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Abstract

What determines firm growth? We develop and estimate a frame-
work that examines the roles of technical effi ciency, input prices, de-
mand shocks, idiosyncratic markups, and wedges. Previous approaches
have combined technical effi ciency and product appeal/demand shifters
into a composite measure, subsumed markups and input costs into
residual wedges, or wedges and costs (inclusive of technical effi ciency)
into residual costs. We overcome these limitations using detailed data
on prices and quantities for individual inputs and outputs. We study
life cycle growth up to 30 years from birth for Colombian manufac-
turing establishments, for which such detailed information exists. De-
mand shifters and technical effi ciency together play a dominant role in
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accounting for sales growth volatility, but their effect is dampened by
wedges that are negatively correlated with these fundamentals. De-
mand is by far the dominating fundamental, but technical effi ciency is
non-negligible, especially at birth. As plants age, wedges have a less
dampening effect and demand differences increasingly dominate sales.
The dominance of demand is driven by superstar plants that are in
the top quartile of life cycle growth. In contrast, the lowest quarttile
of plants are driven by weak technical effi ciency. Lumping wedges
and costs (inclusive of technical effi ciency) yields the misleading view
that costs are not important.
Keywords: post-entry growth; TFPQ; demand; distortions.
JEL codes: O47; L11; O14; O39

1 Introduction

A prevalent feature of market economies is wide heterogeneity of firm size,
firm growth, and a host of firm attributes correlated with size (e.g., pro-
ductivity, exports, and survival). What are the sources of firm size and
firm growth heterogeneity? Motivated by wide differences in the distribu-
tions of firm size and firm growth across levels of economic development, the
macro literature on misallocation studies the role of productivity vs. resid-
ual wedges, with special focus on wedges in driving size differentials (e.g.
Hsieh and Klenow, 2009, 2014 HK henceforth).1 Other literatures in macro,
trade, and IO have focused on the role of different attributes of firms: de-
mand (quality), markups, and costs, frequently analyzing them separately.2

Hottman, Redding and Weinstein (2016, henceforth HRW) recently devel-
oped and estimated a framework where demand, markups and residual costs
are simultaneously accounted for, finding a dominant role for demand at-

1Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) are seminal contribu-
tions, but that literature is extensive. Examples are Guner, Ventura and Xu (2008); Midri-
gan and Xu (2013); Bartelsman et. al. (2013); Bento and Restuccia (2017); Adamopoulos
and Restuccia (2014); Eslava et al. (2013).

2Quality is the focus in Brooks (2006); Fieler, Eslava and Xu (2018); Hallak and Schott
(2011) Khandelwal (2011); Kugler and Verhoogen (2012); Manova and Zhang (2012).
Production effi ciency is emphasized in many of the applications of the Melitz model (2003)
(e.g. Eslava et al, 2013). Markups have been emphasized by De Loecker and Warzynski
(2012) and De Loecker et al (2016).
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tributes.3 Wedges, i.e. deviations from the model, are not considered in
HRW’s accounting framework.
Building on these distinct approaches, we develop a conceptual, mea-

surement and estimation structure that takes advantage of uniquely rich
data to measure not only idiosyncratic demand shifters (quality/appeal) and
markups, but also two distinct dimensions of idiosyncratic marginal costs:
technical effi ciency and input prices. Our framework accounts for the con-
tribution of each of these attributes of firms to firm size and growth, while
also allowing for wedges between the data and the behavior predicted by the
model. We thus effectively decompose growth over a plant’s life cycle into
that attributable to shocks from demand, technical effi ciency, input prices,
idiosyncratic markups and residual wedges. We apply this framework to
the analysis of growth over the life cycle of manufacturing plants in Colom-
bia. Life cycle business growth is crucially related to aggregate productivity
growth (HK, 2014) and displays wide heterogeneity across businesses (Halti-
wanger, Jarmin and Miranda, 2013).
Crucial to our approach is detailed data on quantities and prices for out-

puts and inputs, which we obtain from the Colombian Annual Manufacturing
Survey. This is a census of non-micro Colombian manufacturing plants with
data on quantities and prices, at the detailed product class for outputs and
inputs within plants. Individual plants can be followed for up to thirty years
(1982-2012). The availability of price and quantity data for both outputs and
inputs at the product level permits separate measurement of fundamental at-
tributes of plants on the technology, the demand, and the cost sides, as well
as idiosyncratic markups. The long time coverage allows us to investigate
the determinants of medium- and long-term life cycle growth.
By technology or technical effi ciency we refer to a production function

residual, where production in multiproduct plants is plant-level revenue de-
flated with a quality adjusted plant-level deflator. We will refer to this tech-
nical effi ciency dimension as TFPQ, as in Foster, Haltiwanger and Syver-
son (2008), though we generalize the concept to producers of heterogeneous
goods.4 On the demand side, we estimate plant-specific demand function

3Foster et. al. (2008, 2016) also integrate demand and effi ciency shocks in explaining
firm performance, as does Gervais (2015) in the context of explaining firm exports. A
prominent role for demand is found, though not as dominant as in HRW, perhaps as a
consequence of the direct measurement of effi ciency.

4Hsieh and Klenow (2009, 2014) use the term TFPQ to refer to a composite productiv-
ity measure that lumps together technical effi ciency and demand shocks. We refer to this
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residuals, that identify greater appeal/quality as the ability to charge higher
prices per unit of a product (HRW; Khandelwal,2011; Fieler, Eslava and Xu,
2018). Input costs are directly measured from input price data. Our spec-
ification of demand and competition allows for idiosyncratic markups that
vary with the plant’s market share and with the elasticity of substitution in
the plant’s sector.
Our approach requires, and the richness of the data permits, estimat-

ing the parameters of the production and demand functions for each sector
both to obtain TFPQ and demand/appeal as residuals of these functions.
We introduce an estimation technique that jointly estimates the production
factor elasticities and the elasticity of demand, bringing together insights
from recent literature on estimating production functions using output and
input use data, and literature on estimating demand functions using P and
Q data.5 As in the former, we use a proxy approach to form moments that
identify production function coeffi cients.6 As in the latter, we rely on supply
shocks to identify the slope of the demand function. But, in contrast to much
of that literature, we identify the slope of the demand function by assuming
that current period innovations to technology are orthogonal to lagged de-
mand shifters in levels. We thus allow TFPQ and demand to be correlated,
even over time. This would be the case if, as plausible, improving quality re-
quires greater effort in the production side, or investments in improving plant
attributes depend on previous profitability. Estimating production and de-
mand jointly ensures consistency and thus proper separate identification of
revenue vs. production parameters. Moreover, the granularity of our data
allows estimating different production and demand elasticities for different
sectors, and without imposing constant returns to scale.

composite concept further below as TFPQ_HK , as a reference to Hsieh and Klenow.
Haltiwanger, Kulick and Syverson (2018) explore properties of TFPQ_HK using U.S.
data.

5For production function estimation, see, e.g. Ackerberg, Caves and Frazer (2015); De
Loecker et al. (2016). For demand function estimation see, e..g. Hottman, Redding and
Weinstein (2016); Foster, Haltiwanger and Syverson (2008).

6Our approach relies on the assumptions that permit estimating the joint produc-
tion/demand system without specifying the nature of any wedges that impact the evolution
of the size distribution. This is common in the literature although there are some excep-
tions. Cooper and Haltiwanger (2006), for example, consider a specification of adjustment
costs that yield a multiplicative disruption effect on productivity and profitablity. We
are implicitly considering separable (non-internal) adjustment costs that would manifest
themselves in wedges.
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Manufacturing plants typically produce multiple products and use mul-
tiple material inputs. Moreover, there is ongoing product turnover in both
outputs and inputs. Defining and measuring real output and inputs at the
plant-level thus requires constructing plant-level price indices for both out-
puts and inputs. We follow the insights of Hottman, Redding and Weinstein
(2016) and Redding and Weinsten (2018), and rely on a (nested) demand
structure at the product-level within plants to build plant-level price indices
that allow for turnover and shifting appeal across products and inputs within
the firm.
After estimating plant-specific technical effi ciency, demand/product ap-

peal shifters, markups and input prices, we measure the contribution of each
to the variability of sales growth across plants over the life-cycle. Residual
wedges in our framework correspond to the gap between actual size at any
point of the life cycle and size implied by the different fundamentals.7 Since
we explicitly account for idiosyncratic input price and markup variability, the
distribution of these wedges is not captured by revenue product dispersion
(in contrast to Hsieh and Klenow’s 2009, 2014).
Post entry growth is found to be highly dispersed and skewed in our data,

as it is in other contexts (e.g. Decker et. al. (2014,2016)). By age 20, plants
in the top quartile of predicted revenue growth have multiplied their sales by
a factor of 4.9 relative to their birth, while those in the lowest quartile grow
by a factor of 1.37. Our focus is on decomposing the substantial variance in
growth across plants at different stages of the life cycle.
While revenue growth is widely disperse, the variance of growth of mea-

sured plant attributes is far greater. As a result, residual wedges are strongly
size correlated: while superstar plants actually grow less than implied by their
appeal and effi ciency growth, plants in the lowest two quartiles of fundamen-
tals’growth display positive wedges between actual and predicted growth.
Correlated wedges are particularly large for this last group. The top quartile
of predicted growth would have grown close to seven-fold in the absence of
wedges by age 20, while revenue for the bottom quartile of predicted revenue
growth would have contracted markedly compared to birth. Negatively corre-
lated wedges reduce plant revenue variance by 15 percentage points over the
first twenty years of life. While residual wedges are far from negligible, this

7These wedges are also frequently termed “distortions”, but we prefer the former term
since the idiosyncratic gaps we identify may represent sources of productivity or welfare
loss that even the social planner would incur, as they may stem from constraints more
technological in nature, such as adjustment costs.
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magnitude also implies that growth of fundamentals is still the dominating
factor in explaining the distribution of revenue growth.
Rapidly growing demand shifters are the key differentiating attribute of

superstar plants: the third quartile of predicted growth exhibits appeal/demand
growth that is less than half of the top quartile, while plants in the lowest
two quartiles barely exhibit appeal growth. Though our finding of a domi-
nant role of demand shocks in accounting for life cycle growth in Colombia is
consistent with previous findings for the US (HRW and Foster, Haltiwanger
and Syverson) full-distribution accounting allows us to identify this role as
stemming from extremely dynamic appeal in superstar plants. Moreover, our
results also point to a technical effi ciency efforts as a necessary condition for
success: rapidy contracting TFPQ is the outstanding characteristic of worst
performers in the bottom two quartiles.
We also find that these patterns vary considerably over the life cycle.

