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Abstract

This paper empirically studies a decentralized dynamic peer-to-peer matching market. We

use data from a leading ride-sharing platform in China to estimate a continuous-time dynamic

model of search and match between drivers and passengers. We assess the efficiency of the

decentralized market by how much centralized algorithms may improve welfare. We find that

a centralized algorithm can increase the number of matches by making matches less frequently

and matching agents more assortatively.

1 Introduction

Decentralized two-sided matching markets serve millions of people every year across the world with

the rise of the sharing economy. Prominent examples include the accommodation platform Airbnb

and ride-sharing platforms such as DiDi, Grab and BlaBlaCar. These markets have several features:

(1) agents enter and leave the market over time, (2) agents on one side publicize their willingness

to be matched and wait for the other side to choose, and (3) agents have heterogeneous preferences

for partners. We use data from DiDi to empirically study the strategic incentive in a decentralized
∗We are grateful to DiDi for granting us access to the data and insights into the operation of its platform. Zhixi

Wan was a former DiDi employee. Chenyu Yang was a former consultant for DiDi. We appreciate the comments of
many seminar participants. Correspondence to: Simon Business School, CS3.219, University of Rochester, Rochester,
NY 14620. Email address: chny.yang@gmail.com
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market and quantify the gains from improving the market design. We use the number of matches

and average match quality to measure market efficiency.

A decentralized dynamic matching market with non-transferable utility may not operate effi-

ciently due to two sets of externality. For exposition purposes, we refer to the side that publishes

the willingness to match as “passengers”, and the other side as “drivers”. Drivers choose passen-

gers. On one hand, a forward-looking driver deciding whether to match with a passenger does not

internalize the benefit of the match for the passenger, and potentially could forgo a match that

would otherwise be realized in the social optimum. In other words, a driver could wait too long

to form a match compared with the social optimum. On the other hand, a driver could wait too

little: a driver does not internalize the negative externality of a match on a competing driver, and

may form a match with a passenger who might be more compatible with a driver that has not yet

arrived to the market.

More broadly, we hope that the analysis will shed light on how to increase the efficiency of

a market similar to the one we study. We address this question by exploring how a centralized

algorithm could improve welfare upon the equilibrium in a decentralized matching market. A

centralized algorithm requires information that may not be known to agents in a decentralized

market. We discuss what information is valuable and quantify the value of information in different

centralized algorithms. We consider algorithms that are easily implementable. These algorithms

improve the market efficiency in two ways. First, a centralized algorithm can match more agents

by keeping agents in the market longer and creating additional match opportunities. Secondly, a

centralized algorithm can improve match qualities by taking into account the externalities.

We use proprietary driver search and ridership data from DiDi Chuxing to study our research

questions. DiDi Chuxing is the leading firm in the enormous Chinese ride-sharing market. DiDi

offers tiered ride-sharing platforms. According to the 2017 DiDi Factsheet, the company’s platforms

served 450 million passengers in 2017, and 25 million trips were completed every day. The main

operation of the company, DiDi Express, is similar to Uber or Lyft, where a central dispatch

algorithm matches drivers to passengers. Our empirical context is the smaller and decentralized

peer-to-peer platform of DiDi. In 2017, 2.23 million rides occurred on this platform during the

peak day.

The DiDi peer-to-peer platform provides a unique setting to study a decentralized matching
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market. The platform features low fares to target long-distance passengers and non-professional

drivers. The drivers are mostly commuters who need to reach a specific destination by a certain

time. To receive a ride, a passenger sends a request to the platform. The request consists of a

pickup and a dropoff location and a departure time. If a request is answered, the answering driver

will deliver the passenger according to the conditions specified in the request. The passenger cannot

see available drivers or request a particular driver. The only actions available to the passenger are

either to wait or cancel the request. To find and answer the most suitable passenger request, a driver

specifies a route on the ride-sharing app that sorts all ride requests according to a compatibility

index. Most drivers search for passengers once a day. The drivers usually have a different day

job, and they use the service to defray the commuting costs. This empirical context allows us to

focus on the effect of the driver strategic choice between waiting for a better match and answering a

request now. Throughout the rest of the paper, we specifically refer to the additional driver waiting

(compared with a myopic driver) induced by the desire to wait for a more compatible passenger as

strategic waiting. We conceptualize the implication of strategic waiting in a simple framework in

Section 3. In particular, we show that preference heterogeneity plays a key role in determining the

equilibrium number of matches.

To address our research questions and exploit the unusually rich data on driver and passenger

behavior, we develop a continuous time dynamic model of search and match (Doraszelski and Judd

(2012); Arcidiacono, Bayer, Blevins and Ellickson (2016)). Passengers and drivers with preferences

for different routes arrive at the market stochastically. A route is defined as a pair of pickup and

dropoff locations. Passengers send out their trip requests consistent with their true preferences

immediately after arriving. Passengers and drivers leave the market without a match when they

reach their maximum waiting time. The driver receives a reservation utility in this case. The lengths

of the maximum waiting time are heterogeneous. While in the market, a driver stochastically

receives move opportunities to check her phone, and she can choose to wait or answer a request.

If a driver answers a request, the driver receives utility as a function of (1) how much detour the

driver would have to travel to reach her final destination compared with traveling alone, (2) the

length of the passenger route and (3) unobserved driver-passenger match value, and both the driver

and the passenger leave the market. When answering a request, a driver compares the utility from

picking up the current most compatible passenger with the option value of waiting for a potentially
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better future match. To evaluate the option value of waiting, the driver is assumed to know the

equilibrium distribution of the value of the best match. We additionally allow for heterogeneous

driver discount rates. We define a stationary equilibrium based on this driver dynamic optimization.

The distribution of the best match is endogenously determined by the entry rates, the lengths

of maximum waiting time and the equilibrium driver strategies. In particular, the distribution

of the best match depends on how fast passengers leave the market, which is composed of the

exogenous exits when they reach their maximum waiting time and the endogenous exits due to

drivers answering requests. Drivers effectively play against a stationary distribution of the best

match in this equilibrium.

We use a three-step estimation procedure to recover model primitives. In the first step, we

estimate the arrival rates directly from the data on passenger and driver arrivals. Next, we use the

variations in the set of waiting passengers to identify driver preferences. In particular, the dispersion

of the detour lengths and passenger route lengths of the answered requests conditional on different

sets of passengers helps to identify the distribution of the heterogeneous tastes for the detours

and passenger route lengths. We also observe that a driver often does not answer an acceptable

request immediately: about 40% of the answered requests are available for the answering drivers

when these drivers enter the market, but these drivers wait on average 9 minutes before answering.

We use the variations in how long the answered requests are kept waiting to identify driver time

preferences (the driver discount factor or waiting cost). We flexibly incorporate multiple levels of

heterogeneity in driver preferences and use a simulated method of moments estimator to estimate

the parameters. Finally, we estimate the distribution of passenger maximum waiting time. Because

passengers who wait longer are more likely to be answered, the observed average waiting time of

the unmatched passengers would be a biased estimator of the mean maximum waiting time. We

thus simulate the full search and match game using the estimated driver parameters and estimate

the maximum waiting time distribution parameters with a second simulated method of moments

estimator.

Using the estimates, we conduct counterfactual simulations to address our research questions.

We first simulate the market with myopic drivers. The comparison with the decentralized equi-

librium market reveals the implication of the drivers waiting strategically. We find that although

waiting increases market thickness and allows drivers to obtain better matches (higher average
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driver utility), the option value of waiting also causes drivers to forgo more matches and results

in a lower number of matches. Next, we assume that the platform has additional information on

agent preferences and the maximum waiting time, and we simulate two centralized matching algo-

rithms. The simulations use the centralized greedy and patient algorithms in Akbarpour, Li and

Oveis Gharan (2017), adapted to account for the two-sidedness of the empirical application. With

agents ex ante identical in terms of how likely they are compatible with other agents, Akbarpour

et al. (2017) shows that the patient algorithm can increase market thickness and the number of

matches by keeping agents in the market longer. A main motivation for considering these two al-

gorithms is that the pricing on our platform is pegged to distance by regulation. We thus consider

non-price mechanisms that may increase market thickness and reduce no-matches and mismatches.

In particular, comparing the greedy and patient algorithms shows the interaction between market

thickness, the number of matches and the quality of matches. We find that the patient algorithm

generates the highest market thickness and achieves the highest match rate at our estimates. The

increase is most significant for shorter route passengers (<40KM), but the match rate slightly de-

creases for the longer route passengers. In addition, drivers are better off on average with the

patient algorithm compared with the decentralized equilibrium.

Contributions and Relations to the Literature

First, we demonstrate that a platform can improve efficiency by increasing the waiting time of

consumers and increasing market thickness. In doing so, we measure the returns to investment in

soliciting or predicting both the consumer preferences for the quality of matches and the ability

to wait. Secondly, we study an important market where millions in China rely on this service for

their commuting needs and suggest possible ways to improve this service. Our framework may also

apply in a wide variety of peer-to-peer platforms similar to ours: many platforms feature one side

who “posts and waits” and another side who “chooses or waits”: Airbnb’s hosts wait for guests to

choose their rooms, babysitters wait for customers on Care.com, and drivers wait for passengers on

BlaBlaCar, to name a few.1

The market design literature shows that having a thick market is important for efficiency,2

1For a survey of the recent literature on the peer-to-peer markets, see, for example, Einav et al. (2016) and
Farronato and Fradkin (2018).

