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Motivation

» Where do differences in expected returns come from?

» Typical models of expected returns are of the form,

E[rfl=> Bx  x M,

k=1 amount of risk  price of risk

where )y is the expected compensation to factor fi

» The conversation typically focuses on the set of factors f

» Our embarrassment of riches: hundreds of candidates for f!

» This focus is correct only in a Law-of-One-Price world with

» Costless portfolio formation
> Frictionless borrowing
> Integrated markets, etc...

» This paper is about cross-sectional variation in risk prices ()



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As

> Problem: only in certain cases do we know how to group assets ex ante



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As

> Problem: only in certain cases do we know how to group assets ex ante
» How do we guard against data snooping?



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As

> Problem: only in certain cases do we know how to group assets ex ante
» How do we guard against data snooping?

» What if conjectured segments are incorrect or unimportant?



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As

> Problem: only in certain cases do we know how to group assets ex ante
» How do we guard against data snooping?

» What if conjectured segments are incorrect or unimportant?

2. Group together assets based on estimated As (“let the data speak”)



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As
> Problem: only in certain cases do we know how to group assets ex ante

» How do we guard against data snooping?
» What if conjectured segments are incorrect or unimportant?

2. Group together assets based on estimated As (“let the data speak”)

> Problem: \s are slopes across assets, that is, the clustering characteristic
>\<k'> depends on the other assets in its group



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As
> Problem: only in certain cases do we know how to group assets ex ante

» How do we guard against data snooping?
» What if conjectured segments are incorrect or unimportant?

2. Group together assets based on estimated As (“let the data speak”)
> Problem: \s are slopes across assets, that is, the clustering characteristic
>\<ki> depends on the other assets in its group
» Typical off-the-shelf clustering technologies like k-means cannot
accommodate this dependence



Finding Variation in Risk Prices

» How can we identify differences in A\? Two approaches:

1. Use economic intuition to conjecture groups and test for equal As

> Problem: only in certain cases do we know how to group assets ex ante
» How do we guard against data snooping?
» What if conjectured segments are incorrect or unimportant?

2. Group together assets based on estimated As (“let the data speak”)

> Problem: \s are slopes across assets, that is, the clustering characteristic
>\<ki> depends on the other assets in its group

» Typical off-the-shelf clustering technologies like k-means cannot
accommodate this dependence

» We contribute an approach to estimate and test for variation in A\ across
assets based on methods in machine learning
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Main Findings

1. We find significant cross-sectional variation in risk prices
» Segmentation exists within domestic stocks, between international
geographic regions, and across asset classes

» Cross-sectional risk price heterogeneity dramatically increases the
explanatory power of common risk models

> Clusters increase explained E [r] variation and maximal Sharpe ratios as
much as replacing the CAPM with the FF3F model

2. Omitted factors and differences in risk prices both contribute to
observed segmentation
» Segmentation is less important than omitted factors in US stocks only for
our least diverse portfolio set and for the CAPM

— Differences in A\ are pervasive and important!



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia

Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia
Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia
Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)
Asset Class Fama & French (1993); He, Kelly, & Manela (2016)



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia

Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)
Asset Class Fama & French (1993); He, Kelly, & Manela (2016)
Region Errunza & Losq (1985), Bekaert & Harvey (1995), Hou,
Karolyi, & Kho (2011); Fama & French (2012), inter alia



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia
Investors Merton (1987); Kadlec & McConnell (1994);

Foerster & Karolyi (1999)

Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)

Asset Class Fama & French (1993); He, Kelly, & Manela (2016)

Region Errunza & Losq (1985), Bekaert & Harvey (1995), Hou,

Karolyi, & Kho (2011); Fama & French (2012), inter alia

» Financial Frictions and Asset Prices



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia

Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)
Asset Class Fama & French (1993); He, Kelly, & Manela (2016)
Region Errunza & Losq (1985), Bekaert & Harvey (1995), Hou,
Karolyi, & Kho (2011); Fama & French (2012), inter alia

» Financial Frictions and Asset Prices

Limited Arbitrage Garleanu & Pedersen (2011); Gromb & Vayanos (2002,
2018); Shleifer & Vishny (1997)



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia

Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)
Asset Class Fama & French (1993); He, Kelly, & Manela (2016)
Region Errunza & Losq (1985), Bekaert & Harvey (1995), Hou,
Karolyi, & Kho (2011); Fama & French (2012), inter alia

