# Saving Behavior Across the Wealth Distribution: The Importance of Capital Gains

Andreas Fagereng Martin Holm Benjamin Moll Gisle Natvik

NBER EFG Meeting, 13 July 2019

## Motivation

- Many theories of household wealth accumulation: saving rate =  $\frac{\text{saving}}{\text{income}} \approx \text{independent of wealth}$
- What does saving behavior look like in the data?

#### What we do:

 Use Norwegian administrative data on income & wealth to examine saving behavior across the wealth distribution

1

- 1. Capital gains are key to relation between saving and wealth
  - (a) saving rates net of capital gains ("net saving")
  - (b) saving rates including capital gains ("gross saving")

- 1. Capital gains are key to relation between saving and wealth
  - (a) saving rates net of capital gains ("net saving")



- 1. Capital gains are key to relation between saving and wealth
  - (a) saving rates net of capital gains ("net saving")
  - (b) saving rates including capital gains ("gross saving")



- 1. Capital gains are key to relation between saving and wealth
  - (a) saving rates net of capital gains ("net saving")
  - (b) saving rates including capital gains ("gross saving")



- 1. Capital gains are key to relation between saving and wealth
  - (a) saving rates net of capital gains ("net saving")
  - (b) saving rates including capital gains ("gross saving")



 note: rich people don't have higher saving rates in traditional sense, but still accumulate more wealth through capital gains

## Our Findings: "Saving by Holding" – Back-of-Envelope

1. Capital gains are key to relation between saving and wealth



#### Back-of-envelope example to clarify:

- assume net saving rate = 10%, capital gains on all assets = 2%
- Paul: income (excluding cap gains) = \$100,000, assets = \$0
   Richie: income (excluding cap gains) = \$100,000, assets = \$1,000,000
- gross savings are \$10,000 and \$10,000 + \$20,000 = \$30,000
- gross saving rates are 10% and  $\frac{30,000}{100,000+20,000} = 25\%$

- 2. Macro implication: "saving by holding" explains 60-100% of increase in wealth-to-income ratio since 1995
- Implications for theory: patterns ≠ canonical models of hh saving Potential explanations:
  - 1. Demand-driven asset price changes
  - 2. Multiple assets + portfolio adjustment frictions
  - 3. ... (a few others see paper)

## The Simplest Consumption-Saving Model

Households solve:

$$\max_{\{c(t)\}_{t\geq 0}} \int_0^\infty e^{-\rho t} \frac{c(t)^{1-\gamma}}{1-\gamma} dt \qquad \text{s.t.}$$
$$\dot{a} = w + ra - c, \qquad a \geq -w/r$$

Saving policy function:

$$\dot{a} = s(a) = \frac{r - \rho}{\gamma} \left( \frac{w}{r} + a \right)$$

Constant saving rate out of income

$$\frac{s}{y} = \frac{s}{w + ra} = \frac{r - \rho}{\gamma r}$$



## Changing Asset Prices (in partial equilibrium)

Two sources of returns: dividends + capital gains

$$r= heta+rac{\dot{p}}{p}, \quad rac{\dot{p}}{p}=\mu+arepsilon, \quad \mu= ext{"persistent"}, \quad arepsilon= ext{"transitory"}$$

• Saving responses depend on type of capital gains:



- 1. **net** saving rate decreasing with wealth (if  $\mu > 0$ )
- 2. systematic component of gross saving rate independent of wealth

100

## Extensions

- (a) Housing not just an asset, but also consumption good:
  - · collapses to one-asset model with flat saving rate
- (b) Labor income risk and borrowing constraints:
  - flat saving rate conditional on labor income
- (c) More realistic life cycle:
  - flat saving rate conditional on age and income
- (d) Discount rate heterogeneity:
  - flat saving rate conditional on discount rate

Overall: ≈ constant saving rate conditional on observables (age, ...)

