Shades of Integration: The Restructuring of the U.S. Electricity Markets

Alexander MacKay¹ Ignacia Mercadal²

¹Harvard University

²Columbia University

May 29, 2019

NBER Electricity Markets and Regulation Workshop

A Bit of History: Electricity Restructuring

In the 1990s, several (state-level) initiatives were begun to restructure electricity markets in the United States

A Bit of History: Electricity Restructuring

In the 1990s, several (state-level) initiatives were begun to restructure electricity markets in the United States

The objective was to bring down electricity prices through the introduction of markets and competition

- By replacing regulated vertically integrated utilities with markets
- Following deregulation of airlines, trucking, and telecom

A Bit of History: Electricity Restructuring

In the 1990s, several (state-level) initiatives were begun to restructure electricity markets in the United States

The objective was to bring down electricity prices through the introduction of markets and competition

- By replacing regulated vertically integrated utilities with markets
- Following deregulation of airlines, trucking, and telecom

Economic reasoning:

- More efficient operation of plants
- More efficient long-term investment decisions

What Happened After Restructuring?

Increased productive efficiency (lower costs)

• Fabrizio, Rose and Wolfram (2007), Davis and Wolfram (2012), Cicala (2017)

Evidence on prices is inconclusive or finds small effects

• Borenstein and Bushnell (2015), Bushnell, Mansur, and Novan (2017 WP)

What Happened After Restructuring?

Increased productive efficiency (lower costs)

• Fabrizio, Rose and Wolfram (2007), Davis and Wolfram (2012), Cicala (2017)

Evidence on prices is inconclusive or finds small effects

• Borenstein and Bushnell (2015), Bushnell, Mansur, and Novan (2017 WP)

This paper: We revisit this question, using a detailed dataset on electricity transactions

We account for intermediate forms of vertical integration

- Whether buyers and sellers are affiliated (same parent company)
- Long-term contracts

Data

1. FERC Form 1: detailed information on investor owned utilities (IOUs)

- Financial information
- Purchases: from whom, price, quantity, affiliation
- Generation costs
- ► Sales: retail by type of customer, wholesale, competitive retailers
- 2. FERC Electric Quarterly Reports (EQRs):
 - Wholesale electricity sales
 - ► Contractual details: parties, price, quantity, terms, length
 - Does not include purchases from an ISO (only transactions in which the ISO is the buyer).
- 3. S&P Global energy dataset:
 - Corporate structure

Empirical analysis: Investor-owned utilities (70% of sales)

Produced by Edison Electric Institute. Data Source: ABB, Velocity Suite. October 2018

Share of the market supplied by IOUs

Share of the market supplied by IOUs

Effective restructuring: Share of sales from independent sellers.

Prices

Markets after restructuring

1. Delayed restructuring

- Quick divestment process, but generation stayed within the same parent company for many years.
- Retail competition was very weak in the first decade
- 2. Higher prices following effective restructuring
 - Wholesale and retail prices are higher for restructured utilities

Consequences of effective restructuring

$$price_{it} = \beta^U E_{it}^U + \beta^D E_{it}^D + \gamma X_{it} + \xi_i + \phi_t + \varepsilon_{it}$$
(1)

- E_{it}^U : share of purchases from independent sellers
- E_{it}^D : share of sales from independent retailers
- *ξ_i*: utility fixed-effects
- φ_t: year fixed-effects
- β^U , β^D : net effect of effective restructuring on prices.

Rate freezes

- Many states had rate freezes in the early years after restructuring
- Could have been removed at the same time as changes in market structure
- For most states, rate caps were removed before effective restructuring took off (before 2004)

Rate freezes

- Many states had rate freezes in the early years after restructuring
- Could have been removed at the same time as changes in market structure
- For most states, rate caps were removed before effective restructuring took off (before 2004)

Stranded costs

- Regulators allowed formerly regulated utilities to recover "stranded costs" by increasing rates
- For most states, this had stopped by 2005

- Renewable portfolio standards
 - Require utilities to purchase a fixed share of electricity from renewable sources
 - Implemented in 29 states (all restructured)
 - Control by share of renewable generation

- Renewable portfolio standards
 - Require utilities to purchase a fixed share of electricity from renewable sources
 - Implemented in 29 states (all restructured)
 - Control by share of renewable generation
- Clean Air Act 2005
 - Higher costs for coal plants from environmental compliance
 - Control by carbon emissions in 2005 interacted with years after 2005

- Renewable portfolio standards
 - Require utilities to purchase a fixed share of electricity from renewable sources
 - Implemented in 29 states (all restructured)
 - Control by share of renewable generation
- Clean Air Act 2005
 - Higher costs for coal plants from environmental compliance
 - ► Control by carbon emissions in 2005 interacted with years after 2005
- Reverse causality:
 - Markets with higher retail prices attract more / better competitive retailers
 - ► IV: Share of commercial and industrial customers

Wholesale prices (upstream)

	(1)	(2)	(3)	(4)	(5)	(6)
Upstream Deregulation	8.586** (3.903)		-3.885 (4.099)	-4.859 (3.958)	-5.042 (3.922)	-10.062** (4.148)
Downstream Deregulation		34.620*** (6.501)	39.381*** (7.242)	38.517*** (7.092)	38.757*** (7.111)	55.042*** (9.662)
Fuel Cost				0.755*** (0.260)		0.737*** (0.253)
Fuel Cost \times Treatment					0.876*** (0.258)	
Fuel Cost \times Control					0.497* (0.282)	
Year FEs	Х	Х	Х	Х	Х	Х
Utility FEs	Х	Х	Х	Х	Х	Х
IV						Х
Observations	2,610	3,212	2,610	2,610	2,610	2,610
R^2	0.58	0.59	0.61	0.62	0.62	0.62

Regressions are weighted by MWh purchased.