For mature plants, most of the variation in life-cycle growth is explained by
measured fundamentals, while for younger plants TFPQ and wedges (nega-
tively correlated with fundamentals) play a more important role in the de-
composition of variance. The diminished role of TFPQ for more mature
plants partly reflects an increasing inverse correlation between TFPQ and
demand/product appeal over the life cycle. That is, though superstar plants
are those with very high product demand/appeal, producing such products
is associated with reductions in TFPQ.
We contribute to the literature in different ways. First, we bridge the gap

between distinct approaches to the study of drivers of firm size and growth,
alternatively focusing on wedges with respect to productivity—broadly defined
to encompass both effi ciency and demand—or on the roles of demand, cost
and markups. Our framework builds on HK on the supply side, and allows
for wedges a-la-HK, and builds on HRW on the demand side. Our findings
yield insights that are masked by taking the two approaches independently.
Our results imply that cost factors play a more important role than would be
identified by the HRWapproach, because their cost component is ultimately a
residual that lumps together effi ciency, input costs, and all other unmeasured
factors (negatively correlated with the former in our context). Relative to the
implications of the HK decomposition, our approach yields insights masked
by using a composite productivity measure. As highlighted above, TFPQ
and demand have very different contributions over the life cycle and across the
distribution of growth rates. Our approach also enables further refinement
of residual wedges by breaking out the contributions of input prices and
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markups.8

Within the misallocation literature, recent contributions have increasingly
focused on decomposing size-to-productivity wedges into components such as
adjustment costs, information frictions, financial frictions, labor market fric-
tions (see, e.g., David and Venkateswaran, 2018; Midrigan and Xu, 2014;
Guner, Ventura and Xu, 2008). In a distinct but related vein, our results
highlight that an important fraction of the residual variance after accounting
for productivity given revenue parameters is explained by input price hetero-
geneity, and that heterogeneity in production and demand parameters also
plays an important role. In that sense, we highlight that measurement mat-
ters crucially for quantifying and understanding the contributions of residual
wedges. The high ratio of data to assumptions in our approach also allows
us to measure both demand and cost side fundamentals while allowing for
wedges with respect to model predictions, and highlights the importance of
recongizing these deviations in quantitative inferences.
Third, we contribute to the literature on estimating production func-

tions and to that on estimating demand functions. While we build on the
proxy-method approach (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;
Ackerberg, Caves and Frazer, 2015; De Loecker et al 2016) for production
function estimation, and on HRW and Foster et al (2008) for demand esti-
mation, our joint estimation of the two functions in an important novelty. It
highlights the importance of relying on output price and quantity informa-
tion to distinguish revenue from production parameters, and the importance
of including information on the production process (inputs, in particular) to
distinguish demand from supply elasticities. Moreover, our approach to mea-
suring plant-level production for multiproduct plants highlights the need to
take a stance on the structure of demand not only to measure plant output
in the presence of multiple products, but even to define it.
Finally, our findings contributes to the policy discussion regarding inter-

ventions to address the limitations to business growth. Our results highlight
that size-to-productivity wedges are especially prevalent for young businesses
but that dimensions internal to businesses are at least as important. On this
internal side, the focus has frequently been on efforts conducive to improve-
ments in technical effi ciency. For instance, research on managerial practices

8There are also important measurement and estimation issues. Our approach yields
detailed sectoral factor and demand elasticities. We construct the composite shock that
HK use conceptually from these estimates. In the absence of these estimates, further
differences in the contribution of fundamentals and wedges would emerge.
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that impact productivity has focused on production processes and employee
management (e.g. Bloom and Van Reenen, 2007; Bloom et al. 2016). Our
approach highlights the multidimensional character of growth drivers that
are internal to the business, including the appeal to costumers and input
prices potentially affected by its decisions. Our results align with those in
Atkin et al (2016) and Atkin et al (2019) in pointing at quality as crucial
driver of business growth, and at the fact that quality improvements may
impose costs in terms of technical effi ciency.
The paper proceeds as follows. Section 2 presents our conceptual frame-

work, defining each of the plant fundamentals that we characterize, and
our approach to decompose growth into contributions of those fundamen-
tal sources as well as wedges. We begin with an overview of our framework
and then provide more detail about the nested CES demand structure that
plays a critical role in our framework. We then explain the data used in
our empirical work, and the approach we use to measure fundamentals, in-
cluding the joint estimation of the parameters of production and demand,
respectively in sections 3 and 4 . Results and comparisons of our results with
previous approaches are presented in section 5. Section 6 examines the ro-
bustness of our results to using previous approaches and discusses the value
added of ours. Section 7 concludes.

2 Decomposing firm growth into fundamen-
tals vs wedges

We start with a simple model of firm optimal behavior given firm fundamen-
tals, to derive the relationship that should be observed between size growth
and growth in fundamentals as a firm ages. We also permit firm size to be
impacted by wedges. For consistency with the literature on business dynam-
ics, in our theoretical analysis we refer to a business as a “firm”, even though
the unit of observation for our empirical work is an establishment or plant.
The main fundamentals we consider are the effi ciency of the firm’s produc-
tive process (which we term TFPQ as in Foster, Haltiwanger and Syverson,
2008) and a demand shock. The conceptual framework below makes clear
what we mean by each of these, and the sense in which they are “fundamen-
tals”. Beyond measuring TFPQ and demand shocks, we observe unit prices
for inputs, in particular material inputs and labor.
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In the model, the firm chooses its size optimally given TFPQ, demand
shocks, input prices and wedges. As a result, growth over its life cycle is
driven by growth in each of them. This is the basis of our analysis. In the
spirit of a growth accounting exercise the framework remains silent about
the sources of growth of fundamentals, and rather asks how the firm adjusts
its size given those fundamentals, and contingent on survival.9 However,
we do explore the relationship between fundamentals and wedges. In the
appendix, we also explore the relationship between proxies for investment in
innovation and lagged fundamentals in our robustness analysis below. We
focus on decomposing the determinants of surviving firms up to any given age
but include robustness analysis of the determinants of survival in appendix
H. Appendix H shows that our main results are robust to consideration of
selection issues.
We don’t explicitly model dynamic frictions but take the shortcut in

recent literature on misallocation to permit wedges or distortions between
frictionless static first order conditions and actual behavior (e.g. Hsieh and
Klenow, 2009). Such distortions and wedges might capture factors such as
adjustment costs, information frictions and distortions arising from the busi-
ness climate.10 This shortcut enables us to use a simple static model of
optimal input determination to frame our analysis of growth between birth

9For instance, the seminal models of Hopenhayn (1992) and Melitz (2003), and much of
the work that has since followed in Macroeconomics and Trade. Endogenous productivity-
quality growth has made its way to these models more recently (e.g. Atkenson and
Burstein, 2010; Acemoglu et al. 2014; Hsieh and Klenow, 2014; Fieler, Eslava, and Xu,
2016). The firm’s efforts to strengthen demand may include investments in building its
client base (Foster et al., 2016), and adding new products and/or improving the quality
of its pre-existing product lines. Those to strangthen TFPQ may include better manage-
ment of the production process (e.g. Bloom and Van Reenen, 2007) or acquiring better
machines. The results of our decomposition shed light on the relative role and character-
istics of each of these accumulation processes, useful for providing guidance about future
research that explores the determinants of these fundamentals. We also do not formally
model the exit decision in the analysis below. Formally, adding this margin would be
straightforward as each period the firm would choose whether or not to continue based on
present discounted value considerations net of any fixed cost of operations (which we do
not explicitly model). Our analysis, contingent on the stay decision, would still be valid.
10This shortcut has limitations as the idiosyncratic distortions that we permit don’t

provide the discipline that formally modeling dynamic frictions imply. See, e.g.,
Asker, Collard-Wexler and DeLoecker (2014), Decker et. al. (2017), and David and
Venkateswaran (2018). But it has the advantage in subsuming in a simple measure differ-
ent types of frictions and distortions.
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and any given age. We permit the wedges or distortions to vary by firm
age which could be viewed as a proxy for permitting adjustment (or other)
frictions to vary by firm age.

2.1 Firm Optimization

Consider a firm indexed by f , that produces output Qft using a composite
input Xft to maximize its profits, with technology

Qft = AftX
γ
ft = aftAtX

γ
ft (1)

Aft is the firm’s technical effi ciency, TFPQ, which has an aggregate and
an idiosyncratic component (At and aft), while γ is the returns to scale
(in production) parameter. Equation (1) defines aft as the (idiosyncratic)
effi ciency of the productive process: how much output the firm obtains from
a unit of a basket of inputs. Firm f may be uni- or multi-product. Section
2.2 below discusses the definition of output Q for multi-product firms.
We use a CES preference structure (specified in more detail below) that

yields demand at the firm level to be given by:

Pft = DftQ
− 1
σ

ft = DtdftQ
− 1
σ

ft (2)

where Dft is a demand shifter, and σ is the elasticity of substitution between

firms . Dft has aggregate and idiosyncratic components Dt = Pt

(
Et
Pt

)1/σ

and

dft, respectively. Et is aggregate (sectoral) expenditure, and the aggregate

(sectoral) price index is given by Pt =
(∑NF

f=1 d
σ
ftP

1−σ
ft

) 1
1−σ

where NF is the
number of firms in the sector.
Firm appeal dft is measured from equation (2) as the variation in firm

price holding quantities constant, beyond aggregate effects. We refer to dft
generically as the firm’s (idiosyncratic) demand shock, intuitively capturing
quality/appeal. Notice also that, multiplying (2) by Qft :

Rft = DtdftQ
1− 1

σ
ft = Dt

(
QQ
ft

)σ−1
σ

(3)

where QQ
ft is quality-adjusted output defined as d

σ
σ−1

ft Qft. The idiosyncratic
component of sales is, thus, driven by quality adjusted output. Using the
CES preference structure discussed in more detail below, from which demand
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equation 2 can be derived, it is apparent that idiosyncratic firm sales are
closely linked to consumer welfare. As a result, the distribution of firm sales
growth is the central focus of our analysis, although we also apply our analysis
to real output.
Putting together technology and demand, the firm chooses its scale Xft

to maximize profits11

Max
Xit

(1− τ ft)PftQft − CftXft = (1− τ ft)DftA
1− 1

σ
ft X

γ(1− 1
σ )

ft − CftXft

taking as given Aft, Dft, and unit costs of the composite input, Cft.
There may be idiosyncratic revenue wedges τ ft, that create a gap between a
firm’s actual scale and that which would be implied by its fundamentals.12

Such wedges capture, for instance, adjustment costs, product-specific tariffs,
financing constraints, information frictions, and size-dependent regulations
or taxes. Adjustment costs break the link between actual adjustment and the
“desired adjustment”.13 Financing constraints may similarly limit the ability
of the firm to undertake optimal investments, and force it to remain smaller
than optimal and even potentially exit the market during liquidity crunches
even if its present discounted value is positive.14 The resulting τ ft may
be randomly distributed across plants or correlated with plant fundamentals
themselves. By their very nature, adjustment costs and financing constraints
are typically correlated with plant fundamentals. Size-dependent regulations
are a prominent example of correlated wedges, though certainly not the only
one.15 In estimating the role of wedges as determinants of life-cycle growth,
we distinguish between wedges that are orthogonal to fundamentals and those
potentially correlated with them.
We allow firms to hold market power, so that a firm’s market share may

be non-negligible. This also implies that in choosing its optimal scale, a firm
11Recall this is the characterization of the optimal size conditional on the firm deciding

to operate in the current period.
12As in Restuccia and Rogerson, 2009 and Hsieh and Klenow, 2009. Further below,

we also consider factor-specific distortions that, for given choice of Xit, affect the relative
choice of a given input with respect to others.
13See, for instance, Caballero, Engel and Haltiwanger (1995, 1997), Eslava, Haltiwanger,

Kugler, and Kugler (2010).
14Gopinath et al. (2017), Eslava et al. (2018)
15E.g. Garcia-Santana and Pijoan-Mas (2014) and Garicano et al. (2016).
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does not take as given the aggregate price index, Pt. Under these condi-
tions and the CES demand structure developed in section 2.2, variability in
markups across firms stems from market power (i.e., firms take into account
their impact on sectoral prices):

µft =
σ

(σ − 1)

1

(1− sft)
(4)

Where µft is the firm’s markup and sft =
Rft
Et
(proof: Appendix D). As in

Hsieh and Klenow (2009, 2014), marginal cost is defined inclusive of wedges,
so that µft =

Pft
∂CTft
∂Qft

(1−τ)−1
where CT is total cost.

