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The goal of science is to advance knowledge, yet little is known about its value for

marketplace inventions. Analyzing U.S. patents, we establish three new facts about the

relationship between science and the value of inventions. First, we show that a patent

directly building on science is on average 2.9 million U.S. dollars more valuable than a

patent in the same technology but unrelated to science. Based on the analysis of the patent

text, we show second that the novelty of patents predicts their value, and third that science-

intensive patents are more novel. This documents that science introduces new concepts that

are valuable for marketplace inventions. Our study informs the debate on the merits of

science for corporate innovation and the origins of breakthrough inventions.
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“Science, by itself, provides no panacea [...] But without scientific progress no amount of

achievement in other directions can insure our health, prosperity, and security as a nation”

Vannevar Bush

Introduction

According to philosopher Francis Bacon “The true and legitimate goal of the sciences is to

endow human life with new discoveries and resources” (Mokyr, 2016). Yet surprisingly little

is known about how much scientific knowledge contributes to the development of market-

place innovations and their commercial success. Some well-known examples document that

science can play an important role for the development of technological breakthroughs. Fer-

dinand Braun and Guglielmo Marconi could not have developed the wireless telegraph before

Heinrich Hertz showed the existence of electromagnetic waves. Similarly, the development

of the transistor at the Bell Laboratories would have been difficult to imagine without the

scientific understanding of the physics of semiconductors. Skeptics have argued that these

cases are the exception rather than the rule and that ideas for inventions usually come from

other sources than science (Kline and Rosenberg, 1986; von Hippel, 1988). They are con-

cerned that science is trapped in an ivory tower and has little direct application in private

companies. Given the public good character of scientific knowledge and the reward structure

for scientists (Stephan, 1996), it is indeed non-obvious that they engage in basic research

that matters for private sector applications. Moreover, skeptics argue that the knowledge

transfer from university to industry does not work effectively or doubt the reliability of the

knowledge produced at universities (Goozner, 2005; Butler, 2008; Freedman et al., 2015;

Bikard, 2018).

While these are potentially important concerns, to date there is no empirical evidence

that would allow us to quantify the overall impact of science on marketplace innovations. In

this study, we provide such a quantification by measuring the contribution of science to the
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value of patented inventions in the private sector. Any attempt to measure this contribution

is complicated by the fact that science plays a larger role in some technologies than in others

(Stephan, 1996). This makes it difficult to distinguish how much of the value of an invention

is due to science and how much of it is technology-specific. We solve this challenge with the

help of a metric for how science-intensive a patent is. By comparing the values of more and

less science-intensive patents within different technology classes, we can isolate the science

component and the technology component of the value of each invention.

To classify patents with respect to their distance to science we build on Ahmadpoor and

Jones (2017). When a company files for a patent it has to list all prior art on which the

patents build, including scientific articles. This provides a direct link between the patent

and the scientific knowledge it makes use of. A patent that directly cites a scientific paper is

assigned a distance of one (D=1) to science. A patent that cites a (D=1)-patent but does not

cite a scientific article itself has a distance of D=2, and so on. We match this data with the

patent values from Kogan et al. (2017). Kogan et al. (2017) derive patent values from excess

stock returns of the filing company around the date of the patent publication. Combining

these two data sets, we can calculate the average patent value for a given distance to science

for 1.2 million U.S. patents filed between 1980 and 2010.

We find that patents directly based on science have on average a private value that is 2.9

million U.S. dollars larger than patents filed in the same technology class and year but only

losely related to science. Patents with a distance of two (three) have an implied value of

science of $ 2.2 million ($ 0.9 million) U.S. dollars. This propagation of value generated by

science to patents that are not directly science-based suggests that scientific progress can be

the “remote dynamo of technology innovation” throughout the economy (Stokes, 2011, p.84).

Yet, we also show that more science-intensive patents are more risky; i.e., more likely to end

up in the tails of the value distribution. In auxiliary results, we show that our main findings

are stable when using alternative measures for distance to science based on text similarity

and when using alternative measures for patent value based on citations and patent scope
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from Kuhn and Thompson (2017).

What makes science-based patents particularly valuable? We identify the novelty of

scientific ideas as the link between scientific research and private sector value. To establish

this link, we develop a new measure of patent novelty based on the novelty of words in the

text of the patent. For this purpose, we calculate for each patent the probability that a given

combination of keywords has been used before. We call a patent “novel” if it contains keyword

combinations with low probability. We document that patent novelty predicts the value of

patents in a very similar way as the science-intensity of patents does. Finally, we establish

that the content of more science-intensive patents is more novel and that the novelty of the

content decreases with distance to science. More specifically, we document that the novelty

of science-based patents is driven by novel concepts, not by novel combinations of existing

concepts.

Our paper contributes to the literature in two main ways. First, it highlights that science

creates value in the private sector, not only directly, but also indirectly, and it quantifies

the respective value contributions in dollars. In intent, this is close to the early surveys of

Edwing Mansfield, which showed that in the 1980s and the 1990s around 20 percent of all

newly introduced products benefited substantially from recent academic science (Mansfield,

1991, 1995, 1998). The recent literature is primarly focussed on patents that are directly

science-based and on value measures such as forward citations and patent renewal payments,

which reflect only indirectly and partially the private value of the patents for the owner.1

Sorenson and Fleming (2004) show that science-based patents have more follow-on citations.

Poege et al. (2019) find that the quality of cited scientific articles is positively related to

various monetary and non-monetary measures of patent value. Ahmadpoor and Jones (2017)

document that forward citations decrease with distance to science and that patents close to

science are more likely to be renewed. We add to these findings by showing that based

on stock-market returns the direct effect of science accounts — in dollar terms — for only
1Narin et al. (1997) reports that over time patents in the private sector cite more and more scientific

articles.
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around one third of the overall private value. By estimating the monetary private value of

science-based patents our results allow to gauge the private incentives of patenting inventors

to use science for innovation purposes.

Second, our paper takes an important step towards understanding the role of science for

the value of patents by showing that science and the novelty of the innovations protected by

the patent go hand in hand. Basic science is frequently credited with stimulating techno-

logical innovations. In the context of World War I, Iaria et al. (2018) have recently shown

that scientists produce more patent-relevant scientific articles if they have access to frontier

knowledge. Yet, the mechanisms for how science creates value have been little explored.