2See the surveyed literature in, for example, Roth (2008) and Roth (2018).
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where market thickness is defined as the number of market participants. Some of the recent work

(e.g., Arnosti et al. (2015); Baccara et al. (2016); Loertscher et al. (2016); Ashlagi et al. (2016);

Akbarpour et al. (2017)) study optimal dynamic matching and thickness.3 In particular, Akbarpour

et al. (2017) shows reducing the matching frequency can increase the number of matches between ex

ante identical agents. Our environment and objective are similar, and we generalize the theoretical

framework for our empirical setting in two ways: we consider ex ante heterogeneous agents who face

(stochastic) deadlines to either make a match or leave the market, and we incorporate and estimate

waiting costs. Importantly, the agents in our model are not identical in terms of how likely they

are compatible with other agents. In our context, a driver might be compatible with passengers 1

and 2, but another driver might be compatible with just passenger 1. Our empirical results suggest

the patient algorithm still generates more matches than the greedy algorithm, although we show

in theory the patient algorithm may perform worse at some parameterization.

This study is also related to the empirical matching literature.4 These papers typically examine

long-term relationships, and the matches can reasonably be assumed to satisfy a notion of stability

(Roth and Sotomayor (1992); Hatfield, Kominers, Nichifor, Ostrovsky andWestkamp (2013)). Choo

(2015) studies the gains of marriage in a frictionless dynamic matching market. Fox (2008) studies

repeated matching between forward-looking workers and firms. Relationships in our empirical

contexts are typically short-term and agents are unlikely to coordinate to swap partners after the

initial match (and post match cancellations are typically discouraged). We use this setting to study

the efficiency loss due to the frictions that prevent matches from being stable as defined in the cited

work.

There has been recent interest in empirically studying frictions in various dynamic matching

markets. One empirical context is the New York City taxi market (Lagos (2003); Frechette et al.

(2016); Buchholz (2017), among others), where a chief source of inefficiency is the costly process of

taxi drivers physically searching for passengers whose locations are unknown to the drivers. Our

focus is to consider frictions that endogenously arise from the strategic choices in the matching

game where technology has substantially reduced the cost of physical search. Another context is

the allocation of deceased donor kidneys. Agarwal et al. (2018) model a patient’s choice to accept
3There is also a theoretical literature on kidney exchanges (e.g., Roth et al. (2005, 2007); Ünver (2010)) that

examines properties of centralized dynamic matching algorithms.
4See the surveyed literature in, for example, Choo and Seitz (2013); Chiappori and Salanié (2016); Fox (2017).
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a deceased donor kidney in a continuous-time dynamic framework. Their objective is to identify

a mechanism that increases the number of matches and patient welfare (i.e. increasing match

quality). In that context, increasing the market thickness by increasing agents’ waiting time would

not be a viable strategy due to the particular matching rule (a prioritized market) and the short

shelf life of a kidney (in comparison with how long a patient can survive before transplant).

Road Map In the rest of the paper, we first discuss the empirical context and the data. We next

present a simple theoretical model of search and match to highlight when the decentralized market

may produce a fewer number of matches than a social planner. We then describe our empirical

structural model in detail, followed by the estimation and counterfactual experiments.

2 Empirical Context

We use six weekdays of detailed passenger request and driver search data on the DiDi platform

between 4:30PM and 5:00PM in a prefecture-level city (population 5 to 10 million) in southern

China in the summer of 2018. We ensured that the weather was similar throughout the sample

period (sunny or overcast) and there was no major construction project in the chosen city. The

first subsection discusses institutional details. The second subsection presents features of the data

that support modeling assumptions.

2.1 Institutional Details

On the DiDi platform, a prospective passenger sends a request to the platform to receive a ride.

The request consists of the desired pickup location, dropoff location and the pickup time. The

passenger does not observe the driver and cannot choose the driver. A prospective driver can view

all requests via the platform’s app. The first driver that answers a request “wins” the trip. A

driver can input her own desired pickup and dropoff locations and sort trip requests by a notion of

compatibility. For each request, the driver observes a single percentage compatibility rate calculated

by the system, in addition to the detailed specifications of the request. A number of factors go into

the calculation of this rate, but the rate is mainly determined by the commonly traveled distance

as a proportion of the total driver distance if the driver transports a passenger and heads to the
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driver final destination: in Fig. 1, suppose a driver i would like to travel A → B and a passenger

j requests C → D. The detour length for i to pick up j: dij = AC + CD + DB − AB, and the

fare for the driver is largely determined by xj = CD. The main component of the compatibility

index highlighted on the driver end of the app is xj
dij +AB

. DiDi’s surveys also show that the

traffic condition around driver origin and detailed geographical features (e.g. left turns) along the

route are also important factors in the driver decision. A driver must reveal its preferred route

to the platform to see the list of passengers. We observe the desired origination and destination

coordinates of waiting drivers (up to a 0.25 KM2 rounding). A passenger can cancel the ride at

any time before any driver answers the request without penalty. The pricing on the platform is a

two-part tariff strictly based on distance.5 The platform charges passengers $0.7 for the first 2KM

and $0.14/KM for the rest of the trip. The platform collects 10% of the total charge and the driver

earns the rest. In comparison, a taxi costs $1.3 for the first 3KM and $0.29/KM for the additional

distance.

When a driver answers a ride, a match is formed and there are penalties for the party that

cancels the ride. Multiple cancellations can lead to suspension of the account. About 8% of the

matches are canceled in our data. According to conversations with DiDi, many of the cancellations

appear to be “random”, such as the passenger no longer needing the ride, instead of “strategic”,

such as a driver noticing a better fit.6 We view increasing the rate at which drivers answer rides

as a first order issue and leave post-match cancellations for future research.

DiDi’s peer-to-peer platform is distinguished by the low fares and the decentralized matching

process that cater to commuters (i.e. non-professional drivers). Unlike the taxi drivers (Frechette

et al. (2016); Buchholz (2017)), the drivers on the DiDi peer-to-peer platform have a different

search problem: they have a larger information set, in the sense that these drivers observe and

could answer the request of any nearby (the requested trip origin is within the 10 KM radius

area of the searching driver) waiting passengers regardless of the physical distance between the
5A number of recent papers study pricing on the ride-sharing network. Many of these papers focus on the use of

dynamic pricing to increase professional drivers’ labor supply and passenger-driver matching on Uber (e.g., Hall et al.
(2015, 2017); Castillo et al. (2017) in economics and Banerjee, Riquelme and Johari (2015); Ozkan and Ward (2016);
Hu and Zhou (2016); Feng, Kong and Wang (2017) in operation research). Ostrovsky and Schwarz (2018) study how
proper road pricing can implement the efficient allocation of passengers to the road capacity in a carpooling context
with autonomous cars and non-professional drivers whose waiting cost is low. In this paper, we focus on how to
improve the allocative efficiency through non-pricing channels.

6The matched driver would have to use a different phone to see the requests in this case.
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Figure 1: Driver-Passenger Match

A driver i would like to travel A → B. A passenger j requests C → D. The detour length for i to pick up j:
dij = AC + CD +DB −AB, and the fare for the driver is largely determined by xj = CD.

driver and passenger. More importantly, these drivers can act on their preferences by choosing the

most compatible passengers (after trading off detour lengths against the value of the fares or the

(un)willingness to travel with a stranger). In this context, the focus of our study is on quantifying

the extent of the temporal, instead of the spatial, mismatch, and this mismatch is aggravated by

the presence of preference heterogeneity.

2.2 Data Summary

Within the half-hour period of our sample, we observe all waiting passengers and drivers across six

days. On the passenger side, we observe the geographical coordinates and the desired departure

time of the passenger requests. We use requests where passengers ask to leave within one hour,

which account for 80% of the total number of requests. We also observe the outcome of the requests:

whether the request is answered or canceled by the passenger. On the driver side, we observe the

information on drivers who refreshed the passenger list. We thus observe the coordinates of the

routes drivers used to search for passengers, the frequency of the search (refresh) and the set of
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potential passengers in each search. We define the length of the time a driver is in the market as

the time between the first and last search. Table 1 reports the summary statistics. About half

of the passenger requests (52%) are answered, and 60% of the searching drivers find passengers.

We call the percentage of answered requests the “match rate”. This rate is low compared to the

centralized platforms such as DiDi Express, where almost all passenger requests can be fulfilled,

but not uncommon on a decentralized platform: for example, the occupancy rate on Airbnb ranges

from 50% to 60% in most major American cities (Andreevska (2016)).

The table also shows that these passengers wait a significant amount of time for a ride on

the platform. Conditional on a passenger’s request not being answered, the passenger cancels the

request at about the 7th minute. Conditional on a request being answered, the request is answered

under 5 minutes. In comparison, getting a ride on DiDi Express, Uber or Lyft requires a passenger

to wait no more than a few seconds. According to conversations with DiDi, many passengers use the

platform as a first choice, and if the requests are not answered by certain time, the passengers can

always count on getting a DiDi Express car, a taxi or taking the public transit. We can compute a

back-of-the-envelope number for the benefit of waiting: by waiting 5 minutes, with probability 0.5,

a passenger going on a 30-KM trip (mean requested trip length) could save

$1.3 + $0.29× (30− 3)︸ ︷︷ ︸
taxi

− ($0.7 + $0.14× (30− 2))︸ ︷︷ ︸
DiDi peer-to-peer

= $4.51,

or 49% of the taxi fare. We thus think there is substantial benefit to waiting. Any additional

waiting cost likely is psychological, because passengers do not actively choose drivers and waiting

does not prevent the passenger from engaging in otherwise productive activities. In our empirical

analysis, we estimate driver discount factor on the platform and find the waiting cost of drivers is

also quite low under appropriate normalization.
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Passenger Mean Std
Time in Market (Sec) 439.73 439.16
Time Till Answer (Sec) 279.37 322.07
Percentage Answered 0.52
Trip length (KM) 30.6 35