» Financial Frictions and Asset Prices
Limited Arbitrage Garleanu & Pedersen (2011); Gromb & Vayanos (2002,
2018); Shleifer & Vishny (1997)
Limited Participation Greenwald, Lettau, & Ludvigson (2016); Lettau,
Ludvigson, & Ma (2018); Mankiw & Zeldes (1991)



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia
Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)
Asset Class Fama & French (1993); He, Kelly, & Manela (2016)
Region Errunza & Losq (1985), Bekaert & Harvey (1995), Hou,
Karolyi, & Kho (2011); Fama & French (2012), inter alia
» Financial Frictions and Asset Prices
Limited Arbitrage Garleanu & Pedersen (2011); Gromb & Vayanos (2002,
2018); Shleifer & Vishny (1997)
Limited Participation Greenwald, Lettau, & Ludvigson (2016); Lettau,
Ludvigson, & Ma (2018); Mankiw & Zeldes (1991)

> Parameter Estimation with Unobserved Heterogeneity



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia
Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)
Asset Class Fama & French (1993); He, Kelly, & Manela (2016)
Region Errunza & Losq (1985), Bekaert & Harvey (1995), Hou,
Karolyi, & Kho (2011); Fama & French (2012), inter alia
» Financial Frictions and Asset Prices
Limited Arbitrage Garleanu & Pedersen (2011); Gromb & Vayanos (2002,
2018); Shleifer & Vishny (1997)
Limited Participation Greenwald, Lettau, & Ludvigson (2016); Lettau,
Ludvigson, & Ma (2018); Mankiw & Zeldes (1991)
> Parameter Estimation with Unobserved Heterogeneity
Clustering MacQueen (1967) (k-means); Dempster, Laird, & Rubin (1977)
(expectation maximization)



Related Literature

» Segmentation / Differences in Cross-Sectional Risk Premia
Investors Merton (1987); Kadlec & McConnell (1994);
Foerster & Karolyi (1999)
Market Cap Hong, Lim, and Stein (2000); Grinblatt & Moskowitz (2004);
Israel & Moskowitz (2013)
Asset Class Fama & French (1993); He, Kelly, & Manela (2016)
Region Errunza & Losq (1985), Bekaert & Harvey (1995), Hou,
Karolyi, & Kho (2011); Fama & French (2012), inter alia
» Financial Frictions and Asset Prices
Limited Arbitrage Garleanu & Pedersen (2011); Gromb & Vayanos (2002,
2018); Shleifer & Vishny (1997)
Limited Participation Greenwald, Lettau, & Ludvigson (2016); Lettau,
Ludvigson, & Ma (2018); Mankiw & Zeldes (1991)
> Parameter Estimation with Unobserved Heterogeneity
Clustering MacQueen (1967) (k-means); Dempster, Laird, & Rubin (1977)
(expectation maximization)
Panel Heterogeneity Hahn & Moon (2010); Lin & Ng (2012); Saradis & Weber
(2015); Bonhomme & Manresa (2015)



The Economic Model

» N assets, K asset pricing factors, and T dates



The Economic Model

» N assets, K asset pricing factors, and T dates

» Each asset is a member of one of G > 1 groups (G is fixed for now)



The Economic Model

» N assets, K asset pricing factors, and T dates

» Each asset is a member of one of G > 1 groups (G is fixed for now)

» The true asset pricing model satisfies

rie = aeli + Bi (fe + ®¢h) + €,
0 = E [e;] = cov (&, fs) = cov (&, Ps) = cov (P, f5) = cov (g, f5), VE, s

(We set aside conformability of the zero matrices to streamline exposition)



The Economic Model

» N assets, K asset pricing factors, and T dates

» Each asset is a member of one of G > 1 groups (G is fixed for now)

» The true asset pricing model satisfies

rie = aeli + Bi (fe + ®¢h) + €,
0 = E [e;] = cov (&, fs) = cov (&, Ps) = cov (P, f5) = cov (g, f5), VE, s

(We set aside conformability of the zero matrices to streamline exposition)

» Key differences from most empirical asset pricing models:



The Economic Model

» N assets, K asset pricing factors, and T dates

» Each asset is a member of one of G > 1 groups (G is fixed for now)

» The true asset pricing model satisfies
rie = aeli + Bi (i + ®cli) + €ie,
0 = E [e;] = cov (&, fs) = cov (&, Ps) = cov (P, f5) = cov (g, f5), VE, s
(We set aside conformability of the zero matrices to streamline exposition)