Fleming and Sorenson (2004) have argued that science alters inventors’ search processes and

leads them to useful new knowledge combinations. We find direct evidence for this mecha-

nism studying the use of novel keyword combinations. Our measure is inspired by Uzzi et al.

(2013) who use uncommon combinations of citations to journals as a measure for the novelty

of an academic article.2 Thus, our study complements the indirect evidence in Fleming and

Sorenson (2004), which shows that science increases forward citations in fields in which it is

hard to innovate.3 By linking patent novelty to patent value and science to patent novelty

we provide a rationale for why science matters for private sector innovation.

Data

Our starting point is a dataset which contains information on the monetary value of 1.8

million patents from 1926 to 2009 (Kogan et al., 2017). The private value of the patent is

estimated by studying movements in stock prices following the days that patents were issued

to the firm. Specifically, the value is approximated using the abnormal stock market return
2Uzzi et al. (2013) show that more novel articles are more likely - under some conditions - to end up in

the top 5% of the citation distribution.
3Recently, Kelly et al. (2018) have shown that the value of patents as measured by Kogan et al. (2017) is

negatively correlated with their text similarity to earlier patents. We add to these findings by demonstrating
that patent novelty systematically correlates with the scientific content of a patent, measured both by citation
distance and by text similarity between articles and patents.
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of the filing company within a narrow window around the grant date of the patent.

We calculate for each of these patents its distance to prior scientific advances using the

method of Ahmadpoor and Jones (Ahmadpoor and Jones, 2017). We use information on 2.5

million patents issued by the U.S. Patent and Trademark Office (USPTO) from 1980 to 2010

and information on journal articles indexed by Microsoft Academic (Sinha et al., 2015). We

then locate patents that directly cite journal articles; i.e., patents where practical inventions

and scientific advances are directly linked (Marx and Fuegi, 2019). A patent that directly

cites a scientific paper is assigned a distance of one (D=1) to science. A patent that cites a

(D=1)-patent but does not cite a scientific article itself has a distance of two (D=2), and so

on. The distance for each patent to science is thus defined by the minimum citation distance

to the boundary where there is a direct citation link between patent and scientific article.

Combining the information on patent values and citation links, we construct a dataset

that contains patent values for 1.1 million U.S. patents filed between 1980 and 2009. 19%

of all patents directly cite a patent (D=1), 55% are indirectly based on science (D=2 and

D=3) and 26% are not based on science (D=4 or larger). The average value of a patent is

12.9 million in constant 1982 U.S. dollars. Appendix A gives a detailed description of the

data construction and sources.

Results

In the following, we first map the relation between private sector value and distance to

science. We show that patents closer to science have a higher value than patents further

away from science. In a second step we show that patents that are more novel are also more

valuable. Lastly, we show that patents closer to science are also more novel, highlighting a

potential reason why science-based patents are more valuable.
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The private value of patents by their distance to science

Our first fact documents the relationship between patent values and distance to science. We

show that more science-intensive patents are on average more valuable but also riskier; i.e.,

they are more likely to be in the tails of the value distribution. We start by presenting

average dollar values of patents along with 95% confidence bounds for different distances

to science. As shown in Figure 1, Panel (a), a science-based patent that directly cites an

academic article (D=1) has an average value of 17.7 million dollars. This value decreases as

the distance to science increases. Patents with a distance of two have on average a value of

14.1 million dollars while patents with a distance larger than three have a value between 8

and 10 million dollars. The last set of patents (“unconnected”) do not contain any reference

to science or science-based patents. These patents have on average a value of 8.9 million

dollars.

The higher average value of science-based patents reflects an upward shift in the value

distribution of patents with higher science intensity. Panel (b) of Figure 1 plots the share

of science-intensive patents (D=1, D=2 and D=3) and the share of less-science intensive

patents (D=4, D=5, D>5 and unconnected) over the percentiles of the value distribution of

all patents. If the value distribution of more science-intensive patents were the same as the

value distribution of less science-intensive patents, the share of patents at each percentile

should be 1%. Figure 1, Panel (b) shows that there are fewer science-intensive patents at

the lower end of the value distribution while there are more at the upper end. The pattern

for less-science-intensive patents is (mechanically) reversed. They are overrepresented at

the lower end of the value distribution, while they are significantly underrepresented at the

upper end.

[Figure 1 about here.]

We examine next whether this regularity between distance to science and patent value simply

reflects differences across technologies, perhaps because science is used predominantly in
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technologies that are on average more valuable. It has been noted that “to a considerable

extent the scientific enterprise evolves in disciplines that from their beginnings have been

closely tied to fields of technology” (Stephan, 1996). This is why we ask how much of the

patent value is technology specific and how much can be attributed to the value of science.

To be able to separate science-related from non-science-related patent value, we need to

make assumptions about the data generating process. We assume that the value of a patent

is generated by a technological component, a science component, and an idiosyncratic com-

ponent, and that these components are additively separable. The technological component

is assumed to be the same for all patents with the same technology class and the same filing

year, independent of their distance to science. The science component is present in patents

closely based on science while it is absent in patents unrelated to science. The idiosyncratic

component captures the patent value residual after accounting for the science and techno-

logical components. We assume that the idiosyncratic component has an expected value of

zero.

Under these assumptions, we can isolate the technological component by looking at the

average value of patents that are not science-related. The value of non-science-related patents

is the sum of the technological component and the idiosyncratic component whereas by

definition the science component is zero. As the technological component is assumed to

be the same for all patents in the same technology class and year, we can filter out the

idiosyncratic component by taking averages. In the following, we define patents that have a

distance to science of four as patents that derive little or no value from science. This choice

is arbitrary but informed by the data. As shown in Figure 1, Panel (a), the average value of

patents is falling as distance to science increases up to a distance of 4. For larger distances,

the average patent value remains constant. This suggests that science adds little additional

value if a patent has a distance to science of four or larger. If patents with a distance of four

still derive value from science, our estimates for the value of science represent a lower bound.

Figure 1, Panel (c) presents the average science value within technology classes by dis-

7



tance to science. To derive these values for patents of different scientific intensity, we calculate

the difference between the value of a patent of a given distance to science and the value of

a (D-4)-patent of the same technology and year. Then we take averages over all patents of

a given distance. Patents that are directly based on science (D=1) have an average science-

value of $ 2.9 million dollars. This means a (D=1)-patent is on average $ 2.9 million dollars

more valuable than a (D=4)-patent of the same technology class, filed in the same year.

