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Abstract

We present a new class of methods for the identification and estimation of dynamic
models with serially correlated unobservables, which typically imply that state variables
are econometrically endogenous. In the context of Industrial Organization, these state
variables often reflect econometrically endogenous market structure. We propose the
use of Generalized Instrument Variables (GIV) methods to identify those dynamic
policy functions that are consistent with instrumental variable (IV) restrictions on
unobserved states. Extending popular “two-step” dynamic estimation methods, these
policy functions then identify a set of structural parameters that are consistent with the
dynamic model, the IV restrictions and the data. We provide computed illustrations to
both single agent and oligopoly examples. We also present a simple empirical analysis
that, among other things, supports the counterfactual study of an environmental policy
entailing an increase in fixed costs.

1 Introduction

We propose an instrumental variable (IV) approach to the identification and estimation of
dynamic models in the presence of serially correlated unobservables. Such serial correlation
typically leads to dynamic state variables that are econometrically endogenous, which creates
problems for identification and estimation.

We particularly consider applications to dynamic models of Industrial Organization (I10).
These models often feature state variables that measure various kinds of “market structure,”
such as the number of firms, the number of retail outlets, the vector of current productivity
levels of firms and so forth. In the dynamic context, IV methods provide a natural and
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economically meaningful solution to the familiar IO problem of endogenous market structure.
More broadly, this paper is part of the research agenda that relates the formal identification of
IO models to classic IV intuition, as in standard equilibrium models of supply and demand.
The goal is to address a persistent critique of IO models that claims they are typically
not well-identified. Specific examples of this agenda include Cournot style models, as in
Bresnahan| (1989), differentiated products demand and supply market equilibrium, as in
Berry and Haile| (2014)), cross-sectional market structure (“static entry” models), as in Tamer
(2003), and auction cost heterogeneity, as in [Somaini (2015))[]

Our paper builds on the intuition of classic “two-step” methods, following on Hotz and
Miller| (1993)) (henceforth, HM), that distinguish between the identification of [i] the struc-
tural parameters of an underlying dynamic model and [ii] the dynamic policy function that
results from the solution of that dynamic model evaluated at the true value of the structural
parameters. It is this dynamic policy function that (according to the model) generates the
data.

The task of identification and estimation is made much easier by an assumption that unob-
servable shocks are distributed independently over time. This is made clear in [Rust, (1987)
and exploited in the HM “conditional choice probability” or “CCP” approach. In the related
IO literature, the shocks are then typically assumed to also be private informationE] Under
these assumptions, the dynamic policy function is often point-identified “directly from the
data.” For instance, in the case of dynamic discrete choice models, estimating the policy
boils down to estimation of conditional probabilities. The structural parameters are then
identified as those that are consistent with the observed policy function.

However, the simplicity of these methods depends critically on the econometric exogeneity
of dynamic states. Once unobservables are allowed to be serially correlated, the dynamic
states become econometrically endogenous. This is because the dynamic states reflect past
values of the unobservables which, due to serial correlation, are typically not independent of
the current unobservable entering the policy function. The econometric endogeneity problem
here is classic in its form: the “right hand side” state variables in the dynamic policy function
are correlated with the unobservables that enter the same function.

In order to tackle the endogeneity of the dynamic states, we rely on instrumental variables.
These instruments have the classic features that they [1] do not directly enter today’s policy
decision, [2] are assumed to be exogenous (independent of the unobservables) and yet [3] are
correlated with the current state, likely because they effected past policy decisions that are
correlated with present states. In a dynamic entry model, an example would be past market
size or past regulatory environments that influenced past decisions to enter a market. In
the presence of sunk costs, these past decisions will continue to be correlated with current
market structure, even if current entry decisions are only driven by current market size and

'In addition, as in much of the auction literature, there are many formal IO identification arguments do
not so clearly involve instrumental variables.

2See [Pesendorfer and Schmidt-Dengler| (2008)), Bajari, Benkard, and Levin| (2007) and Pakes, Ostrovsky,
and Berry| (2007) for a discussion of Hotz-Miller style methods, with pure i.i.d. private information shocks,
extended to an IO dynamic oligopoly context with possibly multiple equilibria. An early review of this
approach is in |Ackerberg, Benkard, Berry, and Pakes| (2007).



current regulations. We discuss further examples of possible instrumental variables after we
have formally defined key features of the model.

Traditional IV and panel data methods face a difficult problem in our context: the dynamic
policy function is derived from the “structural” dynamic model and this typically implies
that the policy function is nonseparable in the serially correlated unobservable(s). The non-
separability of the policy function in unobservables creates difficulties for both identification
and inference. Luckily, there is a large recent literature on the nonparametric identification
of functions with nonseparable unobservables and econometrically endogenous right-hand
side variables, sometimes mixed with a classic panel data structure. In the easiest possible
examples for us, the dynamic policy function will be point-identified even in the presence
of serial correlation, but more general cases may lead only to set identification. To consider
more general cases, we leverage an existing large literature on identification and inference
in partially identified models, including Manski and Tamer| (2002), [Tamer| (2003)), Manski
(2003), (Chernozhukov, Hong, and Tamer| (2007), Berry and Tamer (2007)), Ciliberto and
Tamer| (2009), [Beresteanu, Molinari, and Molchanov| (2011)), Galichon and Henry| (2011]),
Chesher| (2010)) and |Andrews and Shi| (2013).

One paper that sums up and extends an IV style literature on this topic is |(Chesher and
Rosen| (2017) (henceforth, CR), who discuss a class of “Generalized Instrumental Variable”
(henceforth, GIV) methods. In addition to emphasizing an appropriate IV framework for
the identification of a very broad class of dynamic policy functions, CR closely build on
the work of |Galichon and Henry| (2011) and Beresteanu, Molinari, and Molchanov| (2011)) to
characterize the sharp identified set. This characterization will help us build intuition about
how instruments serve to (set) identify policy functions.

The identifying power of these instrumental variable methods is increased by the presence
of multiple periods of data. We note that even in the absence of any instrumental variables,
nonseparable policy functions can be usefully restricted purely from the presence of multiple
periods of data, as in the nonseparable error, nonparametric panel data papers of |Altonji
and Matzkin| (2005) and [Athey and Imbens| (2006)) [

While we make a number of analogies to the two-step literature, there are closely related
papers that emphasize full computational approaches to identification and estimation, and
that also frequently allow for some form of persistent unobservables. A classic single-agent
example is Keane and Wolpin| (1997)), who allow for persistent unobserved discrete “types”
of decision-makers. A classic oligopoly example is the full computation oligopoly approach
of |[Ericson and Pakes| (1995) and [Pakes and McGuire| (2001)), who emphasize that serially
correlated unobservables are an important feature of realistic dynamic models in IO.

Full computational approaches do not often feature formal identification arguments. Work
on the identification of mixture models, as in [Kasahara and Shimotsu (2009) and Hu and
Shum (2012)E] does provide some formal results on identification of discrete dynamic pol-
icy functions with persistent unobservables. We show that our framework subsumes the

3These papers do not explicitly consider the fully dynamic problems that we consider here, but instead
focus on nonparametric analogues of non-dynamic panel data-style arguments.

4See also Hu, Shum, Tan, and Xiao, (2015).



class of models they consider as a special case. In addition, as with other panel-data style
approaches, a key restriction in |[Kasahara and Shimotsu/ (2009) is that the variation in unob-
servables is in some well-defined sense “lower-dimensional” than the variation in the observed
data. In contrast to that, our approach is applicable to settings with as many as two time
periods irrespective of the dimension of the unobservable. |Arcidiacono and Miller| (2011) pro-
vide maximum likelihood computational methods for the structural parameters of dynamic
models with discrete persistent heterogeneity, but do not address identification beyond the
suggestive results of [Kasahara and Shimotsu/ (2009). [Pesendorfer| (2009) proposes a Bayesian
estimation method for dynamic discrete choice models with serially correlated unobservables.
Additional full-solution approaches allowing for serial correlation include Blevins| (2016) and
Reich| (2018)). Neither discusses identification formally. Benkard, Bodoh-Creed, and Lazarev
(2010) highlight that some interesting counterfactuals are identified directly from the policy
function without having to identify the underlying structural parameters. Our approach is
complementary to theirs in that it allows one to characterize the identified set for the policy
function in presence of serially correlated unobservables and to perform counterfactuals that
do require recovering the structural parameters in addition to the policy. An example of the
latter is a change in fixed or sunk costs induced by a policy change—e.g. new environmental
regulation—as in Ryan (2012)). Heckman, Humphries, and Veramendi (2016) study identi-
fication and estimation of dynamic treatment effects allowing for time-invariant unobserved
heterogeneity. A recent paper by Kalouptsidi, Scott, and Souza-Rodrigues| (2018)) shows
that, in a class of dynamic discrete choice models with serially correlated unobservables, one
can obtain Euler equations that point-identify flow payoffs. This approach leads to compu-
tationally light linear IV estimators of payoff parameters that are robust to serial correlation
in the unobservables. However, it does not address identification of the joint distribution of
the unobservables over time and thus cannot be used to perform counterfactuals requiring
that as an input.

Finally, our paper is related to the large literature on distinguishing between state depen-
dence and unobserved heterogeneity (see, e.g., Heckman and Singer| (1984) and [Israel (2005))).
We also face the challenge of disentangling the roles of past actions and persistent unobserv-
ables in driving current outcomes. However, unlike many of these papers, we fully specify the
dynamic problem solved by the agents and impose the restrictions embedded in Bellman’s
equation in the estimation procedure.

The rest of this paper is organized as follows. Section [2| introduces the general model and
identification framework for both single-agent problems and games. Section [3|presents several
Monte Carlo simulations. Section {| contains the empirical application. Finally, Section
concludes. Appendix [A] shows that the GIV framework subsumes more general forms of
persistent unobserved heterogeneity relative to the case considered in the main body of the
paper. Appendices [B] and [C] provide additional details on the computed examples for the
single-agent and oligopoly case, respectively.