» Key differences from most empirical asset pricing models:

1. Groups may have different factor realizations at each date (covariances)



The Economic Model

» N assets, K asset pricing factors, and T dates

» Each asset is a member of one of G > 1 groups (G is fixed for now)

» The true asset pricing model satisfies
rie = il + Bi (fe + ®ily) + €ir,
0 = E [e;] = cov (&, fs) = cov (&, Ps) = cov (P, f5) = cov (g, f5), VE, s
(We set aside conformability of the zero matrices to streamline exposition)

» Key differences from most empirical asset pricing models:

1. Groups may have different factor realizations at each date (covariances)
2. Groups may have different average risk prices



The Economic Model

» N assets, K asset pricing factors, and T dates

» Each asset is a member of one of G > 1 groups (G is fixed for now)
» The true asset pricing model satisfies

rie = aeli + Bi (fe + ®¢h) + €,
0 = E [e;] = cov (&, fs) = cov (&, Ps) = cov (P, f5) = cov (g, f5), VE, s

(We set aside conformability of the zero matrices to streamline exposition)

» Key differences from most empirical asset pricing models:

1. Groups may have different factor realizations at each date (covariances)
2. Groups may have different average risk prices

» Implied by Errunza & Losq (1985) and Gromb & Vayanos (2018), among others
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2
('A_, /A\) = arg IPI/(] ,Zt: (r,'t — a0 — Zk:ﬁik)\,((:;)>

where

» [is a N x 1 vector of group assignments, v;€1,...,G
» Nisa T x K x G matrix of factor compensations, )\ff) for each of T
dates, K factors, and G groups

» That is a lot of parameters to estimate

» And we don’t have differentiability for ;, which complicates most
standard solution methods
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1. Fixing group assignments delivers cross-sectional slopes via OLS:

Fit = ag‘g) +Zﬁlk)\fj) + €it, V’YI =8 8= 1)"'7Ga t= 17"'7 T
k

2. Fixing cross-sectional slopes delivers group assignments by minimizing
fitting errors across groups for each stock

2
v; =arg min 6 (r,-t - agg) — 25%)&?)
k

ge{l,...,

» lterating between holding fixed group assignments and lambdas is
expectation maximization
> Importantly this cycle converges to a (local) optimum
» See the paper for discussion of multi-start and genetic algorithm methods

used to achieve global optima ()
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Testing for Multiple Clusters

» Our EM approach finds group assignments and risk prices that maximize
the explanatory power of a factor model given a fixed number of groups, G

» To address formally whether there is evidence of heterogeneous risk prices,
we need to test for multiple clusters
» Of course adding clusters improves model fit, but is the improvement in fit
“big enough” to justify adding so many parameters?

» Note that standard approaches to testing for segmentation fail:
1. A standard test comparing estimated risk prices leads to severe size
distortions because groups are estimated
2. Existing work that accounts for this estimation step, e.g. Bonhomme and
Manresa (2015), requires clusters to be “well-separated,” which is not true
under the null of unified prices
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» We split our data into subsamples, R and P, to overcome size
distortion issues:

1. Estimate cluster assignments on subsample R (impose “no small groups”
assumption)

2. Estimate cross-sectional slopes on P, given fr, via G simple FMB
regressions.

» If dependence between R and P samples is limited, this split eliminates
the overfitting problem arising from estimated clusters
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Null Hypotheses

» We consider two tests. The null in both is of no segmentation / equal
risk prices / the Law of One Price:

Ho: AW = X2 — =3¢ yk
vs. Hy: A& 2 S\,Egl) for some k., g,g’.
and
Ho: AW =2 = =\ vkt
vs. Hy: )\ff) # )\,(fl) for some k, g, g’, t.

» The first test generalizes FMB-style t tests to look at differences in
expected returns across clusters

» The second tests enriches the first by adding information from the
dynamics of cross-sectional slopes

» Note: these tests do not consider &(&) or agg) because our focus is on risk
price heterogeneity, not on zero-beta rates
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» We obtain critical values for these using a permutations approach
(Lehmann and Romano, 2005):
» Compute the above test statistics for M randomly assigned group
assignments (i.e., permutations)
> p-value is proportion of permutation stats larger than the test stat
» Not necessary if FMB model is correctly specified; much better
finite-sample properties than standard F tests when misspecified