# New Requests/10 Sec 4.49 6.59
# Waiting Requests 215.1 16

# Observations 6071

Driver Mean Std
Time in Market (Sec) 449.16 455.86
Time Till Answer (Sec) 514.46 409.81
Percentage Answering 0.58
Trip length (KM)* 31.43 35.83

# New Drivers/10 Sec 4.02 6.12
# Waiting Drivers 191.9 14
# Observations 5552

Table 1: Summary Statistics
*: Average Answered Trip Length is 24.5 KM

We also find that, although the sampled half hour is close to what would usually be the evening

rush hour, the city traffic conditions seem to be stable from 4:30PM till 6:30PM, right after our

sampled period of matching. This observation helps to motivate the assumption of a stationary

environment in the model later. We track the travel time on routes between key landmarks (major

commercial centers or municipal halls) across the city every 4 minutes. The city can be divided

into four regions around four population centers, as shown in Figure 2. The city seat is located in

the green area. The red and black areas cover densely populated metro areas and suburbs, and an

airport in located in the red area. The magenta region is less densely populated and covers large

swaths of suburbs further away from the metro area. To understand the layout of the city, consider

an analogy to the Greater Boston area: the green area is the downtown Boston and Cambridge,

and the red area is the east and south Boston. Both are political and commercial centers. The

black area is the “commuter” region, such as Allston and Newton. The magenta area is the suburb

further away, such as Quincy and Braintree. We select 2 landmarks for the black region, 3 for

red, and 1 each for the green and magenta region. We first examine the traffic condition across

time after aggregating over routes: we plot the average speed in Fig. 3 for traveling at 4:30PM,

4:34PM, ..., 6:30PM across 6 days. The speed slightly declines from 39KM/h to 36KM/h over the

2-hour period. We next examine the traffic condition across routes, after aggregating over time:

in Fig. 4, we plot the maximum and minimum travel time across 2 hours against the respective

route distance. The average ratio of the maximum to the minimum is 1.12. Considered together,

the data suggest that the traffic condition is quite stable for our drivers.

We also find evidence that driver becomes more likely to accept a request as the driver waits

longer. We leverage this data pattern to estimate the discount factor in the driver model. We
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Figure 2: Main Pickup and Drop-off Regions
There are four population centers across the city, and the locations are marked with the yellow diamonds. The
city can be divided into the four regions as colored. The city seat is located in the green area. The red and black
areas cover densely populated suburbs, and an airport in located in the red area. The magenta region is less densely
populated and covers large swaths of suburbs further away from the metro area. We re-scale x and y-axis to avoid
disclosing the identity of the city.
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Figure 3: Average Speed, 4:30PM-6:30PM
The average is taken over 6 days for traveling at 4:30PM, 4:34PM, ..., 6:30PM. The dotted lines represent the 95%
confidence interval for the average speed across 42 routes.
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Figure 4: Travel Time Across Routes
The maximum time and minimum travel time on the 42 routes we select between 4:30PM and 6:30PM. The min and
max are taken within a route across the travel time measured at 4:30PM, 4:34PM, ..., 6:30PM.

observe that about 75% of the drivers who answer a request do not answer the request during their

first search when the answered request is available. If drivers use a cut-off rule to evaluate the

fitness of a request, the observation means that the threshold of acceptance decreases over time. In

Fig. 5, we plot the histogram of how long an answered request is kept waiting as a proportion of

the total wait time of the answering driver, after the driver see the request on the DiDi app. Merely

25% of the drivers who answer requests do so when the drivers see the requests for the first time.

Conditional on a set of waiting drivers and passengers, the longer time a driver keeps a request

waiting suggests that the driver discounts the future less. We use this data feature to identify the

discount rate, or the waiting cost, of the drivers.

To aid further analysis, we classify routes by how similar they are. As show in Table 1, there

is significant heterogeneity in driver and passenger route preferences, and one may be concerned

their arrival rates and unobserved preferences may also be different. To flexibly incorporate and

estimate heterogeneity of drivers on different routes in our structural model, we classify drivers

and passengers based on the observed route preferences and separately analyze the behaviors of

agents in each class. A straightforward way to group the routes would be to classify them by the

regions (green, red, black and magenta) of the origin and destination, but given the irregular shape
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Figure 5: Evidence of Non-stationary Strategy
We show how long an answered request is kept waiting after the answering driver sees the request, as a proportion
of the driver wait time.

of each region, the routes from the magenta region to the red region could have drastically different

distances. Bonhomme et al. (2017) suggests using the K-means algorithm to cluster on observables,

and we find that the K-means classification based on routes7 effectively amounts to classifying routes

by distance and regions of origins and destinations. We use the K-means algorithm to classify all

driver routes into 28 classes so that the smallest class contains more than 0.5% of all observed driver

routes. 42% of the routes are between 0 and 20KM, 42% are between 20 and 40KM, 11% between

40 and 60KM, and 3% between 60 and 80KM. Figure 6 shows the origins and destinations of the

top 3 classes of driver routes and their corresponding proportions among all observed driver routes.

More than 25% of all driver routes are between and within the red and black regions. We use the

algorithm-generated classification rule from the driver classification and classify passenger routes

into 28 classes as well. The proportion of each class of passenger as a percentage of all passenger

routes is similar to that of the corresponding driver class.

We next discuss the properties of the empirical passenger arrival and exit process.The passenger
7To use the K-means algorithm, we define the distance `ij between route i going from ai = (axi , ayi ) to bi = (bxi , byi )

and route j using a city-block distance measure:

`ij =
∣∣axi − axj ∣∣+

∣∣ayi − ayj ∣∣+
∣∣bxi − bxj ∣∣+

∣∣byi − byj ∣∣ . (1)

The approach in Bonhomme et al. (2017) clusters on both the covariates and outcome variables to capture latent
driver heterogeneity. The outcome variables in our case (waiting time and driver choices conditional on the sets of
waiting drivers) are high dimensional. For simplicity, we cluster on just the stated routes of the drivers, which still
allows us to capture the heterogeneity of drivers across different types of routes.
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Figure 6: Pickup (Left) and Drop-off (Right) Locations of the 3 Most Popular Classes of Driver
Routes
We re-scale x and y-axis to avoid disclosing the identity of the city.
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Figure 7: Average Number of Arrivals per 10 Seconds
The time period is 4:00PM to 4:30PM. We average the number of arrivals across 6 days.

arrival process can be approximated by a constant hazard model reasonably accurately and we

provide support for the assumptions in the model that driver and passenger arrivals are independent,

and the arrivals of each class of agents are also independent. Figure 8 plots the model-predicted and

actual frequency of the arrival time intervals of the most popular passenger class and driver class.

We cannot reject at 90% confidence level the hypothesis the class designations of arriving agents are

independent within drivers, within passengers, and between drivers and passengers. Specifically,

we test whether the class designation of agent i is correlated with that of agent j, where j arrives

immediately after i. We conduct three tests:

1. i is a passenger, j is the passenger arriving after i

2. i is a driver, j is the driver arriving after i

3. i is a passenger, j is the driver arriving after i.

The p-values of the three χ2 tests are 0.30, 0.37 and 0.94. Furthermore, we find that the numbers

of driver and passenger arrivals are weakly correlated across time. Fig. 7 shows the number of

arriving passengers and drivers every 10 seconds during the half-hour sample period and averaged

across 6 days. The correlation between the number of driver and passenger arrivals within the 10

second intervals is -0.0265.

16



Passenger

1 2 3 4 5 6 7 8 9 10 11 12

10 seconds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Driver

1 2 3 4 5 6 7 8 9 10 11 12

10 seconds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 8: Arrival Frequency of the Most Popular Passenger and Driver Classes
The bar graph represents the empirical frequency of the time between two arrivals within the same class. The solid
line represents the predicted probability of arriving between the tth and t+1th 10 second interval from the estimated
exponential distribution.

3 A Simple Model of Driver and Passenger Match

We consider a simple model of match formation between drivers and passengers in an environment

similar to our empirical application. We use this model to show the intuition that underlies our

more complicated structural model and why the welfare effect of strategic waiting is an empirical

question.

Consider a continuous time, infinite horizon matching market of four potential entrants: two

drivers (A,B) and two passengers (a, b). Drivers arrive at rate ρ0 and passengers arrive at κ0. At

any moment, a driver in the market receive opportunities to move (that arrive independently at

rate γ > 0) and choose whether to wait or pick up a passenger in the market. Only a driver can

actively pick up a passenger and form a match. Upon the formation of a match with passenger

i, the driver j receives utility uij , and the matched driver and passenger leave the market. An

unmatched driver or passenger randomly exit the market at rate ρ and κ. If a driver leaves the

market without a match, she receives a reservation utility 0. The entry and (unmatched) exit

processes are independent across agents and over time.

While the passengers are not “strategic” in the sense that they do not actively choose partners

or how much they wait, the model captures a key feature of a matching market: one driver’s

17



action limits the choice of another driver by changing the availability of the matching partners.

The simplification allows us to characterize the key economic trade-offs. This barebone model also

represents the main features of our empirical application.

To solve for driver strategies, we assume that drivers have full knowledge of the past history

once they enter the market. An agent (a driver or a passenger) has three possible states: the agent

has not entered the market, the agent is in the market or the agent has exited (either by a match

or by a random exit). The state space of a driver problem consists of the Cartesian product of

other agents’ states and thus has 33 = 27 elements. Use Sjt to denote the state of a driver at

t. Given an opportunity to move, the driver observes the set of available passengers Rt and the

utility of matching with the most compatible passenger sjt (Rt) = maxi∈Rt uij . Driver j decides

between matching with i? = arg maxi∈Rt uij or waiting. Without loss of generality, we consider

A’s problem. The value of waiting V (SAt) ≥ 0 depends on SAt. A forward-looking A compares

maxi∈Rt uiA against V (St) and a myopic A compares maxi∈Rt uiA against the reservation value 0,

and given preference ordering, a forward-looking agent will pass over some match opportunities to

wait for a better partner. In Appendix A, we present the parameterization of two scenarios where

strategic waiting has different implications for the number of matches in equilibrium and solve for

a pure strategy Bayesian equilibrium explicitly. Below, we discuss the intuition of the two cases.

