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Motivation

§ Where do differences in expected returns come from?
§ Typical models of expected returns are of the form,

E rr e
i s “

K
ÿ

k“1
βik

loomoon

amount of risk

ˆ λk
loomoon

price of risk

,

where λk is the expected compensation to factor fk

§ The conversation typically focuses on the set of factors f
§ Our embarrassment of riches: hundreds of candidates for f !

§ This focus is correct only in a Law-of-One-Price world with
§ Costless portfolio formation
§ Frictionless borrowing
§ Integrated markets, etc...

§ This paper is about cross-sectional variation in risk prices (λ)
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Finding Variation in Risk Prices

§ How can we identify differences in λ? Two approaches:

1. Use economic intuition to conjecture groups and test for equal λs
§ Problem: only in certain cases do we know how to group assets ex ante
§ How do we guard against data snooping?
§ What if conjectured segments are incorrect or unimportant?

2. Group together assets based on estimated λs (“let the data speak”)
§ Problem: λs are slopes across assets, that is, the clustering characteristic
λ
piq
k depends on the other assets in its group

§ Typical off-the-shelf clustering technologies like k-means cannot
accommodate this dependence

§ We contribute an approach to estimate and test for variation in λ across
assets based on methods in machine learning
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Main Findings

1. We find significant cross-sectional variation in risk prices
§ Segmentation exists within domestic stocks, between international
geographic regions, and across asset classes

§ Cross-sectional risk price heterogeneity dramatically increases the
explanatory power of common risk models

§ Clusters increase explained E rrs variation and maximal Sharpe ratios as
much as replacing the CAPM with the FF3F model

2. Omitted factors and differences in risk prices both contribute to
observed segmentation

§ Segmentation is less important than omitted factors in US stocks only for
our least diverse portfolio set and for the CAPM

ùñ Differences in λ are pervasive and important!
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The Economic Model

§ N assets, K asset pricing factors, and T dates
§ Each asset is a member of one of G ě 1 groups (G is fixed for now)

§ The true asset pricing model satisfies

rit “ αt Ii ` βi pft ` Φt Iiq ` εit ,
0 “ E rεts “ cov pεt , fsq “ cov pεt ,Φsq “ cov pΦt , fsq “ cov pαt , fsq ,@t, s

(We set aside conformability of the zero matrices to streamline exposition)

§ Key differences from most empirical asset pricing models:
1. Groups may have different factor realizations at each date (covariances)
2. Groups may have different average risk prices

§ Implied by Errunza & Losq (1985) and Gromb & Vayanos (2018), among others
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Group Assignment and Parameter Estimation

§ Consider a candidate set of G groups of assets. We want to solve

´

Γ̂, Λ̂
¯

“ arg min
Γ,Λ

ÿ

i,t

˜

rit ´ α
pγi q ´
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k
βikλ

pγi q
kt

¸2

where
§ Γ is a N ˆ 1 vector of group assignments, γi P 1, . . . ,G
§ Λ is a T ˆ K ˆ G matrix of factor compensations, λpgqkt for each of T
dates, K factors, and G groups

§ That is a lot of parameters to estimate

§ And we don’t have differentiability for γi , which complicates most
standard solution methods
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Expectation Maximization to the Rescue
1. Fixing group assignments delivers cross-sectional slopes via OLS:

rit “ α
pgq
t `

ÿ

k
βikλ

pgq
kt ` εit , @γi “ g , g “ 1, ...,G , t “ 1, . . . ,T

2. Fixing cross-sectional slopes delivers group assignments by minimizing
fitting errors across groups for each stock

γi “ arg min
gPt1,...,Gu

$

&

%

˜

rit ´ α
pgq
t ´

ÿ

k
βikλ

pgq
kt

¸2
,

.