Patents that are indirectly based on science (D=2 and D=3) have an implied science value

of $ 2.2 and $ 0.9 million dollars, respectively. This is how much value they add to patents

over and above the technology component. These values are significantly lower than the raw

values presented in Panel (a) of Figure 1. This indicates that science-intensive patents are

indeed more prevalent in high-value technologies than in low-value technologies.

In Figure 1, Panel (d), we show the distribution of the sum of the science value component

and the idiosyncratic component; i.e., the residual in value that is not due to the technology

and year, across the percentiles of the value distribution.4 Less science-intensive patents

tend to have values close to the median of the value distribution. Science-intensive patents

instead are more likely to have a value that is in the tails of the science value distribution.

Relative to a (D=4)-patent in the same technology and year, more science-intensive patents

are more likely to be in the upper and the lower tail of the value distribution. This suggests

that the value premium of science over and above the value of the technology comes at the

price of an increasing risk of tail outcomes. One potential explanation for this could be

the high rate of irreproducible research results which has been said to be as as high as 50

percent (Osherovich, 2011; Freedman et al., 2015). Thus, the science value premium may to

some extent be the compensation for the risk that investors associate with science-intensive

patents. In Appendices B and C we show that these results are robust to alternative method

choices and aross technologies.
4We cannot separately identify the science-value from the idiosyncratic value component for a particular

patent.
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Patent novelty and patent value

[Figure 2 about here.]

As argued above, the goal of science is to advance knowledge by making new discoveries.

This why we study next whether the value of a patent is related to the novelty of its content.

For this purpose, we construct a new measure of patent novelty. Using this new measure,

we establish as the second fact that patent novelty predicts patent values.

In the history of technology and innovation, inventions are often conceptualized as the

outcome of successfully combining ideas, either by combining new ideas or resources or by

combining existing ones in a novel way. In A History of Mechanical Inventions, Abbott

Payson Usher writes: “Invention finds its distinctive feature in the constructive assimilation

of preexisting elements into new syntheses, new patterns, or new configurations of behavior”

(Weitzman, 1998). Economist Joseph Schumpeter defines the essence of enterprise and en-

trepreneurship to be “the carrying out of new combinations.” In The Theory of Economic

Development, he writes that: “As a rule, the new combinations must draw the necessary

means of production from some old combinations . . . development consists primarily in

employing existing resources in a different way, in doing new things with them” (Schumpeter,

1934).

Following this concept of invention as a novel combination of ideas or resources, we

develop a new measure for patent novelty that is based on the content of the patent. More

specifically, we measure how novel the combinations of words are that are used in a patent.

For example, the word “mouse” combined with the word “trap” was used in patents since at

least 1870. In contrast, the word “mouse” was combined with the word “display” for the first

time in 1981 in the pioneering patents of Xerox.

Our measure of patent novelty is constructed as follows. In a first step, we count how often

a particular pairwise combination of different words was used in the abstracts of previous

patents up to the filing year. The sets of words for every patent are taken from the dataset of

Arts et al. (Arts et al., 2018). We then divide this count with the total number of pairwise
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word combinations up to the filing year of the patent. We denote this ratio as the probability

of a word combination. In a second step, we take the average over the respective probabilities

of all pairwise word combinations within a patent to determine the average probability per

patent. The smaller the average probability of pairwise word combinations, the more novel

are the pairwise word combinations used in the particular patent. We call patents with a

smaller average probability more novel.

Figure 2 shows that the novelty of a patent – measured by the average probability of word

combinations – predicts the patent value and the likelihood that the value of a patent is in

the tails of the distribution. Panel (a) shows that there is a positive relationship between

novelty and patent value. Panel (b) indicates that a higher patent novelty is associated with

an upward shift in the patent value distribution. For this purpose, we split all patents into

those that have a below average probability of word combinations (i.e., higher novelty) and

those that have an above average probability. Figure 2, Panel (b) shows that more novel

patents (i.e., patents with a low probability of word combinations) are less likely to be at

the lower end of the value distribution and more likely to be at the upper end. The picture

is reversed for patents that are less novel.

In Panel (c), we plot the relationship between patent novelty and patent value relative

to (D=4)-patent values of the same technology and the same year to control for technology-

specific effects. Again, there is a clear positive relationship between novelty and science value.

In Panel (d), we show the distribution of the sum of the science and the idosyncratic value

component across the percentiles of the value distribution for patents with higher or lower

novelty; i.e., patents with below average and above average probability of word combinations

relative to the probability of a (D=4)-patent in the same technology and year. Highly novel

patents are again more likely to be in the tails of the value distribution while patents with

a lower novelty are in the middle of the value distribution, relative to its technology and

year. Thus, as in the case of science, novelty is associated with a value premium over and

above the technology-related value component, but also with higher risk. “Newness is not,
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by itself, an economic advantage” (Kline and Rosenberg, 1986).

[Figure 3 about here.]

A comparison of Figures 1 and 2 reveals that the patterns displayed are strikingly similar.

While not being conclusive, this suggests that the science content of a patent and the novelty

of the patent content are related. Consistent with this intuition, we establish as a third fact

that patents that are more science-intensive exhibit a higher patent novelty on average. In

Panels A and B of Figure 3, we show the novelty distributions for relatively more science-

intensive patents (D=1, D=2, D=3) and for relatively less science-intensive patents (D=4,

D=5, D>5, unconnected). As defined above, the lower the likelihood of a pairwise word

combination in a patent is, the more novel is the patent. Panel (a) shows the novelty

distribution for the raw data. In Panel (b) of Figure 3, we adjust for differences in technology

and year. The novelty distribution for more science-intensive patents has its peak to the left

and at a higher density than the novelty distribution for less science-intensive patents, both in

the raw data and when controlling for technologies. This confirms that more science-intensive

patents contain more novel word combinations; i.e., they are more novel. In Appendix C.5,

we show that these findings are robust to using the emergence of new words and the average

age of words as alternative novelty indicators.

Patent novelty and distance to science

As argued above, there are two complementary ways in which science can increase patent

novelty. First, science might provide new insights that can be combined with older ideas.

This view is akin to how Vannevar Bush described the relation between science and invention

in his influential 1945 report Science: The endless frontier. “Basic science (...) creates the

fund from which the practical applications of knowledge must be drawn. New products

and new processes do not appear full-grown. They are founded on new principles and new

conceptions, which in turn are painstakingly developed by research in the purest realms of
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science. Today, it is truer than ever that basic research is the pacemaker of technological

progress” (Bush, 1945). This description is thought to reflect the realities in the large science-

intensive corporate laboratories of the post-war period (Smith and Hounshell, 1985; Godin,

2006).