1. Preference ordering:

A : a � b � unmatched

B : b � unmatched � a

When ρ and κ are sufficiently small, forward-looking A would always wait for a and B always

for b. In this case, both drivers will wait for their most compatible partners and all drivers

and passengers will be matched. In contrast, if b and A arrive at the market first, a myopic A

would match with b, leaving the late arrivals (B, a) unmatched. In this case, strategic waiting

increases the expected number of matches. In fact, the strategic waiting incentives allow the

decentralized market equilibrium to achieve the social optimum.

2. Preference ordering:

A : a � b � unmatched
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B : a � unmatched � b

When ρ and κ are small, and A sufficiently prefers a to b, A would wait for a when the

market contains (A, b). If a arrives before B, or when a,A and B are in the market but A

gets to move before B, A will match with a, which leads to B and b unmatched. In contrast,

when the market consists of only (A, b), a myopic A would match b and both would leave

the market, and B can always match with a when they enter the market. If agents appear

in different orders (and the event of exits before all agents have entered is close to 0), the

same number of agents will be matched with either forward-looking or myopic agents. In

this case, strategic waiting decreases the expected number of matches. The expected number

of matches is lower than the social optimum regardless of whether the agents are myopic or

forward-looking.

4 Empirical Model

We use an infinite horizon continuous time dynamic model to study the matching between passen-

gers and drivers. Each agent (driver or passenger) has a preferred route: agent i wants to travel

from location ai to location bi. Drivers and passengers arrive to the market at rates ρ0 and κ0. Use

FI and FJ to denote the distributions of the drivers and passengers’ preferred routes. The preferred

route is drawn independently from the respective distribution and persistent throughout her stay

in the market. The maximum waiting time of drivers and passengers is distributed exponentially

with means 1
ρ
and 1

κ
. Drivers additionally have heterogeneous preferences over the compatibility

of passenger routes and unobserved match values. In estimation, we also allow drivers to have

heterogeneous ρ, but for the simplicity of the presentation, we for now assume that ρ is the same

across drivers. We specify the driver preferences for passengers below.

Drivers are forward-looking. At rate γ, a driver checks her phone and searches for a compatible

passenger. In data, a driver checks the phone every 36 seconds on average. Upon checking at time

t, a driver sees the available requests Rt and chooses between answering a request or waiting. If a

driver chooses to answer a request j, the driver and the chosen passenger leave the market and the
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driver receives utility

uijt = ui + ui0 − αidij + βixj + ξij︸ ︷︷ ︸
δij

+εit, (2)

ui is the value of the trip if the i drives alone. ui0 is an intercept, reflecting the base value of

picking up a passenger. dij is the detour length, and xj is the length of the trip, as defined in

Section 2.1. Because most trips are much longer than 2KM (the maximum range of the base fare),

the price schedule is linear for these trips. Therefore xj reflects both the preferences for the fare

and the distance trip to travel with a stranger. ξij is the unobserved driver-passenger synergy,

which captures time-persistent but idiosyncratic match values, such as whether there is a difficult

left turn on the route to pick up the passenger. εit is a time-varying unobservables that reflect

other factors that affect driver decisions, such as local traffic conditions. dij and xj are defined as

in Section 2.1. This formulation can incorporate rich driver heterogeneity: we allow ui, ui0 to be

specific to the observed driver class, and we additionally allow for random coefficients (αi, βi) that

are heterogeneous across drivers and whose distribution is specific to a driver class.8

We next specify the driver problem. We assume that driver i knows her maximum waiting time

Ti.9 As a driver waits, the option value of waiting changes continuously over time in how long they

have waited. The opportunity to check the phone arrives at rate γ. Given an opportunity to check

the phone, the driver chooses between waiting and one passenger among Rt passengers available.

The driver and passenger leave the market if the driver chooses a passenger, and otherwise will

wait till Ti. We assume that εit is i.i.d across each incidence of checking with distribution fε (εit).

This assumption is motivated by (1) the survey response that drivers are particularly concerned

with the local traffic around the driver origin, (2) the arrival processes are stable over time, and (3)

that traffic conditions also appear to be stable over a much longer horizon than the typical waiting

time of a driver (Section 2.2). We also assume that the driver does not know the future values of ε
8This formulation does not take into account the match quality based on the stated departure time of the passengers

and drivers. According to the conversations with DiDi, the departure time is a secondary consideration compared
with the match quality of routes in that drivers are often willing to move up departure to accomodate a passenger.
We find evidence for this anecdote in our data: among 91.5% of the matched driver-passenger pairs, the driver
departure time is later than passenger departure time, and the coefficient of variation of this time difference is 2.8.
In comparision, the coefficient of variation for the detour lengths dij is 0.9.

9This assumption is consistent with data. Although the data on the stated time of departure appear to have round
number biases (many claim to depart at 4:45, 4:50, ...), we find that among the drivers who did not find a passenger,
the last searches of the majority (65%) of these drivers are within 1 minute of the stated departure time, and the last
searches of 84% of these drivers are no later than the stated departure time.
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at t. Rt evolves over time because passengers exit when they reach the maximum waiting time or

drivers answer their requests. The driver has expectations about the evolution of Rt but does not

have perfect knowledge about it.

We now define the state variables and write down the driver dynamic optimization problem.

Use τ to denote the time the driver has been in the market. At τ = Ti, the driver checks the phone

one last time and the option value of waiting is traveling alone; at τ < Ti the value of waiting

may be higher because a more compatible passenger may arrive between τ and Ti. Therefore the

driver decision depends on τ . The decision also depends on the future Rt. With a slight abuse

of notation, we use Rit to denote the set of passenger routes and their unobserved match values

ξij . We assume that Rit evolves according to a Markov process: Rit changes at rate λi (Rit), and

conditional on changing, the new R̃it follows the distribution gR,i
(
R̃it |Rit

)
.10 Both the change

rate and the distribution are subscripted with i because the unobserved match values ξ differ across

drivers. A driver does not observe how many other drivers are waiting, these rivals’ preferences

or maximum waiting time, but their decision rules, along with the maximum waiting time of the

existing passenger and the arrival processes of drivers and passengers, change Rit. The state vector

at t after having waited τ is (τ,Rit).

Use Vi (τ,Rit) to denote i’s value of waiting after having waited τ . Then in an infinitesimal

amount of time ∆, the Bellman equation is

Vi (τ,Rit) = 1
1 + θi∆

∆λR,i (Rit)E (Vi (τ +∆, R̃it
)∣∣∣ Rit)︸ ︷︷ ︸

Rit changes

+∆γ

∫
εit

max
{

max
j∈Rit

[ui + δij + εit] , Vi (τ +∆,Rit)
}
fε (εit) dεit︸ ︷︷ ︸

i receives a move opportunity

+ (1−∆λR,i (Rit)−∆γ)Vi (τ +∆,Rit)︸ ︷︷ ︸
nothing happens

 , (3)

where E denotes the conditional expectation over Rit. In the interpretation of Doraszelski and

Judd (2012), ∆ is sufficiently small such that the probability of Rit changing and i moving si-
10Appendix B shows that λi and gR,i are well-defined.
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multaneously occurs with negligible probability compared with the first order terms in the above

equation. If i does pick a passenger, then i receives a onetime payoff maxj∈Rit [ui + δij + εit] and

leaves. Otherwise τ increases. θi is the discount factor while drivers search on the DiDi app. Al-

ternatively, θi can be interpreted as a waiting cost, where a higher θi reflects higher search cost

because the discounted present value of waiting at the beginning of the waiting is lower. Assuming

the smoonthness of the value function, we can write the Bellman equation in a more compact form:

Vi (τ,Rit) = 1
θi + γ + λR,i (Rit)

×
[
γ

∫
εit

max
{

max
j∈Rit

[ui + δij + εit] , Vi (τ,Rit)
}
fε (εit) dεit

+λR,i (Rit)E
(
Vi
(
τ, R̃it

)
|Rit

)
+ ∂

∂τ
Vi (τ,Rit)

]
, (4)

with the boundary condition that Vi (Ti, Rit) =
∫
εit

max {maxj∈Rit ui + δij + εit, ui} fε (εit) dεit

when i departs at t after having waited Ti.

To bring the model to data, we need to solve the Bellman equation. The challenge is that Rt is

of very high dimension. Here we employ an approach motivated by the design of the platform and

related to the logit inclusive value method in Gowrisankaran and Rysman (2012). Note that the

identity of the most compatible passenger that solves maxj∈Rit ui + δij + εit does not change when

the driver checks again, if Rt remains the same, because we interpret the time-varying shock εit as

reflecting the local traffic conditions, and εit is not specific to a passenger. As a result, just like the

logit inclusive value, maxj∈Rt δij is a sufficient statistic for the dynamic optimization problem.11

Tracking just maxj∈Rt δij instead of Rit greatly simplifies the computation, because the state space

of the simpler problem is two-dimensional, with the state consisting of τ and sit = maxj∈Rit δij . In

practice, the decisions to pick up passengers occur in real time, and while drivers can view hundreds

of requests in their search in theory, most would just view the one with the highest compatibility

index. We view our simplification as a reasonable approximation of how drivers actually make

decisions.
11Gowrisankaran and Rysman (2012) extensively discussed the trade-offs of this approach. In this context, the

agent who tracks the first order statistics forfeits some information when forming the expectation of the future Rt.
Liu et al. (2018) shows that conditioning on both the first and second order statistics does not substantially change
the result.