-

§ Iterating between holding fixed group assignments and lambdas is
expectation maximization

§ Importantly this cycle converges to a (local) optimum
§ See the paper for discussion of multi-start and genetic algorithm methods
used to achieve global optima ( Local and Global Optima )
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Testing for Multiple Clusters

§ Our EM approach finds group assignments and risk prices that maximize
the explanatory power of a factor model given a fixed number of groups, G

§ To address formally whether there is evidence of heterogeneous risk prices,
we need to test for multiple clusters

§ Of course adding clusters improves model fit, but is the improvement in fit
“big enough” to justify adding so many parameters?

§ Note that standard approaches to testing for segmentation fail:
1. A standard test comparing estimated risk prices leads to severe size

distortions because groups are estimated
2. Existing work that accounts for this estimation step, e.g. Bonhomme and

Manresa (2015), requires clusters to be “well-separated,” which is not true
under the null of unified prices
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Testing for Multiple Clusters

§ We split our data into subsamples, R and P, to overcome size
distortion issues:

1. Estimate cluster assignments on subsample R (impose “no small groups”
assumption)

2. Estimate cross-sectional slopes on P, given Γ̂R , via G simple FMB
regressions.

§ If dependence between R and P samples is limited, this split eliminates
the overfitting problem arising from estimated clusters
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Null Hypotheses
§ We consider two tests. The null in both is of no segmentation / equal
risk prices / the Law of One Price:

H0 : λ̄
p1q
k “ λ̄

p2q
k “ . . . “ λ̄

pGq
k @k

vs. H1 : λ̄
pgq
k ‰ λ̄

pg 1q
k for some k, g , g 1.

and
H0 : λ

p1q
kt “ λ

p2q
kt “ . . . “ λ

pGq
kt @k, t

vs. H1 : λ
pgq
kt ‰ λ

pg 1q
kt for some k, g , g 1, t.

§ The first test generalizes FMB-style t tests to look at differences in
expected returns across clusters

§ The second tests enriches the first by adding information from the
dynamics of cross-sectional slopes

§ Note: these tests do not consider ᾱpgq or αpgqt because our focus is on risk
price heterogeneity, not on zero-beta rates
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Test Statistics and Inference
§ Our two test statistics are:

F Avg “
1

pG ´ 1qK
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ÿ
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∆λ̄pg,g`1q1

´
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∆λ̄pg,g`1q

F Dyn “
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pG ´ 1qKP

G´1
ÿ

g“1

ÿ

tPP
∆λpg,g`1qt

1
´

Σ̂
λ
pgq
t
` Σ̂

λ
pg`1q
t

¯´1
∆λpg,g`1qt

§ We obtain critical values for these using a permutations approach
(Lehmann and Romano, 2005):

§ Compute the above test statistics for M randomly assigned group
assignments (i.e., permutations)

§ p-value is proportion of permutation stats larger than the test stat
§ Not necessary if FMB model is correctly specified; much better
finite-sample properties than standard F tests when misspecified

§ We confirm in simulation studies that the tests have approximately
correct size Simulation Study
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Data

§ Throughout, portfolios are our base unit of analysis ( Why Portfolios? )
§ Domestic Equities: 1963–2016 (Fama-French Daily)

§ P1 (N=75): 25 size-value, 25 size-market beta, 25 size-momentum
§ P2 (N=115): P1 + 10 size, 10 B/M, 10 market beta, 10 momentum
§ P3 (N=234): P2 + 49 industry, 10 investment, 10 profitability, 25
size-investment, 25 size-profitability

§ P4 (N=100): 100 placebo portfolios with PERMNOs selected at random

§ International Equities: 1991–2016 (Fama-French Monthly)
§ P5 (N=100): 25 size-value for North America, Europe, Japan, and
Asia-Pacific regions

§ P6 (N=200): P4 + 25 size-momentum for each region

§ Multi-Asset Class: 1970–2012 (He-Kelly-Manela Monthly)
§ P7 (N=98): 25 size-value, 23 commodities, 10 maturity Treasury bonds,
10 yield corporate bonds, 18 moneyness-maturity-C/P options, 12 FX
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Segmentation Everywhere: Domestic Equity Portfolios
Dynamic test rejects everywhere, Avg test rejects less for P1