Second, science can guide the inventor to more fruitful combinations of known elements

(Rosenberg et al., 1990; Fleming and Sorenson, 2004). According to mathematician Henri

Poincaré, “the true work of the inventor consists in choosing among (...) combinations so as to

eliminate the useless ones or rather to avoid the trouble of making them” (Weitzman, 1998).

Science can help tell which combinations not to pursue by providing an understanding of

why a combination might or might not work. For example, enormous amounts of energy and

ingenuity were wasted by alchemists on attempts to transform lead into gold before science

demonstrated that nothing short of an atomic reaction could achieve this end. Scientific

knowledge also guided the development of the Haber-Bosch method to synthesize ammonia.

During the first trial runs, Carl Bosch struggled with the problem that the hydrogen proved

to be corrosive for the high-pressure reactor chamber made of steel. Using basic chemistry,

he deduced that the problem was due to the carbon contained in the steel walls of the

chamber. His solution was to build a double wall reactor chamber with iron on the inside,

which contains no carbon, and steel on the outside (Jeffreys, 2008).

To operationalize these two views of how science might help the development of new

technologies, we distinguish how novel the word combinations in a patent are from how

novel the single words in a given patent are. To classify words in a patent as more or

less novel, we calculate for each word the ratio of how often a particular word has been used

before relative to the total number of words used. We call a word more novel the smaller this

ratio; i.e., the smaller the probability a particular word has been used before. Then we take

the 10th percentile of this probability distribution of word usage within a patent to arrive

at a single measure of word novelty. If we find that science-intensive patents use new words

to create new combinations, this will support the view that science provides new building
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blocks for the invention. In contrast, if science-intensive patents use novel combinations of

common words, this will be in line with science guiding the inventor to valuable combinations

of known elements.

Panel (c) of Figure 3 shows for each patent the novelty of the pairwise word combinations

on the horizontal axis and the measure for word novelty on the vertical axis. We distinguish

areas with a large share of science-intensive patents (red - dark shaded), an intermediate share

of science-intensive patents (green - medium shaded) and a low share of science-intensive

patents (grey - light shaded). Without adjusting for differences in technologies, science-

intensive patents do not tend to use more novel words than non-science-intensive patents. If

we adjust for technology and year, we find that a larger share of patents with novel words

are science-intensive, as shown in Figure 3, Panel (d). This is in line with the intuition that

science introduces new concepts that are combined successfully into novel combinations to

develop new inventions.

Conclusion

Our study shows that science adds value to the private sector on a broad scale. This is far

from obvious, given the public good nature of scientific knowledge and the skepticism ex-

pressed in several studies about the effectiveness of the knowledge transfer from university to

industry and about the reliability of academic science (Goozner, 2005; Butler, 2008; Freed-

man et al., 2015; Bikard, 2018). Understanding how much value science creates for society

is fundamental for the case of public science funding. By illuminating the commercial value

of science, our study provides a lower bound for its total value for society. Extrapolated

to the U.S. economy, we find this lower bound for the additional value created by science

for marketplace inventions to be 720 U.S. dollars per capita and year. This is about 25%

of the total value of patented inventions in the U.S. (Appendix D). Thus, while scientists

since Isaac Newton have been known to see further “by standing on the shoulders of giants”,
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our study suggests that many inventors in the private sector see further by standing on the

shoulders of science.
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(d) Distribution accounting for technology and year

Figure 1: Distance to science, patent value and risk.
Panel (a) shows the average patent value for all distances to science. The values of U.S. patents are from Ko-
gan et al. (Kogan et al., 2017). The distance to science of U.S. patents is calculated with Microsoft Academic
and Patstat using the method of Ahmadpoor and Jones (Ahmadpoor and Jones, 2017). The distance to
science is defined by citation links. The 95% confidence bounds are based on standard errors bootstrapped
by CPC technology class. Panel (b) shows the distribution of patent values across the percentiles of the
value distribution of all patents for more science-intensive patents ( D=1, D=2 or D=3; solid red line) and
less science-intensive patents (D>3 or unconnected; dashed blue line). The horizontal line at 0.01 shows the
distribution of all patents across the percentiles of the value distribution. In Panel (c), we residualize the
patent value by the average value of a patent with the same CPC technology class and filing year and a
distance of four. In Panel (d), we show the distribution of normalized patent values.
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(d) Distribution accounting for technology and year

Figure 2: Patent novelty, patent value and risk.
Panel (a) shows the average patent value for every likelihood of pairwise combinations of words that occur in
a particular patent as an indicator for patent novelty. Smaller probabilities are interpreted as higher novelty.
The winsorized values are marked with X. The size of the bubbles represents the number of patents underlying
each point. Panel (b) shows the distribution of patent values across the percentiles of the value distribution
of all patents for patents with below average pairwise word combination probability (solid red line) and for
above average pairwise word combination probability (dashed blue line). In Panel (c), we plot the average
residualized patent value by residualized pairwise word combination probability. We residualize the value
and the word combination probability for the interaction of CPC technology class and filing year. Panel (d)
shows the distribution of residualized patent values by distance of patents to science across the percentiles
of the value distribution of all patents for patents with below average pairwise word combination probability
in a technology and year (solid red line) and for above average pairwise word combination probability in a
technology and year (dashed blue line).
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(d) Accounting for technology and year

Figure 3: Patent novelty and distance to science.
Panel (a) shows the kernel density plot of the average likelihood of pairwise combinations of words that
occur in a particular patent for more science-intensive patents (D=1, D=2 or D=3; red line) and for less
science-intensive patents (D>3 or unconnected; dashed blue line). Smaller probabilities are interpreted as
a higher novelty. In Panel (b), we residualize the patent value and the likelihood of word combinations
by the average value of a patent with the same technology class and filing year and a distance of four. In
Panel (c), we plot the average likelihood of word combinations (x-axis) along with the 10th percentile of
the word novelty in a patent. We use different colors to indicate which share of patents is science-intensive.
We distinguish areas with a large share of science-intensive patents (>75th percentile, red - dark shaded),
an intermediate share of science-intensive patents (25th-50th percentile, green - medium shaded) and a low
share of science-intensive patents (<25th percentile, grey - light shaded). We only keep data points with at
least 100 patents. In Panel (d), we adjust the likelihood of word combinations and the word probability by
technology class and filing year.
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Supplementary material (online only)

A Data

For our analysis, we calculate distance to science for each patent following the method of

Ahmadpoor and Jones (Ahmadpoor and Jones, 2017). We then match this data with patent

values calculated by Kogan et al. (Kogan et al., 2017) and with patent characteristics from

a variety of sources. We use all patents that have a non-missing patent value and in whose

technology class and filing year there is at least one patent with a distance to science of four.