22



With the simplifying assumption, we re-write the Bellman equation as

Vi (τ, sit) = 1
θi + γ + λs,i (sit)

×
[
γ

∫
εit

max {ui + sit + εit, Vi (τ, sit)} fε (εit) dεit

+λs,i (sit)E (Vi (τ, s̃it) | sit) + ∂

∂τ
Vi (τ, sit)

]
, (5)

where E is conditional expectation of sit , and we use s̃it to represent the new state conditional on

a change, which occurs at rate λs,i (sit) and the conditional distribution is gs,i (s̃it | sit).

We next define the equilibrium concept. The driver strategy is the accept/reject decision σi that

maps to {0, 1, . . . ,#Rit} , where 0 means waiting and #Rit is the number of waiting passengers:

σi (τ,Rit, εit) =
{
ui + max

j∈Rit
δij + εit > Vi

(
τ,max
j∈Rit

δij

)}
· arg max

j∈Rit
δij .

The entry and exit processes of passengers and drivers, combined with σ, govern the evolution of

Rit. Rit in turn implies the distribution of sit for each driver i. In the equilibrium, sit need be

stationary and consistent with the driver beliefs. Use D to denote the set of driver types (routes

and preferences). We focus on driver decisions within a relatively short time window (half an hour)

compared with the length of the day, and we work with a stationary equilibrium concept.

Definition 1. A stationary equilibrium12 consists of {Vi, σi, λR,i, gR,i, λs,i, gs,i} such that

• The Bellman equation (5) is satisfied for all i ∈ D;

• ∀i ∈ D, Rit has a stationary distribution gR,i consistent with {σi}i∈D, the entry process{
FI , FJ , ρ

0, κ0} and the maximum waiting implied by ρ and κ .
12The taxi literature (e.g. Buchholz (2017); Frechette et al. (2016)) typically focuses on drivers who operate

throughout a day and considers a non-stationary equilibrium to capture the time-varying demand conditions. The
drivers in our context are “one-shot” labor suppliers, who are chiefly concerned with the demand and travel conditions
within the next 40 minutes (for over 80% of the drivers). Demand and travel conditions even later are not relevant,
because these commuters, who have their own travel needs to reach their destination by a certain time, will have
left the market. Therefore we empirically consider a short time window and focus on the potential drivers who
have travel needs during that time window. Empirical evidence in Section 2.2 shows that both the demand and the
travel conditions are stable during and beyond our sampling time window. Considered together, we use a stationary
equilibrium concept to study the matching in our context.
This equilibrium concept is related to the oblivious equilibrium (Weintraub, Benkard and Van Roy (2008)), the

mean field equilibrium (Iyer et al. (2014)) and the equilibrium concepts used in Krusell and Smith (1998), Backus
and Lewis (2016), Bodoh-Creed et al. (2017), Buchholz (2017) and others.
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• The drivers have rational beliefs consistent with the evolution of sit implied by Rit.

We do not separately specify a passenger problem for two reasons. First, passengers do not see

drivers or choose drivers, and if a passenger is picked up, the passenger is delivered exactly as spec-

ified in the request, and passengers need not have preferences over the extent of the “mismatches”

as drivers do. Secondly, passengers commonly see DiDi’s peer-to-peer platform as the first choice,

before resorting to DiDi Express (the Uber version of DiDi) or taxi, which can be hired with little

extra delay, or the public transit, which runs on a fixed schedule. Therefore modeling passengers

as either waiting till its maximum time or being picked up before the waiting time runs out is a

reasonable approximation.13 The framework laid out here can easily be augmented to incorporate

a passenger’s waiting problem or choice problem if a relevant empirical context demands.

5 Identification and Estimation

In this section, we discuss the identification and estimation of these parameters:

1. (FI , FJ): the distribution of the driver and passenger routes upon entry.

2.
(
ρ0, ρi, γ

)
: the rates at which (1) a driver arrives to the market, (2) the inverse of the mean

maximum driver waiting time (alternatively, the rate at which a driver exits without a match)

and (3) the rate at which a driver checks the phone.

3.
(
κ0, κ

)
: the rates at which (1) a passenger arrives to the market and (2) the inverse of the

mean maximum passenger waiting time.

4. the driver preference parameters: (ui, ui0, αi, βi, ξij , εit, θi).

We use the observed driver and passenger route distribution as FI and FJ and the observed driver

and passenger arrival rates for ρ0 and κ0. The rate of search γ is identified from the frequency of

drivers refreshing the passenger list. One may be concerned that γ may be heterogeneous across
13From a welfare analysis point of view, one should still estimate the passenger problem to recover the cost of waiting

to determine whether a longer waiting time substantially decreases passenger welfare (although indirect evidence in
Section 2.1 suggests not). In our empirical context, because most passengers will participate in a matching market
until the end of their maximum waiting time, the ideal identifying variations would be the values of alternative service
providers. In the US, one such variation would be the dynamically set Uber fares. However, DiDi Express at the
time had switched to fixed prices due to local regulations imposed in 2017.
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drivers. We find limited evidence for heterogeneity in γ. On average, drivers check their phones

every 36 seconds, and the drivers who eventually answered a request checked every 33 seconds on

average. Drivers who are in the market for less than 449 seconds (observed mean waiting time)

check their phones every 32 seconds. For simplicity, we assume that γ is the same for all drivers.

The next section discusses the identification of ρi, κ and driver preference parameters.

5.1 Identification of ρi, κ and Driver Preference Parameters

First, we make the following assumptions that are weaker than the parametric assumptions intro-

duced in Section 4:

Assumption 1. 1. The distribution of the time between consecutive arrivals of passengers has

full support on R+.

2. The distribution of the time between consecutive arrivals of drivers has full support on R+.

3. The support of the distribution of the maximum waiting time of drivers and passengers in-

cludes (0, N ], where N is a finite positive number.

The distribution of the maximum waiting time is nonparametrically identified under these

assumptions: for any T, with positive probability, we would observe in data a period T where there

are no waiting passengers or drivers. The proportion of exiting drivers or passengers identifies the

respective distribution of the maximum waiting time.

Restricting to our flexible parameterization, we assume that the driver and passenger exit rates

are heterogeneous across observed attributes. Specifically, we assume that ρ is different across each

driver class. We could do the same for the passenger exit rate κ, but for practical and computational

reasons to be discussed in Section 5.2, we assume that the distribution of maximum waiting time

is the same for all passengers (and each individual passenger’s waiting time is a realization from

this distribution).

To identify driver preferences for passengers, we first normalize the payoff to traveling alone, ui

to 0. Note that θi and ui cannot be separately identified: a driver that prefers to wait may either

do not discount the future much (θi close to 0) or have a high ui. We argue that the difference

between V and (the deflated) ui is still identified with this normalization. This point can be most
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clearly seen using the discrete version of the Bellman equation (3). At τ = Ti, like a standard

choice model, Vi (Ti, Rit)− ui is identified. At τ = Ti −∆ for a small ∆, the Bellman equation can

be re-written as

Vi (Ti −∆,Rit)−
ui

1 +∆θi

= 1
(1 +∆θi)

∆λR,i (Rit)E
(
V
(
Ti, R̃it

)
− ui

∣∣∣ Rit)︸ ︷︷ ︸
Rit changes

+∆γ

∫
εit

max
{

max
j∈Rit

δij + εit, Vi (Ti, Rit)− ui
}
fε (εit) dεit︸ ︷︷ ︸

i receives a move opportunity

+ (1−∆λR,i (Rit)−∆γ) (Vi (Ti, Rit)− ui)︸ ︷︷ ︸
nothing happens

 ,

where Vi (Ti −∆,Rit) −
ui

1 +∆θi
is the difference between Vi and the deflated value of traveling

alone.

With this normalization, we rely on the variations in the changes in waiting passengers that

vary across a driver’s search instance and across drivers. The identifying restriction is similar to the

assumption common in demand estimation, where the variations in choice sets identify consumer

tastes. In particular, the variability in αi and βi maps into the distribution of the detour lengths

and passenger trip lengths of successful matches conditional on a set of waiting passengers. The

validity of this identifying restriction relies on the assumption that the variations in the choice sets

are orthogonal to an individual driver’s unobserved heterogeneity. We assume the following:

Assumption 2. 1. Passenger arrivals are independent.

2. Driver arrivals are independent.

3. Driver and passenger arrivals are independent.

4. ξij’s are independent across i and j.

Combined with Assumption 1, Rit is independent of an arriving driver’s route, αi and βi, and

any combination of passenger routes is in the support of Rit. We directly test the first three

assumptions in Section 2.2. The last assumption warrants some discussion. ξij is the unobservable

that captures persistent driver-passenger match value, such as whether there is a left turn on the
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driver route to pick up the passenger. This part is reasonably i.i.d given the coarseness of our data

(the precision of the location data is 0.25KM2), but there may also be an unobserved component ξ̃j

in ξij that is common to passengers, such as the passenger’s reputation score, which is not observed

by the researcher but observed by drivers. The common knowledge unobservable would cause a

selection problem, because the passengers with a higher ξ̃j will be answered more quickly and less

likely in the data. We show that the selection bias is likely quite small. In Appendix C, we take

the estimates and simulate passengers as having a vertical attribute ξj that has the same impact

on all drivers. In other words, the utility for i to pick up j in this robustness check is

uijt = ui + ui0 − αidij + βixj + ξj + εit.

We then simulate the outcomes of the decentralized market as well as the counterfactuals. The

difference with the results from the model with i.i.d ξij is quite small.

We assume that εit ∼ N (0, 1), and ξij ∼ N
(
0, σ2

ξ,i

)
. Like ρi, σξ,i differs across driver classes.