Equal Avg Risk Prices Equal Dyn Risk Prices
Model 1963–2016 1999–2016 1963–2016 1999–2016

P1

CAPM 0.312 0.561 0.026 0.006
FF3F 0.057 0.011 0.000 0.000
Carhart 0.050 0.102 0.000 0.000
FF5F 0.078 0.375 0.000 0.000
HKM 0.236 0.057 0.037 0.001
HXZQ 0.000 0.671 0.000 0.000
Carhart+3 0.005 1.000 0.000 0.000

P3

CAPM 0.052 0.006 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
FF5F 0.000 0.000 0.000 0.000
HKM 0.543 0.007 0.000 0.000
HXZQ 0.000 0.000 0.000 0.000
Carhart+3 0.000 0.004 0.000 0.000

Group Stability



Segmentation Everywhere: Placebo Portfolios
Neither test rejects more than expected by chance for placebo portfolios

Equal Avg Risk Prices Equal Dyn Risk Prices
Model 1963–2016 1999–2016 1963–2016 1999–2016

P4

CAPM 0.082 0.618 0.086 1.000
FF3F 0.579 0.101 1.000 1.000
Carhart 0.594 0.822 0.602 0.262
FF5F 0.153 0.883 1.000 1.000
HKM 1.000 0.711 0.015 0.466
HXZQ 0.246 0.197 1.000 0.198
Carhart+3 0.599 1.000 0.118 0.041

We find no segmentation when risk prices are the same!
(formalized in our simulation study)



Segmentation Everywhere: Int’l Equity Portfolios
Average and Dynamic tests reject everywhere

Equal Avg Risk Prices Equal Dyn Risk Prices
Model 1991–2016 2004–2016 1991–2016 2004–2016

P5

CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ – – – –
Carhart+3 0.002 0.001 0.000 0.000

P6

CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ – – – –
Carhart+3 0.000 0.000 0.000 0.000

Group Stability



Segmentation Everywhere: Multi-Asset Class Portfolios
Average and Dynamic tests reject everywhere

Equal Avg Risk Prices Equal Dyn Risk Prices
Model 1986–2010 1998–2010 1986–2010 1998–2010

P7

CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ 0.000 0.000 0.000 0.000
Carhart+3 0.000 0.000 0.000 0.000

P8

CAPM 0.000 0.000 0.000 0.000
FF3F 0.000 0.000 0.000 0.000
Carhart 0.000 0.000 0.000 0.000
FF5F 0.000 0.000 0.000 0.000
HKM 0.000 0.000 0.000 0.000
HXZQ 0.000 0.000 0.000 0.000
Carhart+3 0.000 0.000 0.000 0.000

Group Stability



Segmentation Everywhere: Summary

§ Statistical evidence of segmented markets is ubiquitous. For the tests
of equal factor dynamics:

1. Domestic equities: 80/81 tests reject the null of a single cluster

2. International equities: all 36 tests reject with p-val=0.000

3. Multi-asset class portfolios: all 42 tests reject with p-val=0.000

§ Differences in average risk prices are also strongly significant, reject null
for 57/81, 35/36 and 41/42 cases

§ But are violations of unified risk pricing also economically meaningful?