Profit maximization yields optimal input demandXft =

(
DftA

1− 1
σ

ft γ

Cftµft(1−τft)
−1

) 1

1−γ(1− 1
σ )
,

which is then used to obtain optimal output and sales as functions of funda-
mentals (Dft, Aft, and Cft), wedges τ , and parameters. Subsequently divid-
ing each optimal outcome in period t by its optimal level at birth (t = 0), we
obtain (see Appendix B for a proof):16

Qft

Qf0

=

(
dft
df0

)γκ1
(
aft
af0

)1+γκ2
(
pmft

pmf0

)−φκ1
(
wft
wf0

)−βκ1
(
µft
µf0

)−γκ1

χtχft(5)

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2 (
χ̂tχft

)1− 1
σ

(6)

where where κ1 = 1

1−γ(1− 1
σ )
, κ2 =

(
1− 1

σ

)
κ1, and we have further as-

sumed Xft = K
β
γ

ftL
α
γ

ftM
φ
γ

ft, so that Cft is the corresponding Cobb-Douglas
aggregate of the growth of different input prices. Among input prices, two
are observed in the data: the price of material inputs, Pmft, and average
wage per worker, Wft. We allow for potential factor-specific wedges, lumped

16There is some slight abuse of notation here as t is used for calendar time and then for
every firm we create our life cycle measures by dividing its outcomes and determinants at
some given age by those outcomes and determinants at birth. We use the ratio of these
variables at age t to age at birth (t = 0).
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with revenue wedges and measurement error in χft.
17 As noted above, dft

and aft are the idiosyncratic components of Dft and Aft. Similarly, pmft

and wft are the idiosyncratic components of Pmft and Wft. Aggregate com-

ponents are lumped into χt =
(
Dt
D0

)γκ1
(
At
A0

)1+γκ2
(
Ct
C0

)−γκ1

.

Equations (5) and (6) are the focus of our analysis. We start with
the growth of (idiosyncratic) fundamentals that we can measure. Among
these, dft

df0
,
aft
af0
,
µft
µf0
, wft
wf0

,
pmft
pmf0

are, respectively, life cycle growth in idiosyn-
cratic demand shocks, TFPQ , markups, and shocks to wages and material
input prices. Crucially, χft captures idiosyncratic wedges, including those
stemming from τ ft, τMft , and τ

L
ft, from the unobservability of the user cost of

capital, and from residual variation from noise in fundamentals not observed
by the firm at the time of choosing its scale in each period. The wedges
that a firm faces may be age-specific, and thus de-couple life-cycle growth
in output from the growth of fundamentals.18 Idiosyncratic wedges to the
use of materials and labor relative to capital, τMft and τ

L
ft , may stem from

elements such as factor-specific adjustment costs, and subsidies/taxes to the
use of one input.

2.2 CES Demand Structure

In this subsection, we show that the firm-level demand structure used above
is consistent with single-product producers as well as multiproduct producers
using a CES preference structure. Taking into account multiproduct pro-
ducers is important in our context to be able to define and measure firm-level
output in a manner that captures within firm changes in product mix and
product appeal over time. The theoretical structure is such that we can mea-
sure output as revenue deflated with an appropriate firm-level price index.
As long as different products within a firm are not perfect substitutes, that

17χft =
δ
γκ1
ft α

1+γκ2
ft ζ

−γκ1
ft (1−τft)γκ1(1+τMft)

−φκ1(1+τLft)
−βκ1r

−ακ1
γ

ft

δ
γκ1
f0 α

1+γκ2
f0 ζ

−γκ1
0t (1−τ0t)γκ1(1+τMf0)

−φκ1(1+τLf0)
−βκ1r

−ακ1
γ

f0

where δft, αft, and ζft capture measurement error in, respectively, demand, technology
and input price shocks, and τL and τM are, respectively, wedges specific to labor and
materials with respect to capital.
18Some young firms may, for instance, have more dificulty in accessing financing, or

face greater adjustment costs than their older counterparts. Also, many startups enjoy
benefits that older firms do not face. This is the case, as an example, of small young firms
in Colombia who at times have been exempted from specific labor taxes.
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price index reflects product turnover and changing product appeal across ex-
isting products. To accomplish this we use the UPI approach developed by
Redding and Weinstein (2017) but also build on insights of Hottman et. al.
(2016).
Specifically, in the context of multiproduct firms we allow firm output

Qft to be a CES composite of individual products Qft =

∑
Ωft

dfjtq
σ−1
σ

fjt

 σ
σ−1

,

where qfjt is period t sales of good j produced by firm f , the weights dfjt
reflect consumers’ relative preference for different goods within the basket
offered by firm f , and Ωf

t is the basket of goods produced by f in year t. In
particular, consumers derive utility from a composite CES utility function,
with a CES layer for firms and another for products within firms. Consumer’s
utility in this general CES structure in period t is given by:

U (Q1t, ..., QNt) =

(∑
It

dftQ
σ−1
σ

ft

) σ
σ−1

(7)

where Qft =

∑
Ωft

dfjtq
σ−1
σ

fjt

 σ
σ−1

(8)

s.t.

NFt∑
f=1

∑
Ωft

pfjtqfjt = Et; (9)

∏
Ωft

d

1

‖Ω
f
t ‖

fjt = 1;
∏
It

d
1
‖It‖
it = 1 (10)

where pfjt is the price of qfjt, and It is the set of firms in period t. We
refer to dfjt and dft as, respectively product (within firm) and firm appeal
or demand shocks, defined as in equations 7 and 8: the weight, in consumer
preferences, of product fj in firm f ′s basket of products, and of firm f
in the set of firms. Given normalizations in equation (10), product appeal
dfjt captures the valuation of attributes specific to good fj relative to other
goods produced by the firm, while firm appeal dft captures attributes that are
common to all goods provided by firm f,, such as the firm’s customer service
and average quality of firm f’s products, in a constant utility framework.
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Both firm and product appeal may vary over time.
Equation (8) defines real output for a firm in this multiproduct frame-

work. As Hottman et al (2016) explain, in a multiproduct-firm context it is
not possible to define real output in absence of assumptions about demand.
The concept of real output “in theory equals nominal output divided by a
price index, but the choice of price index is not arbitrary: it is determined by
the utility function”(Hottman et al., 2016, page 1349). We define the real
output of a multi-product firm as an aggregate of single-product outputs, in
which each product receives a weight equal to its appeal to costumers, rel-
ative to that of other products within the firm. Given (10) this real output
measure is normalized by the average appeal of products within the firm.
The crucial relevant assumption here is that products within firms are not
perfect substitutes so that tracking product turnover and changing product
appeal within firms is critical for measuring firm-level output.
We assume the elasticity of substitution to be the same between and

within firms in a sector. This assumption implies we have a special case
of a nested CES with a nest for firms and another for products. Assuming
the same elasticity simplifies the analysis substantially by abstracting from
within firm cannibalization effects in a multi-product firm setting as explored
by Hottman et. al. (2016). As discussed above, our firms still recognize their
influence on the aggregate (sectoral) price level as they change their scale
yielding the firm-level variation in the markup. This simplifying assumption
also implies that in our estimation we can estimate the between firm elasticity
of substitution and then apply it for our measurement of firm-level price
indices.
Consumer optimization implies that the period t demand for product fj

and the firm revenue are, respectively, given by

qfjt = dσftd
σ
fjt

(
Pft
Pt

)−σ (
pfjt
Pft

)−σ
Et
Pt

(11)

Rft = QftPft = dσftP
1−σ
ft

Et

P 1−σ
t

(12)

where

Pft =

∑
Ωft

dσfjtp
1−σ
fjt

 1
(1−σ)

(13)
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, and that

Pft = DftQ
− 1
σ

ft = DtdftQ
− 1
σ

ft (14)

Equation (14) comes from dividing (12) by Pft and solving for Pft.19 The
implied firm-level price index is given by:

Pft =

∑
Ωft

dσfjtp
1−σ
fjt

 1
(1−σ)

(15)

Observe that (14) is identical to (2). This consistency is important as we
use (15) to construct firm-level prices (using the UPI framework of Redding
and Weinstein (2017) to express this price index in terms of observables).
It is also useful to note that in using (12) one obtains the analogous inter-
pretation of measured firm appeal (dft) used by Hottman et al (2016): dft
captures sales holding prices constant. This is akin to quality as defined by
Khandelwal (2010), Hallak and Schott (2011), Fieler, Eslava and Xu (2016),
and others. Foster et al (2016), in turn, interpret firm appeal as capturing
the strength of the business’client base.
Given our assumption of the same elasticity of substitution between and

within firms a natural question is whether firms still matter in this context.
Firms do matter for two reasons. First, our cost/production structure is
at the firm-level. That is, we specify the cost/production function as being
based on total output of the firm rather than product specific cost/production
functions as in Hottman et. al. (2016). We make this assumption for more
than the convenience that our input and input price data are at the firm level.
Our view is that if one queried most firms (in our case —really plants) to
specify input costs (capital, labor, materials and energy) on a product specific
basis they would be unable to do so since costs are shared across products
(i.e., there is joint production). That is, a firm is not simply a collection
of separable lines of production. A second reason that firms matter here is

19We follow Redding and Weinstein (2016) in our treatment of product entry and exit.
They don’t formally model the decisions to add and substract products but rationalize
the entry and exit of products through assumptions on the patterns of product specific
demand shocks. That is, they assume products enter when the product specific demand
shock switches from zero to positive and exits when the reverse occurs. We rationalize
product entry and exit in the same manner. We consider multi-product plants mostly
for the purpose of obtaining a plant-level price deflator that takes into account changing
multi-product activity.
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firms may be large enough in the market so that we depart from monopolistic
competition as firms don’t take the sectoral output price as given. For these
reasons, we specify a firm-level profit maximization problem but one that
recognizes multi-product producers for purposes of measuring firm-level price
deflators and in turn output.20

It is easily shown in our setting that the same logic as in Hottman et. al.
(2016) holds for the nested CES demand implications for markups. Specifi-
cally, the firm will charge the same markup on all products. This property of
nested demand systems is shown formally in appendix S2 of Hottman et. al.
(2016). They show that in this nested environment, the firm’s optimization
problem can be decomposed into two steps. The first step is to choose the
optimal level of output (the composite index of products) at the firm-level
using the approach described in section 2.1 (by optimal we mean inclusive
of any wedges). The second step is to choose products to minimize the to-
tal costs of producing all products subject to the constraint associated with
the optimal level of firm-level output. Hottman et. al (2016) show that in
this second step it is optimal for the firm to choose products so that the
ratio of marginal costs across products is equal to the ratio of marginal utili-
ties. Since consumers maximization yields that the ratio of marginal utilities
across products is equal to the ratio of prices this implies the markups must
be the same across products.21

3 Data

3.1 Annual Manufacturing Survey

We use data from the Colombian Annual Manufacturing Survey (AMS) from
1982 to 2012. The survey, collected by the Colombian offi cial statistical
bureau DANE, covers all manufacturing establishments (=plants) belonging
to firms that own at least one plant with 10 or more employees, or those with

20A limitation of our approach is we do not model the endogenous entry and exit of new
products but follow Redding and Weinstein (2017) as noted by assuming new products
arrive exogenously when dfjt goes from zero to positive and exits when dfjt goes to zero.
21There are some important differences with Hottman et. al. (2016) since they allow

for product specific random cost shocks. We don’t permit such random product specific
cost shocks but the logic that markups are the same across products does not depend on
such shocks.
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production value exceeding a level close to US$100,000. Our sample contains
23,292 plants over the whole period, with 7,670 plants in the average year.
Each establishment is assigned a unique ID that allows us to follow it over

time. Since a plant’s ID does not depend on an ID for the firm that owns
the plant, it is not modified with changes in ownership, and such changes are
not mistakenly identified as plant births and deaths. 22