The effect of ξij is similar to the logit shocks in a random coefficient logit demand model: the number

of waiting requests (choices) increases the probability of a driver answering a request. Therefore

with a large σξ,i, the conditional mean number of waiting requests for drivers who answer requests

should be greater than the unconditional mean.

The last parameter to be identified is θi, the time preference or the waiting cost of drivers. The

variations in how long an answered request is kept waiting by the answering driver provides the

identification. At the extreme, if drivers are myopic (θi = ∞), no such requests would be kept

waiting; if the drivers prefer to answer the requests at the end of their wait (θi = 0 or even θi < 0),

few drivers would answer requests during their first search.

5.2 Estimation

We use a three-step estimation approach based on the method of simulated moments. In the first

step, we estimate the arrival rates and the distribution of driver and passenger routes directly from

data. The arrival rates of the drivers and passengers are 0.4335 and 0.4823, which means that

on average a driver or a passenger enters every 2 seconds. In the second step, we simulate the

outcomes of drivers, and match moments from the simulated outcomes with data. We separately
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estimate the preference parameters for drivers in each class. We assume that within a class, αi and

βi are normally distributed, and we estimate their means and standard deviations for each class.

Therefore drivers in each class could still have different preferences, although the preferences are

drawn from the same distribution specific to a class. Across classes the random coefficients have

different distributions. The moments we use follow closely the discussion of the identification of

the parameters in the previous section.

1. E (driver time in market).

2. E (1 [i answers a request]).

3. Conditional on i answering j’s request, the 0.25, 0.5 and 0.75 quantiles of dij .

4. Conditional on i answering j’s request, the 0.25, 0.5 and 0.75 quantiles of xj .

5. Cov (dij , xj), conditional on i answering j’s request.

6. The 0.25, 0.5 and 0.75 quantiles of the number requests at the last search of the drivers.

7. The 0.25, 0.5 and 0.75 quantiles of the number requests at the last search of the drivers

conditional on answering requests.

8. Conditional on i answering j, the 0.25, 0.5 and 0.75 quantiles of T̃ij
T̃i

, where T̃ij is the length

of the time when both i and j are present, and T̃i is the length of the time i is in the market.

There are a total of 8 parameters per driver class for 28 classes. We estimate the parameters of

each class separately: we simulate the outcomes of drivers in a class, and match the simulated

moments corresponding with the data moments specialized to the drivers of this class.14 There

could potentially be multiple equilibria, and we focus on the equilibrium in the data: we assume

that the data are generated by one equilibrium, and we use the estimated evolution of sit when

solving for each driver i’s dynamic problem. Specifically, for a given vector of parameters, we

first estimate the evolution of sit from the observed time-series variations in the set of waiting

passengers, and we use the estimated distribution to calculate the driver strategy.

The estimates of driver primitives are presented in Tables 2 and 3. We sort the drivers by the

popularity of the routes among drivers (the proportion of each class of routes as a percentage of
14The weighting matrix is the inverse of the variance of each moment, estimated by bootstrap across days.
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Table 2: Driver Parameter Estimates,
Class Distance ui0 ᾱ β̄ σα σβ ρ θ σξ Proportion

Range (KM)

1 0 20 -2.3647 26.4605 11.8391 1.4984 14.7112 0.0009 -0.0001 0.2218 0.118
SE 0.7012 6.092 3.9287 1.573 2.6871 0.0001 0.0001 0.3986

2 20 40 -1.8962 20.0991 10.1218 2.6503 7.0209 0.0008 0 0.281 0.0859
SE 0.4296 6.1167 3.5801 2.4994 3.1909 0.0001 0.0001 0.413

3 20 40 -2.6149 14.4541 10.5891 0.0483 6.5277 0.0009 0.0001 0.0928 0.0655
SE 0.6046 4.6652 7.9281 3.6738 4.5779 0.0001 0.0002 0.1616

4 0 20 -3.0039 23.3622 20.9678 3.7857 0.8453 0.0008 0.0003 0.6834 0.0608
SE 0.7877 5.5933 4.6495 3.5053 6.9344 0.0001 0.0001 0.3354

5 0 20 -1.2163 42.1694 28.2416 1.9269 2.0691 0.0009 0.0001 1.0816 0.0499
SE 0.5279 4.1114 4.0625 2.1014 3.1472 0 0.0001 0.3308

6 20 40 -2.8962 32.1694 13.1548 5.6934 6.2384 0.001 0 0.7656 0.0491
SE 0.8166 5.9346 7.4205 3.4715 4.183 0.0001 0 0.2305

7 20 40 -1.8649 22.1694 10.5891 5.6936 6.1623 0.001 0.0001 0.1591 0.0484
SE 0.6701 3.6645 2.7928 1.7716 4.8866 0.0001 0.0001 0.3745

8 0 20 -0.9329 14.0303 10.4307 0.6263 0.8852 0.0009 -0.0001 0.671 0.048
SE 0.383 4.1097 3.1079 2.7952 3.3087 0.0001 0.0001 0.391

9 0 20 -0.36 22.996 18.4441 0.0001 5.7414 0.0006 0 0.3337 0.0432
SE 0.753 4.6728 3.1863 1.2972 2.7215 0.0001 0.0001 0.4124

10 0 20 -1.5748 22.1694 16.1748 0.6251 9.5197 0.001 0.0001 0.0938 0.042
SE 0.9061 7.3882 4.8939 2.3729 4.9218 0.0001 0.0001 0.3083

11 20 40 -2.8725 24.5859 10.59 0.0392 7.2776 0.0009 0.0002 0.1593 0.0377
SE 0.5461 4.9143 6.1819 2.1896 2.4977 0 0.0001 0.2142

12 20 40 -2.2538 17.7814 9.1807 2.7472 5.8803 0.0011 0.0001 1.0896 0.0354
SE 0.6689 3.268 5.1603 2.4912 2.8043 0.0001 0.0001 0.4013

13 40 60 -2.8649 25.961 10.5085 0.633 14.9371 0.0009 0.0001 0.0341 0.0337
SE 1.1934 5.2752 6.1439 1.423 3.7419 0.0001 0.0001 0.2264

all observed driver routes). The first column is the distance range of the driver preferred routes,

and the last column is the proportion of the observed drivers that fall into the driver class. The

standard errors are from a 100-reptition bootstrap on the days, preserving the correlations across

time within a day. On average, drivers trade off 1 KM of detour with the 1.7 KM of passenger

trip length (higher fare), although there is substantial heterogeneity across drivers. In particular,

the standard deviation of βi is much larger than that of αi across most driver classes, which shows

that although most drivers eschew passenger requests that are incompatible with their own, they

differ significantly in how willing they are to travel with a stranger per KM, even though the fare

is higher from a longer passenger trip. Therefore the β estimates should not be simply interpreted

as preferences for trip fares.
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Table 3: Driver Parameter Estimates, Continued
Class Distance ui0 ᾱ β̄ σα σβ ρ θ σξ Proportion

Range

14 40 60 -3.1149 32.1694 10.4328 1.3966 12.1673 0.0012 0 0.4053 0.0318
SE 0.8516 5.5497 4.2726 2.1876 2.6324 0.0001 0.0001 0.3079

15 20 40 -2.8024 32.3257 10.5891 3.1342 19.9371 0.0009 0.0001 0.9646 0.0301
SE 0.4058 9.8224 6.7777 2.3677 9.1498 0.0001 0.0001 0.3564

16 20 40 -2.8637 35.9606 11.175 9.7485 13.7652 0.001 0.0001 0.0625 0.0242
SE 0.6397 5.6644 4.403 2.2968 2.5282 0.0001 0.0001 0.1795

17 0 20 -0.8704 24.4034 13.1338 6.6009 7.0522 0.0012 0.0002 1.6783 0.0238
SE 0.5508 5.0413 3.9075 2.1527 4.2137 0.0001 0.0001 0.2069

18 20 40 -2.7555 33.4194 11.2141 1.4972 12.0953 0.001 0.0001 1.9296 0.0218
SE 0.9096 5.3721 5.0045 1.8145 5.6983 0.0002 0.0001 0.2314

19 20 40 -2.0039 23.3343 13.3588 0.6346 13.6872 0.0009 0.0001 0.1594 0.0208
SE 0.6107 8.1797 4.7494 2.3584 7.9927 0.0002 0.0001 0.304

20 20 40 -2.066 24.5366 14.166 5.6933 1.5298 0.0011 0.0002 0.4175 0.0196
SE 0.7702 6.7699 8.1163 2.5049 5.7312 0.0001 0.0002 0.3186

21 0 20 0.2402 18.7189 10.4307 1.4972 0.8453 0.0009 0.0001 0.5617 0.018
SE 0.5956 6.3933 4.3684 3.1119 6.8891 0.0002 0.0001 0.2654

22 0 20 -1.8647 24.6686 20.5413 2.3385 3.3464 0.001 0.0002 0.1592 0.0172
SE 0.6401 3.5566 4.5503 1.6347 4.4353 0.0001 0.0002 0.2975

23 60 80 -2.0123 23.6458 -0.6752 0.6342 20.1788 0.001 0 1.0721 0.0163
SE 0.4861 5.2628 4.6012 1.6641 3.2149 0.0001 0.0002 0.4094

24 60 80 -1.8647 23.3359 -3.1788 0.6354 14.4236 0.0008 0.0001 0.1592 0.0151
SE 0.7576 6.3485 5.5501 1.8897 4.7863 0.0001 0.0001 0.4597

25 60 80 -2.6264 30.9606 4.9773 0.6262 17.6788 0.0012 0 0.1592 0.013
SE 0.9646 3.561 3.8845 1.1579 2.5103 0.0001 0.0001 0.1792

26 40 60 -1.5745 15.2969 -1.926 0.0017 11.8896 0.0009 -0 0.1813 0.0122
SE 0.7191 5.2905 4.0266 2.1168 2.784 0.0001 0.0001 0.3672

27 40 60 -2.4068 25.6493 5.0335 0.4844 13.8374 0.001 0.0003 0.1592 0.0096
SE 1.0259 4.6593 7.1171 2.9575 4.1201 0.0001 0.0001 0.256

28 60 80 -3.1179 32.1664 0.5912 0.1584 13.9996 0.0011 0 0.9337 0.0087
SE 0.9618 6.9078 5.8643 2.3984 5.1141 0.0001 0.0001 0.3502
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Finally, we simulate the decentralized equilibrium and estimate the distribution of the passenger

maximum waiting time. In principle, we can also allow the mean maximum waiting time 1
κ

to be

heterogeneous, specific to each passenger class. The driver parameter estimates suggest that this

is not a key dimension of heterogeneity: the estimated mean maximum waiting time (1
ρ
) for more

than 80% of drivers is between 15 and 20 minutes. We therefore assume that passengers have

the same κ. This assumption also substantially reduces the computational burden by turning the

estimation into a one-dimensional numerical optimization problem.15 To simulate the full game,

we use the estimated driver strategies. We match three moments:

1. The percentage of matched passengers.

2. Mean driver time in market.

3. Mean passenger time in market.

The estimated κ is 0.00055,16 which means that the maximum waiting time of passengers is on

average 30 minutes.