Economic vs. Statistical Significance of Segmentation

§ We measure economic significance in two ways:

1. Increased explanatory power for cross-section of expected returns:
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Economic Importance: Domestic Portfolios
Gains in explanatory power of around 15–70%, increases in SR of around 0.15–0.80

σ2(r̄G˚) / σ2(r̄1) SRG˚ ´ SR1

Model 63–16 99–16 63–16 99–16

P1

CAPM 3.77 161.88 0.26 0.15
FF3F 1.81 1.80 0.74 -0.09
Carhart 1.03 1.38 0.10 0.16
FF5F * 1.10 * 0.15
HKM 8.25 5.30 0.33 0.38
HXZQ 1.16 2.67 0.67 0.29
Carhart+3 * * * *

P3

CAPM 2.75 6.16 0.17 0.48
FF3F 1.67 1.75 0.82 0.47
Carhart 1.41 1.55 0.86 0.85
FF5F 1.49 1.22 0.54 0.14
HKM 6.25 10.42 0.08 0.72
HXZQ 1.51 2.39 0.69 0.69
Carhart+3 1.20 1.23 0.51 0.32



Economic Importance: International Portfolios
Gains in explanatory power of 100-300%, increases in SR of around 0.4-0.8

σ2(r̄G˚) / σ2(r̄1) SRG˚ ´ SR1

Model 91–16 04–16 91–16 04–16

P5

CAPM 7.20 1.34 0.55 0.06
FF3F 5.00 1.25 0.51 0.13
Carhart 5.61 1.07 1.31 0.25
FF5F 1.33 1.11 0.54 0.92
HKM 4.15 1.30 0.40 0.48
HXZQ – – – –
Carhart+3 2.22 1.12 0.64 0.77

P6

CAPM 3.98 1.21 0.89 0.71
FF3F 3.06 1.46 1.13 0.93
Carhart 4.07 1.37 1.62 0.75
FF5F 2.10 1.07 1.27 0.70
HKM 3.62 1.23 1.16 0.79
HXZQ – – – –
Carhart+3 2.34 1.08 1.61 0.99



Economic Importance: Multi-Asset Class Portfolios
Gains in explanatory power of 5-30%, increases in SR of around 0.4-0.9

σ2(r̄G˚) / σ2(r̄1) SRG˚ ´ SR1

Model 86-10 98-10 86-10 98-10

P7

CAPM 11.97 69.22 1.03 1.70
FF3F 1.33 1.84 0.55 0.87
Carhart 0.81 1.13 0.61 0.68
FF5F 1.15 2.15 0.42 0.93
HKM 7.48 19.69 0.79 1.40
HXZQ 1.05 2.69 0.44 1.06
Carhart+3 0.90 0.97 0.56 1.12

P8

CAPM 4.93 5.95 1.11 0.68
FF3F 1.27 1.34 0.80 1.26
Carhart 1.08 2.48 0.87 1.80
FF5F 1.23 2.80 0.95 1.93
HKM 4.47 2.40 0.87 1.02
HXZQ 1.21 1.56 0.90 1.41
Carhart+3 1.18 1.08 1.47 1.37



Detailed Example: Domestic Equity Portfolios
Domestic Equity Portfolios (P3): Domestic Carhart, 1963–2016

Table: Determining the number of clusters

# Clusters (G)
1 2 3 4 5 2–5

Avg test p-val – 0.000 0.487 0.490 0.000 0.000
Dyn test p-val – 0.000 0.000 0.000 0.000 0.000

LL (ˆ10´6) 6.44 6.51 6.53 6.54 6.55
AIC (ˆ10´6) -12.81 -12.89 -12.86 -12.82 -12.79



Detailed Example: Domestic Equity Portfolios
Domestic Equity Portfolios (P3): Domestic Carhart, 1963–2016

Table: Parameter estimates of 1- and G˚- cluster models

G=1 G=2
All Grp 1 Grp 2 pF

`

λ̄ “
˘

λ̄MKT -1.13 -0.52 2.33 0.20
t-stat (-0.44) (-0.16) (1.02)

λ̄HML 3.79 2.12 8.12 0.00
t-stat (2.26) (1.35) (3.66)

λ̄SMB 1.60 2.21 -2.54 0.03
t-stat (0.98) (1.21) (-0.86)

λ̄UMD 7.11 5.57 10.43 0.00
t-stat (3.46) (2.91) (4.01)