» We confirm in simulation studies that the tests have approximately

correct size
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Asia-Pacific regions
» P6 (N=200): P4 + 25 size-momentum for each region

Multi-Asset Class: 1970-2012 (He-Kelly-Manela Monthly)

» P7 (N=98): 25 size-value, 23 commodities, 10 maturity Treasury bonds,
10 yield corporate bonds, 18 moneyness-maturity-C/P options, 12 FX
» P8 (N=148): P6 + 25 size-market beta, 25 size-momentum

v



Segmentation Everywhere: Domestic Equity Portfolios

Dynamic test rejects everywhere, Avg test rejects less for P1

Equal Avg Risk Prices

Equal Dyn Risk Prices

Model 1963-2016  1999-2016 1963-2016  1999-2016
CAPM 0.312 0.561 0.026 0.006
FF3F 0.057 0.011 0.000 0.000
Carhart 0.050 0.102 0.000 0.000
P1  FF5F 0.078 0.375 0.000 0.000
HKM 0.236 0.057 0.037 0.001
HXZQ 0.000 0.671 0.000 0.000
Carhart+3 0.005 1.000 0.000 0.000
CAPM 0.052 0.006 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
P3  FF5F 0.000 0.000 0.000 0.000
HKM 0.543 0.007 0.000 0.000
HXZQ 0.000 0.000 0.000 0.000
Carhart+3 0.000 0.004 0.000 0.000




Segmentation Everywhere: Placebo Portfolios

Neither test rejects more than expected by chance for placebo portfolios

Equal Avg Risk Prices

Equal Dyn Risk Prices

Model 1963-2016  1999-2016 1963-2016  1999-2016
CAPM 0.082 0.618 0.086 1.000
FF3F 0.579 0.101 1.000 1.000
Carhart 0.594 0.822 0.602 0.262
P4  FF5F 0.153 0.883 1.000 1.000
HKM 1.000 0.711 0.015 0.466
HXZQ 0.246 0.197 1.000 0.198
Carhart+3 0.599 1.000 0.118 0.041

We find no segmentation when risk prices are the same!

(formalized in our simulation study)



Segmentation Everywhere: Int’l Equity Portfolios

Average and Dynamic tests reject everywhere

Equal Avg Risk Prices

Equal Dyn Risk Prices

Model 1091-2016  2004-2016 1091-2016  2004-2016
CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000

P5  FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ - - - -
Carhart+3 0.002 0.001 0.000 0.000
CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000

P6 FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ - - - -
Carhart+3 0.000 0.000 0.000 0.000




Segmentation Everywhere: Multi-Asset Class Portfolios

Average and Dynamic tests reject everywhere

Equal Avg Risk Prices

Equal Dyn Risk Prices

Model 1986-2010  1998-2010 1986-2010  1998-2010
CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
P7  FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ 0.000 0.000 0.000 0.000
Carhart+3 0.000 0.000 0.000 0.000
CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
P8  FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ 0.000 0.000 0.000 0.000
Carhart+3 0.000 0.000 0.000 0.000




Segmentation Everywhere: Summary

» Statistical evidence of segmented markets is ubiquitous. For the tests
of equal factor dynamics:

1. Domestic equities: 80/81 tests reject the null of a single cluster
2. International equities: all 36 tests reject with p-val=0.000
3. Multi-asset class portfolios: all 42 tests reject with p-val=0.000

» Differences in average risk prices are also strongly significant, reject null
for 57/81, 35/36 and 41/42 cases

» But are violations of unified risk pricing also economically meaningful?



Economic vs. Statistical Significance of Segmentation

» We measure economic significance in two ways:
1. Increased explanatory power for cross-section of expected returns:
T A (Yi NGl
L0 _ v (50 (67 + BAY))
" var; (% Z;l (o"zt + B,S\t))

2. Improvements of maximal, in-sample Sharpe ratio:
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Economic Importance: Domestic Portfolios

Gains in explanatory power of around 15-70%, increases in SR of around 0.15-0.80

0%(Fex) | 0?(R) SRex — SRy
Model 63-16 99-16 63-16 99-16
CAPM 3.77 161.88 0.26 0.15
FF3F 1.81 1.80 0.74 -0.09
Carhart 1.03 1.38 0.10 0.16
P1 FF5F * 1.10 * 0.15
HKM 8.25 5.30 0.33 0.38
HXZQ 1.16 2.67 0.67 0.29
Carhart+3 * * * *
CAPM 2.75 6.16 0.17 0.48
FF3F 1.67 1.75 0.82 0.47
Carhart 1.41 1.55 0.86 0.85
P3 FF5F 1.49 1.22 0.54 0.14
HKM 6.25 10.42 0.08 0.72
HXZQ 1.51 2.39 0.69 0.69
Carhart+3 1.20 1.23 0.51 0.32