2 Model and Identification

In this section, we present the formal model. After introducing variables and notation, we
focus on the single-agent case and illustrate the GIV approach through a simple monopo-
list entry example. We then extend the analysis to settings with multiple agents in each
market.

2.1 Variables and Notation

We consider identification of a model that generates data on a large set of markets, with one
or more agentsﬂ per market, and a fixed (perhaps small) number of time periods denoted by
t=1,..,T. We may additionally have access to some subset of variables for prior periods,
t < 1. In the general oligopoly model, markets are indexed by ¢ and firms within markets
are indexed by j. We do not model cross-market interactions. Our simpler examples will
involve a single firm per market.

In each market in each time period, each firm takes an action (or actions) denoted a;;;. These
actions contribute over time to the firms observed current state(s), denoted x;;;. The set of
feasible actions for a firm is denoted A(x;;;). As one example, in an entry model there might
be a scalar action a;j, equal to one or zero, that indicates the decision to operate in the
market in period ¢ + 1. A scalar state x;;; might then be whether firm j operates in market
7 in period t.

There are also observed exogenous states, w;j;;, that evolve separately from the firms’ actions.
Some or all of the exogenous states may be shared across firms. In some cases, we may observe
some partial information on exogenous variables from before the beginning of our full panel
dataset. We denote these variables, which may later prove useful as instruments, as r;.

In addition, there are unobserved (to us) state(s) w;;; that also evolve exogenously from the
actions of firms. Within market, the unobservables may be correlated both across time and
firms. The u;;; are the only variables that the firms observe but we do not. In the oligopoly
context, we treat the serially correlated component of u;;; as commonly observed by all firms.
In some cases, it is also useful to model an independent (over time and firms) component
that that is private information to the firm[

Suppose that there are a maximum of J firms within each market. We define market-time
vectors as

ait = (Qite, ity - - - 5 Qige) (1)
and we define the market-time vectors z;, w;; and wu; in a similar fashion. As further
notation, we let across-time within-market vectors of variables (and their respective supports)

5Since many 10 dynamic models involve firms making decisions over time, we use the words “firms” and
“agents” interchangeably throughout the paper.

5The distinction between the full information serially correlated unobservable and the private independent
unobservable is similar to the distinction between the variables v' and »? in [Pakes, Porter, Ho, and Ishii
(2015). See also Appendix |A| for more details on this point.



be denoted a; = (a;1,...,a;7) € A, x; = (21, ..., xi7) € X, w; = (Wi, ..., wir) € W, and
U; = (uil, Ce ;uz’T) e U.
The probability that the vector u; of unobservables (across time and firms within market)
lies in the set S C U is denoted by

D(S:4,), (2)

where the vector 6, parameterizes the distribution of the vector of market unobservables
across time and firms. The parameter 6, will often, inter alia, control the degree of serial
correlation in the unobservables. The single-period profit of firm j in market ¢ in period t is
given by the function

Ty (flit, Lty Wi, Uit ¢97r) . (3)

The subscript j on the single-period profit function indicates the natural property that firm
j’s profits depend differently on its own elements of (a;ji, Z4jt, Wijt, uije) as opposed to its
rivals’. The unknown parameters of the single period profit function are 8,.. The full vector
of unknown parameters then includes the unknown parameters of the single-period profit
function and of the distribution of unobservables: 6 = (0,,0,,).

2.2 Single Firm per Market

We begin with the single-agent case, returning to dynamic oligopoly in section In this
special case, we treat each firm (agent) as operating in its own “market” and so we drop the
J firm subscripts in (a;j¢, Tije, Wije, wije), leaving (for example) a;; as the action of the firm in
market ¢ at time ¢. In the single-firm case, we will shorthand the phrase “firm in market ¢”
as “firm ¢.”

As is classic in much of the literature following on Rust| (1987)), we assume that the observed
endogenous states of the firm evolve according to the transition probability function

U(@ip1| @i, i, wit), (4)

where I gives the probability of each possible future state conditional on the firm’s own action
and observable states. As a special case, this could describe deterministic state transitions,
where some state occurs with a conditional probability of one. For instance, in a dynamic
entry model, the current state (whether the firm is in or out of the market) is equal to
the action taken last period. Table [1| gives some examples of actions, states and transition
processes that might occur in the IO context.

Similarly, the observable exogenous states are first-order Markov, with conditional probabil-
ities given by

Q(wit1|wir).- (5)
In our single-firm examples, we will focus on the special case where the firm-level unobserv-

able u; follows a first-order Markov process. Our leading example here will be a model of
first-order serial correlation where w;; is a scalar that obeys

Uz = PUjt—1 + Vg (6)



Table 1: Some Single Agent 10 Examples

State, x;;  Action, ay; A(x;) Transition

Capital Investment ~ RY  Zii1 = Ay + ai
Out/In  Entry/Exit {0,1} 441 = an
Retail # of Stores  IT i1 = ai
Quality R&D R* Tigg1 ~ f (ﬂfm ait)

In the simplest case, the period t vector v; innovation might be assumed to have a simple
parameterized distribution. The parameter 6, then includes those parameters plus the serial
correlation parameter p. In Appendix [A] we consider more general forms of unobserved
heterogeneity, including cases with a persistent component and an idiosyncratic component
in the spirit of Heckman and Singer (1984), Keane and Wolpin| (1997), Arcidiacono and
Miller| (2011)) and related literature.

In this case, the firm’s dynamic problem is given by the classic Bellman equation:

V (@40, wig, uge) =
7
max (7T (ait, Tig, Wity Wig; O ) + 6 Fp, [V (Tirg1, Wirg 1, Uirr1) | @ity Tie, Wig, Wi ) (7)
aitEA(:Cit)
where § denotes the discount factor and V' the value function. The expected value function
in this expression is

Ep, [V (%’Hla Wit+1, uit+1) |@it7 Tit, Wit, uit] =

. (8)
///V(mit—&—l»wit—klauit—&—l)dr(xit—i—l’ait,xit;wit>dQ(wit+1|wit)d(1)(uit+1|uit;0u)

where é(uit+1|uit; 0..) denotes the conditional distribution of u;;; given u;. Note that this is
similar to Rust| (1987)), but we do not make Rust’s full conditional independence assumption:
we do not drop the conditioning on the past unobservable in i)(uitﬂ\uit; 6,). In the single-
agent case, there is a unique solution for the value function and we assume conditions such
that there is a unique policy function consistent with that value function.m We let o denote
this policy function, so that

it = 0 (Tig, Wig, Uit) , 0 € F. (9)

In many cases, reasonable assumptions on the single-period return function and the transition
processes imply that the policy function must obey certain qualitative restrictions, such as
monotonicity. These restrictions can then be imposed on the set of possible policy functions

F.

For the identification argument presented next, it will also be useful to define the different
(counterfactual) policy functions that would be generated by any other possible parameter

"For the technical conditions guaranteeing a unique policy function, see |Stokey, Lucas, and Prescott
(1989).



vectors 0 = (0,,0,). In the single-firm case, these policy functions, generated by the model
and the unique solution to Bellman’s equations, will be denoted by

Qi = O¢ (l"it, Wi, Uit) . (10)

2.3 Identification of the Single-Agent Model

We focus first on identification in the single-agent case. For purposes of identification, we
assume that we observe the true distribution of the data, which we denote by

P(am%,wi,ri)

This is equivalent to seeing a T period panel on a very large (in fact, infinite) cross-section of
firms or agents. We look to identify (possibly set-identify) the parameters 6. Nothing in our
general discussion of identification requires these to be finite dimensional, but in practice we
consider only finite-dimensional parametric models. Note that in the case where (a;, x;, w;)
are discrete, the single-period profit function may be fully flexibly characterized by a finite
number of parameters.

The potential instruments in the model consist of the exogenous variables
zi = (13, w;)

The critical assumption that allows for our instrumental variable approach is independence
of the instrument and the unobservablesf]

ZiJ_UZ‘

Table [2| gives some ideas of possible instruments in different contexts. As is usual with
discussions of potential instruments, the required independence assumption may be more or
less appropriate in different real-world cases.

Table 2: Examples of Possible Instruments

State Example Instruments

Capital Past investment cost

Out/In of Market Past market population, past regulation

# of Stores Distance from headquarters, interacted with time
Quality Past R&D shocks, age of firm

Identification in the case of no serial correlation and discrete actions is considered in Magnac
and Thesmar| (2002) and related papers. Problems with low-dimensional discrete persistent

8While we focus on this restriction throughout the paper, CR show that the GIV approach may also be
applied under weaker assumptions, such as mean or quantile independence.



unobservables can sometimes make use of the results on the identification of mixture models
in Kasahara and Shimotsu| (2009) and related papers. These results aid in the identification of
the policy function and of the transition matrices in — (especially if these are extended
to depend on discrete persistent unobservables). Even without persistent unobservables,
there are not typically formal point-identification results for models with no serial correlation
and mixtures of continuous and discrete variables, which is why Bajari, Benkard, and Levin
(2007) (“BBL”) relies on set-identification, as do we. Unlike BBL, we characterize the sharply
identified set for the structural parameters in the presence of persistent unobservables using
the “generalized instrumental variable (GIV)” framework of CR.H

The broad idea is to (set-)identify the policy function from classic instrumental variables
conditions, extended to cases where the policy function is highly nonlinear in the states.
The GIV framework allows us to deal with the following complications arising in many
dynamic models of interest:

1. the incompleteness of the model, i.e. the fact that the exogenous variables do not
uniquely pin down the endogenous variables (see [Tamer| (2003));

2. the fact that, if the dynamic states and actions are discrete—as in entry/exit models—
the policy function is known to be generally only partially identified in the absence of
a model for the endogenous explanatory variables (see |Chesher (2010));

3. lack of point-identification of the parameters, even in the absence of problems 1 and 2.