R2
G 0.91 0.90 0.94

R2
Combined 0.91 0.92



Detailed Example: Domestic Equity Portfolios
Domestic Equity Portfolios (P3): Domestic Carhart, 1963–2016

Table: Estimated group memberships

G=1 G=2
All Grp 1 Grp 2

ME 1-3 81 0 81
ME 4-5 54 54 0
Industry 49 44 5
Other 50 50 0
NG 234 148 86
T 13469 13469 13469

Conjectured labels: Large cap. Small cap.
Interpretation: Market capitalization is the single most important
determinant of risk-price heterogeneity in domestic equity portfolios



Detailed Example: International Equity Portfolios
International Equity Portfolios (P6): Global Carhart, 1991–2016

Table: Determining the number of clusters

# Clusters (G)
1 2 3 4 5 2–5

Avg test p-val – 0.000 0.000 0.000 0.000 0.000
Dyn test p-val – 0.000 0.000 0.000 0.000 0.000

LL (ˆ10´4) 5.498 6.003 6.195 6.318 6.328
AIC (ˆ10´4) -10.852 -11.718 -11.958 -12.060 -11.935



Detailed Example: International Equity Portfolios
International Equity Portfolios (P6): Global Carhart, 1991–2016

Table: Parameter estimates of 1- and G˚- cluster models

G=1 G=4
All Grp 1 Grp 2 Grp 3 Grp 4 pF

`

λ̄ “
˘

λ̄MKT 4.24 -1.57 -12.06 -0.55 2.03 0.12
t-stat (0.73) (-0.33) (-2.38) (-0.14) (0.26)

λ̄HML 1.07 2.86 9.09 4.38 6.48 0.11
t-stat (0.42) (1.22) (2.36) (1.35) (2.22)

λ̄SMB 0.05 2.82 -0.55 0.73 2.93 0.61
t-stat (0.02) (1.64) (-0.16) (0.37) (1.02)

λ̄UMD 8.07 5.79 18.69 12.16 4.00 0.00
t-stat (2.79) (1.96) (3.59) (3.70) (0.93)

R2
G 0.76 0.94 0.89 0.95 0.94

R2
Combined 0.76 0.93



Detailed Example: International Equity Portfolios
International Equity Portfolios (P6): Global Carhart, 1991–2016

Table: Estimated group memberships

G=1 G=4
All Grp 1 Grp 2 Grp 3 Grp 4

NA 50 50 0 0 0
AP 50 0 50 0 0
EU 50 0 0 50 0
JP 50 0 0 0 50
NG 200 50 50 50 50
T 6783 312 312 312 312

Conjectured labels: NA AP EU JP
Interpretation: Regional stock markets are internally integrated and

(perfectly) externally segmented



Detailed Example: Multi-Asset Class Portfolios
Cross-Asset Class Portfolios (P8): He, Kelly, and Manela (2017) Factors, 1986–2010

Table: Determining the number of clusters

# Clusters (G)
1 2 3 4 5 2–5

Avg test p-val – 0.000 0.000 0.000 0.000 0.000
Dyn test p-val – 0.000 0.000 0.000 0.000 0.000

LL (ˆ10´6) 5.19 5.46 5.55 5.61 5.66
AIC (ˆ10´6) -10.30 -10.75 -10.83 -10.88 -10.89



Detailed Example: Multi-Asset Class Portfolios
Cross-Asset Class Portfolios (P8): He, Kelly, and Manela (2017) Factors, 1986–2010

Table: Parameter estimates of 1- and G˚- cluster models

G=1 G=5
All G1 G2 G3 G4 G5 pF

`

λ̄ “
˘

ᾱ 0.62 -31.05 2.67 -0.13 11.42 0.54 0.00
t-stat (6.41) (-4.53) (4.02) (-0.05) (2.76) (6.81)