Economic Importance: International Portfolios

Gains in explanatory power of 100-300%, increases in SR of around 0.4-0.8

0%(Fex) | 0?(R) SRex — SRy
Model 91-16 04-16 91-16 04-16
CAPM 7.20 1.34 0.55 0.06
FF3F 5.00 1.25 0.51 0.13
Carhart 5.61 1.07 1.31 0.25
P5 FF5F 1.33 1.11 0.54 0.92
HKM 4.15 1.30 0.40 0.48
HXZQ - - - -
Carhart+3 2.22 1.12 0.64 0.77
CAPM 3.98 1.21 0.89 0.71
FF3F 3.06 1.46 1.13 0.93
Carhart 4.07 1.37 1.62 0.75
P6 FF5F 2.10 1.07 1.27 0.70
HKM 3.62 1.23 1.16 0.79
HXZQ - - - -
Carhart+3 2.34 1.08 1.61 0.99




Economic Importance: Multi-Asset Class Portfolios

Gains in explanatory power of 5-30%, increases in SR of around 0.4-0.9

Uz(Fg*) / 02(F1) SR(;* - SRl
Model 86-10 98-10 86-10 98-10
CAPM 11.97 69.22 1.03 1.70
FF3F 1.33 1.84 0.55 0.87
Carhart 0.81 1.13 0.61 0.68
P7 FF5F 1.15 2.15 0.42 0.93
HKM 7.48 19.69 0.79 1.40
HXZQ 1.05 2.69 0.44 1.06
Carhart+3 0.90 0.97 0.56 1.12
CAPM 4.93 5.95 1.11 0.68
FF3F 1.27 1.34 0.80 1.26
Carhart 1.08 2.48 0.87 1.80
P8 FF5F 1.23 2.80 0.95 1.93
HKM 4.47 2.40 0.87 1.02
HXZQ 1.21 1.56 0.90 1.41
Carhart+3 1.18 1.08 1.47 1.37




Detailed Example: Domestic Equity Portfolios

Domestic Equity Portfolios (P3): Domestic Carhart, 1963-2016

Table: Determining the number of clusters

# Clusters (G)

1 2 3 4 5 2-5
Avg test p-val ~  0.000 0487 0490 0000  0.000
Dyn test p-val ~0.000 0.000 0000 0000  0.000
LL (x1076) 6.44 6.51 6.53 6.54 6.55
AIC (x107%)  -12.81 -12.89 -1286 -12.82 -12.79




Detailed Example: Domestic Equity Portfolios

Domestic Equity Portfolios (P3): Domestic Carhart, 1963-2016

Table: Parameter estimates of 1- and G*- cluster models

G=1 G=2
All Grp 1 Grp 2 pr (A=)
AMKT -1.13 -0.52 2.33 0.20
t-stat (-0.44) (-0.16) (1.02)
XML 3.79 2.12 8.12 0.00
t-stat (2.26) (1.35) (3.66)
Asms 1.60 2.21 -2.54 0.03
t-stat (0.98) (1.21) (-0.86)
Aump 7.11 5.57 10.43 0.00
t-stat (3.46) (2.91) (4.01)
R 0.91 0.90 0.94

R%ombined 0.91 0.92




Detailed Example: Domestic Equity Portfolios

Domestic Equity Portfolios (P3): Domestic Carhart, 1963-2016

Table: Estimated group memberships

G=1 G=2

All Grp 1 Grp 2
ME 1-3 81 0 81
ME 4-5 54 54 0
Industry 49 44 5
Other 50 50 0
N¢g 234 148 86
T 13469 13469 13469

Conjectured labels: Large cap. Small cap.