6 Counterfactual

We conduct four simulations to answer our research questions. We first use the estimates to simulate

the “factual” market evolution. Next, we assume that driver maximum waiting time is distributed

as in the first simulation, but they make static optimal decisions (myopic drivers): when given the

opportunity to search for passengers, driver i answers the request j ∈ Rt if

max
j∈Rit

δij + εit > 0.

In contrast, a dynamically optimizing i answers the request j if

max
j∈Rit

δij + εit > Vi.

15Evaluating a MSM objective function once in the third step is even more costly compared with the second step.
We need to simulate a sufficiently long period of the steady state of the game; simulating the full game requires
drawing many unique drivers from the distribution of FI (route distribution), αi and βi, and we need to solve for a
dynamic driver problem for each new draw. Estimating a scalar parameter reduces the number of times required to
evaluate the objective functions.

16The bootstrapped standard error, which takes into account the standard errors of the estimates of the previous
two steps, is 0.0001.
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The comparison between the first two simulations reveals the effect of strategic waiting.

We next examine two counterfactual centralized algorithms. The platform is assumed to know

the preference of the drivers. We first simulate the “greedy” algorithm in Akbarpour et al. (2017)

adapted to the two-sided market and adjusted for sorting. The platform matches a new driver or

a passenger subject to the driver’s incentive constraint (the driver utility must be non-negative)

immediately after the agent shows up , and the platform chooses the matching partner to maximize

the driver utility. If an agent is not matched, she stays in the market until she leaves without a

match or gets matched with another new agent. We next simulate the “patient” algorithm. In this

case, the platform is assumed to additionally know the maximum waiting time Ti. The platform

matches an agent immediately before she leaves the market to an agent that maximizes the driver

utility subject to the driver incentive constraint.

The main idea of the patient algorithm is that given a set of agents, the platform can increase

their time in the market and therefore the chances of an agent meeting a compatible partner. We

want to point out that there are other mechanisms to increase market thickness and improve match

efficiency. In markets where pricing is less restricted (e.g., peer-to-peer platforms in the US; airline

markets (Aryal et al. (2018))) than ours (the non-transferable utility framework is more similar to

matches between students and schools, medical graduates and medical schools, organ donors and

receipients and other contexts with a rigid or no price structure), the platform can also set prices

dependent on an agent’s waiting time to encourage or discourage waiting. Setting these prices

correctly also requires the platform to know agent preferences and how long they can wait. Our

results thus offer a measure of returns to investment in predicting these preferences.

A related issue is whether “personalized” matching rule benefits the platform at the expense of

the consumers. Recent empirical studies (Shiller and Waldfogel (2011); Kehoe et al. (2018)) have

examined the effects of personalized pricing when firms are able to predict consumer preferences.

We show that the majority, but not all, of drivers and passengers are likely to benefit if the platform

uses the knowledge of individual preferences to implement the patient algorithm, where high market

thickness mitigates the inter-temporal mismatch.

Akbarpour et al. (2017) shows that the patient algorithm matches more homogenous agents in

a one-sided market than the greedy algorithm. This result may not hold for two sided markets with

heterogeneous agents who enter and leave the market at different rates. We discuss the intuition by

32



considering the greedy and patient algorithms using the second example in Section 3. Recall that

in this example, two drivers A and B and two passengers a and b stochastically enter the market.

A prefers a to b to being unmatched, and B prefers a to being unmatched to b. We also assume

that b will be matched with A in the greedy algorithm if both A and B are present and also in the

patient algorithm if b exits first. The exit rate is sufficiently small that the probability of no-match

exit is close to 0. In the greedy algorithm, both agents will be matched only if

1. (B, a) or (A, b) show up before other agents; or

2. (a, b) show up and then B shows up.

Therefore all agents are matched with probability 2 4

2


+ 1 4

2


1
2 = 5

12. With probability close

to 1 − 5
12 only one match will be formed. In the patient algorithm, with probability close to 1

matches only occur when all four agents are in the market. Assume that the driver exit rates are

equal to the passenger exit rates, then all agents are matched only if B moves first, which occurs

with probability 1
4 <

5
12. Therefore the expected number of matches is lower under the patient

algorithm. The key insight from this calculation is that when the choice of some agent, in this case

passenger a or driver A, has a large negative externality on other agents, the greedy algorithm can

match more agents than the patient algorithm.

We report the results in Table 4. We report the summary statistics that largely mirror those in

Table 1. Because we do not specify the utility of the passengers, we separately report the match rates

(percentage of requests answered) as a proxy for passenger participation and utility. The welfare

measure for the drivers is in the unit of detour lengths (KM) (we divide uijt discounted to the time

of arrival by αi before averaging). While the level of such a welfare measure is not interpretable,

the difference is interpreted as the length of the detour saved.17 We therefore normalize the welfare

of the factual simulation to 0 and just report the difference (expected detours saved). A higher

number in the row of driver utility indicates higher welfare (more detours saved). We calculate

the unconditional average trip length as a measure of platform revenue by treating the unmatched

trips’ length as 0.
17The level of the welfare measure is also not identified, but the difference across scenarios is.
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The first column of Table 4 uses the model estimates and simulates the steady state market

equilibrium. The results fit the data well for the match rate, waiting time and market thick-

ness. In the last row, the corresponding conditional trip length (conditional on being answered) is

11.7/0.52 = 22.5KM, and the data average is 24.5 KM.

We summarize the key observations below. All percentage differences are statistically significant

at the 95% level.

1. The comparison between the “Factual” and “Myopic” results show that removing strategic

waiting can increase the match rate by 10%, but the driver utility decreases. In other words,

strategic waiting benefits the drivers at the expense of more unmatched passengers. Strategic

waiting increases equilibrium numbers of waiting drivers and passengers.

2. The comparison between “Greedy” and “Factual” shows that the greedy algorithm can slightly

increase the match rate, but drivers are on average worse off. To put the welfare measure

in perspective, note that conditional on being matched, the average driver detour length is

6.14KM.

3. The comparison between “Greedy” and “Patient” shows that additional market thickness

increases both the match rate (13%) and driver utility. The improvement quantifies the gains

from knowing the maximum waiting time of the drivers and passengers.

4. Both the drivers and passengers wait longer with the patient algorithm. Welfare for drivers

still improves because of the low driver waiting cost.

5. The unconditional average trip lengths (the passenger trip length of the drivers who end

up traveling alone is 0) increase with the greedy and patient algorithms, indicating higher

revenues for the platform.

The counterfactual results also illustrate the role of market thickness when drivers have heteroge-

neous preferences across matches. The ratio of the number of waiting driver to passengers is well

over 70%. Had drivers been indifferent across matches, the match rate (for the passengers) should

also be above 70% in each case, but the highest match rate is 60% across simulations. Interestingly,

the “Patient” column has the lowest driver-passenger ratio, or fewest drivers per passenger, but a

higher percentage of drivers and passengers are matched as a result of the thicker market. The
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Factual Myopic Greedy Patient

Match Rate 0.52 0.57 0.53 0.6
SE 0.02 0.01 0.02 0.02

Driver Utility (KM) 0* -1.57 -1.57 0.16
SE 0.31 0.14 0.14 0.24

# Waiting Drivers 198.03 178.87 188.74 260.8
SE 12.08 11.24 11.17 15.11

# Waiting Passengers 220.63 200.05 211.02 329.57
SE 16.26 17.03 17.22 15.11

Driver Time in Market (Sec) 435.01 396.46 410.08 562.55
SE 10.75 11.14 12.35 10.88

Passenger Time in Market (Sec) 423.23 386.81 392.42 598.95
SE 13.2 13.99 14.2 17.93

Unconditional Average Trip Length (KM) 11.7 12.57 12.03 12.84
SE 0.38 0.35 0.37 0.45

Table 4: Counterfactual Results
The average driver utility is an unconditional expectation, including those not matched (u = 0), deflated to the arrival
time of the driver. The standard errors are from a 100-reptition bootstrap on the days, preserving the correlations
across time within a day and taking into account the standard errors of the estimates.
*: normalized to be 0. The welfare measures of other scenarios are interpreted in the units of detours saved.

result would be reversed if both sides have homogeneous preferences (as would be the case if the

drivers only care about picking up a passenger but not the destination).

