 - Is concentration a good proxy for monopsony?

→ Markdowns increase with size
Measurement matters

Despite relevance of the monopsony question...

- few *direct* measures of employer market power
 - how to address this gap?

→ *estimate plant-level markdowns*

- *indirect* measures of concentration are commonly used, but:
 - is concentration a good proxy for monopsony?

→ *markdowns increase with size*
 - how to interpret differences arising from the definition of "labor market"?
Measurement matters

Despite relevance of the monopsony question...

• few *direct* measures of employer market power
 - how to address this gap?

→ estimate plant-level markdowns

• *indirect* measures of concentration are commonly used, but:
 - is concentration a good proxy for monopsony?

→ markdowns increase with size
 - how to interpret differences arising from the definition of “labor market”?

→ decrease in spatial dispersion of employment explains diverging local v. national concentration
Markdowns
A measure of monopsony power: markdowns

- Monopsony: a firm’s ability to compensate workers below its MRPL
- Measured through a firm’s “markdown”

\[
\max_{N \geq 0} Y(N) - w(N) \cdot N
\]

\[
Y'(N^*) = w'(N^*)N^* + w(N^*)
\]

\[
Y'(N^*) = \left[\frac{\varepsilon_S + 1}{\varepsilon_S} \frac{\varepsilon_S}{\varepsilon_S} \right] w(N^*)
\]

markdown

where \(\varepsilon_S = \frac{dN}{dw} \frac{w}{N} \bigg|_{N=N^*} \) is a firm’s labor supply elasticity.
Estimating markdowns

Markdown formula:

\[
\frac{\varepsilon_S + 1}{\varepsilon_S} = \mu^{-1} \cdot \theta_N \cdot \alpha^{-1}_N
\]

markdown
markup
output elasticity
labor share

A1 Firms engage in cost minimization
A2 Production function is continuous and twice differentiable
Estimating markdowns

Markdown formula:

\[
\frac{\varepsilon S + 1}{\varepsilon S} = \mu^{-1}\cdot \theta_N \cdot \alpha_{N}^{-1}
\]

markdown \quad \text{markup} \quad \text{output elasticity} \quad \text{labor share}

A1 Firms engage in cost minimization
A2 Production function is continuous and twice differentiable
A3 Production function is \(Y(N, K, M, E) \) and translog
A4 Material inputs \(M \) are free of adjustment costs and monopsony power
Markdown distribution

Mean: 78%
Within-industry IQR: 64%
Markdowns increase with employment share

<table>
<thead>
<tr>
<th>Dependent variable: plant-level (log) markdowns</th>
</tr>
</thead>
<tbody>
<tr>
<td>log share</td>
</tr>
<tr>
<td>Cobb-Douglas</td>
</tr>
<tr>
<td>log share</td>
</tr>
<tr>
<td>0.0292 (0.0140)</td>
</tr>
<tr>
<td>Translog</td>
</tr>
<tr>
<td>log share</td>
</tr>
<tr>
<td>0.0251 (0.0052)</td>
</tr>
<tr>
<td>Observations (in millions)</td>
</tr>
<tr>
<td>1.449</td>
</tr>
<tr>
<td>1.449</td>
</tr>
</tbody>
</table>

Source: ASM data on U.S. manufacturing plants 1976-2014. All regression specifications include industry, state, and year fixed effects, and age controls. Standard errors are clustered at the industry (3-digit NAICS) level.

→ 1 SD ↑ in a plant’s share is associated with a 3.7% ↑ in the plant’s markdown rate
→ indexes based on employment shares (e.g., HHI) capture concentration as well as monopsony power
Concentration
HHI at the market- and aggregate level

Concentration: \(\text{HHI}_{mt} = \sum_{f \in F(m)} \left(\frac{x_{mft}}{X_{mt}} \right)^2 \)

Two aggregates:

\[
\text{NATIONAL}_t \equiv \sum_{j \in J} \omega_{jt} \text{HHI}_{jt}
\]

\[
\text{LOCAL}_t \equiv \sum_{j \in J} \sum_{\ell \in L} \omega_{j\ell t} \text{HHI}_{j\ell t}
\]

where \(\omega_{mt} \) is employment/vacancies share of market \(m \) for \(m \in \{j, (j, \ell)\} \).
Local v. national (LBD 1976-2014)
Statistical decomposition of local concentration:

\[
\sum_{j \in J} \sum_{\ell \in L} \omega_{j\ell t} HHI_{j\ell t} = \sum_{j \in J} \omega_{jt} \left[\sum_{\ell \in L} s_{\ell t}^j HHI_{j\ell t} \right] \\
= \sum_{j \in J} \omega_{jt} \left[HHI_{jt} + \text{cov}(s_{\ell t}^j, HHI_{j\ell t}) \right] \\
= \sum_{j \in J} \omega_{jt} HHI_{jt} + \sum_{j \in J} \omega_{jt} \text{cov}(s_{\ell t}^j, HHI_{j\ell t}) - \sum_{j \in J} \omega_{jt} (HHI_{jt} - HHI_{jt})
\]

\[\text{LOCAL}_t = \text{NATIONAL}_t + \text{OP}_t - \text{SPATIAL}_t\]

where:

- \(s_{\ell t}^j = \frac{\omega_{j\ell t}}{\omega_{jt}}\)
- \(\overline{HHI}_{jt} \equiv \frac{1}{|L|} \sum_{\ell \in L} HHI_{j\ell t}\)
Trend in $OP_t = \sum_{j \in J} \omega_{jt} \text{cov}(s^j_{lt}, HHI_{jlt})$

Figure 1: The OP covariance term has been increasing over time, so it cannot account for the divergence.
Trend in $SPATIAL_t = \sum_{j \in J} \omega_{jt} (HHI_{jt} - \overline{HHI}_{jt})$

Figure 2: A pronounced decrease in spatial dispersion can account for the divergence between NATIONAL and LOCAL.
SPATIAL$_t$ for an industry j

Interpretation of SPATIAL$_t$ ↑:

Table 1: “small” local monopsonies

<table>
<thead>
<tr>
<th>region</th>
<th>firm</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 2: equally spaced economy

<table>
<thead>
<tr>
<th>region</th>
<th>firm</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- $HHI_j = 3 \cdot \left(\frac{1}{3}\right)^2 = \frac{1}{3}$
- $\overline{HHI}_j = \frac{1+1+1}{3} = 1$
- $\text{SPATIAL}_t = \frac{1}{3} - 1$
- as $N_f \to \infty$, $\text{SPATIAL}_t \to -1$

- $HHI_j = 3 \cdot \left(\frac{1}{3}\right)^2 = \frac{1}{3}$
- $\overline{HHI}_j = \frac{3 \cdot \frac{1}{3}}{3} = \frac{1}{3}$
- $\text{SPATIAL}_t = 0$
To sum up: what we do

1. **Estimate plant-level markdown rates**
 - Average 78%, average within-industry IQR 64%

2. **Markdowns increase with size**

3. **Local v. national labor market concentration**
 - statistical decomposition to interpret divergence over time
 - drop in spatial dispersion of employment across U.S. local labor markets

4. Negative time trend and limited cross-sectional incidence of local concentration in both employment and vacancies

5. **Wage compression + upskilling**
Thank you!

Comments: cmacaluso.econ@gmail.com
Unweighted HHI distribution

Source: BGT 2010-17
Weighted HHI distribution

HHI distribution across jobs

Source: BGT/OES 2010-17
Estimating markdowns (1)

- How to estimate markdowns?
- Plant’s cost minimization problem:

\[
\min_{N \geq 0} w(N) \cdot N \quad \text{s.t.} \quad Y(N) \geq Y
\]

- Optimality condition can be written as:

\[
\frac{w'(N) \cdot N}{w(N)} + 1 = \lambda \frac{Y'(N)}{w(N)}
\]

\[
\frac{\varepsilon S + 1}{\varepsilon S} = \underbrace{\mu^{-1}}_{\text{markup}} \cdot \underbrace{\theta_N}_{\text{output elasticity}} \cdot \underbrace{\alpha_N^{-1}}_{\text{labor share}}
\]
Estimating markdowns (2)

- We obtain:

\[
\frac{\varepsilon S + 1}{\varepsilon S} = \mu^{-1} \cdot \theta_N \cdot \alpha^{-1}_N
\]

- \(\mu = \frac{P}{\lambda} \) is the price-cost markup
- \(\theta_N = \frac{Y'(N) \cdot N}{Y(N)} \) is the output elasticity with respect to labor
- \(\alpha_N = \frac{w(N) \cdot N}{P \cdot Y(N)} \) is the revenue share of labor

- Intuition as in Hall (1988)
- Procedure from de Loecker and Warzynski (2012) on material inputs: markups
- Production function estimation: output elasticities
- Revenue shares are directly observable
Local labor market concentration across time (BGT)

Concentration based on vacancies in BGT ($\text{LOCAL}_{2007} = 1$)