λ̄MKT 7.14 45.85 10.18 10.57 -2.39 7.33 0.00
t-stat (2.22) (4.77) (1.30) (2.53) (-0.48) (2.10)

λ̄HKM 9.30 -48.38 22.84 14.43 -8.47 9.91 0.06
t-stat (1.18) (-1.34) (1.75) (1.15) (-0.87) (1.14)

R2
G 0.74 0.98 0.58 0.85 0.91 0.84

R2
Combined 0.74 0.88



Detailed Example: Multi-Asset Class Portfolios
Cross-Asset Class Portfolios (P8): He, Kelly, and Manela (2017) Factors, 1986–2010

Table: Estimated group memberships

G=1 G=5
All G1 G2 G3 G4 G5

Options 18 18 0 0 0 0
Commod. 23 0 14 5 0 4
US Bonds 20 0 16 0 0 4
FX 12 0 0 11 0 1
Stocks 75 2 0 16 46 11
NG 148 20 30 32 46 20
T 300 300 300 300 300 300

Conjectured labels: Options Commod.
/ Bonds FX+ Stocks Other

Interpretation: Options, commodities and bonds, FX and some stock
portfolios, and other domestic stock portfolios have very different risk prices,

even when confronted by a unifying intermediary-asset pricing model



Omitted Factors or Differences in Risk Prices?

§ Whence all the segmentation?
§ One possibility: omitted factors masquerade as clusters
§ To see why, consider two simple models:

Model 1: rit “ α
p1q
t 1 pi P G1q ` α

p2q
t 1 pi P G2q ` εit ,

Model 2: rit “ α̃t ` βiηt ` ε̃it .

§ If the factor model (Model 2) is true, estimating the two-cluster model
(Model 1) gives

y∆αt “ ηt pE rβi |i P G1s ´ E rβi |i P G2sq .

ùñ We obtain separation in cross-sectional slopes so long as the average
loadings βi differ between “clusters” and the factor is priced

§ The reverse also occurs: clusters can manifest as new “factors”
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Distinguishing Between Clusters and Factors

§ Idea: Test whether comparably parsimonious factor models explain the
cross-section of returns as well as the cluster model

§ Approach:
1. Find the AIC-optimal G˚-cluster model on the R sample
2. Extract K˚ extra factors (PCAs) from the R sample
3. Compare the MSEs in the P sample using Rivers & Vuong (2002)

§ Subsamples prevent overfitting by the cluster and factor models

§ We use three choices for K˚:
1. K˚1 “ 3: an ad hoc, uniform choice for number of extra factors
2. K˚2 “ G˚ ´ 1: the same number of additional partitions of the data
3. K˚3 “ AIC-optimal, up to a maximum of pG˚ ´ 1qpK ` 1q ´ 1
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Extra Clusters or Factors: Domestic Equity Portfolios
Omitted factors are comparably important for P1 and large factor models

1963–2016 1999–2016
Model K˚1 K˚2 K˚3 K˚1 K˚2 K˚3

P1

CAPM – – 0 +++ – – 0 – –
FF3F – – – 0 0 – – 0 – –
Carhart +++ +++ +++ ++ +++ +++
FF5F * * * – +++ 0
HKM – – – 0 0 ++ +++ +++
HXZQ +++ +++ +++ * * *
Carhart+3 * * * * * *

P3

CAPM +++ +++ +++ 0 – – 0
FF3F +++ +++ +++ 0 +++ – – –
Carhart +++ +++ +++ +++ +++ – –
FF5F +++ +++ 0 0 +++ – –
HKM 0 +++ +++ +++ +++ – – –
HXZQ +++ +++ +++ +++ +++ 0
Carhart+3 +++ +++ +++ +++ +++ +++



Extra Clusters or Factors: International Portfolios
Multiple risk prices are generally favored, and universally so for more variegated portfolio sets