Surveyed establishments are asked to report their level of production and
sales, as well as their use of employment and other inputs, their purchases
of fixed assets, and the value of their payroll. We construct a measure of
plant-level wage per worker by dividing payroll into number of employees,
and obtain the capital stock using perpetual inventory methods, initializing
at book value of the year the plant enters the survey. Sector IDs are also
reported, at the 3-digit level of the ISIC revision 2 classification.23 Since
2004, respondents are also asked about their investments in innovation, with
biannual frequency, in a separate "innovation and development" survey.
A unique feature of the AMS, crucial for our ability to decompose fun-

damental sources of growth, is that inputs and products are reported at a
detailed level. Plants report separately each material input used and product
produced, at a level of disaggregation corresponding to seven digits of the
ISIC classification (close to six-digits in the Harmonized System). For each
of these detailed inputs and products, plants report separately quantities and
values used or produced, so that plant-specific unit prices can be computed
for both individual inputs and individual outputs. The average (median)
plant produces 3.56 (2) products per year and employs 11.17 (9) inputs per
year (Table 2).
Plant-specific unit prices on inputs imply that we directly observe idiosyn-

cratic input costs for individual materials. Furthermore, by taking advantage
of product-plant-specific prices, we can produce plant-level price indices for
both inputs and outputs, and as a result generate measures of productivity
based on output, estimate demand shocks, and consider the role of input

22Plant IDs in the survey were modified in 1992 and 1993. To follow establishments
over that period, we use the offi cial correspondence that maps one into the other.The
correspondence seems to be imperfect (as suggested by apparent high exit in 92 and high
entry in 93), but even for actual continuers that are incorrectly classified as entries or
exits, our age variable is correct (see further below).
23The ISIC classification in the survey changed from revision 2 to revision 3 over our

period of observation. The three-digit level of disaggregation of revision 2 is the level at
which a reliable correspondence between the two classifications exists.
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prices in plant growth. Details on how we go about these estimations are
provided in section 4. Our product level data are not at the detailed UPC
code level of Hottman et. al. (2016), but we observe them at the plant-
by-product-by-year level, which offers key advantages relative to other data
sources. Unlike UPC codes, our product-level information is available by
plant (physical location of production) rather than the aggregate firm, and is
jointly observed with input use by that plant. And, unlike transactions data
for imports (used, for instance by Feenstra, 2004, and Broda and Weinstein,
2006), we observe them not only at the product level (at similar levels of
disaggregations with respect to imports transactions data) but by producer
at a physical location.
Importantly for this study, the plant’s initial year of operation is also

recorded—again, unaffected by changes in ownership—. We use that informa-
tion to calculate an establishment’s age in each year of our sample. Though
we can only follow establishments from the time of entry into the survey, we
can determine their correct age, and follow a subsample from birth. Based
on that restricted subsample, we generate measurement adjustment factors
that we then use to estimate life-cycle growth even for plants that we do
not observe from birth.24 We restrict all of our analyses to plants born after
1969. Our decomposition results are in general robust to using the subsample
observed from birth rather than the full sample, although estimated with less
precision and for a shorter life-span. About a third of plants in our sample
are observed from birth.

3.2 Plant-level prices built from observables

A crucial feature of our theoretical framework is that it allows the evolution
of the plant size distribution to respond to changes in relative product appeal,
both within the plant and across plants. Output can be adjusted for appeal
(or quality) differences across products within the firm by properly deflating

revenue with the exact plant level price index, Pft =
(∑

Ωft
dσfjtp

1−σ
fjt

) 1
(1−σ)

.

Since the index depends on unobservable σ and {dfjt} and thus cannot be
constructed readily from observables, we use Redding and Weinstein’s (2017)
Unified Price Index (UPI) approach as the appropriate empirical analogue or
our theoretical price index. The UPI adjusts prices to take into account the

24See Appendix 1.2 for details.
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evolution of the distribution of in-plant product appeal shifters, emanating
both from changes in appeal for continuing products and the entry/exit of
products.
In particular, the UPI logs change in f ′s price index is given by:

ln
Pft
Pft−1

=
∑

Ωt,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ωt,t−1‖
+

1

σ − 1

(
lnλQRWft + lnλQfeeft

)
(16)

where Ωf
t,t−1 is the set of goods produced by plant f in both period t and

t − 1. λQfeeft =

∑
Ω
f
t,t−1

sfjt∑
Ω
f
t,t−1

sfjt−1
is Feenstra’s (2004) adjustment for within-plant

appeal changes from the entry/exit of products. λQRWft =
∏

Ωt,t−1

(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1

‖Ωt,t−1‖

is Redding-Weinstein’s adjustment for changes in relative appeal for continu-
ing products within the plant, which deals with consumer valuation bias that
affects traditional approaches to the empirical implementation of theory mo-
tivated price indices.25 The derivation of the UPI price index is presented
in Appendix A. The derivation requires imposing the normalization that∑
Ωft,t−1

ln d

1

‖Ωt,t−1‖
fjt = 0. That is, the UPI adjusts for relative appeal changes

within the plant, while average appeal changes for the plant are captured by
dft.

Building recursively from a base yearB and denoting P ∗ft =
t∏

l=B+1

 ∏
Ωt,t−1

(
pfjt
pfjt−1

) 1

‖Ωt,t−1‖
,

ΛQRW
ft =

t∏
l=B+1

[(
λQRWfl

)]
and ΛQfee

ft =

t∏
l=B+1

[(
λQfeefl

)]
, we obtain:

25Sato (1976) and Vartia (1976) show how the theoretical price index can be implemented
empirically under the assumption of invariant firm appeal shocks and constant baskets of
goods. Feenstra (2004) derives an empirical adjustment of the Sato-Vartia approach that
takes into account changing baskets of goods, keeping the assumption of a constant firm
appeal distribution for continuing products. It is this last assumption that the UPI relaxes.
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Pft = PfB ∗ P ∗ft ∗
(

ΛQRW
ft ΛQfee

ft

) 1
σ−1

(17)

= PfB ∗ P ∗ft ∗
(

ΛQ
ft

) 1
σ−1

where PfB is the plant-specific price index at the plant’s base year B. We
initialize each plant’s price index at PfB, which takes into account the average
price level in year B and the deviation of plant f ′s product’s prices from the
average prices in the respective product category in that year. Details are
provided in Appendix A.
From (17), to move from our calculated P ∗ft to the exact price index Pft,

we need to adjust for the factor
(

ΛQ
ft

) 1
σ−1
, which depends on σ. In turn,

the estimation of σ requires information on Pft (see section 4). We thus

work initially with P ∗ft and carry the adjustment factor
(

ΛQ
ft

) 1
σ−1

into the
derivations of section 4, where its contribution to price variability is flexibly
estimated. In particular

Q∗ft =
Rft

PfBP ∗ft
= Qft ∗

(
ΛQ
ft

) 1
σ−1

(18)

We take advantage of this expression in estimating both the production
and demand functions using observables. We similarly obtain a measure of
materials by deflating material expenditure by plant-level price indices for
materials, pmft, using information on prices and quantities of material inputs
at the detailed product class level. We construct pmft using an analogous
approach to that used to construct output prices. See Appendix A for
details.
In an alternative approach against which we compare our baseline quality-

adjusted prices (adjusted for quality differences within the firm), we examine
the robustness of our results to using “statistical” price indices based on
either constant baskets of goods, or on divisia approaches, and to the Sato-
Vartia-Feenstra approach. These are discussed in section 6.3. We find that
the impact of deflating with quality-adjusted plant-level price indices is more
important on the output relative to the materials input side.26

26A more complete statement is that using a Divisia-based price index for materials
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4 Estimating TFPQ and demand shocks

Calculating TFPQ and demand shocks requires estimating the production
and demand functions, 1 and 14. Once the coeffi cients of these functions
have been estimated, TFPQ is the residual from 1 and the demand shock is
the residual from 14.
We implement a joint estimation procedure. Jointly estimating the two

equations allows us to take full advantage of the information to which we
have access to separate supply from demand in the data. As a result, we can
estimate production rather than revenue elasticities, even for multiproduct
plants, and simultaneously obtain an unbiased estimate of σ. We impose a
set of moment conditions that requires less structure overall, and weaker re-
strictions on the covariance between TFPQ and demand shocks, than other
usual estimation methods of the demand-supply system. This is in part pos-
sible thanks to the fact that we have access to price and quantity information
for both inputs and outputs. Data on inputs informs the estimation directly
about the production side, thus allowing us to separate it from demand under
weaker restrictions than if we only used information on prices and quanti-
ties for outputs (as in, for instance, Broda and Weinstein, 2006, or Hottman,
Redding and Weinstein, 2016). On the production side, data on prices allows
us to properly both production and revenue elasticities.
Beyond the usual simultaneity biases and restrictions on supply vs de-

mand , the estimation of 1 and 14 faces the problem that, until we have an
estimate of σ, we are unable to properly construct Pft, and thus Qft =

Rft
Pft

(see section 3.2). We therefore need to rely on Pft’s two separate compo-
nents: P ∗ft and ΛQ

ft. We proceed in three steps to address this limitation
(details provided further below):

1. Jointly estimate the coeffi cients of the production function 1 and the

demand function 14, using Q∗ft =
Rft

PfBP
∗
ft

= Qft ∗
(

ΛQ
ft

) 1
σ−1

and P ∗ft =

Pft(ΛQft)
−1
σ−1

PfB
as the respective dependent variables / regressors of these

two functions. We carry ΛQ
ft as a separate regressor in each equation

to deal with potential biases from the measurement error induced by
the—at this point—still partial estimation of revenue deflators. Similarly

accomplishes much of what the UPI does for materials. See Appendix A and I for more
details.
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introduce separately M∗
ft and ΛM

ft in the production function (where
Mft = materials expenditure

PMfBPM
∗
ft

, and ΛM
ft is the adjustment factor for the prices

of materials analogous to ΛQ
ft see Appendix A). The joint estimation is

conducted separately for each three-digit sector.

2. Use the estimated demand elasticity σ̂ for the respective three-digit

sector to obtain Pft = PfB ∗ P ∗ft ∗
(

ΛQ
ft

) 1
σ̂−1

and subsequently Qft =(
Rft
Pft

)
. Proceed in an analogous way to obtain a quantity index for

materials, Mft.

3. Using Pft, Qft,Mft (now properly estimated) and the estimated co-
effi cients of the production and demand functions, obtain residuals
TFPQft and Dft. We note that, in estimating TFPQft and Dft as
residuals at this stage, we first deviate Pft, Qft,Mft, Lft and Kft from
sector*year effects, so that from this stage on, only idiosyncratic vari-
ation in TFPQft and Dft is considered.

We now explain step 1 in detail.

4.1 Joint production-demand function estimation

We jointly estimate the log production and demand functions:

lnQft = α lnKft + β lnLft + φ lnMft + lnAft (19)

and

lnPft = α− 1

σ
lnQft + lnDft (20)

where Qft =
(
Rft
Pft

)
. Using 17 and 18, the system can be rewritten:

lnQ∗ft = α lnKft + β lnLft + φ lnM∗
ft +

1

σ − 1
ln ΛQ

ft −
φ

σ − 1
ln ΛM

ft + lnAft

(21)
and

lnP ∗ft = α− 1

σ

(
lnQ∗ft + ln ΛQ

ft

)
+ lnDft (22)
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We estimate 21 and 22, which are transformations of the original produc-
tion and demand functions, rather than those original forms.
The usual main concern in estimating these functions is simultaneity bias.