Interpretation: Market capitalization is the single most important
determinant of risk-price heterogeneity in domestic equity portfolios



Detailed Example: International Equity Portfolios
International Equity Portfolios (P6): Global Carhart, 1991-2016

Table: Determining the number of clusters

# Clusters (G)

1 2 3 4 5 2-5
Avg test p-val - 0.000 0.000 0.000 0.000 0.000
Dyn test p-val - 0.000 0.000 0.000 0.000 0.000
LL (x10~%) 5.498 6.003 6.195 6.318 6.328
AIC (x107%)  -10.852 -11.718 -11.958 -12.060 -11.935




Detailed Example: International Equity Portfolios
International Equity Portfolios (P6): Global Carhart, 1991-2016

Table: Parameter estimates of 1- and G*- cluster models

G=1 G=4
All Gpl Grp2 Grp3 Grp4 pr(\=)
AMKT 4.24 -157  -12.06  -0.55 2.03 0.12
t-stat (0.73) (-0.33)  (-2.38) (-0.14)  (0.26)
XML 1.07 2.86 9.09 4.38 6.48 0.11
t-stat (0.42) (1.22)  (2.36) (1.35) (2.22)
Asmg 0.05 2.82 -0.55 0.73 2.93 0.61
t-stat (0.02) (1.64) (-0.16)  (0.37)  (1.02)
Aump 8.07 5.79 18.69 12.16 4.00 0.00
t-stat (2.79) (1.96) (3.59) (3.70)  (0.93)
R2 0.76 0.94 0.89 0.95 0.94

R%ombined 0.76 0.93




Detailed Example: International Equity Portfolios
International Equity Portfolios (P6): Global Carhart, 1991-2016

Table: Estimated group memberships

G=1 G=4

All Grpl Grp2 Grp3 Grp4
NA 50 50 0 0 0
AP 50 0 50 0 0
EU 50 0 0 50 0
JP 50 0 0 0 50
N¢g 200 50 50 50 50
T 6783 312 312 312 312
Conjectured labels: NA AP EU JP

Interpretation: Regional stock markets are internally integrated and
(perfectly) externally segmented



Detailed Example: Multi-Asset Class Portfolios

Cross-Asset Class Portfolios (P8): He, Kelly, and Manela (2017) Factors, 1986—-2010

Table: Determining the number of clusters

# Clusters (G)

1 2 3 4 5 2-5

Avg test p-val
Dyn test p-val

- 0.000 0.000 0.000 0.000 0.000
- 0.000 0.000 0.000 0.000 0.000

LL (x1076)
AIC (x10-°)

5.19 5.46 5.55 5.61 5.66
-10.30  -10.75  -10.83  -10.88  -10.89




Detailed Example: Multi-Asset Class Portfolios

Cross-Asset Class Portfolios (P8): He, Kelly, and Manela (2017) Factors, 1986—-2010

Table: Parameter estimates of 1- and G*- cluster models

G=1 G=5
All Gl G2 G3 G4 G5 pr(\=)
a 0.62 -31.05 267 -0.13 1142 054 0.00
t-stat  (6.41) (-4.53) (4.02) (-0.05) (2.76) (6.81)
AMKT 7.14 4585 10.18 1057 -239  7.33 0.00
t-stat  (2.22) (477)  (1.30) (2.53) (-0.48) (2.10)
AHKM 9.30 4838 22.84 1443 847 9091 0.06
t-stat  (1.18) (-1.34) (1.75) (1.15) (-0.87) (1.14)
R2 0.74 0.98 0.58 0.85 0.91 0.84
R%ombined 0.74 0.88




Detailed Example: Multi-Asset Class Portfolios

Cross-Asset Class Portfolios (P8): He, Kelly, and Manela (2017) Factors, 1986—-2010

Table: Estimated group memberships

G=1 G=5
All Gl G2 G3 G4 G5
Options 18 18 0 0 0 0
Commod. 23 0 14 5 0 4
US Bonds 20 0 16 0 0 4
FX 12 0 0 11 0 1
Stocks 75 2 0 16 46 11
Ng 148 20 30 32 46 20
T 300 300 300 300 300 300
Conjectured labels:  Options Commod. FX+ Stocks Other
/ Bonds

Interpretation: Options, commodities and bonds, FX and some stock
portfolios, and other domestic stock portfolios have very different risk prices,
even when confronted by a unifying intermediary-asset pricing model
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Omitted Factors or Differences in Risk Prices?

» Whence all the segmentation?
» One possibility: omitted factors masquerade as clusters

» To see why, consider two simple models:

Model 1: ry = alM1 (i€ G)+ a?1 (i € Gp) + €it,
Model 2:  ri; = &; + Bine + €.

v

If the factor model (Model 2) is true, estimating the two-cluster model
(Model 1) gives

Aa; =, (E[Bili€ G| — E[Bili € Go)).