Distance to science:

[Figure 4 about here.]

Ahmadpoor and Jones (Ahmadpoor and Jones, 2017) define a patent’s distance to science

using citation links.5 A patent that directly cites a scientific paper has a distance to science

of one (D=1). Patents cite academic articles or other patents to give credit to prior art on

which the technology disclosed in the patent is based. Patent-to-article citations are used

in many recent papers to capture the link between science and innovation, e.g. Arora et

al. (Arora et al., 2017) and Azoulay et al. (Azoulay et al., 2015).6 A patent that cites a

(D=1)-patent but no scientific article has a distance of two (D=2), and so on (Figure 4).

Citing another patent that is based on a scientific article provides evidence that the citing

patent is also based to some degree on science, but less directly so.

To determine the distance-to-science of individual patents we use data from Marx and

Fuegi Marx and Fuegi (2019), which provides a link from academic articles in Microsoft

Academic to patents. Then we use data in PATSTAT to obtain patent-to-patent citations.

We cross-check the values of our distance-to-science measure based on Marx and Fuegi Marx
5We thank Mohammad Ahmadpoor and Ben Jones for sharing their data.
6Roach and Cohen (Roach and Cohen, 2013) suggest that patent-to-article citations reflect knowledge

flows from academia to the private sector better than the commonly used patent-to-patent citation.
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and Fuegi (2019) with the values calculated by Ahmadpoor and Jones (Ahmadpoor and

Jones, 2017). In cases where Ahmadpoor and Jones (Ahmadpoor and Jones, 2017) arrive at

a smaller distance to science, we substitute their values.

Sources:

https://www.openicpsr.org/openicpsr/project/108362/version/V12/view

https://www.microsoft.com/en-us/research/project/academic/

https://www.epo.org/searching-for-patents/business/patstat.html#tab-1

Patent value: We match the distance-to-science information with the data on patent

values of Kogan et al. (Kogan et al., 2017). Kogan et al. (Kogan et al., 2017) use abnormal

stock market returns around the publication date of the patent to infer the value of a patent.

Therefore, the data measures the ex-ante expected net present value of the patent for the

filing company. This dataset contains patent values for 1.8 million U.S. patents filed between

1926 and 2009.

Source: https://iu.app.box.com/v/patents

Patent novelty: For our novelty measure, we use information on words in patents from

Arts et al. (Arts et al., 2018). Arts et al. (Arts et al., 2018) tokenize the titles and abstract

texts of patents, clean and alphabetically sort the resulting words. The resulting word vector

contains on average 37 words per patent and in sum 526,561 words. For the novelty measure,

we count how often a particular pairwise word combination occurs in a patent abstract and

standardize it with the total number of pairwise word combinations up to this year. We also

calculate for each word how common it is. To do this, we count for each word how often it

was used in the past and standardize it with the total number of words used.

Source: https://dataverse.harvard.edu/dataverse/patenttext

2



Other patent characteristics:

• Text similarity: We calculate the pairwise text similarity between a patent and

the articles cited in the patent. Then we take the maximum over all the similarities

of a patent to its cited articles to determine the distance to the closest article. To

calculate the similarity between the abstracts of the article and of the patent we use

the “term frequency-inverse document frequency” (tf-idf) method. We use the “gensim”

implementation in Python for our calculations (https://radimrehurek.com/ gensim/).

Article abstracts are from the OpenAcademic Graph (Tang et al., 2008; Sinha et al.,

2015) and patent abstracts are from Patstat. For each term used in the abstracts of

the patent and the article, tf-idf measures how often this word appears in the abstract

and then standardizes this value with the probability that this term appears in general.

Using the tf-idf value for each term, we can build a word vector for each of the abstracts.

Then we determine the similarity between the abstracts of the patent and the article

abstract by calculating the correlation between the two-word vectors. If a patent cites

several articles, we take the maximum in similarity.

Source: https://www.openacademic.ai/oag/ 1

• Patent scope is from Kuhn and Thompson (Kuhn and Thompson, 2017). Specifically,

we use the z-score within art unit for our results.

Source: http://jeffreymkuhn.com/index.php/data/

• All other patent characteristics are from Patstat

Source: https://www.epo.org/searching-for-patents/business/patstat.html

B Results in Regression Form

We investigate the relationship between patent values and distance to science using regression

methods. Results are presented in Table 1. We find that a patent that directly cites an
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academic article (D=1) has an average value of 17.8 million dollars (column 1). This value

decreases with distance to science. Patents with a distance of two have on average a value

of 14.1 million dollars while patents with a distance larger than three have a value between

8 and 11 million dollars. Patents that are completely unconnected to science have a value of

8.0 million dollars. The higher average value of science-intensive patents reflects an upward

shift in the value distribution of patents with higher science intensity. This is shown in

regression form in Table 2. In columns (1) and (2), we use the probability of a patent having

a value in the top and in the bottom 5% of all patent values as outcomes. Patents that are

closer to science have a higher likelihood to be in the top 5% and a lower likelihood to be in

the bottom 5%.

In column 2 of Table 1, we present the average science component of the patent value by

distance to science. In the regression, we use technology class × filing year fixed effects and

leave out the dummy for (D=4)-patents. Patents that are directly based on science (D=1)

have an average science-value component of $ 2.9 million dollars. Patents that are indirectly

based on science (D=2 and D=3) have a science-value component of $ 2.2 and $ 0.9 million

dollars, respectively. Columns 3 and 4 in Table 1 show that the pattern is robust to using

forward citations or patent scope as alternative measures of patent value.

Additive separability of the technological and the science components is the simplest

one among many potential assumptions about the relationship of science and non-science

contributions to patent value. One alternative could be to assume multiplicative separability

instead. In column 5 of Table 1, we present estimates using the logarithm of value as an

outcome variable. The estimates show the same pattern, with (D=1)-patents more valuable

than (D=2) and (D=3)-patents, which in turn are more valuable than a patent of distance

of four.