## Data

- Norwegian population tax record data with supplements
  - Panel, 2005 to 2015 (11 years)
  - ≈ 3.3M persons per year
- Tax records include (third-party reported):
  - asset holdings by broad asset class (e.g. deposits, housing)
  - income (labor, business, capital, and transfers)

## Portfolio Shares



Notes: Wealth = assets - liabilities, pensions: not today (in appendix) 12th pctile = 0 net worth

## Portfolio Shares



Notes: Wealth = assets - liabilities, pensions: not today (in appendix) 12th pctile = 0 net worth

## Portfolio Shares



Notes: Wealth = assets - liabilities, pensions: not today (in appendix) 12th pctile = 0 net worth

## Net, Gross and "Recurrent" Saving

Three ways of writing consumption + saving = income

$$c + \underbrace{p\dot{k}}_{\text{net saving}} = \underbrace{w + \theta pk}_{\text{net income}} \tag{1}$$

$$c + \underbrace{p\dot{k} + \dot{p}k}_{\text{gross saving}} = \underbrace{w + (\theta + \dot{p}/p)pk}_{\text{Haig-Simons income}}$$
(2)

$$c + \underbrace{(\dot{k}/k + \mu)pk}_{\text{"recurrent saving"}} = \underbrace{w + (\theta + \mu)pk}_{\text{"recurrent income"}}, \quad \mu := \overline{\dot{p}/p}$$
 (3)

- Implementation:
  - Separate gross saving into net saving and capital gains (use housing transaction data and shareholder registry)
  - 2. Estimate persistent capital gains ( $\mu$ ) (mean of realized capital gains as long as series go back)

## Median Saving Rates



# Controlling for Age, Earnings ...



(c) Earnings, net saving rate

(d) Earnings, recurrent saving rate

## Importance for Aggregate Wealth

Counterfactuals: what if recurrent saving rates were flat as in the models?



"Saving by holding" explains 60-100% of increase in wealth-to-income

## Importance for Aggregate Wealth

Counterfactuals: what if recurrent saving rates were flat as in the models?



Source: WID.world "Saving by holding" explains 60-100% of increase in

## Importance for Aggregate Wealth

Counterfactuals: what if recurrent saving rates were flat as in the models?



"Saving by holding" explains 60-100% of increase in wealth-to-income

Reduced form of all our explanations

```
gross saving = s_d (net income) + s_c (cap gains) s_d \ll s_c \approx 100\%
```

#### Potential explanations

- 1. demand-driven asset price changes
- 2. multiple assets + portfolio adjustment "frictions"

#### Reduced form of all our explanations

gross saving =  $s_d$  (net income) +  $s_c$  (cap gains)  $s_d \ll s_c \approx 100\%$ 

#### Potential explanations

- 1. demand-driven asset price changes
  - same as benchmark model but with time-varying discount rate
  - two sources of capital gains:
    - (a) dividend growth ("supply")
    - (b) discount rates ("demand")
- if only (b): consume constant dividend stream but not cap gains



Reduced form of all our explanations

```
gross saving = s_d (net income) + s_c (cap gains) s_d \ll s_c \approx 100\%
```

#### Potential explanations

- 1. demand-driven asset price changes
- multiple assets + portfolio adjustment "frictions"
  - two assets: 'consumption asset,' 'investment asset' (e.g. housing)
  - investment asset experiences capital gains but is costly to liquidate

Reduced form of all our explanations

```
gross saving = s_d (net income) + s_c (cap gains) s_d \ll s_c \approx 100\%
```

Potential explanations (see paper for 3.-5.)

- 1. demand-driven asset price changes
- 2. multiple assets + portfolio adjustment "frictions"
- 3. non-homothetic preferences
- 4. misperceptions about asset price process
- 5. inattention and behavioral explanations

## Conclusions

We provide evidence on how saving rates vary across wealth distribution using population tax records from Norway

- 1. Capital gains are key to relation between saving and wealth
  - net saving rate  $\approx$  flat across wealth distribution
  - gross saving rate increasing with wealth
- 2. Saving by holding explains 60-100% of wealth-to-income increase
- 3. Joint pattern for net & gross saving rates  $\neq$  canonical models
  - demand-driven asset price changes
  - multiple assets + portfolio adjustment frictions

Theories of wealth accumulation need to include changing asset prices!