In applications, we may have all or none of these problems. If the model and data generating
process in fact imply point-identification, then the sharply identified set will collapse to the
true parameter value.

In the single agent case, an incomplete model can follow from the presence of unknown
initial conditions[l] Traditionally, solutions to the initial conditions problem include either
[i] parameterizing the initial joint distribution of states and unobservables or [ii] specifying
some process for the past history of the firm that uses the model parameters to construct
that same initial joint distribution["T] We argue that if the parameterization in method [i] is
so flexible as to not impact the resulting identified parameter set, then we might just as well
look for the sharply identified set that does not restrict the initial distribution.

As in [Tamer (2003), discrete actions naturally lead to conditions on sets of unobservables
that give a particular policy a;. In particular, following CR, and using similar notation, if
the sequence (a;, x;, w;) occurs, then u; must be in the inverse image set

U(a;, 25, wi, o) = {u;: o(xy, wi, wy) = ag, Yt}

9Recall from the references above that these authors in turn build on very large literature in set-
identification and in the use of random sets to characterize sharply identified regions of parameters.

10See|Anderson and Hsiao| (1981)), | Arellano and Bond| (1991) and Blundell and Bond| (1998), among others.
Honoré and Tamer| (2006) emphasize how the initial conditions problem leads to partial identification in
nonlinear dynamic panel data models.

HCollard-Wexler| (2014) employs both solutions. While the results of his counterfactuals are robust, a few
parameter estimates vary substantially across the two methods, suggesting that the way in which the initial
conditions problem is addressed matters in general.



The condition
{u; € U(a;, x;,w;, 0)}

is then a necessary condition for observed event (a;,z;,w;). If the model is incomplete,
however, that condition is not sufficient for the event. A pair of policies and parameters for
the unobservables, (o (2, Wi, ui), 6y,), is then in the identified set if and only if for all closed
sets S € U and for all 2z

Pr(U(a;, z;,w;,0) € S |2) < B(S;06,). (11)

In this last equation, the left-hand side is the conditional probability of the outcomes y; =
(a;,x;), which, according to o, have {u; : u; € S} as a necessary condition. For a given
o and z, this probability is observed in the data. The right-hand side is the probability of
that necessary condition wrt the distribution of u;, which by assumption does not depend
on z.

CR shows that to obtain the sharp identified set for 6§ we only need to check certain sets,
S € Q(o,z;). The collection of sets (o, 2;) is the “core determining set” as defined in CR
and earlier work, i.e. the minimal collection of closed sets & € U that yields the sharp
identified set for #. These include the unions of overlapping sets of the form U(a;, x;, w;, o),
excluding cases of strict subsets. For simple low-dimensional discrete problems, Q(o, z;) can
be easy to compute and not “too big,” but it can otherwise grow very (indeed infinitely)
large.

The CR result characterizing the core determining sets in the space of the unobservables
builds on earlier similar results that apply to the space of observables (see (Galichon and
Henry| (2011)). For us, the result is useful because it completely characterizes the inequality
restrictions that define the sharply identified set of policy functions. In practice, however,
the dimension of these restrictions can grow quite large in realistic problems. The CR
characterization is therefore perhaps most useful because we can compute sharply identified
sets in smaller illustrative examples, which in turn builds some intuition for more complex
cases. When the dimension of the unobservables is relatively large—as in the empirical
application in Section [4] where we have T = 12 time periods—using simulation methods to
approximate the right-hand side of is often usefulF_ZI

When necessary conditions are actually necessary and sufficient for particular (sets of) ac-
tions, then the associated inequalities become strict equalities. In a complete model, all of
the necessary conditions are equalities. However, as usual, this does not guarantee that the
parameters are point-identified and so, in the absence of a proof of point-identification, we
might still want to consider set-identification.

We next define the set of policy functions that are identified exclusively by the IV conditions
and the data, with no use of the dynamic model. In particular, for a given 6, and a given data
generating process, we define the set of o functions that satisfy condition VS € Q(o, 2)
and Vz as

xV(9,) C F. (12)

12See Berry| (1992) and |Ciliberto and Tamer] (2009) for other uses of simulation in models characterized
by moment conditions.

10



These identified policy functions then help us to define the identified set for the structural
dynamic parameters. As noted, for any 0§ = (0,,6,), we can use the Bellman equation to
compute the implied policy og(x, wy, uy). For 8 = (6,,6,), this policy is

09 (Tit, Wit, Uig) =

argimax (W(Git, Tit, Wit, Wi, O ) + 6 Fp, [V(IitH, Wit41, Uit1)| ity Tit, Wit, uit] ) .
ait €A(w4t)

The sharply identified set of parameters is then
@ID = {9 = (G,T,Qu): ag(xit,wit,uit) € EW(GU)} (13)

This imposes both the dynamic model and the GIV restrictions. This is the sharply identified
set because any 6 in this set generates a policy function that cannot be rejected by the data
plus the IV condition.

The identifed set in is related to the classic HM style two-step approach. Note that we
could

1. identify a (set of) policy function(s) that are consistent with the data and the IV
restrictions and then

2. see which structural parameters are consistent with the identified policy function(s).
These are the identified 6.

In contrast to HM, complications in our case include the presence of parameters for the
unobservables (necessary at least to model the degree of serial correlation) and the use of IV
methods in the first step, as opposed to directly “fitting the policy to data.” It is possible
that, in some cases, one might point-identify the policy function in step 1. In this case,
our procedure is just like a 2-step HM method, except for running a GIV first stage. For
example, when the choice variable is continuous, point identification of the policy might be
attained under the assumptions in (Chernozhukov and Hansen| (2005), even using only one
transition.

However, there is no need to use a HM-style two-step approach. As a computational alter-
native, one could search over the space of the structural parameters. Specifically, for each
candidate #, one could

1. compute og(zi, wi, u;y) via the contraction mapping and then

2. test whether oy survives the IV restrictions applied to the data. If so, that particular
0 is in the identified set, otherwise not.

2.4 A Simple Example

In this subsection, we consider a minimal single-agent model that illustrates identification
via GIV restrictions. In this example, the state is whether a firm is “In” or “Out” of the
market in the prior period, xz;; € {0,1}, and the action today is whether to be active in the
market today, a; € {0, 1}.

11



We specify single-period payoffs as follows:
7(0,1) =7(0,0) =0
7(1,1) = 7(wit) — €it
#(1,0) = #(1,1) — v (14)

where 7(a;, z;) denotes the deterministic part of the profit function as a function of the
action and current state, €; is a shock which we might think of as reflecting variation in
per-period fixed costs, and ~ represents entry costs. In the example, we assume that fixed
costs follow a first-order autocorrelation process,

€it = Peit—1 + Vie/ 1 — p2, (15)

where v;; is distributed standard normal. In the simplest case, we assume away any variation
in exogenous profit shifters w;. The resulting model then has three structural parameters:
7,7, and p. The policy function that generates the data is

Qi = U(%’t, uit) (16)

where wu;; ~ Unif(0,1) can be viewed as the quantile of €;. We assume that the dynamic
model generates the monotonicity results that o is weakly increasing in x; and weakly
decreasing in w;;.

If we focus on only one period of data, the policy function in (16 is a nonparametric binary
choice model with endogeneity and monotonicity restrictions, similar to |Chesher| (2010)).
Given monotonicity in u;, the policy function is fully described by two policy cutoffs, 7(z),
for x € {0,1}, as illustrated in Figure [1]

Figure 1: Policy Cutoffs in the One Period Case

Uy

I

As in (Chesher| (2010), even one period of data will generate nontrivial bounds on the policy
function. As a simple example of GIV restrictions, Table |3|illustrates the inverse image sets
associated with the example (in column 2) as well as the inequalities implied by the GIV
restrictions (in the last columns of the table). Note that [1] there are nontrivial bounds even
in the absence of IVs, but [2] instrumental variable variation is helpful to tighen those bounds.
Note also that, by themselves, the restrictions in Table |3| place no restrictions on 6,. It is not
surprising that it is impossible, in the example, to learn anything about serial correlation
from restrictions on the single-period policy function. However, with multiple periods of
data, restrictions on the policy function may rule out some values of serial correlation, even
without reference to the structural model.

We next consider two periods of data. Now there are eight elementalﬁ inverse image sets

13We define a set to be “elemental” if it associated with a single value of the outcomes (as, x;).
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Table 3: Inverse Image Sets & Inequalities for the One-Period Example

a x|S=Ua,x,0) Pr(U(a;, z;,0) CS |2) < (S;6,)
11 (0,7(1)) Pr((1,1)]z) + Pr((1,0)|]z) <7(1)
1 0 (0,7(0)) Pr((1,0)|z) < 7(0)
0 1 (1(1),1) Pr((0,1)]z) <1-—7(1)
0 0 (7(0),1) Pr((0,0)|z) + Pr((0,1)|z) <1—7(0)

U(a;, z;,0), in the space of (u;1, uz), that depend on (21, a;1 = T2, a;o). These are illustrated
in Figure

Figure 2: Elemental Inverse Image Sets Labeled as (z;1, a;1, a;2)

1 1
(0,1,0) (1,1,0)
71 (0,0,0) 71 (1,0,0)
U2
70((0,1,1) o (1,1,1)
(0,0,1) (1,0,1)
OO 7o uy 1 00 Uy T1 1

The core determining collection of sets also includes unions of partially overlapping elemental
sets, which we show in Appendix

The core determining sets for this simple example allow us to build some intuition about
identification in this class of models. The left panel of Figure [2| gives the four elemental sets
associated with the initial condition x;; = 0, while the right panel gives the sets associated
with z;; = 1. Conditional on the initial condition, the model is complete (the sets do not
overlap), but across initial conditions the sets do overlap, reflecting incompleteness. For
example, there are values of (u;1,u;2) that are consistent with both the sequence (1,1,1) and
the sequence (0,0,0). If the initial x;; was exogenous, the model would be complete.