== We obtain separation in cross-sectional slopes so long as the average
loadings ; differ between “clusters” and the factor is priced

» The reverse also occurs: clusters can manifest as new “factors”
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Distinguishing Between Clusters and Factors

» ldea: Test whether comparably parsimonious factor models explain the
cross-section of returns as well as the cluster model

» Approach:
1. Find the AlC-optimal G*-cluster model on the R sample

2. Extract K* extra factors (PCAs) from the R sample
3. Compare the MSEs in the PP sample using Rivers & Vuong (2002)

> Subsamples prevent overfitting by the cluster and factor models

» We use three choices for K*:
1. K{* =3: an ad hoc, uniform choice for number of extra factors
2. K = G* — 1: the same number of additional partitions of the data
3. K = AlC-optimal, up to a maximum of (G* —1)(K +1) —1



Extra Clusters or Factors: Domestic Equity Portfolios

Omitted factors are comparably important for P1 and large factor models

1963-2016 1999-2016
Model K K3 K3 K K K3
CAPM -- 0 +++ -- 0 -
FF3F -—- 0 0 - 0 -
Carhart +++ A+ S+ ++ +++ 1+
P1 FF5F * * * - 4+ 0
HKM - 0 0 ++ At At
HXZQ +++ S+ +F * * *
Carhart+3 * * * * % %
CAPM +++ A+t A+t 0 -— 0
FF3F F++ A+ 0 t++ - -
Carhart e t++ -
P3  FF5F +++  +FF 0 0 +++ -
HKM 0 +++ A+ . =
HXZQ 4+t t++  +++ 0
Carhart+3  ++4++  +4++  +++ +++  FF+ +FF




Extra Clusters or Factors: International Portfolios

Multiple risk prices are generally favored, and universally so for more variegated portfolio sets

1991-2016 2004-2016
Model K Ky K K K Ki
CAPM o+ 0  +++ 0
FF3F +++ ———  +++ ---
Carhart ——= 4+ - ——=  +++ -
P5  FF5F FH+ A+ 4+
HKM ot 4+
HXZQ
Carhart+3  +++ 44+ +++ F++
CAPM FH+ +++ A+
FF3F +++ +++ 0 A+
Carhart FH+ A+ 4+ A+
P6  FF5F 0 +++ 0 FH+
HKM FH+ 4+
HXZQ
Carhart+3  +++ 44+ +++ +++ +++ 0




Extra Clusters or Factors: Multi-Asset Class Portfolios

Multiple risk prices are almost always strongly preferred

1986-2010 1998-2010
Model K K3 K3 K K3 K3
CAPM +++ +H++ A+t
FF3F +++ A+t +++ A+t A+t
Carhart +++ At A+t +++
P7  FF5F +++ S+t +++
HKM +++ +H++
HXZQ +++ +++ S+t
Carhart+3  +4++  +++  +++ S O e O e
CAPM +++ +++ 0
FF3F +++ 0 +++ At
Carhart +++ A+t 4+t
P8  FF5F +++ et +++ 0
HKM +++ +++
HXZQ +++ A+ +++ A+t
Carhart4+3  +4++  +++  +++ +++
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Conclusion

> We develop a new methodology for detecting and estimating
unobserved variation in risk prices

» Frictions matter: risk prices vary across assets

> Every portfolio set/factor model considered shows significant variation in A

> Gains from allowing for multiple clusters are comparable to gains from
moving from a simpler factor model to a more sophisticated model (e.g.,
CAPM to FF3, or FF3 to FF5)

> New frontier: understand and explain variation in \s

» This feature poses a challenge to much of empirical asset pricing

> Implications for portfolio choice, security pricing, performance evaluation
» The zoo of “expected return factors” may be a side effect of
heterogeneous risk prices
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Why Portfolios?

» We use portfolios rather than individual stocks for several reasons:
1. To increase the stability of security risk characteristics over time;
2. To decrease the measurement error in betas through diversification of
idiosyncratic risk;
3. To reduce the sparsity of the matrix of realized returns; and
4. To lessen computational cost (by 1-2 orders of magnitude)

» Merton (1973)'s intertemporal CAPM implies that all
multifactor-minimum variance efficient investments are spanned by K + 1

factor-mimicking portfolios = “portfolios are enough”

» Caveat: cluster assignments obtained using portfolio returns do not
generally apply to portfolio constituents

» Comovements among securities influence portfolio dynamics and cluster
assignments
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Simulation Study e=»

» We use US domestic equity portfolios (P3 in next section) to calibrate
parameters of (null) DGP

rie = Bify + €

v

16 different specifications:
1. “Daily” data or “Monthly” data (T = 10000 or T = 300)
2. Small or large cross-section (N = 75 or N = 225)
3. CAPM or Carhart factor model (K =1 or K = 4)
4. iid or GARCH in volatility [will only show GARCH results below]

» M = 500 permutations, S = 500 replications of each design.

v

Tables below show rejection frequencies of 5% level tests.