Cluster-robust standard errors are calculated at the utility level and displayed in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

Retail prices (downstream)

	(1)	(2)	(3)	(4)	(5)	(6)
Upstream Deregulation	$\begin{array}{c} 16.478^{***} \\ (2.940) \end{array}$		3.049 (3.866)	1.702 (3.511)	2.128 (3.477)	-5.111 (3.974)
Downstream Deregulation		40.290*** (8.544)	40.598*** (8.674)	41.808*** (8.661)	41.337*** (8.700)	43.501*** (10.344)
Fuel Cost				0.896*** (0.193)		0.986*** (0.294)
Fuel Cost \times Treatment					0.721*** (0.233)	
Fuel Cost \times Control					1.039*** (0.154)	
Year FEs	Х	Х	Х	Х	Х	Х
Utility FEs	Х	Х	Х	Х	Х	Х
IV						Х
Observations	2,640	3,249	2,640	2,640	2,640	2,640
R^2	0.89	0.90	0.90	0.91	0.91	0.87

Regressions are weighted by retail MWh.

Cluster-robust standard errors are calculated at the utility level and displayed in parentheses.

* p < 0.10, ** p < 0.05, *** p < 0.01

Contract prices

	OLS				IV	
	(1)	(2)	(3)	(4)	(5)	(6)
Downstream dereg	0.823***	0.807***	0.738***	0.799***	1.200***	1.200
	(0.158)	(0.167)	(0.160)	(0.149)	(0.164)	(0.941)
Upstream dereg	0.067	0.054	0.053	0.087	0.049**	0.049
	(0.099)	(0.104)	(0.101)	(0.090)	(0.024)	(0.183)
Share ISO	0.051	-0.044	-0.041			
	(0.143)	(0.129)	(0.133)			
log(quantity)	-0.021***	-0.020***	-0.020***	-0.016^{***}	-0.015^{***}	-0.015^{***}
	(0.004)	(0.004)	(0.004)	(0.004)	(0.001)	(0.005)
CO2 05 CAA			-0.013	0.001	0.013**	0.013
			(0.019)	(0.019)	(0.006)	(0.034)
Share wind/solar			-0.653***	-0.733***	-0.472***	-0.472
			(0.191)	(0.256)	(0.131)	(0.686)
Constant	2.924***	2.141***	2.179***	2.951***	2.632***	2.632***
	(0.194)	(0.223)	(0.230)	(0.163)	(0.141)	(0.697)
Utility FE	Y	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y	Y
BA FE	N	Y	Y	N	N	N
Contract chars	Y	Y	Y	N	N	N
Observations	72,718	71,921	71,921	72,763	72,763	72,763
R ²	0.519	0.547	0.548	0.512	0.511	0.511
Clustered SE	Y	Y	Y	Y	Ν	Y

Note:

*p<0.1; **p<0.05; ***p<0.01

Electricity restructuring

- 1. Effective restructuring was delayed for 10 years
 - Incumbent's market share decreased slowly in both the wholesale and the retail markets
- 2. Negative or zero correlation between effective wholesale competition and prices
- 3. High and positive correlation between effective retail competition and prices

Why did prices increase?

Competition and loss of monopsony power (AC \Rightarrow MC)

- As retailers compete to buy power from generators, the incumbent utility losses market power
- Typical regulation reimburses incumbent at AC, not MC.

Double marginalization (MC + markup)

Introducing intermediaries increases prices

Market power (MC ++ markup)

• Markets are not (yet?) very competitive.

Why did prices increase?

- Regulated: P^R
- Monopsony: P^M
- Competition: P^C

Wholesale purchase prices in Illinois by affiliation

Affiliated

Non-affiliated

Conclusion

- Vertical integration is an important dimension in the analysis of the consequences of electricity restructuring
 - Firms may be able to delay changes in market structure using intermediate degrees of vertical integration
- New empirical fact: Prices increased after effective restructuring

Conclusion

- Vertical integration is an important dimension in the analysis of the consequences of electricity restructuring
 - Firms may be able to delay changes in market structure using intermediate degrees of vertical integration
- New empirical fact: Prices increased after effective restructuring

Next steps

• Better understanding of the mechanism behind price increases at the time of effective restructuring

Thank you

ignacia.mercadal@columbia.edu

What about natural gas prices?

Generation costs

▲ Back