As a benchmark, we also consider an ex post optimal outcome where agents that appear at

different time points can be matched. A motivation is a one-day-ahead market where there are suf-

ficiently many agents who know their commuting needs one day ahead, and a centralized algorithm

makes the match after all agents submit their preferences. Because the passenger arrival rate is

greater than the driver arrival rate, the upper bound of the match rate is ρ
0

κ0 = 90%.

We also note that both the outcomes of the greedy and the patient algorithm could be a lower

bound on the match rates and driver utility if they are implemented. Match opportunities are

triggered by arrivals or departures, and overall drivers “search” less often and receive fewer ε shocks

with the two centralized algorithms than the “Factual” and “Myopic” scenarios. Potentially the

platform can improve product design or provide dynamically adjusted incentives (such as discounts

for temporary traffic congestion) to overcome the lack of positive shocks and achieve even better

outcomes with the centralized algorithms.

We then turn to the distributional impact of the patient algorithm. We break down the changes

in the match rates and driver utility by passenger and driver distance category (0-20KM, 20-40KM,
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Figure 9: Distributional Impact of the Patient Algorithm
*: The average detour lengths of the answered trips in the four distance groups in data are 3.09KM, 4.55KM, 7.60KM and 8.70KM.

40-60KM and 60-80KM) in Fig. 9. Shorter distance passengers and drivers (<40KM), which

together account for 84% of the participants, are better off (higher match rates for passengers,

positive detour lengths saved for drivers) with the patient algorithm, but longer distance ones

are worse off. To put the welfare measures in perspective, the average detour lengths of the four

distance groups in data are 3.09KM, 4.55KM, 7.60KM and 8.70KM.

A key assumption for our counterfactual results is that driver and passenger participation (ρ0

and κ0) and the distribution of the maximum waiting time (ρ and κ) are “structural”: i.e. they

stay the same if the centralized matching algorithm is implemented. One would expect these rates

to be dependent on the expected outcomes of the participation: if passengers expect the match rate

to be lower, the entry rates might fall and precipitate an even lower match rate. Similarly, if drivers

expect the average utility to be lower, the driver arrival rate might decrease. The counterfactual

simulations suggest that the match rate increases, and we should expect the entry rate to be at

least as high as before.
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7 Conclusion

We present an empirical framework to analyze the efficiency of a decentralized dynamic matching

market. Our model flexibly takes into account many dimensions of driver heterogeneity and two

types of driver strategies. We find that (1) drivers’ strategic waiting increases the market thickness,

increases driver welfare but decreases the number of matches relative to myopic drivers, and (2) the

patient algorithm, which decreases match frequency and increases market thickness, can substan-

tially increase the number of matches. Our model additionally indicates that the patient algorithm

also improves the average driver welfare. We think of the counterfactual analysis as measuring

the returns to the platform’s or a social planner’s investment on inferring agent preferences. If

the platform can accurately solicit or infer agent preferences, we show that there exist centralized

algorithms that increase the number of matches and the platform revenue.
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A Numerical Solution for Section 3

We begin by writing down the driver problem. Consider driver A. Use {o,m, e} to denote whether

an agent has not entered the market, is in the market or has exited the market. For example,

SAt =


a o

b m

B e


represents the state a has not entered the market, b is in the market, and B has left the market.

The value function for A for an infinitely small period ∆ thus is

VA (SAt) = ∆κV
(
S1
At

)
︸ ︷︷ ︸

b leaves

+∆κ0V
(
S2
At

)
︸ ︷︷ ︸

a enters

+∆γmax {ubA, V (SAt)}︸ ︷︷ ︸
A moves

+∆ρ · 0︸ ︷︷ ︸
A exits

+
(
1−∆κ−∆κ0 −∆γ −∆ρ

)
Vi (SAt)︸ ︷︷ ︸

nothing happens

,

where

S1
At =


a o

b e

B e


, S2

At =


a m

b m

B e


which simplifies to

VA (SAt) = κV
(
S1
At

)
+ κV

(
S2
At

)
+ γmax {ubA, V (SAt)}

κ+ κ0 + γ + ρ
.
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The value function is more complicated when B is in the market. Consider

SAt =


a o

b m

B m


.

We focus on pure strategy equilibrium, and assume that B’s strategy is deterministic. For the

purpose of the presentation, we assume that B will pick up passenger b if presented the opportunity.

Thus the value function can be written as

VA (SAt) = (γ + κ)V
(
S1
At

)
+ κV

(
S2
At

)
+ γmax {ubA, V (SAt)}

κ+ κ0 + 2γ + ρ
.

We can similarly write down the value functions for other states.

For the two scenarios discussed in Section 3, we use the following parameterization and solve

the Bellman equation for the value function and the strategy function. Use ∅ to denote the case of

being unmatched. In the first case, we assume that

A : uaA = 2 > ubA = 1 > u∅A = 0

B : ubB = 2 > u∅B = 0 > uaB = −1

We also assume that κ0 = ρ0 = γ = 1 and κ = ρ = 0.1. In a pure strategy Bayesian equilibrium

where B always waits for b, the minimum VA when a has not exited the market and b is in the

market is 1.5565> ubA for state (omo), which means that A will always wait for a if a has not

entered. In the second case, if we assume that

A : uaA = 2 > ubA = 1 > u∅A = 0

B : uaB = 2 > u∅B = 0 > ubB = −1.

In the pure strategy Bayesian equilibrium where B always waits for a, the minimum VA when a has

not exited the market and b is in the market is 0.7325< ubA for state (omm), which means that A

will answer b and not wait for a if both b and B are in the market. If A more strongly prefers a,
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the result is reversed: if we assume that

A : uaA = 5 > ubA = 1 > u∅A = 0

B : uaB = 2 > u∅B = 0 > ubB = −1.

the minimum VA when a has not exited the market and b is in the market is 1.2585> ubA for

state (omm), meaning that A will always wait for a despite the presence of b and regardless of the

presence of B.

B Construction of λi and gR,i

In this section, we fully specify the driver decision problem, where Rit’s evolution is governed by

the entry and exit of passengers. The exits are the results of either passengers waiting until the

maximum waiting time or being picked up by drivers. We show that λi and gR,i can be constructed

from the κ0, κ and rival driver strategies. A key assumption is that the entry rates and no match

exit rates (distribution of maximum waiting time) are constant. Use pj to denote the probability

of the arriving passenger being j, which encodes both the passenger route type and unobserved

match value ξ. Denote the support of passenger types as R. Denote the equilibrium probability of

a driver ı picking passenger j as pıj (Rit). The full Bellman equation is
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Vi (τ,Rit) = 1
1 + θi∆

∆κ0 ∑
j∈R

pjV (τ +∆,Rit ∪ j)︸ ︷︷ ︸
new arrival

+ ∆κ
∑
j∈Rit

V (τ +∆,Rit\j)︸ ︷︷ ︸
exits where a passenger reaches its Tj

+∆γED|R

 ∑
j∈Rit

∑
ı∈Dit

pıj (Rit)V (τ +∆,Rit\j) |Rit


︸ ︷︷ ︸

Another driver picks up j

+∆γ

∫
εit

max
{

max
j∈Rit

ui + δij + εit, Vi (τ +∆,Rit)
}
fε (εit) dεit︸ ︷︷ ︸

i receives a move opportunity

+

1−∆

κ0 ∑
j∈R

pj + #Rit · κ+ γED|R

 ∑
j∈Rit

∑
ı∈Dit

pıj (Rit) |Rit

−∆γ
Vi (τ +∆,Rit)︸ ︷︷ ︸

nothing happens

 ,

where ED|R [· |Rit ] is the conditional expectation with respect to the set of waiting drivers in the

stationary equilibrium. The above can be re-arranged into Eq. (3), where

λi (Rit) = κ0 ∑
j∈R

pj + #Rit · κ+ γED|R

 ∑
j∈Rit

∑
ı∈Dit

pıj (Rit) |Rit

 ,
the transitional probability Rit → Rit\j is

g (Rit\j |Rit ) = 1
λi (Rit)

κ+ γED|R

 ∑
ı∈Dit

pıj (Rit) |Rit

 ,
and the transitional probability Rit → Rit ∪ j is

g (Rit ∪ j |Rit ) = κ0pj
λi (Rit)

.

44



Factual Myopic Greedy Patient

Match Rate 0.51 0.55 0.52 0.58
SE 0.01 0.01 0.01 0.02

Driver Utility (KM) 0* -1.49 -1.42 0.07
SE 0.33 0.13 0.15 0.18

# Waiting Drivers 204.47 185.09 192.48 263.64
SE 12.15 12.38 11.56 15.05

# Waiting Passengers 227.42 205.87 215.08 331.24
SE 16.74 15.96 16.31 14.86

Driver Time in Market (Sec) 445.03 407.43 421.52 568.74
SE 12.29 10.07 10.5 14.45

Passenger Time in Market (Sec) 426.02 392.28 394.48 597.79
SE 13.81 11.15 13.85 14.27

Unconditional Average Trip Length (KM) 11.55 12.48 11.97 12.61
SE 0.38 0.32 0.39 0.4

Table 5: Counterfactual Results
The average driver utility is an unconditional expectation, including those not matched (u = 0), deflated to the arrival
time of the driver. The standard errors are from a 100-reptition bootstrap on the days, preserving the correlations
across time within a day and taking into account the standard errors of the estimates.
*: normalized to be 0. The welfare measures of other scenarios are interpreted in the units of detours saved.

C Passenger Unobserved Heterogeneity

We use the estimates of σξ and simulate the outcomes of alternative model where ξ is a vertical

attributes: ξj is i.i.d across j, and the value of i picking up j is

uijt = ui + ui0 − αidij + βixj + ξj + εit.

The results presented in Table 5 are quite similar to the ones in the main text.
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