The increase in value due to science also comes with an increased likelihood of tail out-

comes accounting for technology and year. In Columns 5 and 6 of Table 2, we use the

likelihood that a patent is in the top 5% or bottom 5% of the distribution of the science

4



component as an outcome. The distribution is taken over all patents. Patents that are closer

to science have a higher likelihood to be in the tails of this distribution. So, accounting for

the technological component, science-based patents show a larger variance in values.

One potential concern one might have about our estimation of the science premium of

patents is that the distance to science calculated by citations might measure not only how

much a patent uses science but also the quality of the inventor. A high-quality inventor

might be more aware of scientific research and therefore include more citations, but without

actually using science.

To see whether patents close to science make use of its content, we compare the texts of

scientific articles and the text of patents. We calculate the pairwise text similarity between

a patent and the articles cited in the patent. Then we take the maximum over all the

similarities of a patent to its cited articles to determine the distance to the closest article.

To calculate the similarity between the abstracts of the article and of the patent we use the

“term frequency-inverse document frequency” (tf-idf) method.7

The results presented in column 6 of Table 1 show that patents with a citation distance of

D=1 have a higher text similarity to scientific articles than patents more distant to science.

This suggests that citation distance reflects indeed how much a patent is related to science.

Consistent with the idea that patents with more scientific content have a higher value, column

7 shows that the value of a patent increases with its text similarity to scientific articles. This

suggests that the relation between citation distance and patent value presented as our main

result above is not a result of a spurious correlation driven by third factors that are unrelated

to the scientific content of the patent.

Why are patents based on scientific articles more valuable? Innovation is often thought

of as the new combination of ideas. To judge the novelty of an innovation protected by a

patent we look at pairwise combinations of words that occur in a particular patent. The

words for every patent are taken from Arts et al (Arts et al., 2018). We first count how
7We use the “gensim” implementation in Python for our calculations (see: https://radimrehurek.com/

gensim/).
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often a particular pairwise word combination was used in previous patents up to the filing

year. We normalize the count of each word combination with the total number of word

combinations up to the filing year of the patent. We denote this number as the probability

of a particular word combination used in a particular patent. In a second step, we take

the average over the probabilities of all word combinations within a patent to calculate the

average probability per patent.

Column 8 of Table 1 shows the correlation between our patent novelty indicator and the

average dollar value. In column 9, we control for technology × year fixed effect.8 In both

specifications, higher novelty measured by a lower likelihood of word combinations increases

the patent value. If we do not control for technology and year, the effect is again driven by

an upward shift in the whole distribution. Columns 3 and 4 of Table 2 show that more novel

patents are more likely to be in the tails of the value distribution. Yet, once we look at the

science value component we find that closeness to science increases both, the likelihood of a

patent being in the top 5% and the bottom 5% of the distribution (Columns 5 and 6).

Columns 10 and 11 of Table 1 show that patents that are closer to science are also more

novel. In Column 10, we show the raw correlation. Patents with a distance of one have

a lower average likelihood of word combinations than patents with a higher distance. In

Column 11, we control for average novelty in technology and year of patents with a distance

of four. Again, patents closer to science are more novel. In Columns 7 and 8 of Table 2,

we use the likelihood that a patent is in the top 5% or bottom 5% of the distribution of

the science-value component as an outcome. Patents that are more novel have a higher

likelihood to be in the tails of this distribution. So, relative to the technological component,

more novel patents show a larger variance in values.

In Table 3, we show the share of science patents for different levels of average likelihood

of word combinations and the 10th percentile of the word novelty in a patent in order to

replicate the results in Panels C and D of Figure 3. To simplify the exposition we use dummy
8Note that this specification differs from the one presented in Figure 2, because here we take the averages

over all patents in a technology and year combination and not only over patents with a distance of D=4.
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variables to indicate above and below median values of the two independent variables. The

highest share of patents with a distance of science smaller than four (“science-intensive”) are

among patents with a below median likelihood of word combinations and a below median

10th percentile of the word novelty in a patent (Column 1). This finding is robust if we look

at the share of patents with a distance of one (Column 2) and if we control for technology

and year (Columns 3 and 4).

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

C Alternative data and method choices

In this section, we discuss the results using alternative data and methodological choices. In

the next subsection we use the alternative distance to science measures of Ahmadpoor and

Jones (Ahmadpoor and Jones, 2017), and in subsection 2 we use different normalizations

to account for year and technology effects. In Subsection 3, we show the effect over the

whole value distribution. In subsection 4 we split the results by technology, and in the last

subsection we discuss word age as an alternative measure for novelty.

C.1 Using Ahmadpoor and Jones distance values

In Figures 5a and 5b, we use the distance-to-science measure based on the data of Ah-

madpoor and Jones (Ahmadpoor and Jones, 2017). The data of Ahmadpoor and Jones

(Ahmadpoor and Jones, 2017) is based on Web of Science while our measure is based on

the data of Microsoft Academic. There are two main differences. First, Ahmadpoor and

Jones (Ahmadpoor and Jones, 2017) have many more unconnected patents (165 thousand

unconnected patents out of 0.8 million overall patents) than we do (54 thousand unconnected
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patents out of 1.1 million overall patents). Second, we aggregate the patents with a distance

larger than 5 as the number of patents goes down dramatically for larger distances. We find

the same overall pattern; i.e., the patent values decrease with distance to science in absolute

and normalized values.

[Figure 5 about here.]

C.2 Different normalizations and assignee-fixed effects

In the main part of the paper, we normalize the patent values by the value of patents with a

distance of 4 with the same technology class and filing year. One might ask whether patents

with a distance of D=4 are the right comparison group. As a robustness check, we use

unconnected patents as a control group and present results in Figure 6a. The quantitative

magnitudes of the effects are similar to our main specification. As a further alternative, we

normalize using USPC instead of CPC technology classes and present results in Figure 6b.

The results are the same.

Another concern might be that by comparing patents with a different distance to science

we are comparing different company types. Some companies might be closer to science and

at the same time produce more valuable patents. If this were the case, our result might be

driven by assignee-fixed effects. Comparing patent values within assignee is difficult to do

with the Kogan et al. (Kogan et al., 2017) data. The reason is that all patents published by

the same assignee at the same date have the same value as their evaluation is based on the

same abnormal stock market returns. This is why for this exercise we use forward citations

as an outcome variable. In Figure 6c, we normalize the number of forward citations by each

combination of assignee, filing year and technology class. This implies that we look only

at citation differences within the same assignee. We find the same pattern as in our main

result.