Recall that the probability of the each of the eight events associated with different (x;1, a;1, a;2)
must be less than the probability weight placed by the distribution of (w1, u;2) over the re-
gions of the elemental sets, with further restrictions from the additional core determining
sets. In Figure , the joint density of (u;1,us), which varies with the serial correlation
parameter p, places the relevant probability weight over the various regions. Note that in
this example, with two transitions, we can rule out some values of p without any use of the
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dynamic model. For example, perfect correlation, p = 1, collapses the joint density down to
a straight line across the diagonal of each box. This is rejected by any value of an instrument
that places any weight on the observed outcome (0, 1,0) or (1,0, 1).

As another piece of intuition, consider an instrument associated with a probability equal
to one for initial condition x;; = 1. The event probabilities associated with the right-hand
side panel of Figure [2| then sum to one and all of the associated inequality restrictions hold
with equality. These equalities are exactly the same as those that would be implied by
maximum likelihood applied to the model with an exogenous initial condition x;; = 1. Thus,
if the model is complete and MLE point-identifies the parameters (7(0),7(1), p), then GIV
identifies the same parameter values.

2.5 Dynamic Oligopoly

IIn the oligopoly case, each firm’s equilibrium policy is its single-agent best reply to its rivals’
equilibrium strategies. The firm still solves a value function problem similar to , but its
expectations of the future evolution of endogenous market states depend on its action and
the equilibrium actions of its rivals.

In the oligopoly case, we require our original notation of 7 for the market and 5 for the firm.
If the equilibrium policies of firm j’s rivals are given by the function o_j;, then the firm’s
expected equilibrium state transition probabilities are given by

Fj (xitJrl ‘Clijn Tit, Wit, O—j (%‘t, Wit, uzt)) . (17)

This notation allows for a rich set of possible state transitions models, including oligopoly
variations on our earlier single firm examples.

Firm j’s equilibrium Bellman equation then depends on the equilibrium strategies of its
rivals:

‘/j (xihwitvuiha—j)e)) = (18)
max (7Tj (@it: Tit, Wit, Uit; ew) +0Fy, [Vg (33it+1, Wit41, Wit+1, Uﬁ) \ait, Tit, Wit, uzt]) .
aijt €A(Tijt)

The expected Bellman’s equation is

EV; (2w ) |a,x,w,u,0_;] = (19)

///V}(x',w’,u',a_j)df(m’|aj,a:,w,U_j(a:,w,u))dQ(wit+1|wit)d§>(u’|u;Qu). (20)

Associated with this dynamic program is a “best response” strategy for firm j, which we
assume is unique, denoted by 7;(o_;,6). The vector of “best response” strategies is then the
J-vector

0(0,0) = (01(0-1,0),....5,(0-7,0)).
Any equilibrium strategy, ¢*, then must satisfy the fixed point

o =a(c",0). (21)
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We can then define the set of possible equilibrium policy functions (strategies) as
YEQ) = {o*: 0% = &(0,0)}).

We adopt the same approach as in earlier papers and assume that, even if the underlying
model admits multiple equilibria, the firms themselves always play the same policy function
when at the same state vectors. The true policy function that generates the data is then an
element of the set X¥@(A%), where #° is the true parameter that generates our data.

The sharply identified set of parameters in the oligopoly case is the same as in the single agent
case, except with the further restriction that the policy associated with 6 is an equilibrium
policy:

Orp = {0 = (0:,0,): there exists o* € X¥?(6) such that o* € %'V (6,)}. (22)

That is, a parameter vector # is in the identified set if there is a policy that both [i] is not
rejected by the IV restrictions and the data (given 6,) and [ii] is an equilibrium strategy
given 6.

The connection to two-step methods is again clear. In a “first stage,” we could find the set
of policies that survive the IV restrictions. For any 6, we can see if any of those policies
are in the equilibrium set of policies. This can be tested by checking the dynamic “best
reply” condition for that policy. Importantly, this does not require us to calculate the full
equilibrium set of policies for a given structural parameter vector.

Even putting issues of inference aside, finding the identified set can be considerably more
computationally complicated than the single-agent case. However, if the IV restrictions
point identify the policy functions, the method becomes very similar to the two-step case
and becomes especially close to the framework of BBL.

As an example, consider a two-firm capital accumulation game involving policy functions
that would be associated with a duopoly version of the dynamic capital accumulation model
that motivates |Olley and Pakes (1996). In particular, assume that the equilibrium policy
functions of the two firms are given by

iz‘jt = U(kita Wit Uz’t), (23)

where the states x;; are here denoted as the capital stocks k;; = (ki1s, ki), the exogenous
shifters are still w;;, the serially correlated unobservables are w;; = (u;14, us0¢) and the actions
are investments i;; = (i;14,%2¢). Assume further that k;; and i;;; are continuously valued
variables. For the purposes of a simple example, further suppose that we can establish (or
are willing to assume) that the equilibrium policy functions are continuous and injective in
Ui, so that we can write

Usjp = Ufl(kz‘t, Wit, Uit ), (24)

where wu;;; takes on continuous values. This takes the form of a two equation “quantile IV
model,” where point identification might be achieved under the conditions of (Chernozhukov
and Hansen| (2005). Given the continuously valued wu;j;, a simple specification of serial
correlation could then allow one to recover the serial correlation parameter 6y. In this
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illustrative lucky case, a given 6 is in the identified set if and only if the identified policy
satisfies the fixed-point in (21).

The procedure of the last paragraph is similar to BBL, with two differences. First, the policy
functions are identified via GIV conditions. Second, we obtain the sharply identified set via
the fixed-point condition, whereas BBL (for reasons of practicality and inference) suggest
the use of various inequality conditions that are motivated by the same best-response (fixed
point) condition. Our method is easily modified to use BBL style inequalities, which may
be useful if those create a large computational gain in a given situation.

Even if the GIV conditions do not point-identify the equilibrium policy, if the set 3V (6,)
is “small enough,” it may be practically possible to test the fixed point condition for each
policy in the identified set. In this case, we can note the relative computational ease of our
identification approach versus the implicit identification algorithm in, for example, Pakes and
Ericson| (1996)) and some other full-computational methods. Their algorithm searches for the
equilibrium policy function at each @, which is a particularly difficult task under possible
multiple equilibriumfz] However, in our set up the search for possible equilibrium policies
is restricted to those that satisfy the IV restrictions, which may greatly aid the equilibrium
computation. For example, sometimes theoretically possible equilibrium are quite extreme
(for example, involving one firm that never enters), but these need not be considered if they
are rejected by the data/IV conditions.

The BBL idea of forward simulating the expected future value function (in the manner of
Hotz, Miller, Sanders, and Smith|(1994)) may also ease the computational burden of checking
the fixed-point condition. In this case, for a given 6, and a policy vector in %1V (6,), one
can sometimes forward simulate the future expected value function and in some cases this
is a linear function of #,. Checking the fixed-point condition for a given 6, (holding rivals’
policy and 6, fixed), can then be a relatively simple static calculation.

In Appendix [C] we consider a more complicated discrete oligopoly example, and provide
a computed example of an identified set in that case. In the discrete example, we have a
particular worry not just about uniqueness of equilibrium, but also about the existence of
equilibrium. Thus, in the discrete oligopoly case, it may be particularly useful to introduce
an explicit private-information independent shock to the profitability of an action, in addition
to the serially correlated unobserved stateE] To this end, in the example we make use of a
more general structure for the unobservables which is discussed in Appendix [A]

3 Monte Carlo Simulations

In this section, we illustrate the approach through several Monte Carlo simulations based
on a simple single-firm entry and exit model. Appendix [C| contains a computed example for

14Gee the online appendix of [Doraszelski and Satterthwaite| (2010) for examples of multiplicity. Further
examples are in [Pesendorfer and Schmidt-Dengler| (2010). [Borkovsky, Doraszelski, and Kryukov| (2010)
provides a homotopy method for exploring a range of possible multiple equilibrium.

15 As noted, these two unobservables correspond to the unobservables labeled v! and v? in [Pakes, Porter,
Ho, and Ishii (2015]).
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the oligopoly case.

We consider the same monopoly entry model as in the example of Section R.4[] We set
7(1,0) = —1 and 7 (1,1) = 0.5, so that the sunk cost v is 1.5. Further, the correlation for
the unobservables is set to 0.75, i.e. there is persistent unobserved heterogeneity. We generate
time-invariant excluded instruments z taking the values {0, 1} with equal probabilities and
set x;1 = z; for a fraction of markets in the data equal to 0.50 or 0.75. We call this fraction
“IV strength” and note that it is equal to the square root of the R? coefficient in the regression
of the endogenous state x;; on the IV (plus a constant).lﬂ Except when otherwise noted, the
model does not have exogenous covariates w. In what follows, we show how the identified set
for the structural parameters changes as we vary the sample size, the number of time periods
in the data, and the variation in exogenous covariates. We also report the identified sets
for counterfactuals outcomes. In each Monte Carlo design, we draw 50,000 cross-sectional
markets. Setting the cross-sectional dimension of the panel to a large number allows us to
abstract from sampling error in estimation of the identified set. In the application of Section
[], we show how recent developments in the literature on moment inequalities may be applied
to obtain confidence sets for quantities of interest.

3.1 T =2 case

With just two time periods, we are able to list all of the GIV restrictions implied by the model
and thus to obtain sharpness of the identified set. For each value of IV strength, we compute
the three-dimensional identified set for (7 (1,0),7 (1,1), p) and we plot its projections onto
the space of profits (7 (1,0),7 (1,1)) and the space of sunk cost and correlation parameters.
As a comparison, we also compute the point-estimates given by the two-step HM procedure
which assumes no serial correlation in the unobservables.