1991–2016 2004–2016
Model K˚1 K˚2 K˚3 K˚1 K˚2 K˚3

P5

CAPM +++ +++ +++ 0 +++ 0
FF3F +++ +++ +++ – – – +++ – – –
Carhart – – – +++ – – – – – – +++ – – –
FF5F +++ +++ +++ +++ +++ +++
HKM +++ +++ +++ +++ +++ +++
HXZQ
Carhart+3 +++ +++ +++ +++ +++ +++

P6

CAPM +++ +++ +++ +++ +++ +++
FF3F +++ +++ 0 +++ +++ +++
Carhart +++ +++ +++ +++ +++ +++
FF5F 0 +++ 0 +++ +++ +++
HKM +++ +++ +++ +++ +++ +++
HXZQ
Carhart+3 +++ +++ +++ +++ +++ 0



Extra Clusters or Factors: Multi-Asset Class Portfolios
Multiple risk prices are almost always strongly preferred

1986–2010 1998–2010
Model K˚1 K˚2 K˚3 K˚1 K˚2 K˚3

P7

CAPM +++ +++ +++ +++ +++ +++
FF3F +++ +++ +++ +++ +++ +++
Carhart +++ +++ +++ +++ +++ +++
FF5F +++ +++ +++ +++ +++ ++
HKM +++ +++ +++ +++ +++ +++
HXZQ +++ +++ +++ +++ +++ +++
Carhart+3 +++ +++ +++ +++ +++ +++

P8

CAPM +++ +++ ++ +++ +++ 0
FF3F +++ +++ 0 +++ +++ +++
Carhart +++ +++ +++ +++ +++ +++
FF5F +++ +++ +++ +++ +++ 0
HKM +++ +++ +++ +++ +++ +++
HXZQ +++ +++ +++ +++ +++ +++
Carhart+3 +++ +++ +++ +++ +++ +++



Conclusion

§ We develop a new methodology for detecting and estimating
unobserved variation in risk prices

§ Frictions matter: risk prices vary across assets
§ Every portfolio set/factor model considered shows significant variation in λ
§ Gains from allowing for multiple clusters are comparable to gains from
moving from a simpler factor model to a more sophisticated model (e.g.,
CAPM to FF3, or FF3 to FF5)

§ New frontier: understand and explain variation in λs

§ This feature poses a challenge to much of empirical asset pricing
§ Implications for portfolio choice, security pricing, performance evaluation
§ The zoo of “expected return factors” may be a side effect of
heterogeneous risk prices
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Why Portfolios? Back

§ We use portfolios rather than individual stocks for several reasons:
1. To increase the stability of security risk characteristics over time;
2. To decrease the measurement error in betas through diversification of

idiosyncratic risk;
3. To reduce the sparsity of the matrix of realized returns; and
4. To lessen computational cost (by 1–2 orders of magnitude)

§ Merton (1973)’s intertemporal CAPM implies that all
multifactor-minimum variance efficient investments are spanned by K ` 1
factor-mimicking portfolios ùñ “portfolios are enough”

§ Caveat: cluster assignments obtained using portfolio returns do not
generally apply to portfolio constituents

§ Comovements among securities influence portfolio dynamics and cluster
assignments
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Simulation Study Back

§ We use US domestic equity portfolios (P3 in next section) to calibrate
parameters of (null) DGP

rit “ βi ft ` εit

§ 16 different specifications:
1. “Daily” data or “Monthly” data (T “ 10000 or T “ 300)
2. Small or large cross-section (N “ 75 or N “ 225)
3. CAPM or Carhart factor model (K “ 1 or K “ 4)
4. iid or GARCH in volatility [will only show GARCH results below]

§ M “ 500 permutations, S “ 500 replications of each design.
§ Tables below show rejection frequencies of 5% level tests.
§ Computing time for this simulation study is « 80, 000 CPU hours
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§ Tables below show rejection frequencies of 5% level tests.
§ Computing time for this simulation study is « 80, 000 CPU hours