In the production function, this is the problem that factor demands are
chosen as a function of the residual Aft. A standard approach to deal with
this problem is the use of proxy methods, as in Ackerberg, Caves and Frazer
(2015, ACF henceforth), De Loecker and Warzinski (2012) and many others.
In the demand function, simultaneity arises because both price and quantity
respond to demand shocks. Usual demand estimation approaches rely on
assumptions regarding orthogonality between demand and supply shocks at
some particular level. Foster et al (2008) impose orthogonality between the
levels of TFPQ and demand shocks, while in Broda and Weinstein (2006)
and Hottman, Redding and Weinstein (2016) double-differenced demand and
marginal cost shocks are assumed orthogonal.
We build on these approaches, but take advantage of prices and quan-

tities for both inputs and outputs, and the consequent possibility of jointly
estimating 21 and 22, to relax the assumptions about covariance between
demand and supply shocks that identify the elasticity of substitution. We
rely on flexible laws of motion for both TFPQ and demand shocks:

lnAft = πA0 + πA1 lnAft−1 + πA2 lnA
2
ft−1 + πA3 lnA

3
ft−1 + ξAft

lnDft = πD0 + πD1 lnDft−1 + πD2 lnD
2
ft−1 + πD3 lnD

3
ft−1 + ξDft

That is, ξAft is the stochastic component of the innovation to TFPQ.
Given this structure, our identification of production and demand elasticities
(α, β, φ, σ) uses standard GMM procedures, imposing the following set of
moment conditions (further details provided in Appendix F):
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lnM∗
ft−1 × ξAft

lnLft × ξAft
lnKft × ξAft
lnDft−1 × ξAft

lnAft
lnDft

 = 0 (23)

As in ACF-based methods, we purge measurement error in a first stage
of the estimation (Appendix F) and assume that, depending on whether in-
puts are freely adjusted or quasi-fixed, they respond to stochastic innovations
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to TFPQ contemporaneously or with a lag, respectively. We assume that
materials are freely adjusted while the demand for capital and labor is as-
sumed quasi-fixed. Thus, in 23 we impose lagged materials demand to be
orthogonal to current TFPQ innovations, while L and K are required to be
contemporaneously orthogonal to ξAft. The assumption that K is quasi-fixed
is standard, as is that indicating that M adjusts freely.27 L is also assumed
quasi-fixed in our context because important adjustment costs have been
estimated for the Colombian labor market (e.g. Eslava et al. 2013). We
follow DeLoecker et. al. (2016) in treating L as quasi-fixed for purposes of
estimation.
The condition that Dft−1 must be orthogonal to ξ

A
ft identifies σ, follow-

ing the logic that the slope of the demand function can be inferred taking
advantage of shocks to supply. Foster et al (2008, 2016) and Eslava et al
(2013) relied on the same logic but imposed orthogonality between demand
and technology shocks in levels. This effectively precludes the possibility
that firms endogenously invest in quality when they perceive better returns
(as would be the case with higher TFPQ) and correlations between demand
shifters and TFPQ shocks if greater quality is more diffi cult to produce.28

Hottman, Redding and Weinstein (2016) and Broda and Weinstein (2006,
2010) partly address these criticisms by imposing orthogonality only between
double-differenced demand and supply shocks (double differencing over time
and varieties). Imposing the orthogonality of the double-differenced shocks
is still a strong assumption. Given our ability to specify demand and pro-
duction separately given the price and quantity data of both output and
inputs, we impose E(lnDft−1 × ξAft) which permits a correlation between
changes in TFPQ and demand even within the plant. While we are still
taking advantage of shocks to the supply curve to identify the elasticity of
demand, we only require that innovations in technical effi ciency in period t
be orthogonal to demand shocks in t− 1.

27For lnMft−1 to be useful in the identification of φ, it must be the case that input
prices are highy persistent. The AR1 coeffi cient for log materials prices is 0.95 in our
sample.
28R&D decisions that are endogenous to current profitability and affect future prof-

itability, for instance, are present in Aw, Roberts and Xu, 2011. Their framework does
not separately identify the demand and technology components of profitability, but both
could plausibly respond dynamically. In turn, the idea that quality is more costly to pro-
duce appears in Fieler, Eslava, and Xu (2018), to characterize cross sectional correlations
between quality and size.
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Notice also that TFPQ obtained as a residual from quality-adjusted Q
is stripped of apparent changes in productivity related to within-firm appeal
changes, eliminating a source of correlation between appeal and effi ciency
stemming from measurement error. Moreover, since we use plant-specific
deflators for both output and inputs, our estimation is not subject to the
usual bias stemming from unobserved input prices (De Loecker et al. 2016).29

We implement this estimation separately for each three digits sector of
ISIC revision 3.30 We obtain plausible factor elasticities for almost all sectors
at the three digits sector, which is an encouraging sign of the suitability
of our method and data since proxy methods are usually implemented in
estimations at the two-digit level, and frequently yield implausible results—
in particular negative estimated factor coeffi cients for several sectors—at finer
levels of disaggregation. Still, if fully unconstrained, our joint estimation does
deliver implausible results for a few sectors. In particular, the unconstrained
estimation yields γ(1 − 1

σ
) > 1 for four (out of 23) three-digits sectors, and

negative factor coeffi cients in production for two sectors. When γ(1− 1
σ
) > 1

there is not the requisite curvature in the revenue function for a well-defined
optimal size. We thus further constrain γ(1 − 1

σ
) to be 0.9 or less.31 We

test and discuss the robustness of our results to changing this constraint in
sensitivity analysis below. The curvature of the revenue function estimated

29De Loecker et al (2016), use plant-level deflators for output but not for inputs. This
induces a bias stemming from unobserved input price heterogeneity, that they address
by including plant level output prices as controls in their estimation of the production
function, under the assumption that output prices enter the determination of input prices.
Furthermore, they address the within-plant aggregation issue by constraining their esti-
mation of the production function to uniproduct plants, where output quantity is observed
and well defined. The issue of how to properly compare units of output of different prod-
ucts across plants, however, remains unresolved. Our approach points that appeal shifters
Dfj (and thus quality adjustment of output across plants) addresses this issue.
30More precisely, we use the offi cial Colombian-adapted ISIC (CIIU for its Spanish

acronym), revision 3. The data are originally codified using ISIC revision 2 until 1997
and revision 3 from 1998 onwards. We use the offi cial correspondence tables to obtain
a consistent codification over time. At the three digit level the correspondence is almost
one-to-one. To solve the few cases in which it is not, we lump together a few sectors We
end up with 23 three-digits sectors.
31Only sectors for which this is violated in the unconstrained estimation are re-estimated

imposing the constraint. We still obtain a negative coeffi cient for labor in production for
one sector and an elasticity of substitution below one for another sector. For these two
sectors, we impose the full set of factor and substitution elasticites estimated for the closest
sectors. We also conduct robustness analysis in appendix C.
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Sector β α φ σ γ γ(11/σ)

Average 0.45 0.20 0.44 3.10 1.09 0.63
Min 0.12 0.05 0.01 1.23 0.95 0.23
Max 0.91 0.57 0.75 7.59 1.29 0.90

Table 1. Factor and demand elasticities

or imposed in the literature usually ranges between 0.67 and 0.85. In HK,
the combination of CRS in production, CES demand and an elasticity of
substitution of 3 implies a revenue curvature parameter of 0.67.
The estimated factor and demand elasticities are summarized in table 1

and listed in Appendix I. Our results reveal slightly increasing returns to scale
in production at the three-digits sector level for most sectors. The estimated
elasticity of substitution stands at an average of 3.15, and varies substantially
across sectors, from 1.23 for plastics to 7.59 in processed food. The revenue
function curvature parameter stands at an average 0.63. While our average
estimated curvature of the revenue function is not far from that imposed
by HK, there is substantial dispersion across three-digits sectors. We show
below how ignoring this heterogeneity dampens the estimated contribution
of wedges to sales variability.

5 Results

5.1 Outcome growth over the life cycle

We use the estimated demand elasticity σ̂ to construct lnPft = ln
(
PfBP ∗ft

)
+

1
σ̂−1

ln ΛQ
ft and subsequently recover Qft =

Rft
Pft
. We proceed in an analogous

way to construct pmft and Mft.32 To build idiosyncratic life cycle growth in
revenue, Rft

R0t
, we first deviate revenue from sector*year effects and then obtain

the ratio of current to initial (idiosyncratic) revenue. All other outcome
variables, in particular employment, capital, materials, output prices and
input prices are also stripped from sector*year effects before building life

32I.e. we use the same measurement approach incorporating multi-materials inputs
to construct the plant-level deflator for materials, and use it to deflate expenditures in
materials to arrive at materials inputs. We use the same elasticity of substitution at the
sectoral level for this purpose.
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cycle growth (Zft
Z0t

for each variable Z). Also, when building TFPQ, D,
and µ we only exploit idiosyncratic (i.e. within sector*year) variation in the
levels of outcomes. That is, from this point, we will be dealing exclusively
with the idiosyncratic component of life cycle growth, for both outcome and
fundamental variables.33

We define age as the difference between the current year, t , and the year
when the plant began its operations, and define the plant’s revenue (or other
outcome) level at birth Rf0 as the average for ages 0 to 2. By averaging
over the plant’s first few years in operation we deal with measurement error
coming, for instance, from partial-year reporting (e.g. if the plant was in
operation for only part of its initial year).
The solid black lines in Figure 1 present mean growth from birth for

output, sales and employment. As in the rest of figures throughout the
paper, we use a logarithmic scale. The average establishment in our sample
grows by a factor of 2.3 in terms of output by age 10, and almost 6 times by
age 25.34 Average life-cycle revenue growth is more modest, growing four-fold
rather than six-fold by age 25. For comparison with existing literature on
life-cycle growth, the lower panel presents analogous results for employment:
Lft
L0t
. By age 10 the average establishment has almost doubled it employment,

and 25 years after birth employment it has grown more than three-fold.35

These average growth dynamics, however, hide considerable heterogene-
ity. Median growth (dashed line) falls under mean growth for all panels,
highlighting the fact that it is a minority of fast-growing plants that drive
mean growth. Related, the distribution of plant growth is highly skewed,
displaying a much more marked gap for the 90th-50th percentiles than for
the 50th-10th. By age five, for instance, while the average plant has multi-
plied its output at birth by a 1.63 factor, the plant in the 90th percentile has
multiplied it by 2.76, the median plant by 1.51, and the plant in the 10th per-
centile has shrank to 63% of its original size. At age ten the 90th percentile
of life cycle similarly more than doubles the median (4.32 rather than 1.91).
Employment and sales growth are characterized by similarly wide dispersion

33We also winsorize life cycle growth for each variable at 1% and 99% to eliminate
outliers that may drive the results of our decompositions.
34More precisely, QfaQf0

= 1.63 when a = 5, QfaQf0
= 2.35 when a = 10, and Qfa

Qf0
= 5.57

when a = 25.
35 For revenue and employment, we have Rfa

Rf0
= 1.6 and Lfa

Lf0
= 1.4 when a = 5,

Rfa
Rf0

= 2.17 and Lfa
Lf0

= 1.93 when a = 10, and Rfa
Rf0

= 4.03 and Lfa
Lf0

= 3.22 when a = 25.
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and marked skewness.
Eslava et al. (2018) show that, though dispersion in life-cycle growth

across Colombian manufacturers is large and highly skewed towards a dy-
namic top decile, both dispersion and skewness fall short of that observed
in the U.S. This is consistent with the view that less developed economies
are characterized by less dynamic post-entry growth. Hsieh and Klenow
(2009) and Buera and Fattal (2014) attribute such cross-country differences
to institutions that fail to encourage investments in productivity and healthy
market selection in developing economies. Identifying the role that specific
institutions play is an interesting area of future research.36

We emphasize that we can measure life cycle growth directly using longi-
tudinal data for each plant, rather than relying on cross-cohort comparisons.
This approach addresses some of the usual selection concern in the literature
of business’life cycle growth. Still, we can only characterize and decompose
growth for survivors. Appendix H describes life-cycle growth for exits-to-be,
showing that the patterns in Figure 1 are mainly driven by plants that will
survive (so the exit bias is small).

36Within-country changes in institutions, either across businesses or over time (or both)
offer a fruitful ground for such exploration, to the extent that they keep constant other
factors potentially influencing business dynamics, from the macroeconomic environment
to business culture. We undertake that exploration for Colombia, taking advantage of
changes in import tariffs, in a separate paper.
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5.2 TFPQ and demand shocks

As indicated, TFPQft and Dft are recovered as residuals from, respectively,
the production function (1) and the demand function (14), using the es-
timated factor and demand elasticities reported in Table 1, and deviating
Qft, Lft, Mft, and Kft from sector*year effects previously, so that TFPQft

and Dft contain only idiosyncratic variation. Table 2 presents basic sum-
mary statistics for (the idiosyncratic component of) sales and our estimates
of output, output prices, lnAft, lnDft, wedges, markups and input prices.37

Idiosyncratic dispersion in sales, output, output prices, TFPQ, demand,
wedges and input prices is large.