Figures|3|and 4|show that, when IV strength is low, the identified set is quite large. In partic-
ular, while the GIV three-dimensional set does not contain the HM estimate, its projection
onto the space of profits does, i.e. the GIV restrictions do not rule out the profit parameters
implied by the HM procedure. In contrast, when IV strength is high, the GIV set shrinks
considerably and both projections do not include the HM estimate, as shown in Figures
and [0l In particular, the HM procedure tends to underestimate both profit parameters
(besides, of course, not capturing the serial correlation in the unobservables).

16Note that in this model we are free to normalize the mean and variance of the unobservables given that
we are specifying the deterministic profits in a fully nonparametric fashion.

17Specifically, IV strength = 0.50 corresponds to R?> = 0.25 and IV strength = 0.75 corresponds to
R? = 0.56.
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Figure 5: High IV strength
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3.2 T =10 case

We now consider the case where the data has T = 10 time periods. In addition to the
inequalities corresponding to the sharp two-period GIV identified set, we impose inequalities
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corresponding to several observable events over all of the 10 time periodsﬁ The goal is to
illustrate how various patterns in the data help bound the model parameters. Specifically,
we use the events “at least one entry,” “at least one exit,” “at least one entry and one exit,”
and “the number of firms does not change for at least six consecutive periods.” We would
expect the latter event to help rule out values of p close to zero, since it yields inequalities
where the sample probabilities on the left-hand side are large (because the data exhibits a
lot of persistence) and the model necessary conditions on the right-hand side are relatively
small (because when p is close to zero the model predicts little persistence in the observables).
Indeed, Figures[7]to[I0]show that imposing these additional restrictions substantially shrinks
the GIV identified set and that this effect is particularly pronounced for relatively low values
of p.

Figure 7: Low IV strength
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18Gince it is hard to obtain a closed form for the model probabilities associated with these events, we
approximate the probabilities via simulation.
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Figure 8: Low IV strength
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Figure 9: High IV strength
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3.3 DMarginal GIV Restrictions

In order to shed further light on what is driving (partial) identification in the model, we
now go back to the case with two time periods and consider what happens if we only impose
the marginal GIV restrictions, i.e. the restrictions implied by the independence between the
marginal distributions of u; and us and the distribution of the IV. This set of restrictions
is weaker than those implied by independence between the joint distribution of (uy,us) and
that of the IV. Specifically, since the marginal restrictions do not contain any information
on the serial correlation in the unobservables, the identified set for p is the entire (—1,1)
interval and we do not plot it. On the other hand, the marginal restrictions do place bounds
on the sunk cost, as shown in Figures [I1] and [I2} The bounds are wide and contain the HM
estimates, even when IV strength is high, which confirms that the joint GIV constraints play
a crucial role in obtaining informative results.
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Figure 11: Low IV strength
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Next, we look at the identified sets for the policy function for the case with high IV strength.
Since in this model the policy consists of a pair of thresholds (7 (0),7 (1))—one for each
state—we are able to plot the identified sets in two dimensions. As shown in Figure (13|
imposing the joint GIV restrictions substantially shrinks the identified set and again is key
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to being able to rule out the HM estimate.

Figure 13: High IV strength
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3.4 Adding exogenous covariates

We now explore the impact of adding an exogenous covariate, denoted w, to the model.
Specifically, we specify the firm per-period profit as follows:

aw; — B — € ifay=1,24=1
it = Oéwz‘t—ﬁ—V—Gz't ifapy =1,24=0
O ifait:()

so that w;; could be interpreted as a measure of market size such as population, aw; repre-
sents variable profits, [ is fixed costs, and v is again the sunk cost of entry. Further, we let ¢
follow the AR(1) process in ([L5)), with v;, distributed N (0, 0?). Following [Pakes, Ostrovsky,
and Berry| (2007), we assume that the term aw; — § has already been estimated outside
the dynamic model and we focus instead on the parameters 7, p and O’H When generating
the data, we set « = 1.5, 8 =1, v =1.5,p = 0.75, 0 = 1, and we focus on the case where
IV strength is low. Regarding the distribution of the covariate, we let the initial w for each
market take the values {0.15,1.00, 1.65} with equal probabilities and evolve according to the

9Note that, unlike the previous simulation designs, here we are not allowed to normalize ¢ since the
non-stochastic part of the period-profits is modeled parametrically. Accordingly, for this design, we report
the standardized sunk cost I to ensure comparability with the plots for the case without w.
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transition matrix

0.6 0.2 0.2
0.2 06 0.2
0.2 0.2 0.6

Note that the parameter values are chosen in such a way that the per-period profit function
when w = 1 is the same as in the model without w.

Because w is exogenous, it can be used as an additional conditioning variable in the GIV
inequalities along with the excluded IV. Thus, adding w to the model increases the number
of inequalities that each candidate parameter value must satisfy in order to be included in
the identified set. We would then expect the identified set to be smaller in the model with
the exogenous covariate’] As shown in Figure [14] this is indeed the case.

Figure 14: Effect of exogenous covariate
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3.5 Counterfactuals

We now turn to counterfactual analysis and consider three scenarios: (i) an increase in the
sunk cost of entry by 0.25—corresponding to 17% of its true value—which we call “the sunk
cost counterfactual” for brevity; (ii) an increase in the fixed cost by 0.25—corresponding
to 25% of its true value—and a simultaneous decrease in the sunk cost by 0.125—or 8% of

2OHowever, note that, because w varies over time in the data, the policy function also changes relative to
the “no w” case (even for the value of w that makes the per-period profit identical to that in the “no w”
model). Thus, it need not be the case that the identified set in this section is a subset of that in the “no w”
model.
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its true value—which we call “the fixed cost counterfactual”; (iii) a 0.25 subsidy to entry—
corresponding to 17% of the true value of the sunk cost—which we call “the subsidy counter-
factual.” The sunk cost counterfactual is meant to simulate a policy, such as environmental
regulation, that only constrains new entrants. On the other hand, the fixed cost counterfac-
tual corresponds to a policy restricting both incumbents and entrants. We simultaneously
decrease the sunk cost in this counterfactual to reflect the fact that complying with the
regulation may be easier for new entrants (e.g. retrofitting a plant to comply with environ-
mental regulation may be costlier than doing so when starting from scratch). Finally, the
subsidy counterfactual mimics a policy that encourages entry of new firms that might be
using cleaner or otherwise better technology.

The procedure we employ to assess the impact of these shocks is as follows. For each market
in the data, we draw many time series for the unobservables where the initial value is drawn
from the conditional distribution associated with the initial number of firms and the initial
value of the policy. After a large number of time periodsE we hit each market with the given
counterfactual shock. For each of the three shocks, we report averages—across observations
in the data and draws of the unobservables—of (a) the change in the number of firms relative
to when the shock hit; (b) the number of “old” firms exiting (i.e. firms that were inside the
market when the shock hit and exited after the shock); and (¢) the number of “new” firms
entering (i.e. firms that entered the market after the shock hit). We measure each of these
quantities 5 and 10 years after the shock.

Tables [4] to [6] show the results for the simple model with 7' = 2 and no exogenous covariate
w. Since in this case we are able to characterize the sharp identified set for the structural
parameters, the bounds on the counterfactual outcomes presented here are also sharp.@ As
expected, the bounds become tighter when we move from the low IV strength to the high
IV strength case. In contrast, the HM approach leads to consistently biased results. In
particular, HM tends to overestimate the impact of each of the three shocks in absolute
value, with the magnitude of the bias being especially large for the fixed cost and the
subsidy counterfactuals. Intuitively, because HM assumes away serial correlation in the
unobservables, the shocks drawn for the counterfactuals will exhibit much less persistence
relative to their true distribution. Therefore, HM will predict an excessive amount of entry
and exit in the counterfactual scenarios.

21'We set this number to 250. Drawing many time periods prior to the sample periods is needed to make
sure that the distribution of the unobservables converges to its stationary distribution.

22Based on the insight from Section here we impose the joint GIV restrictions as opposed to the
marginal ones.
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Table 4: Increase in sunk cost: identified sets

after 5 years after 10 years

True GIV HM | True GIV HM

Low IV Change in # firms | 0.01 (0.00,0.03) 0.03 | 0.01 (-0.00,0.03) 0.04
strength Old firms exiting 0.18 (0.14,0.28) 0.19 | 0.32 (0.26,0.45) 0.34
New firms entering | 0.19 (0.15,0.30) 0.23 | 0.33  (0.30,0.47) 0.37

High v | Change in # firms [ 001 (0.00,0.02) 0.04] 001 (0.00,0.02) 0.04
strength Old firms exiting 0.18 (0.17,0.24) 0.21 | 0.32 (0.30,0.41) 0.37
New firms entering | 0.19 (0.17,0.26) 0.25 | 0.33  (0.30,0.42) 0.40

Table 5: Increase in sunk cost and decrease in fixed cost: identified sets

after 5 years

after 10 years

True GIV HM | True GIV HM

Low IV Change in # firms | -0.12 (-0.29,-0.10) -0.37 | -0.13 (-0.32,-0.10) -0.41
strenggh | Old firms exiting | 031 (0.25,053)  0.59 | 048 (0.39.0.67) 075
New firms entering | 0.19  (0.14,0.29) 0.21 | 0.35 (0.28,0.48) 0.34

High IV Change in # firms | -0.12 (-0.17,-0.11) -0.32 | -0.13 (-0.18,-0.11) -0.35
Old firms exiting 0.31  (0.29,0.42) 0.58 | 0.48 (0.44,0.59)  0.75

strength | Now firms entering | 019 (0.17,0.25)  0.26 | 0.35  (0.32, 042)  0.41
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Table 6: Subsidy to entry: identified sets

after 5 years after 10 years

True GIvV HM | True GIV HM

Change in # firms | -0.01 (-0.03,-0.00) -0.04 | -0.02 (-0.03,-0.00) -0.04

Siiznlg\tfh Old firms exiting | 0.24  (0.17,0.36)  0.34 | 0.40  (0.30,0.54)  0.53

New firms entering | 0.23  (0.17,0.35)  0.30 | 0.38  (0.29, 0.52)  0.49
High TV Change in # firms | -0.01 (-0.02,-0.00) -0.04 | -0.01 (-0.02,-0.00) -0.04
gty | Ol firms exiting | 022 (0.20030) 037 | 037 (034048 057

New firms entering | 0.21  (0.20,0.29)  0.33 | 0.36  (0.34, 0.47) 0.53

4 Empirical Application

In order to illustrate the approach, we apply it to the ready-mix concrete industry studied
by |Collard-Wexler| (2014) (henceforth, CW). CW quantifies the magnitude of the sunk cost
of entry in each of many isolated markets in the US and uses these estimates to assess
how persistent the effects of a horizontal merger are in this industry. More specifically,
CW first estimates the firms’ policy functions based on data on the number of ready-mix
concrete plants and demand shifters. Given the policies, CW then simulates the evolution
of a market following a merger to monopoly and evaluates how long it takes for a second
firm to enter.