# Q&A Slides

## Portfolio Shares with Public Pensions



# Saving Rates with Public Pensions



# Saving Rates with Public Pensions



# Zooming in on right tail of wealth distribution



# Saving Rates by Year



(a) Net saving rates across years



(b) Gross saving rates across years

# Dispersion in Saving Rates



(a) Net saving rate



(b) Recurrent saving rate

## Controlling for the usual suspects

Median regression with controls  $\mathbf{x}_{it}$  = age, earnings, education



## **Education Controls**



(a) Education, net saving rate



(b) Education, recurrent saving rate

# Simply High Saving Rate ⇒ High Wealth?



## Exclusively a Story About Housing?

Restrict to households with stocks > 25% of financial wealth ( $\approx$  10%)

• Challenge: Norwegians hold few other assets with capital gains



## Saving as Fraction of Wealth (Bach-Calvet-Sodini)



(a) Saving rates as fraction of wealth



(b) Imputed cons as fraction of wealth

$$\dot{a} = \frac{r - \rho}{\gamma} \left( \frac{w}{r} + a \right), \qquad c = \left( r - \frac{r - \rho}{\gamma} \right) \left( \frac{w}{r} + a \right)$$
$$\frac{\dot{a}}{a} = \frac{\rho - r}{\gamma} \left( \frac{w}{ra} + 1 \right), \qquad \frac{c}{a} = \left( r - \frac{r - \rho}{\gamma} \right) \left( \frac{w}{ra} + 1 \right)$$

## Average Capital Gains and Asset-to-Income Ratio



## Saving Rates with Time Averaging

- Concern: medians of year-to-year saving rates may get it wrong if expenditure is "lumpy"
- Our solution: time-average saving rates within individuals



## Housing (in partial equilibrium)

#### Housing differs from other assets:

- 1. not just an asset, but also a consumption good
- 2. indivisibilities, transaction costs

## Common intuition: (1) by itself $\Rightarrow$ should save $\dot{p} > 0$

•  $p \uparrow$  means housing more expensive = bad for you

We show: intuition ignores intertemporal substitution in housing

- $\dot{p} > 0 \Rightarrow$  buy bigger house now, then sell off over time
- collapses to one-asset model with ≈ constant gross saving rate

Takeaway: housing is different, but due to (2), not (1)

## 1. Demand-driven Asset Price Changes

$$\max_{\{c_t\}_{t\geq 0}} \int_0^\infty e^{-\int_0^t \rho_s ds} \frac{c_t^{1-\gamma}}{1-\gamma} dt \quad \text{s.t.} \quad c_t + p_t \dot{k}_t = w + \Theta_t k_t$$

Now endogenize asset price. Viewing return  $r_t$  as primitive:

$$p_t = \int_t^\infty e^{-\int_t^s r_\tau d\tau} \Theta_s ds$$

Case I: capital gains due dividend growth ("supply-driven")

- equivalent to earlier model: consume out of persistent capital gains
- Case II: capital gains due to time-varying returns ("demand-driven")
  - if  $\rho_t = r_t$ , then consume constant dividend stream but not cap gains

$$c_t = w + \Theta k_t, \qquad p_t \dot{k}_t = 0$$



## 2. Multiple Assets + Portfolio Adjustment "Frictions"

Two assets: consumption asset b and investment asset k

$$\dot{b} = w + r^b b + \theta p k - p d - c$$

$$\dot{k} = d, \quad \frac{\dot{p}}{p} = \mu + \varepsilon$$

• + some reason for d = 0 most of the time