Simulation Results: T=10,000 Days Back

Rejection frequencies are all close to 0.05

N K Test G=2 =3 =4 =5 P2–5

75 1 Avg 0.06 0.08 0.07 0.05 0.07
75 4 Avg 0.05 0.05 0.04 0.05 0.07
225 1 Avg 0.04 0.06 0.07 0.06 0.05
225 4 Avg 0.06 0.06 0.06 0.06 0.08

75 1 Dyn 0.09 0.04 0.01 0.08 0.07
75 4 Dyn 0.04 0.01 0.03 0.07 0.04
225 1 Dyn 0.07 0.08 0.09 0.08 0.08
225 4 Dyn 0.07 0.08 0.07 0.04 0.06



Simulation Results: T=300 Months Back

Rejection frequencies are all close to 0.05, except when N,K are large

N K Test G=2 =3 =4 =5 P2–5

75 1 Avg 0.04 0.05 0.07 0.07 0.07
75 4 Avg 0.06 0.06 0.06 0.04 0.07
225 1 Avg 0.04 0.05 0.05 0.03 0.05
225 4 Avg 0.07 0.09 0.09 0.08 0.11

75 1 Dyn 0.05 0.05 0.05 0.13 0.08
75 4 Dyn 0.06 0.03 0.02 0.05 0.04
225 1 Dyn 0.06 0.06 0.05 0.06 0.06
225 4 Dyn 0.13 0.13 0.12 0.07 0.17



Local and Global Optima Back

§ We use two procedures to find global optima:
1. Multi-start with 2N starting group assignments selected using a

generalized version of k-means++
§ We use k-means++ initialization because our EM procedure can be recast
as an extension of k-means

2. Genetic algorithm solutions to optimal group assignment as a
mixed-integer programming problem (MATLAB’s implementation)

§ Appendix A.1 of the paper provides further details
§ Appendix A.2 demonstrates that global optimization is sometimes—but
not always—important for obtaining the global-best group assignments



Example 1: Local and Global Optima Coincide Back

Domestic Equity Portfolios: Domestic Carhart, 1963-2016

Distances with G=2 Groups
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Example 2: Local and Global Optima are “Close” Back

International Equity Portfolios: Global Carhart, 1991-2016

Distances with G=4 Groups
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Example 3: Global Optimum is Isolated Back

Cross-Asset Class Portfolios: He, Kelly, and Manela (2016) Factors, 1986-2010

Distances with G=5 Groups
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Group Stability: Domestic Equity Portfolios Back

Domestic equity portfolio assignments are stable over time

Model P1 P2 P3
Period
2
1981–1998

CAPM 0.89 0.64 0.61
FF3F 0.96 0.51 0.63
Carhart 0.92 0.82 0.68

Period
3
1999–2016

FF5F 0.85 0.96 0.90
HKM 0.81 0.77 0.69
HXZQ 0.85 0.60 0.51

Carhart+3 1.00 0.82 0.58
Table reports maximal proportion of group labels
in common over all permutations of group labels



Group Stability: International Equity Portfolios Back

International equity portfolio assignments are highly stable over time

Model P5 P6
Period
1
1991–2003

CAPM 0.87 0.68
FF3F 0.61 0.84
Carhart 0.74 0.78

Period
2
2004–2016

FF5F 0.99 0.70
HKM 0.55 0.91
HXZQ – –

Carhart+3 0.59 0.65
Table reports maximal proportion of group labels
in common over all permutations of group labels



Group Stability: Multi-Asset Class Portfolios Back

Dimensions of heterogeneity among asset classes change over time

Model P7 P8
Period
1
1986–1997

CAPM 0.70 0.70
FF3F 0.56 0.57
Carhart 0.57 0.55

Period
2
1998–2010

FF5F 0.73 0.76
HKM 0.62 0.55
HXZQ 0.56 0.57

Carhart+3 0.88 0.53
Table reports maximal proportion of group labels
in common over all permutations of group labels
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