We use the same data and modeling framework as CW, but estimate all of the structural
parameters as opposed to just the policy functionsFE] This allows us to address a broader
range of counterfactual questions. In particular, we consider the effects of a policy, similar
to the environmental policies in the cement industry study of Ryan| (2012)), that alter sunk
and/or fixed costs. Note that these are structural parameters of profit function that are not
directly revealed by policy functions. In addition, since the GIV approach accommodates
incomplete models, we are able to tackle the initial conditions problem in a more flexible
way [

Note that our application is intentionally simplified to serve as an example within a longer
methodological paper.

Table [7] summarizes the variables we use. The data on number of plants and construction
employment is the same as in CW and we refer the reader to that paper for more details.
Briefly, the number of plants variable measures how many firms are active in each isolated
town, while construction employment shifts ready-mix concrete demand. We follow CW
and treat construction employment as exogenous, while the number of concrete plants is
endogenous. In addition, we obtain data on past household income growth at the county

23Collard-Wexler| (2013) estimates a full model of industry dynamics using firm-level data under the
assumption that the dynamic states are econometrically exogenous. We use coarser market-level data, but
address the endogeneity of market structure.

24CW addresses the initial conditions problem by assuming that the industry has been following the same
set of policies for a long time and then using this assumption to simulate the probabilities of the initial states
via a modification of the GHK algorithm.
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level from the US Census website. We assume that past income growth is excluded from the
current profits of concrete firms and that, conditional on current construction employment,
past income growth is independent of within sample unobserved shocks to profitability. Past
income growth therefore serves as an excluded instrument in our model.

Table [8| shows results for a “quasi first-stage regression”. This table presents an ordered
probit model with the number of firms as the dependent variable. We see that that the
coefficients on the both exogenous variables are positive and precisely estimated. The result
suggests that our excluded instrument is “relevant,” even when conditioning on current
demand. Of course, the true reduced form of the model is not an ordered probit and we
present this merely as a descriptive result.

We conclude our brief descriptive analysis by reporting in Table[J]the transition probabilities
for the number of plants, which shows that the outcome exhibits substantial persistence over
time conditional on both values of the instrument ]

Table 7: Summary statistics. Fully balanced panel of 428 markets between 1994 and 2005

Variable Mean St.Dev. Min  Max
Number of plants 0.97 0.93 0.00  6.00
Construction Employment 519 819 3 17,772

Household Income Growth 1969-1989  0.15 0.11 -0.16  0.69

25The results in Tables andlél as well as those from structural estimation, are based on a discretized
version of the original data. Specifically, since more than 90% of the original observations at the market-year
level have two or fewer plants, we censor the number of plants at two, which reduces the number of parameters
to estimate in the structural model. Similarly, we discretize construction employment and household income
growth. For each variable, we define a high and a low value depending on whether a given observation is
above or below the median. Because construction employment essentially has no over-time variation after
discretization, we take its value in the first year of the sample for each market and assume it is constant over
time (and that firms know it). This means that, when we condition on construction employment to compute
the moments implied by the model, the conditioning variable is scalar—as opposed to having dimension
equal to the number of time periods—which leads to much more precisely estimated moments.
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Table 8: Ordered probit results. Dependent variable is number of plants. ** denotes signifi-
cance at the 95% level.

Log Construction Employment | 0.14**
Income Growth 1969-1989 0.22**
Likelihood-Ratio Test p-value | 0.00

Table 9: Transition probabilities conditional on instrument

Low IV High IV

Policy Policy
State| 0 1 2 [ 0 1 2
0 0.92 0.07 0.01] 0.90 0.09 0.01
1 0.07 0.87 0.06 | 0.06 0.89 0.05
2 0.02 0.18 0.80 | 0.00 0.18 0.82

We now turn to structural estimation. As in CW, we estimate a version of the Last-In
First-Out model developed by |Abbring and Campbell| (2010). Again, we refer the reader to
CW for more details on what assumptions are imposed and why this is may be a suitable
oligopoly model in the context of the ready-mix concrete industry. Importantly, the Abbring-
Campbell assumptions motivate a model where we avoid the issues of multiple equilibria,
which are discussed elsewhere in the paper. This allows for a relatively simple illustrative
application.

We specify the flow profit function as follows:

O, Wi — B4 €y if was in at ¢t — 1, stays in at ¢
it = § @, w; — — v+ € if was out at ¢t — 1, enters at ¢ (25)
0 if is out at ¢

where w; denotes construction employment (in thousands) in market i, a,,, is a coefficient
that depends on the number z;; of active firms in market ¢ at time ¢, 8 represents fixed costs,
~ is the sunk cost of entry, and ¢;; denotes a potentially serially correlated unobservable shock
to profitability. We assume that, conditional on €;;_1, €; is equal to €;_; with probability p
and is drawn uniformly from the [—1, 1] interval with probability 1 — p@ Further, we impose
the natural restriction ap < %, i.e. that per-firm variable profits (weakly) decrease with the
number of competitors.

26This parametric specification for the joint distribution of the unobservables is used by |Abbring and
Campbell (2010]), who show that it satisfies their Assumption 3. This, along with other mild assumptions,
ensures existence and uniqueness of a Markov-perfect equilibrium in Last-In First Out strategies. However,
our setup varies slightly from the Abbring and Campbell setup and it is still possible that our method is
selecting one out of multiple equilibria.
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Because we have twelve years of data, the number of moment conditions defining the sharp
identified set is extremely large and it is not practical to use all of them. However, the goal
of obtaining a small identified set suggests that we want to use a large number of them.
This creates a potential problem, as many methods for obtaining confidence regions will
not perform well when the number of moment inequalities is very large. This creates a
tension between the desire for a small identified set (on one hand) and the desire for precise
inference (on the other hand. To resolve this tension, we report confidence sets for the
structural parameters via one of the approaches proposed by |Chernozhukov, Chetverikov,
and Kato| (forthcoming)) (henceforth, CCK). The method is intended for cases where the
number of moment inequalities is very large, even larger than the dimension of the data.
Speaking roughly, it provides an econometrically disciplined way of determining the subset
of moment conditions that are most informative about the parameter values.

As in the Monte Carlo simulations from Section [3| we impose two sets of GIV moments: (i)
the full list of moments characterizing the sharp identified set for the case with two time
periods;ﬂ and (ii) several inequalities corresponding to observable events over the entire
twelve years in the data.@. This second set is chosen to include events that are intuitively
likely to distinguish differing levels of serial correlation. For example, if the event “no entry
or exit occurs in the 12 year period” is very common, this might indicate a high degree of
serial correlation.

In addition to our list of intuitively information aggregated events, we include the comple-
ment of each of these events and we make sure that the left hand side of each GIV inequality
incorporates not only the observable event associated with that inequality, but also all ob-
servable events whose necessary conditions (in the space of unobservables) are subsets of the
set whose probability is on the right hand side of the inequality.

Computationally, we follow CCK in generating a large number of draws to approximate
the integrals corresponding to these events and ignoring the corresponding simulation error.
Simple diagnostics suggest that the simulation variance is indeed negligible relative to the
sample variance.

Since all our conditioning variables are discrete, we can easily turn the conditional moment
inequalities into unconditional ones. We are then left with 614 inequalities. We choose to
rely on the results in CCK because they allow for the number of moment inequalities to grow
with the sample size. This seems to be relevant for our purposes given that we have more

2"We compute these moments by only using the first two years in the panel. In principle, one could obtain
more moments by taking all subsets of the data with two consecutive years. Because we already obtain
informative results when only using the first two years, we do not pursue this extension in the paper.

28These events are: “some entry and some exit occur,” “there are always zero firms,” “there is always
one firm,” “there are always two firms,” “there is at least one period with zero firms,” “there is at least one
period with one firm,” “there is at least one period with two firms,” “the number of firms goes from zero to
one,” “the number of firms goes from one to two,” “the number of firms goes from zero to two,” “the number
of firms goes from two to zero,” “the number of firms changes at least once,” “the number of firms changes
exactly once,” “the number of firms changes exactly twice,” “the number of firms goes from one to zero,”
“the number of firms goes from two to one or zero,” “the number of firms in the market is unchanged for at
least five consecutive periods,” “the number of firms in the market is unchanged for at least nine consecutive
periods.”
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moments than observations in the data. For each candidate parameter value, we use as test
statistic the maximum of the sample moments (at that parameter value) divided by their
standard deviations and scaled by the square root of the sample size. In order to obtain
valid critical values, we employ the one-step multiplier bootstrap method in CCK with 250
bootstrap draws

Table 10| displays confidence intervals for the structural parameters individually, while Figure
shows the projection of the confidence region onto the space of correlation parameter and
sunk cost. Note that the correlation parameter is estimated to be positive and significantly
different from zero. For comparison, we also consider a model that maintains the same
specification as above, but assumes that the unobservables are i.i.d. over time. We estimate
this model by maximum-likelihood and use the bootstrap to obtain standard errors. We can
see that the MLE model with no serial correlation tends to under-estimate the fixed cost,
the sunk cost, as well as the negative impact of competition on variable profits.