» Computing time for this simulation study is ~ 80,000 CPU hours



Simulation Results: T=10,000 Days

Rejection frequencies are all close to 0.05

N K Test G=2 =3 =4 =5 €2-5
75 1 Avg 0.06 0.08 0.07 0.05 0.07
75 4 Avg 0.05 0.05 0.04 0.05 0.07
225 1 Avg 0.04 0.06 0.07 0.06 0.05
225 4 Avg 0.06 0.06 0.06 0.06 0.08
75 1 Dyn 0.09 0.04 0.01 0.08 0.07
75 4 Dyn 0.04 0.01 0.03 0.07 0.04
225 1 Dyn 0.07 0.08 0.09 0.08 0.08
225 4 Dyn 0.07 0.08 0.07 0.04 0.06




Simulation Results: T=300 Months e=»

Rejection frequencies are all close to 0.05, except when N,K are large

N K Test G=2 =3 =4 =5 €2-5
75 1 Avg 0.04 0.05 0.07 0.07 0.07
75 4 Avg 0.06 0.06 0.06 0.04 0.07
225 1 Avg 0.04 0.05 0.05 0.03 0.05
225 4 Avg 0.07 0.09 0.09 0.08 0.11
75 1 Dyn 0.05 0.05 0.05 0.13 0.08
75 4 Dyn 0.06 0.03 0.02 0.05 0.04
225 1 Dyn 0.06 0.06 0.05 0.06 0.06
225 4 Dyn 0.13 0.13 0.12 0.07 0.17




Local and Global Optima

» We use two procedures to find global optima:

1. Multi-start with 2N starting group assignments selected using a
generalized version of k-means+-+

> We use k-means++ initialization because our EM procedure can be recast
as an extension of k-means

2. Genetic algorithm solutions to optimal group assignment as a
mixed-integer programming problem (MATLAB's implementation)
» Appendix A.1 of the paper provides further details

» Appendix A.2 demonstrates that global optimization is sometimes—but
not always—important for obtaining the global-best group assignments



Example 1: Local and Global Optima Coincide

Domestic Equity Portfolios: Domestic Carhart, 1963-2016
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Example 2: Local and Global Optima are “Close”

International Equity Portfolios: Global Carhart, 1991-2016

Distances with G=4 Groups
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Example 3: Global Optimum is Isolated

Cross-Asset Class Portfolios: He, Kelly, and Manela (2016) Factors, 1986-2010

RMSE

frequency
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Group Stability: Domestic Equity Portfolios

Domestic equity portfolio assignments are stable over time

Model P1 P2 P3

Period CAPM 0.89 0.64 0.61
2 FF3F 0.96 0.51 0.63
1981-1998 Carhart 0.92 0.82 0.68
Period FF5F 0.85 0.96 0.90
3 HKM 0.81 0.77 0.69
1999-2016 HXZQ 0.85 0.60 0.51
Carhart+3 1.00 0.82 0.58

Table reports maximal proportion of group labels
in common over all permutations of group labels



Group Stability: International Equity Portfolios

International equity portfolio assignments are highly stable over time

Model P5 P6
Period CAPM 0.87 0.68
1 FF3F 0.61 0.84
1991-2003 Carhart 0.74 0.78
Period FF5F 0.99 0.70
2 HKM 0.55 0.91

2004-2016 HXZQ - -
Carhart+3 0.59 0.65

Table reports maximal proportion of group labels
in common over all permutations of group labels



Group Stability: Multi-Asset Class Portfolios @

Dimensions of heterogeneity among asset classes change over time

Model P7 P8

Period CAPM 0.70 0.70
1 FF3F 0.56 0.57
1986-1997 Carhart 0.57 0.55
Period FF5F 0.73 0.76
2 HKM 0.62 0.55
1998-2010 HXZQ 0.56 0.57
Carhart+3 0.88 0.53

Table reports maximal proportion of group labels
in common over all permutations of group labels
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