[Figure 6 about here.]
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C.3 Effects over the entire value distribution

The main paper shows that average patent values decrease with distance to science relative to

the average value of a patent with the same filing year and the same CPC technology classification

with a distance of four. This pattern is already visible in the raw data in Figure 7a. In

Figure 7b we show the value by distance of science over the 25th, 50th and 75th percentile

of the value distribution. We residualize each percentile with the same percentile of patents

with D=4.9 The patent values are falling with distance to science over all percentiles. This

confirms that our results are not driven by outliers.

[Figure 7 about here.]

C.4 Split by technology

One concern might be that the observed effects are driven by a single technology that benefits

particularly from science. This is not the case. In Figure 8, we show the main graph

separately for broad technology categories measured by one-digit CPC classes. Panels A

and B show the raw data. In Panels C and D we normalize by the average values of patents

in the same four-digit CPC technology classification and filing year. For all technologies,

there is a decrease in value by distance to science, most pronounced for drugs and chemicals.

Results by other technology classifications such as the classification in Hall et al. (Hall et al.,

2001) and Schmoch (Schmoch, 2008) are available from the authors on request.

[Figure 8 about here.]

9Here, we do not account for technology and year, as for many technology-filing year combinations there
are not enough patents to obtain a distribution for every distance to science.
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C.5 Alternative measures for novelty

In our main specification, we measure how likely or unlikely the word combinations used in

a patent are to determine the novelty of a patent. In Figures 9a and 9b, we use the data

of Arts et al (Arts et al., 2018) to calculate two alternatives measures for novelty. The first

measure indicates whether a patent has a new word. A word is new if it was not used in

any patent before. Figure 9a shows that the share of patents with a new word decreases

monotonically with its distance to science. The second measure is the average age of words

used in a patent. We calculate the age of a word by calculating the difference between the

filing year and the filing year of the patent in which it was first used. The average word

age is systematically lower for patents that are closer to science (Figure 9b). If word age is

indicative for the age of the ideas they encode, patents closer to science contain more novel

ideas.

Both of the alternative novelty measures are positively related to patent value. Figure 9c

compares the patent value for patents with and without new words for each year. Patents

with new words are more valuable throughout the whole sample. Figure 9d shows the relation

between the average age of words of a patent relative to the year and technology class and the

residualized patent value. We see a negative relation between patent value and the average

age of words.

[Figure 9 about here.]

D Macroeconomic extrapolation

[Figure 10 about here.]

To understand the overall impact of science on private sector innovation we need to gauge

how much science contributes directly or indirectly to the patent value in the economy. In

Figure 10, we show the direct and indirect impact of science for all of the U.S. and for each
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state separately. For this exercise, we use in the first row the science value component for

the filing years 2000 to 2005, sum them up and scale them by the U.S. population. The

direct value of science is $ 203 dollars per person and year; i.e., 7% of the total patent value

of $ 2727 dollars per person and year. The indirect value of science - i.e., the science value

component of all patents with a distance to science larger than one - is $ 519 dollars per

person and year. This means that the indirect effect is more than twice the size of the direct

effect and accounts for around 70% of the overall effect of science, which is $ 722. In total,

science contributes 25% of the overall U.S. patent value per person.

This extrapolation is based on some strong assumptions. First, we assume that without

science, the science-intensive patents would have the average value of a patent in the same

technology and with the same filing year with a distance of four. Second, our estimates in

the first row neglect the value of patents of companies that are not publicly traded. In row

two and the following rows, we include an extrapolation for values of patents of companies

that are not publicly traded based on technology class, filing year and distance to science.

However, these patents might be more or less valuable than patents of public companies.

Third, these estimates only include the private value to companies, but not the additional

value of innovation to consumers that is not reflected in higher profits for the innovating

companies. For these reasons, our estimate is most likely an approximation of the lower

bound of the value of science in the economy.

The benefits of science and innovation are not equally distributed across states (Figure

10). We use the geolocated patent data of Li et al (Li et al., 2014) to assign patents to

states along with the imputed patent value data. The states are ordered by the total science

value per capita. California, New Jersey, and Massachusetts stand out in terms of overall

value generated by patents. In terms of value created directly and indirectly by science,

it is California and New Jersey that come out top, but science also plays a large role in

Massachusetts and Texas. In contrast, North Carolina and Florida derive little value from

science.
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In Figure 11a, we explore further the heterogeneity of the science value component over

time and across industries. In Panel (a), we show the total science value component of (D=1),

(D=2) and (D=3)-patents (“direct & indirect science value”) along with the patent value not

related to science per person and year of all U.S. patents filed in the U.S. between 1990

and 2005. To assess the economy-wide impact we extrapolate patent values by distance to

science, technology class and filing year to all patents assigned to companies in the economy.

In each year, the science component is around 25% of the total patent value per person.

The share of the science component in the overall patent value is largest in the years of the

dotcom boom when tech companies like Google developed their first patents. All dollars are

deflated to 1982 in accordance with the deflation used by Kogan et al. (Kogan et al., 2017).

To put these numbers in perspective, Panel (b) shows the total funding for R&D in the U.S.

and the share funded by universities per person. This data is from the National Science

Foundation. Total R&D funding was $ 686 dollars per person in 2005, while university

funding was $ 95 dollars per person. In 2005, the science value component was $ 1060

dollars per person and the total patent value $ 4083 dollars per person and year.

The benefits of science and innovation, in general, are not equally distributed across

industries. To assign a patent to an SIC code, we use the data of Kerr (Kerr, 2008).10

Panel 11c shows the average total value of patents by two-digit SIC code over the years

2000 to 2005. Both in terms of total patent values and value derived from science industrial

machinery is leading. On a per patent basis, chemicals derive the largest value from science

(Figure 11d).

[Figure 11 about here.]