Table 10: 95% Confidence Intervals for the Structural Parameters

after 5 years ‘
GIV MLE
ap | (0.150,0.225)  (0.042,0.045)
asy | (0.000,0.013)  (0.015,0.020)
G |(0.217,0.350)  (0.038,0.043)
v | (2.549,2.730) (1.442, 1.457)
p | (0.651,0.758) —

29CCK propose several other testing procedures, including two— and three-step methods that have better
power properties relative to one—step approaches. On the other hand, one—step methods have the advantage
of not requiring one to choose any tuning parameters. Since the one-step multiplier bootstrap already
delivers informative results in our data, that is our inferential procedure of choice.
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Figure 15: Autocorrelation and sunk cost: Projection of 95% confidence sets
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In order to investigate whether allowing for endogeneity of market structure makes a dif-
ference for policy-relevant questions, we turn to counterfactual analysis. We implement the
same three counterfactuals as in the simulations from Section B.APY An increase in sunk
and /or fixed costs can be thought of as a possible counterfactual environmental regulation,
as in an investment of technology to reduce polluted water from running off concrete opera-
tions. If the proposed policy is not observed in the data, then the full structural model can
still be used to predict the effect of the policy.

As Tables [T1] to [13] show, for each of the counterfactual changes, the estimated impact on
both the number and the composition of firms in the market varies substantially depend-
ing on whether we account for endogeneity of market structure. In particular, when the
unobservables are assumed to be i.i.d., the model predicts much more counterfactual entry
and exit, relative to the more flexible approach that allows for serial correlation. Intuitively,
the i.i.d. assumption forces the unobservables to vary too much from one period to the
next, which translates into excessive variation in the implied market outcomes relative to
the model with serial correlation.

These policy counterfactual results show the large bias that may result from models that
artificially set the serial correlation parameter to zero, as in common in much of the literature.
Further, the relatively precise estimates from our procedure show that dropping restrictive
initial conditions assumptions need not result in imprecise estimates. In part, this stems for
our use of new econometric techniques for moment inequalities that allow us to employ very

30We choose the same values for the changes in sunk/fixed cost as in the Montecarlo simulations. If we take
the midpoints of the GIV confidence intervals for the parameters as a reference, the sunk cost counterfactual
increases the sunk cost by approximately 9% of its estimated level, the fixed cost counterfactual increases
the fixed cost by approximately 88% of its estimated level, and the subsidy counterfactual decreases the sunk
cost by around 9% of its estimated level.
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large number of moment inequalities in an econometrically disciplined and correct way.

Table 11: Increase in sunk cost (95% confidence intervals)

after 5 years ‘

GIV MLE

Change in total # of firms
Change in fraction of new firms

(-0.09,-0.03) (-0.18,-0.15)
(-0.05,-0.01)  (-0.15,-0.14)

Table 12: Increase in fixed cost and decrease in sunk cost (95% confidence intervals)

after 5 years ‘

GIV MLE

Change in total # of firms
Change in fraction of new firms

(-0.08,-0.03) (-0.11,-0.08)
(0.01,0.06)  (0.07,0.10)

Table 13: Subsidy to entry (95% confidence intervals)

after 5 years ‘

GIV MLE

Change in total # of firms
Change in fraction of new firms

(0.05,0.10) (0.34,0.38)
(0.04,0.10)  (0.12,0.14)

5 Conclusion

In this paper, we have proposed an approach to identification and estimation of dynamic
models with serially correlated unobservables. We tackle the resulting endogeneity of dy-
namic states by relying on the type of instrumental variables intuition that is commonly
used in static models. In order to characterize the identified sets for quantities of interest
and obtain confidence regions, we leverage recent results in the econometrics literature on
partially identified models and the associated inference literature.

This paper opens several avenues for future research. First, it would be interesting to apply
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the proposed approach to a wider class of empirical settings and see how accounting for the
endogeneity of market structure affects the results. Second, while in the simple models we
considered here we could obtain the identified sets and their confidence regions by grid search
over the structural parameter space, this strategy becomes computationally prohibitive in
more complicated models. In these cases, it might be possible to develop computational
methods that avoid searching over the entire parameter space and instead focus directly on
the final object of inference—often a scalar counterfactual quantity.
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Appendix A: More (General Forms of Unobserved Het-
erogeneity

A.1 Generalization to Discrete Types and Beyond

In this section, we consider an example of how to extend our method to a single-agent problem with persistent
unobserved discrete types. As a particularly simple example, we again consider the monopoly entry problem
but now consider a case of discrete firm heterogeneity, in the spirit of Heckman and Singer| (1984]), [Keane
and Wolpin| (1997)), |Arcidiacono and Miller| (2011]) and related literature. In this case, the unobservable that
enters the single-period profit function is sometimes modeled as

€it = it + Nit, (26)

where 7n;; is continuously distributed and independent over ¢t and ¢ while \;; is persistent and takes on a
discrete set of values: o -

Ait € {/\17 )\2, ey )\K}
For example, the single-period return to operating in market ¢ in a single-agent dynamic entry model could
be specified as

T (@i, Tit, Wit, O ) — (Nit + Nt ),

so that (A; + m;t) represents the fixed cost of operation, including a persistent and a transitory compo-
nent.

A particularly simple example would be a pure “discrete firm-effects” model where \;; does not vary over
time, so that \;; = A;. More generally, \;; might evolve across values according to a parameterized distribu-
tion

M (Nit| Nig—1;0u)- (27)

We can think of this transition as being generated by a function
Ait = h(Xit—1, Vit, Ou) (28)

where v;; is a scalar or vector that is independent over time and markets, with distribution ®(v;;6,,).

This suggests a generalization to a broader set of models where we treat \;; as the “persistent component”
of the unobservables, v;; as the innovation in that component and 7;; as additional transient (independent
over time) shocks to single-period profits. We then define u;; as the (possibly vector-valued) unobservable
that enters the policy function. Note that in the discrete heterogeneity case u;z = (Ait, 7). As in , it
might sometimes be helpful to distinguish €;; as the particular combination of period ¢ unobservables that
affect single-period returns. However, as a more general case we can just let single-period profits depend on
Wit -

The serial correlation case in the body of the text is particularly simple because the scalar u;; is simultaneously
the persistent component (A;) that effects future expectations and is also the component (e;;) that effects
single period returns. That is, in the single-agent AR(1) serial correlation case, u; = Ay and uy = €. In
the discrete heterogeneity case outlined above, those simple relationships do not hold. The term that enters
single period profits, €;; = Az + 7, is different from the term, A;, that conditions future expectations.

Having defined the firm-policy relevant vector of unobservables u;; in this way, the general discussion in the
main body of identification via GIV in Section goes through in its entirety. In the next subsection we
further illustrate the details of the discrete heterogeneity case and tie our GIV treatment to the treatment
of discrete heterogeneity in Kasahara and Shimotsu| (2009)) and related literature.
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A.2 Details on the Discrete Heterogeneity Case

In the generalized single-agent case of the last section, the single period return is still 7(a;¢, T, Wi, wit, O ),
but now

Wit = (Nits Mit)- (29)

The Bellman equation is

V (@it, wit, wir) =
30
Ienjlf ) (7T (@its Tit, Wity Wit; Or ) + 0 Ep,, [V (Tity1, Wit 1, Witr1) [@it, Tit, Wity Nit] ) (30)
it Tit

This takes the same form as 7 except that the future expectation is conditioned on A, rather than w;
and we again recall the new definition of u;; in .

The associated policy function is still a;z = oy (x4¢, Wi, use ). Consider the specialization to the case of Section
[2:4] with binary actions and states, and with no role for w;;. That is, a;; and z;; both take on the values 0 or
1. Further, assume only two possible values for A, fixed over time. If the policy function is monotonic in the
independent shock 7, then under appropriate conditions the dynamic firm policy function is described by
four cutoff rules in 7, one for each combination of x;; and A;;. This is twice as many cutoff rules as existed
in the serial correlation example, where there was a cutoff in u;; for each value of x;;.

To be more formal, consider an AR(1) example following on the simplest example in the main text, where
the inverse image set of unobservables in market 7 is

U(as, xi,wi, o) = {ui: (=14 2ai)uie < (=14 2a:4)7 (248, w3t ), VE}. (31)

Note that the term (—1 + 2a;;) is just a device to switch the sign of the inequality depending on whether or
not a;; = 1. In the discrete heterogeneity case, the corresponding inverse image set is

Z/l(ai,mi7wi7o) = {(771, )\1) (—1 + 2ait)nit < (—]. + 2ait)7(xit,wit, )\n),vt} (32)

It is clear that involves fewer unknown policy function parameters 7 than (32). This is one clear
advantage of the AR(1) case.

However, [Kasahara and Shimotsu| (2009)) exploit a clear advantage of the discrete heterogeneity case in
handling initial conditions. If we are willing to assume that persistent heterogeneity takes only a small
number of discrete values, then the initial conditions are similarly described by a small set of additional
unknown parameters. In particular, the initial conditions of the model are completely characterized by the
unknown terms

Pr(zi1|Ai1 = A, wir),

which is a relatively small number of unknowns when \;; takes on a small number of values. Further, the
number of unknown initial condition parameters does not increase in 7. This simple specification of the
initial conditions then allows Kasahara and Shimotsu| (2009) to complete the dynamic model, which in turn
allows them to specify a set of strict equalities that are necessary to rationalize the observed data. In the fully
discrete case, Kasahara and Shimotsu| (2009)) then discuss (point) identification of transition probabilities
conditional on each possible value of A. They provide sufficient conditions involving combinations of [a]
a minumum number of time periods, [b] sufficient variation in observed (unconditional on \) multiperiod
transition probabilities in the data, [c] limits on the number of discrete points of support for A and [d]
limits on the variation in A over time. These results have the further advantage of possibly identifying joint
transitions for (z;;, w;) that depend on A, which is more general than the base specification in the main
body of our text.