TFPQ is strongly negatively correlated with output prices, which is in-
tuitive to the extent that more effi cient production allows charging lower
prices (consistent with findings for Colombia in Eslava et al., 2013, and for
commodity like products in the US in Foster et al. 2008, 2016, though by
contrast with those products endogenous quality may be more relevant in
our context). To the extent that quality is more diffi cult to produce, demand
shocks and technical effi ciency may be negatively correlated. This is indeed
the case in our estimates, also consistent with Forlani et al. (2018). Though
markups display little variability, they are positively correlated with TFPQ,
D and wages. Especially interesting is the negative and strong correlation
of wedges with TFPQ and demand shocks, suggesting that the plants with
the best fundamentals are implicitly taxed the most.38 These basic corre-
lation patterns remain true for within-plant correlations, and are echoed in
our growth decompositions below.
The within sector*year distributions of the evolution over the life cycle of

fundamentals and wedges are displayed in Figure 2, including the life cycle
growth of TFPQ and demand shocks, markups, material input prices and
wages. The average growth of demand shocks dominates that of input prices,
and both dominate the average growth of TFPQ, and markups over the life
cycle. By age 25, TFPQ has barely grown on compared to birth on average,
while the demand shifter has grown on average close to two-fold. Part of
what is driving the contradicting TFPQ-demand patterns in Figure 2 is the

37As explained above, TFPQ and demand shocks are obtained using only the idiosyn-
cratic components of Q, prices and inputs.

38Log wedges are residuals: lnχlevelft = ln

(
Rft

d
κ1
jt a

κ2
jt pm

−φκ2
jt w

−βκ2
jt µ

−γκ2
jt

) 1

1− 1
σ (see equation

6, where we ignore χt since table 2 presents only idiosyncratic variation)
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Total Avg. year Avg. P25 P50 P75 Avg. P25 P50 P75
23,292 7,670 3.56 1 2 5 11.17 5 9 14

Standard
Deviation Sales Output

Output
prices TFPQ

Demand
Shock Input prices

Average
wage

Markup
Sales

Wedge
1.426 1.000
1.605 0.886 1.000
0.719 0.008 0.442 1.000
0.871 0.148 0.464 0.724 1.000
0.742 0.746 0.398 0.600 0.312 1.000
0.691 0.040 0.095 0.135 0.237 0.058 1.000
0.422 0.606 0.516 0.056 0.100 0.490 0.001 1.000
0.029 0.625 0.561 0.009 0.091 0.462 0.032 0.400 1.000
1.327 0.242 0.191 0.055 0.479 0.224 0.017 0.009 0.080 1.000Sales Wedge

Output
Sales

  (within sector*year, all variables in logs, average sector)
Panel B.Standard deviations and correlation coefficient for outcomes and fundamentals

Markup

Output prices
TFPQ
Demand Shock
Input prices
Average wage

Table 2. Descriptive statistics

Number of plants Number of products per plant Number of materials per plant
Panel A. Number of plants, number of products and materials per plantyear

evolution of the negative correlation between the life cycle growth of TFPQ
and that of demand shocks. At age 3, the correlation is -0.152, at age 10, -
0.264 and by age 20, -0.324. The rapid rise of product appeal/quality over the
life cycle comes at the cost of dampening the growth of TFPQ. The interplay
between output prices and demand shocks is also interesting: with growing
output over the life cycle, downward sloping demand would imply that the
plant would have to charge ever shrinking prices over its life cycle, unless the
appeal of f to costumers changed over time. We do not observe such fall in
output prices, signaling increasing ability of the firm to sell more at given
prices. By construction, this is what the life cycle growth of the demand
shock, D̂ft, captures. Markups barely vary over the life cycle and across
deciles of the distribution, to the point that the variation is not observable
to the naked eye compared to the scale of variation of other fundamentals.

5.3 Decomposing growth into fundamental sources

We now decompose the variance of Rft
Rf0

and Qft
Qf0

into contributions associated
with different fundamental sources, most notably TFPQ and demand shocks
(equations (5) and (6)). We follow a two stage procedure, similar to that
in Hottman et al. (2016), but implement two variants of it: a structural
decomposition and a reduced form decomposition. We summarize each in
this section. Details are provided in Appendix G.
Structural decomposition: As shown in Appendix G, the contribution

of growth in each (log) fundamental to the variance of growth of (log) sales
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depends on the covariance between the two, the dispersion of both, and the
elasticity of sales to that fundamental, given by the corresponding structural
parameter in equation 6, reproduced below:

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2 (
χ̂tχft

)1− 1
σ

(24)
where κ1 = 1

1−γ(1− 1
σ )
, κ2 =

(
1− 1

σ

)
κ1, and γ and σ have been estimated

as explained above. In particular, the contribution of the life cycle growth
of TFPQ to the life cycle growth of sales is given by the product: κ2 ∗

corr
(
ait
ai0
, Rit
Ri0

)
∗
std
(
ait
ai0

)
std
(
Rit
Ri0

) . An analogous formula applies for the other potential
sources of growth

The term
(
χ̂tχft

)1− 1
σ in 24 is calculated as a residual, since all of the

other components are either measured or estimated. From equation 6 , error
term lnχft captures life cycle growth in wedges, including distortions from
regulations, adjustment costs, and other factors, and measurement error. Be-
cause these wedges simply reflect the gap between actual growth and that
predicted by fundamentals through the lens of our model, they reflect all
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sources for such gaps, including some that may be correlated with funda-
mentals themselves. Thus, these wedges may imply exacerbated growth if
plants with better fundamentals also exhibit higher wedges than plants with
worse fundamentals, or dampened growth in the opposite case. We conduct
an analogous decomposition for output, following equation (5).
The first bar of Figure 3 depicts the result of this decomposition, pool-

ing across ages, and reporting the contributions of material prices and wages
together to simplify the figure. We find that the structural contribution of
fundamentals explains the bulk of sales growth over the life cycle. Taken
together, fundamentals in fact account for more than 100% of the variance of
growth across plants within a sector (a fact we turn to further below). The
demand shock is ten times as important as TFPQ to explain idiosyncratic
sales growth (or quality adjusted output growth). Input prices make smaller,
but far from negligible, contributions. This reflects the fact that, for the av-
erage sector and pooling across ages, the covariance of demand shocks growth
with sales growth is more than three-fold that between TFPQ growth and
sales growth, and the coeffi cient associated with demand growth in equation
24 is also much larger than that for TFPQ (Table 3). The significant nega-
tive correlation between TFPQ and demand shocks undoubtedly plays a role
in this fact. In the case of markups growth, its contribution to the variance
of sales growth is minimal, not even visible in the graph, reflecting market
shares concentrated around zero in most sectors.mantribution of TFPQ for
output growth volatility as compared to sales is not surprising, the fact that
demand shocks still account for almost 20% of real output growth volatil-
ity is interesting, especially in a context where real output growth has been
adjusted for within plant changes in product mix and quality.
The dominance of demand-side fundamentals over supply side in explain-

ing the variance in sales resonates with recent findings in the literature
(Hottman et al. 2016, Foster et al. 2016). It is, however, noticeable that
this finding survives the expansion of the measurement framework to explic-
itly account for wedges. The availability of price and quantity data together
with data on input use, rare in the literature and enabled by the richness
of the Colombian data, is crucial to identify wedges from the gap between
actual growth and that predicted by fundamentals (see detailed discussion
in section 6).
Input prices, especially that of labor, also play a dampening role for the

variability of sales. This is consistent with Table 2 that shows a positive
correlation between input prices and wages in particular with TFPQ and
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demand. The variation in wages across plants might reflect many factors.
For example, it may reflect the geographic segmentation of labor markets as
well as institutional barriers or other frictions in the labor market. Viewed
from these perspectives, the variation in wages might reflect factors that
would show up in size-to-productivity wedges. Similar remarks apply to
materials prices. However, with respect to wages, the correlations in Table
2 with the accompanying dampening implications suggest that some of this
might reflect unmeasured quality differences. We deal with quality differ-
ences for materials inputs by building a quality-adjusted deflator, but not
for labor, which is not broken down by skill categories in the Manufactur-
ing Survey for the long period covered by our estimations. To address the
relative importance of these two possible sources of sales variance arising
from wages, we take advantage of data on broad skill categories available for
2000-2012 and construct quality-adjusted wages and a quality-adjusted labor
input given by the payroll deflated with our adjusted wages. Skill categories
are production workers without tertiary education, production workers with
tertiary education and administrative workers. Implementing our decompo-
sition with this alternative measure of wages rather than the average wage
per worker (Table J1, appendix J) reduces the negative contribution of wages
for 2000-2012 from -0.128 to -0.058, suggesting that increasing labor quality
explains about half the dampening role of wages over the variance of sales.
Moreover, consistent with this interpretation, we find that accounting for
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labor quality reduces the positive contribution of TFPQ by about the same
amount as the decrease in the negative contribution of wages. In turn, there
is virtually no impact on the contribution of wedges, demand or other factors.
A striking feature of these results is that the wedge contributes negatively

to the variance of life cycle growth of both output and sales (or quality ad-
justed output). That is, the different sources of wedges captured in this term
dampen the effect of fundamentals growth on outcome growth, implying that
high-productivity high-appeal plants grow less relative to low-productivity
and appeal plants than their respective fundamentals would imply. The ef-
fect is quantitatively large: sales dispersion is dampened by about 15% with
respect to that implied by fundamentals. The corresponding figure for output
growth is about 20%. That is, Colombian manufacturing plants face signifi-
cant size-correlated wedges that de-link actual growth from the fundamental
attributes of plants.
The contributions of these different factors to sales and output life cy-

cle growth vary significantly depending on the horizon of growth considered.
The left panels of Figure 4 display results of the structural decomposition
separately for different ages.39 For both sales and output, demand becomes
increasingly important compared to TFPQ over longer horizons. This is
because the correlation between sales growth and TFPQ growth decreases
for older plants, while that between sales and demand remains fairly stable
(Table 3). These patterns echo the increasing negative correlation between
TFPQ and demand shocks over the life cycle. Wedges, interestingly, play
a more important dampening role at the youngest ages. That is, wedges
dampen output and sales variability compared to that implied by fundamen-
tals more among young plants than among older ones (left panels of Figure 4),
and this is because their (negative) correlation with sales becomes increas-
ingly loose as plants age. Appendix H shows that these general patterns
are robust to selection, in the sense of being similar for survivors-to-be and
exits-to-be. However, TFPQ plays a relatively more important role vis-a-vis
demand for the latter than the former.
Figure 5 shows the mechanics behind the negative contribution of struc-

tural wedges: the average gap between actual growth (black solid line) and
that explained by fundamentals (grey solid line) is positive for plants with
low predicted growth and negative for those in the highest percentiles of

39To conduct the decomposition by ages, we expand equations the decomposition equa-
tions to include interactions with the different age groups. See Appendix G for details.
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Life Cycle

St. Dev.
Correlation
with sales

growth
St. Dev.

Correlation
with sales

growth
St. Dev.

Correlation
with sales

growth
St. Dev.