10We thank Bill Kerr for sharing his data.
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Figure 4: Distance to science
Notes: This figure is adapted from (Ahmadpoor and Jones, 2017). It shows the distance to science for
patents based on citation proximity to scientific articles.
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(a) Ahmadpoor and Jones (Ahmadpoor and Jones,
2017) distance data
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(b) Ahmadpoor and Jones (Ahmadpoor and Jones,
2017) distance data normalized

Figure 5: Value of patents by distance to science
Panel (a) shows the raw data for patent values by distance to science data for a 10% sample of patents. The
values of U.S. patents are from Kogan et al. (Kogan et al., 2017) and the distance-to-science data are from
Ahmadpoor and Jones (Ahmadpoor and Jones, 2017). In Panel (b), we normalize the patent value by
the average value of a patent with the same CPC technology class and filing year and a distance of four.
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(b) Based on USPC instead of CPC-technology class
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(c) Forward citations normalized by assignee

Figure 6: Different normalizations and assignee-fixed effects
In Panel (a), we show the average value of patents normalized by the value of patents that were filed in the
same year but are unconnected to science. In Panel (b), instead of the value of patents in the same filing
year and CPC patent classes we use patents in the same filing year and the same USPC patent classes. In
Panel (c), we use forward citations instead of patent values as the outcome and adjust for assignee-fixed
effects.
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(a) Raw data
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Figure 7: Effects over the value distribution
Panel (a) shows the raw data for patent values by distance to science data for a 10% sample of patents. The
values of U.S. patents are from Kogan et al (Kogan et al., 2017). The distance to science of U.S. patents is
calculated with Marx and Fuegi Marx and Fuegi (2019) and Patstat using the method of Ahmadpoor and
Jones (Ahmadpoor and Jones, 2017). The distance to science is defined by citation links. A patent that
directly cites an academic article has a distance of D=1. A patent that cites a (D=1)-patent but not an
academic article has a distance of D=2. Patents are defined as “Unconnected” if there is no citation link to
an academic article. In Panel (b), we show the average patent value for all distances to science along with
the number of patents in each distance. Panel (b) shows the 25th, 50th and 75th percentiles of the patent
value distribution by distance to science normalized by its percentile at a distance of 4.
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(b) Accounting for technology× year
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(c) Value by broad patent class E-G
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(d) Accounting for technology × year

Figure 8: Sample splits by technology
In this figure, we split patents by broad technology fields measured by one-digit CPC classes. In Panels A
and C we show the raw data. In Panels B and D we normalize by the average patent value of a patent in
the same four-digit CPC class and filing year with a distance of 4.
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Figure 9: Value and novelty
Panel (a) shows the share of patents that have a new word by distance to science. A new word is a word that
has not been mentioned before in a patent according to the data of Arts et al (Arts et al., 2018). In Panel
(b), we plot the average word age by distance to science. The age of a word in a patent is the difference
between the filing year of the patent and the year the word was first used in a patent. In Panel (c), we plot
the average dollar value of a patent relative to a patent with the same filing year and CPC technology class
separately for patents with and without a new word over time. In Panel (d), we plot the average word age
and the average patent value. The word age is relative to the mean of patents in the same filing year and
the same CPC technology class.
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Figure 10: The science value component across states - 2000 to 2005 average
This figure shows the value of patents per person and year in the U.S. (rows 1 and 2) and across states. We
plot separately the implied direct and the implied indirect value of science, as well as the value that is not
related to science. For each patent, we derive the value attributable to science by subtracting the average
value of a patent with the same filing year and the same CPC technology class with a distance equal to
four from the patent value. If the patent under consideration has a distance to science of one, we call the
difference “Direct science value component.” If the distance to science is larger than one we call the difference
“Indirect science value component.” The “nonscience value component” is the remainder of the patent value
after subtracting the direct and the indirect science value. We divide the aggregated value by the number
of persons in the U.S. and the different states in 2000 to calculate per capita values.
In the first row, we use only the patent values of Kogan et al. (Kogan et al., 2017) and aggregate to the
whole United States. In the second row, we use the data of Kogan et al. (Kogan et al., 2017) and add
imputed values for those patents for which no Kogan et al. (Kogan et al., 2017) data is available. We impute
values for patents assigned to companies by CPC technology class and filing year. In the following rows, we
split patents by the state of the inventor. The state of the inventor is from Li et al. (Li et al., 2014). If the
inventors on a patent are located in multiple states we assign a share of the value to each state. To ease
presentation, we aggregate the 36 states with a population of less than 6 million in 2000 to one (“States with
<6 Mio Pop”).
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Figure 11: The science value component over time
Notes: Panel (a) shows the value of U.S. patents per capita over time. For each patent, we derive the
value attributable to science by subtracting the average value of a patent with the same filing year and the
same CPC technology class with a distance of four from the patent value. If the patent under consideration
has a distance to science of one, we call the difference “Direct science value component” while if the patent
has a distance larger than one we call the difference “Indirect science value component.” “Nonscience value
component” is the remainder of the patent value after subtracting the direct and the indirect science value
components. We divide the aggregated value by the number of persons in the U.S. and the different states
in 2000 to calculate per capita values. We use imputed values for patents for which no Kogan et al. (Kogan
et al., 2017) data is available. We impute values for patents assigned to companies by CPC technology class
and filing year. Panel (b) shows the average university and total R&D funding per person and year. The
data is from the NSF and deflated to constant 1982 dollars, as in Kogan et al. (Kogan et al., 2017). In Panel
(c), we split patents by industry and aggregate the values up for the year. The figure gives the total value
per industry averaged over the years 2000 to 2005. To split the value of each patent by industry, we use the
data of Kerr (Kerr, 2008), which gives a probabilistic transition table from USPC technology classes to SIC
codes. In Panel (d), we plot the average value per patent and per industry.
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(1) (2) (3) (4)

Raw Controlling Tech × Year

Outcome: Share
D<4

Share
D=1

Share
D<4

Share
D=1

Below median likelihood of word combinations and word
probability

85 29 81 25

Below median likelihood of word combinations / above
median word probability

79 17 72 20

Above median likelihood of word combinations / below
median word probability

70 19 78 19

Above median likelihood of word combinations and word
probability

65 11 69 14

Obs. 1085180 1085180 1085128 1085128

Table 3: Share of science-intensive patents by novelty
This table shows the average share of patents with a distance of science smaller than four (Columns 1 and
3) and with a distance of science of one (Columns 2 and 4) for different levels of average likelihood of word
combinations and the 10th percentile of the word novelty in a patent. To construct dummies for the different
levels we split the average likelihood of word combinations and the 10th percentile of the word novelty in a
patent at their respective medians. In Columns 1 and 2 we show the raw data and in Column 3 and 4 we
adjust the average likelihood of word combinations and the 10th percentile of the word novelty in a patent
by technology and filing year.
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