In the single-agent case, then, the chief advantage of the discrete heterogeneity model lies in a naturally
low-dimensional parameterization of the initial conditions, following directly from the assumption that the
persistent heterogeneity is, in a formal sense, of low dimension relative to the overall variation in the data
over time. It is possible that the advantages of the discrete heterogeneity assumption are highest when
the time dimension is of intermediate length. When the time dimension is too short, the large number of
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combined parameters of the policy functions and the initial conditions will overwhelm the data even given
the advantages of equality restrictions. At long time periods, GIV inequalities applied to the AR(1) serial
correlation case may do reasonably well since the issue of incomplete initial conditions may, in any case, be
small in long panels, as highlighted by Honoré and Tamer| (2006]).

A.3 Oligopoly

Here we extend the discussion of the last subsection to oligopoly. As an example, again consider a simple
“entry” model where the return to firm j of operating in market ¢ at time ¢ is

T (@ie, wit, Ox) — (Nije + Mije)-

A convenient set of assumptions is that \;j; is discrete, persistent and commonly known by all firms at
time ¢ while 7;;; is continuously distributed, i.i.d. over firms and time and is also private information to
firm j. Note that the private continuously distributed 7;;; can help to ensure existence of equilibrium in
an otherwise discrete dynamic game, as in |Doraszelski and Satterthwaite (2010). The assumption that A
is commonly observed prevents issues of informational updating and strategic information revelation with
respect to persistent firm types. This often then preserves the first-order Markov structure of the oligopoly
strategies.

Given the model of the last paragraph, the unobservables that enter firm j’s single-period profit function are
then

Uit = ()\ijt» )\i.,fj,tvnijt) (33)
Assuming (as usual in the empirical literature) that firms all play the same strategy whenever they reach
the same state (even when the underlying game admits multiple equilibria), the equilibrium policy functions
once again take the form,

Aijt = 0y (Sﬁit, Wit , Uijt)a
with u;;; now defined by (33). Once again, in a discrete game the results by Kasahara and Shimotsu
(2009) may or may not provide point identification of cutoff decision rules in the quantiles of 7;;; (as well
as transition matrices for z;; and w;; that potentially depend on A;;.) These transitions and cutoffs will in
some commonly used cases point identify the structural parameters and in other cases they may not. Either
way, the GIV framework generalizes the result.

In particular, the inverse image set in the simple oligopoly entry example is very close to the single agent

version in
U(as, zi, wi,0) = {(Mije, Nit) 1 (=1 4+ 2a456) 0550 < (=1 4 2a450) T (2ie, wir, Nie), V(4, 1) }. (34)

Note that the cutoffs 7(x;t, wit, Aiz) take on a finite number of values as long as x;;, w;, and A;; all take on
a finite number of values. One could allow for continuous A, but then the function 7 might easily take on a
continuum of values.

GIV inequality constraints associated with can once again be transformed into equalities by introducing
additional parameters for initial conditions. However, the oligopoly case naturally multiplies the number of
these initial condition parameters. If each firm has a potentially different A and if the number of potential
values for ) is K, then we have K initial condition parameters. It is not immediately clear whether it is
easier to include these parameters in the identification and/or estimation problem and take advantage of the
resulting equality restriction, or whether it is better to use the GIV inequalities without the initial condition
parameters. The answer is likely to be problem specific.

Another alternative to the discrete persistent heterogeneity model just described is a model that extends
the AR(1) case from the main text to the multiple agents settings. In such a model, each agent has one
continuously distributed persistent unobservable that is common knowledge. Continuity of the unobservable
implies that we can establish existence of an equilibrium without the need for additional private information
iid. shocks. However, in general, the image sets U(a;, z;, w;,0) needed as an input to characterize the
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CR identified set for the policy functions will not be determined by a finite number of thresholds. Instead,
they will typically be defined by curves in the space of unobservables, which makes implementation hard or
outright infeasible. Therefore, we view the model described in this section as preferable for our purposes
and we estimate a variant of it in Appendix [C]

One could also consider examples of discrete/continuous games of the sort envisioned by [Bajari, Benkard, and|
(2007)’s discussion of possible set identification in a world without persistent heterogeneity. Perhaps
some combination of discrete and continuous persistent A variables will be appropriate in that case.

Appendix B: Non-Elemental Sets for Single-Agent Ex-
ample

In this appendix, we present the non-elemental sets belonging to the collection of core determining sets for
the example considered in Section These are the sets given by the overlapping unions of elemental sets,
excluding cases of strict subsets. Below each set we specify the events associated with the elemental sets that
we are taking the union of (top three sets) or the non-elemental sets that we taking the union of (bottom
two sets).

(a) (0,0,0)+(1,1,0) (b) (0,0,0)+(1,1,1) (c) (1,1,1)+(0,0,1)
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Appendix C: Computed Example of Dynamic Oligopoly

In this section, we illustrate how our approach applies to the dynamic oligopoly setting by considering a
model with discrete persistent common knowledge unobservables and private information i.i.d. shocks, along
the lines of the example in Appendix [AZ3]

Consider the problem faced by two firms choosing how many stores to open in each of several markets over
time. We assume that the firms choose between having one or two stores open in each market at any given
point in time. Given the number of stores in a market, the two firms engage in Bertrand competition and
each of them charges the same price across its own stores. We let j index stores and & (j) be the firm owning
store j. Consumers view the products as horizontally differentiated across stores. Specifically, let

Uiji = 0 — aPr(jy + €ije

be the utility that consumer 7 gets from buying from store j at time ¢. Assuming that €;j; is i.i.d. extreme
value across consumers and stores, the market share of firm k at time ¢ is given by

Tht expé—apkt

Skt (Pt) =

)

2 _
14 > zpexpd—orr

r=1

where p; = (p1t,p2:) and zy: denotes the number of stores that firm &k has open at time ¢. The first order
condition for firm k’s static problem at time ¢ is then

_ skt (Pt)
Pkt = MCrt — —5— <
Oprt Skt (p)

where mcy; denotes the marginal cost of firm & at time ¢, which is assumed to be constant across firm k's
stores. The system of first-order conditions implicitly determines the equilibrium prices in each market at
any point in time and this in turn determines each firm’s variable profits. Let 7} (z¢,w;) be firm k’s variable
profit at time ¢ as a function of the endogenous states x; = (14, x2¢) and of market size w;, which we assume
to be exogenous. Further, each firm incurs a fixed cost for each open store at time ¢ and a sunk cost if it
decides to open a new store in the next period. The timing is such that at time ¢ a firm chooses ay, i.e. the
number of stores at time ¢ + 1, and incurs the associated sunk cost, if any, at time ¢. The final specification
for flow profits is as follows:

Tt (Qhts Ty Wiy Aty Vit) = T (T4, we) — Brre e — ¥ (@t — Tre) T{ane > Tre } - vie,

where [ is the fixed cost, v is the sunk cost and A\i; and vg; are shocks that are unobserved to the econome-
trician. We assume that A\, is common knowledge and possibly correlated over time and across players. This
is the structural shock that may be correlated with the state x;, thus leading to an endogeneity problem.
On the other hand, v; is assumed to be i.i.d. over time and across players and to be observed by player k
but not by the other firm. Adding this shock to the profit specification helps show existence of the dynamic
equilibrium and compute said equilibrium in practice.

In the simulation, we set a = 0.5,6 = 2 on the demand side and mcy; = 0.5, 3 = 0.7,y = 1 on the cost
side. Moreover, we assume \; can only take the two values 0.25 and 0.75, so that at any time ¢ there are
four possible combinations of A\; = (A1¢, Aa;). The joint probability distribution for (A, Ary1) is given by the
following matrix

0.175 0.025 0.025 0.025

0.025 0.175 0.025 0.025

0.025 0.025 0.175 0.025

0.025 0.025 0.025 0.175

In other words, the \; process is fairly persistent over time. Further note that the matrix above is charac-
terized by just one parameter, which is convenient computationally. In particular, this correlation structure
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implies that, given any value of A¢, A\ry1 will be equal to A; with probability p = 0.7 and will switch to any
of the other three values with 0.1 probability each. Moreover, the shock vy takes one of the two values 0.5
and 1 with equal probability and is i.i.d. over time and across players. The exogenous state w is either 0.8 or
2 and, for simplicity, is taken to be constant over the time span from ¢ = 1 to ¢t =T, where T is the number
of observed time periods. In the simulation, we let T' = 2@

Finally, we use past values of w as instruments. For each firm, the instrument has a correlation of 0.81 and
0.56 with = from period 1 and 2, respectively.

The structural parameters are the fixed cost 3, the sunk cost v and the correlation parameter p for the
A+ process. To characterize the identified for 8 = (8,7, p), we proceed in two steps. First, we find all the
policies that satisfy the CR conditions. Note that, in this simple example, there are only 64 possible states
and therefore a policy is a vector of length 64 with elements taking two possible values (corresponding to
choosing one or two stores). This makes it possible to enumerate all possible (monotonic) policies and check
the GIV conditions for each of them. Only 5,335 policies survive at the end. This is the sharp GIV identified
set, for the policy.

In the second step, we go from the identified set for the policy to the identified set for the structural
parameters. Specifically, for each candidate value 6 in a grid, we check whether there exists a policy in the
GIV identified set such that when the opponent plays according to that policy, it is optimal for a firm to
play the same policy. Here we exploit the fact that the two firms face the same problem and thus there
has to be a symmetric equilibrium. Further, note that this procedure does not rely on uniqueness of the
equilibrium and thus can be applied without any changes even if a given value of 8 is associated with multiple
equilibria.

Figures [17] and [L8| show projections of the identified set for the structural parameters.

Figure 17: Projection of identified set for 3,
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31Tn order to focus on identification of the parameters and abstract from inference issues, we draw a very
large sample of markets (50,000).

41



Figure 18: Projection of identified set for p
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