Correlation
with sales

growth
Sales 0.728  0.513  0.676  0.910 
TFPQ 0.674 0.141 0.526 0.208 0.641 0.172 0.825 0.125
Demand shock 0.426 0.706 0.316 0.691 0.401 0.715 0.543 0.698
Material prices 0.482 0.043 0.363 0.053 0.461 0.040 0.613 0.040
Wages 0.315 0.311 0.264 0.276 0.314 0.285 0.349 0.340
Markup 0.005 0.486 0.003 0.560 0.005 0.481 0.008 0.448
Wedge 1.280 0.220 1.090 0.310 1.242 0.287 1.404 0.225

Coefficients κ1 κ2 γ σ φ β
2.789 1.702 1.051 2.575 0.488 0.422

Table 3. Moments of the distribution of life cycle growth for sales and fundamentals (Average sector, age<=20)

Notes: the top panel of this table presents, standard deviations for the life cycle growth of different measured
fundamentals, and coefficients of correlation between them and the life cycle growth of sales, calculated across plants of
the average sector. The bottom panel presents coefficients used to calculate loading factors for the contribution of each
fundamental in the lifecycle revenue decomposition, for the median sector. The contribution of a given fundamental to
life cycle growth is given by the product between the corresponding loading factor, correlation coefficient, and standard
deviation, divided by the standard deviation of sales. This calculation of the contribution holds exactly within sectors, so
appropriate caution is necessary in comparing Table 3 to Figures 3 and 4,  where sectors are pooled together

Age = All Age = 5 years Age = 10 years Age = 20 years
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Figure 5: Contribution of fundamentals to lifecycle growth

predicted growth. Predicted growth corresponds to growth in equation (24)
setting χft = 0. Figure 5 implies that it is plants with weak growth in fun-
damentals are implicitly subsidized while those with strongest fundamentals
are implicitly taxed, especially at young ages.
Figure 6 indicates that plants in the highest percentiles of predicted

growth have both higher average demand growth and higher average TFPQ
growth than those with low predicted growth. Interestingly, the superstar
plants (those in the upper quartile of growth in fundamentals) differ from
the rest most clearly in terms of the growth of demand. In the opposite end
of the distribution, it is weak TFPQ growth that explains why the bottom
quartiles plants are classified as such.
Since the error term in equation (24) reflects both wedges to profitability

that may be correlated to fundamentals and others that are not, it is interest-
ing to uncover the full contribution of fundamentals, bringing together that
implied by our model and that stemming from the impact of fundamentals on
our structural wedges. Wedge sources potentially correlated with fundamen-
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tals may arise from size-dependent policies, adjustment costs and endogenous
financial constraints. Wedges that are orthogonal to fundamentals may come
from horizontal regulations and measurement error. To decompose the role
of orthogonal vs. correlated wedges, we estimate the full contribution of
fundamentals by implementing the following reduced form decomposition:
Reduced form decomposition: The contribution of each (log) funda-

mental to the variance of (log) sales equals the ratio of its covariance with
sales to the variance of sales, multiplied by its reduced form parameter in
the following equation, estimated by OLS:

ln
Rft

Rf0

= βrd ln

(
dft
df0

)
+ βra ln

(
aft
af0

)
+ βrm ln

(
pmft

pmf0

)
+βrw ln

(
wft
wf0

)
+ βrµ ln

(
µft
µf0

)
+ εft

The residual term of this OLS estimation is orthogonal to the funda-
mentals by construction, and thus captures only uncorrelated wedges. As a
result, the reduced form decomposition assigns to each fundamental the role
it plays directly (i.e. its "structural" role) and also that it plays indirectly
through its effect on wedges and its correlation with other fundamentals.
Covariances between fundamentals are assigned equally to the contribution
of the different fundamentals. 40

40We find that the structural wedge has a correlation of -0.30 with TFPQ and -0.13 with,
demand shocks consistent with our interpretation of the structural wedges being negatively
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Results of this alternative exercise are shown in columns 2 and 4 of Fig-
ure 3, and in the right panels of Figure 4. The uncorrelated wedge term
contributes positively to the variance of outcome growth. In particular, it
explains 40% of sales growth dispersion and 53% of output growth disper-
sion. It is also interesting that, in transiting from the reduced form to the
structural decomposition, the contribution of TFPQ grows by (proportion-
ally) more than that of demand shocks. To the extent that (negatively)
correlated distortions are reflected in our structural wedges but not in the
reduced form ones, this suggests that such distortions are most strongly cor-
related with TFPQ, distorting the return to technical effi ciency more than
that to quality/appeal.

6 Robustness and the Value Added fromBuild-
ing Up Jointly from P, Q and inputs data

6.1 Value added of bringing P and Q data to the Hsieh-
Klenow framework

HK have shown that, in absence of P and Q data, one can estimate the
contribution of wedges relative to fundamentals imposing a set of assump-
tions. Our approach directly builds on HK’s, taking advantage of micro price
and quantity data on both outputs and inputs. The advantages of doing so
are multifold. First, the micro price and quantity data permit measurement
of Qft =

Rft
Pft

directly, so that a production function (as opposed to a rev-
enue function) and a demand structure can both be estimated to obtain
production and demand elasticities. These elasticities are themselves key in-
gredients to determine the role of fundamentals vs. structural wedges, and
are therefore widely used when making inferences about the drivers of busi-
ness performance. In absense of the ability to estimate them, inferences are
frequently based on external estimates that correspond to a context not nec-
essarily relevant to the particular application, are broadly aggregated (e.g.
the same elasticity of substitution is used for all sectors) and may not be

correlated with fundamentals. In contrast, the reduced form wedge has essentially zero
correlation with the fundamentals.
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appropriately specified. Second, estimation of the production and demand
structure naturally yield estimates of TFPQft and Dft, so that their indi-
vidual roles can be assessed. Third, the price and quantity data for inputs
permits identifying the contribution of idiosyncratic input prices to size and
growth. Clearly, then, these detailed P and Q data are necessary if one is
interested in learning about the separate roles of Aft, Dft and input prices.
Since our structure closely follows that proposed by HK, we now impose

HK’s assumptions to estimate the role of a composite fundamentals shock
that can be generated without using P and Q data. We denote the composite
measure of fundamentals, which bundles up our TFPQ and D shocks, as
TFPQ_HK.41 The starting point of this approach is revenue which in our

notation is given by: Rft = DftQ
1− 1

σ
ft = Dft

(
AftX

γ
ft

)1− 1
σ . With estimates

of γ and σ one can obtain the composite shock TFPQ_HK solely from
revenue and input data as:

TFPQ_HKft = R
1/(1− 1

σ
)

ft /Xγ
ft = AftD

1

1− 1
σ

ft (25)

Life cycle growth in revenue can then be expressed as:

Rft

Rf0

=

[(
TFPQ_HKft

TFPQ_HKf0

)(
(1− τ ft)
(1− τ f0)

Cf0µf0

Cftµft

)γ] 1− 1
σ

1−γ(1− 1
σ )

(26)

That is, so far as estimates of demand and factor elasticities are avail-
able, one can decompose life cycle sales into a TFPQ_HK component and
a residual composite component that will reflect our wedges, input cost vari-
ation and idiosyncratic markup variation. This latter component can be
broadly thought of as composite measure of wedges just as TFPQ_HK is a
composite measure of fundamentals.
Before proceeding, it is useful to note that a widely used implication

of HK’s framework is that wedges can be estimated from the idiosyncratic
component of TFPR_HK =

Rft
Xft
. Replacing optimal input demand Xft =

41In the appendix to their paper, HK (2009) show how, in the presence of demand
shocks, the measure they call TFPQ is actually a composite of the technology and the
demand shock. Our expression for the TFPQ_HK composite shock is exactly the same
as their expression (i.e. TFPQ_HK in this paper is what is called TFPQ by HK). Halti-
wanger, Kulick and Syverson (2018) also explore properties of TFPQ_HK constructed
from revenue and input data compared to TFPQ and demand shocks constructed from
price and quantity data.
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(
DftA

1− 1
σ

ft γ

Cftµft(1−τft)
−1

) 1

1−γ(1− 1
σ )
we obtain :42

TFPR_HKft =
Cftµft

γ (1− τ ft)

so TFPR_HK variability reflects variation not only τ , but also in markups
and input prices.43 We thus observe that the composite wedges we obtain
from (26) are analogous to those that can be obtained from TFPR_HK.
We now assess the contribution of TFPQ_HKft and composite wedges

to sales growth following the expression in (26). To accomplish this, we use
our estimates of the elasticities of output with respect to production factors,

and the implied returns to scale coeffi cient γ to obtain X = M
φ
γ

ftL
β
γ

ftK
α
γ

ft. We
also use the measure of Mft based on our UPI plant-level deflators for mate-
rials. This permits using our estimated 1

σ
and γ to obtain TFPQ_HKft =

R
1/(1− 1

σ
)

ft /Xγ
ft and obtain the contribution of this composite shock in (26).

Using the estimated production and technology factors in this manner im-
plies that the composite TFPQ_HK in the structural decomposition (see
column 1 of Table 4) yields by construction the same contribution as the
combination of TFPQ and demand from our baseline decomposition (col-
umn 2 of Table 4).44 However, the inference that demand dominates TFPQ
in accounting for sales growth dispersion is masked using TFPQ_HK. In
addition, comparing columns 1 and 2 in the upper panel highlights the fact

42Rft = DftQ
1− 1

σ

ft = DftA
1− 1

σ

ft X
γ(1− 1

σ )
ft , or:

Rft
Xft

= DftA
1− 1

σ

ft

 γDftA
1− 1

σ

ft

Cftµft (1− τft)
−1


γ(1− 1

σ )
1−γ(1− 1

σ )
−1

=
Cftµft

γ (1− τft)

43If, as originally defined in Foster et al (2008), we rather defined TFPR as Rft
Xγft

, TFPR

dispersion would also reflect Aft and Dft dispersion. Their definition of TFPRft =
PftAft. TFPR_HKft corresponds to this definition if γ = 1.
44That is, 1.28+0.11 is essentially equal to 1.40 (the minor difference is attributible to

rounding error).
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that some of what is attributed to composite wedges in a two-way decom-
position in column 1 is due to the contribution of variable input prices and
markups in column 2 (25% out of the 40% assigned to wedges in column 1).
Thus, using only the composite TFPQ_HK overstates the contribution of
wedges in the specific sense of not explicitly accounting for dimensions that
are arguably useful to isolate, in particular input prices and markups. The
underlying reasons for input price and markup variability may well be related
to market distortions but they may also reflect deeper features of input and
output markets. Our primary point here is that it is instructive to isolate
the contribution of input prices and markups from residual wedges.
Figure 7 shows the by-age decomposition using the HK (TFPQ_HK)

approach (7a), and our approach (7b, reproducing the top left panel of Figure
4). Panel 7a, which reproduces column 1 of Table 4 by age, shows that the
message that correlated wedges affect young plants the most is still present
using the HK approach, since the contribution of input prices and markups
does not vary significantly over the life cycle. It also shows that the non-
negligible role of input price variability is masked when TFPQ_HK is the
sole dimension of underlying firm heterogeneity considered. Perhaps the
most important insight from Figure 7 is that using TFPQ_HK misses the
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Figure 7: HsiehKlenow and HottmanReddingWeinstein decompositions using the same
elasicities used in the baseline decomposition

These figures reproduce the structural decomposition considering, alternatively, the components considered by Hiseh and Klenow (2009, 2014) and
Hottman, Redding and Weinstein (2016). The «Baseline» panel reproduces the results in Figure 4, though adding together the demand and markup
components. The HK decomposition of the left panel is the byage version of the decomposition in column 1 of table 4, the «unconstrained HK» case,
since the factor elasticities in production and elasticity of substitution of the baseline case are used.

changing relative contribution of demand vs. TFPQ over the life cycle.
Moreover, Figure 6 shows that the increasingly dominant role of demand is
driven by the upper quartile "superstar" plants while weak TFPQ growth
dominates the poorly performing lower quartiles. These insights are not
possible using the composite measure such as TFPQ_HK.

Turning to the reduced form decomposition (lower panel of Table 4) Col-
umn 2 shows that the composite shock TFPQ_HK also understates the
contribution of firms fundamentals as well, not only because it does not ex-
plicitly account for input prices and markups, but also because it lumps to-
gether TFPQ and demand, and their joint contribution is dampened by their
negative correlation. In this reduced form decomposition, an understatement
of fundamentals yields an overstatement of the uncorrelated component of
wedges.
Table 4 and Figure 7 thus sends three main messages about the value of

P and Q output and input data in our estimation. Using only revenue and
input data (but the internally consistent estimated demand and production
elasticities) yields: 1) an overstatement of the contribution of wedges in the
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structural and reduced form estimation; 2) an inability to identify the distinct
contributions of demand and TFPQ which have distinct contributions over
the life cycle and over different segments of the distribution of life cycle
growth rates; and 3) an inability to isolate the contribution of idiosyncratic
input prices and markups from residual wedges.
Beyond these messages, we also think it useful to emphasize that this is

an unconstrained implementation of TFPQ_HK using the internally con-
sistent estimated factor and demand elasticities along with measuring mate-
rials inputs with plant-level deflators. As noted above, most of the literature
using the HK methodology is constrained to a more calibrated approach
(e.g., assuming the same elasticity of substitution for all sectors) and us-
ing industry-level deflators to measure outputs and inputs. Such constraints
on measurement and estimation yield further differences from our baseline
decomposition.45

6.2 Value added of bringing input data to the Hottman-
Redding-Weinstein framework

The differential contribution of demand vs. cost-side shocks to plant sales
is explored by Hottman, Redding and Weinstein (HRW, 2016). Using the
demand structure that we also impose in our baseline estimation, they de-
compose sales into the contributions of price (observed) and demand shocks
(residual) using the estimated elasticity of substitution, and subsequently
decompose price into the contributions of markups—computed as in equation
4—and residual marginal costs:

µft =
Pft

∂CTft
∂Qft

(1− τ)−1

where CT is total cost.These residual marginal costs, given by ∂CTft
∂Qft

(1−τ)−1,
thus capture idiosyncratic variation in costs (from input price variability and
technical effi ciency), as well as wedges. See Appendix K for greater details.

45In some unreported results we have explored using cost shares at the industry level,
industry-level deflators for measuring inputs, and a common across sectors elasticity of
substitution. This constrained approach yields differences in the contribution of the
composite shock TFPQ_HK that are sensitive to the calibrated parameters. For exam-
ple, as the curvature of the revenue function increases in the calibration, the contribution
of TFPQ_HK increases nonlinearly.
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Since we fully rely on HRW’s demand structure, the contribution of the
demand shock and markup are, by construction, the contributions one would
obtain in their approach.46 The availability of data on input use and input
prices, beyond P and Q data on the output side which their approach already
employs, allows us to further decompose their marginal cost component into
input prices, TFPQ and wedges. Figure 7c illustrates the by-age decompo-
sition obtained in our data with the HRW approach (to be compared with
the upper left panel of Figure 4), lumping together the demand and markup
components. As in their results for consumer goods in the US, demand shocks
explain the bulk of sales growth variation, and markups play a modest role.
But the negative, flat over ages, pattern estimated for the contribution of
marginal costs is a combination of the positive contribution of TFPQ and
the dampening role of wedges and input prices in the context of our applica-
tion, each of them negatively correlated with sales. The lumping together of
cost, productivity and wedges also misses the rich life cycle dynamics of each
of these factors. Technical effi ciency becomes less important as do wedges for
older businesses in our baseline framework but this pattern is missed com-
pletely in the HRW approach. Relatedly, the increasing magnitude of the
inverse correlation between demand and TFPQ over the life cycle is missed
in the HRW approach.

6.3 The value of Quality Adjustment

Results discussed so far use UPI plant-level prices to deflate plant-level out-
put . UPI plant price indices adjust real output for intra-firm quality/appeal
differences (see section 3.2). Moreover, in the context of UPI prices, sales
measure output that is additionally adjusted for cross-plant quality differ-
ences.
We now discuss the empirical role of quality adjustment in more detail.

We do so by comparing results to what would be obtained under two alter-
natives to price measurement. First, we implement a “statistical”approach
based on Törnqvist indices for a constant basket of goods within the plant
or, alternatively, on the divisia price index that allows that basket to change
and uses average t, t− 1 expenditure shares. We implement a second alter-
native approach, using prices based on the insights offered by Sato (1976),
Vartia (1976) and Feenstra (1994). The Sato-Vartia approach is economi-

46By this we mean their conceptual approach to the decomposition of sales volatility.
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cally motivated but keeps appeal shifters and baskets of goods constant over
two consecutive periods, implying a much slower quality adjustment for both
continuing products and those that enter and exit. The Feenstra adjustment
for changing varieties incorporated into our UPI approach can also be added
to the Sato-Vartia index to adjust for changing baskets of goods over consecu-
tive periods (it was, in fact, originally implemented by Feenstra, 2004, within
the Sato-Vartia approach). The UPI, meanwhile, allows for both changing
baskets of goods and varying appeal shifters, dimensions of flexibility which
respectively deal with the "consumer valuation bias" and the "variety bias"
(Redding and Weinstein, 2017). (For a detailed discussion of each of these
alternatives, contrasted with the UPI, see 3.2, Appendix A, and Redding and
Weinstein, 2017).
In each approach, the aggregation from the plant to the sector level is

analogous to the aggregation from the product to the plant level, using
weights and shares that correspond to the basket of plants in aggregate expen-
diture by contrast to the basket of products in plants’sales. For theory-based
indices this is directly implied by theory. For statistical indices we impose it
for consistency.
If the quality mix within the plant improves over time, plant-level quality

adjusted price indices will grow less than unadjusted ones, as a result yielding
less deflated output growth and less TFPQ growth. This composes with
overall plant quality growth to imply economically motivated aggregate prices
that grow less than unadjusted ones. Not properly adjusting plant-level
prices for quality changes biases estimated idiosyncratic output and technical
effi ciency growth downwards because such estimates will ignore the part of
price increases that reflects increasing valuation of goods and the services of
plants to their costumers, and thus mistakenly translate those price increases
into welfare decreases for given expenditure.
Figure 8 depicts aggregate price changes under these four different ap-

proaches, (where aggregation is at the 3-digit sector level, reported for the
average sector.47 UPI growth is very similar to price growth using constant
baskets in all periods, but the difference is much more marked starting in
1991. On average over 1991-2012, baseline (UPI) price growth is 3.2. per-
centage points below that of the statistical index with a fixed basket of goods,
while for the pre-1991 period the two indices display virtually identical vari-

47Three-year moving averages are shown to smooth out jumps in the series.
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ations.48 Interestingly, this is precisely the time when market-oriented re-
forms were implemented. As many other countries in Latin America and
around the globe, Colombia undertook wide market-oriented reforms during
the 1990s, including unilateral trade opening, financial liberalization, and
flexibilization of labor regulations. Figure 8 suggests more quality adjust-
ment starting at that time, broadly consistent, for instance, with findings
in Fieler et al. (2018) about the effect of the 1990s trade liberalization on
quality in Colombian manufacturing.

As a result, adjusting output for quality changes assigns a much larger
weight to technical effi ciency, TFPQ, and a lesser role to demand, in explain-
ing output life cycle growth (see Appendix I for detailed results). While with
constant-weights-Törnqvist-indices TFPQ and demand are estimated to con-
tribute roughly equally to output growth, TFPQ is assigned progressively
more relative importance as one moves to the Sato-Vartia and then to the
UPI approaches. But quality adjusting prices matters much more in decom-
posing output than for sales because, beyond the more precise measurement
of fundamentals when quality is adjusted for, the measure of output itself

48The gap between the UPI and the statistical index with a fixed basket is slightly
smaller in magnitude compared to that reported by Redding and Weinstein (2017) for the
U.S. using data on final consumption goods. They find a gap of close to 5% in aggregate
price growth.
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is affected by price indices. In addition, quality adjusting materials input
prices plays more of a modest role than quality adjusting output prices.

7 Conclusion

Our use of product-level price and quantity data on outputs and inputs for
plants enables us to overcome a host of conceptual, measurement and esti-
mation challenges in the literature. However, our findings raise a number
of questions and point to important areas for future research. First, our
approach has the advantage that wedges are measured as the components
of sales and output volatility that cannot be accounted for by fundamentals
with the latter estimated independently of measuring wedges. While this is
an advantage, wedges are still a residual and therefore a black box. Iden-
tifying the specific sources of wedges that dampen output and sales growth
especially for young plants is one potential area of research. Since there is
an important role for correlated wedges, one natural candidate is adjustment
costs that especially impact young businesses. From this perspective, this
may include the costs of developing and accumulating organizational capital
(such as customer base). Our finding that between-plant differences in de-
mand become more important in accounting for output growth volatility for
more mature plants is consistent with this hypothesis. Also, our decompos-
ing productivity into its technical effi ciency and demand components yields
guidance as to the potential source of wedges dampening growth.
Size-dependent policies and other characteristics of the regulatory envi-

ronment are another set of candidate explanations behind wedges. Colombia
is a country that underwent dramatic reforms over our sample period, some
of them displaying cross-sectional variability (such as product-specific reduc-
tions to import tariffs in the early 1990s), and thus offers fruitful ground for
investigating the impact of the regulatory environment on life-cycle dynam-
ics. In prior work, we have explored the effect of these reforms in cross-
sectional productivity and factor adjustments, finding that the they have
changed adjustment dynamics of factors (see, e.g., Eslava et. al. (2010)), the
responsiveness of selection to fundamentals, and within-plant productivity
growth (see, e.g., Eslava et. al. (2013)). Moreover, Eslava, Haltiwanger and
Pinzón (2018) show that high growth plants have become more prevalent in
Colombia from the 1980s to 2000s.
Our findings provide insights into the relative importance of the variance
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in fundamentals in explaining plant growth, inviting further research into the
ultimate sources of the variance in these fundamentals. While our current
framework allows for wedges that are correlated with current fundamentals,
and in fact we find that they are indeed (inversely) correlated, we do not take
explicit account of the likely endogenous response of the variance of funda-
mentals over the life cycle to past performance and past wedges. Research
that sheds light on the endogenous determinants of the variance in the supply
side (TFPQ) and demand side fundamentals should have a high priority in
future research. In exploratory analysis shown in Appendix E we find evi-
dence that TFPQ and demand shocks are highly persistent and part of this
persistence reflects that observable indicators of endogenous innovation such
as R&D expenditures are increasing in lagged fundamentals. We also find
suggestive evidence that wedges influence the evolution of fundamentals but
the quantitative impact of lagged wedges on current period fundamentals or
current period R&D expenditures is relatively small.
Our research also finds support for the agenda that highlights the im-

portance of quality-adjusting measures of price indices. Our findings in this
paper are that, in Colombia, quality-adjusted inflation (of manufacturing
products) is about three percentage points lower than the unadjusted indica-
tor. And, interestingly, that this gap grows substantially at the beginning of
the nineties, coinciding with wide-spread market reforms, including trade lib-
eralization. Those findings suggest that quality adjustments have become an
increasingly important source of welfare gains (partly from trade, as demon-
strated in Fieler et al. 2018). Estimating the changing relative importance
of the components of fundamentals during these market reforms is explored
in Eslava and Haltiwanger (2018).
Another area for future research is to explore more potential variation in

technology and markup variation at the plant-level. Recent analysis by De-
Loecker, Eeckhout and Unger (2018) highlights the potentially important role
of markup dispersion across producers. They present evidence of substantial
dispersion in markups across producers using an approach that is flexible on
the structure of demand (in contrast, our approach with CES demand but
permitting firms to recognize their market power within sectors yields more
modest markup dispersion). Their approach, while flexible on the structure
of demand, has the potential limitation that there may be equally important
variation in the structure of technology across producers which in turn raises
questions about the identification of markups.. Our analysis using plant-
level quality adjusted prices highlights an additional challenge for pursuing
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this agenda. As we emphasize, even measuring plant-level output and inputs
for multi-product plants who use a variety of inputs requires taking a stand
on the demand structure. Tackling technology and markup heterogeneity
in this multi-product, multi-input environment with ongoing quality change
will be a challenge.
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