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Abstract 
This paper presents a method to characterize the impact of privately-owned autonomous electric 
vehicles on electric vehicle charger placement, distribution, utilization, and power demand. Using 
Seattle, WA as a case study, a least total cost optimization for charging station owner and driver costs is 
conducted for vehicle automation levels 0-3, 4, and 5. Moving from levels 0-3 to level 4 and level 5 
automation reduces the peak electrical load for EV charging by approximately 31% and 68%, 
respectively. Moving from levels 0-3 to level 4 automation decreased the optimal number of chargers by 
65%, lowered total cost by 46%. Moving from levels 0-3 automation to level 5 automation decreased the 
optimal number of chargers by 84% and total costs by 69%. Additional vehicle miles traveled and 
operating costs incurred by drivers for drop off and pick up were estimated with level 5 automation. The 
results suggest that highly automated vehicle technology used in privately-owned electric vehicles could 
reduce the cost of deployment for recharging infrastructure and reduce peak electrical demand 
associated with recharging.  
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1: Introduction 

A major cost associated with widespread deployment of electric vehicles (EVs) is the necessary 

public recharging infrastructure. Public charging stations are expensive and can have low charging 

utilization rates when cars remain in the spaces long after charging is complete. Analyses on optimizing 

alternative fuel and electric vehicle infrastructure are common for many different sets of criteria. A gap 

in the literature remains on how higher levels of vehicle automation can affect electric vehicle 

recharging infrastructure needs. Automation enables a potential increase in charger utilization and 

reduces the spatial limitations of where vehicles charge. Additionally, it may give more control over 

timing and location of charging demand than traditional vehicles allow. This paper investigates these 

potential effects by analyzing the following research question: What are the potential electric vehicle 

charging infrastructure efficiencies and associated energy and environmental impacts from level 4 and 

level 5 automation?  

Both level 4 automation, where a vehicle can direct itself absent human oversight within a 

controlled operational design domain, and level 5 automation, where vehicles can control themselves 

absent human oversight in all conceivable normal operation circumstances (SAE International 2014), 

have the potential to increase EV charger utilization and change the optimal distribution of charging 

stations. Under level 4 automation, a parking facility could be designed to allow for complete 

autonomous control within the facility, allowing for autonomous electric vehicles to navigate 

themselves once in the facility. Currently, electric vehicles charging unattended occupy a charger for the 

entire time that the vehicle is parked, regardless of whether electricity is being delivered. Level 4 

automation may allow for facilities to be designed where vehicles navigate themselves to an open 

charger with wireless or automated connections and then, when completely charged, leave the charging 

space and go to a conventional parking spot. This would enable another vehicle to use the charger, and 
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higher charger utilization would allow for fewer individual charging stations to be needed, which and 

result would decrease total charging infrastructure costs. Similar benefits could also be gained from 

changes to charging infrastructure itself to allow charging units to be connected to multiple vehicles and 

charge them in a sequence, known as smart charging solutions. Such solutions, however, are still limited 

by the need to be located within comfortable walking distances to vehicle trip origins and destinations. 

A larger and more comprehensive charging infrastructure network is necessary to extend the 

range of vehicles that are charged solely at home, as well as enable charging for people without access 

to charging infrastructure where they live. Level 5 automation, where vehicles could drop off and pick 

up passengers and travel in driverless mode to charging facilities, could relax or remove this restriction. 

Doing so would allow for chargers to be concentrated at fewer locations, reducing supporting 

infrastructure costs, as well as located away from areas with high real estate prices. Chargers can also 

only be installed in integer units giving any specific facility’s charging capacity a stepwise function. The 

ability to move vehicles greater distances can improve upon the gains from level 4 automation by 

ensuring that vehicles whose demand would require an additional charger can be pooled together, even 

if their destinations are distant from each other. This would reduce the total number of chargers 

needed. 

Vehicle automation and autonomous refueling infrastructure can also be used to help smooth 

electric demand patterns. Many drivers tend to travel in similar patterns, and uncontrolled electric 

vehicle charging can add to current electricity grid demand. If these vehicles all recharge at similar times 

due to similar travel schedules, the power grid peak demand periods could be exacerbated. Demand 

smoothing could occur with vehicles not being charged when first plugged in, but instead having the 

vehicle managing smart charging with consideration to the price and demand signals of the power grid. 

Using smart charging or pricing systems on infrastructure is one way to potentially address this 

challenge (See Table 1 below). However, without automation, existing chargers would require the 
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controls and capabilities to optimize charging times, and vehicles may occupy a charger longer than 

necessary. Automation coupled with smart charging may enable even greater power demand smoothing 

opportunities with lower total infrastructure costs. A vehicle charging and queuing system may allow for 

demand to be moved to off-peak times, as well as move to other locations if there are local grid 

infrastructure constraints. The values used in this paper evaluate automation, but the methods could be 

adapted to scenarios where existing chargers with additional control infrastructure could allow multiple 

vehicles to connect to one charger and demand optimized across these vehicles. 

This paper contributes to the literature by developing an optimization to understand how driver 

EV charger placement, utilization, and costs are affected by different levels of automation. This paper 

uses Seattle, WA as a case study, and uses the Puget Sound 2014 Household Travel Survey (Kilgren 2015) 

unweighted trips and assumes 100% EV adoption for those trips in the dataset, which enable a 

simulation with existing driver parking demand and distanced traveled in the survey sample. The model 

minimizes charging station owner as well as driver costs. Charging station owner costs are defined as 

real estate costs for a parking space, charging equipment capital cost, and charging equipment 

maintenance costs. Driver costs are defined as either the costs of walking when using Levels 0-4 

automated vehicles; or the costs of additional vehicle operation when using fully autonomous Level 5 

vehicles, including energy and depreciation. The paper is organized as follows: Section 1 continues with 

a literature review and then lists the data sources used. Section 2 details the methods used to process 

the data into usable input for the optimization models and then defines the optimization models. 

Section 3 presents and discusses the results obtained from the optimization models. Section 4 

summarizes the results. Section 5 ends the paper by listing the primary limitations of the results and 

models presented in this paper and how future work can build and improve on the contributions made 

by this paper. 
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 1.1: Literature Review 

Table 1 summarizes several studies on the optimization or grid effects of electric vehicle 

charging. It notes: the region of study, whether the authors modeled electric vehicle adoption separate 

from vehicle ownership/travel, the source of travel data, the methodology of optimization or electric 

demand modeling, whether the vehicle was assumed to charge along their route or while parked, 

whether the paper was focused on stations, vehicles, or the grid, and whether the study considered 

time of demand separate from the total. Among all the papers reviewed, none investigated the effects 

that higher levels of automation will have on EV charger optimization. 

Most of the reviewed papers focused on the charging infrastructure owner costs, with only a 

minority investigating electric grid owner or vehicle driver costs. Driver costs were only directly 

investigated by (Chen et al. 2013), (Nie and Ghamami 2013) and (Ghamami et al. 2016), the latter two 

times in combination with the charging infrastructure owner costs. Some reviewed papers, such as 

(Frade et al. 2011), which investigated owner costs, indirectly captured driver costs by limiting them. 

These papers are focused on optimizing infrastructure for parked vehicles and do not consider the 

possibility of automation, driver costs, therefore, are solely the value lost by distance parked from 

preferred destination, and inherently limited by the maximum distance they are willing to walk. Other 

papers, such as (Chen et al. 2013), indirectly capture owner costs by setting a budget that must be met 

while minimizing driver costs. 

The most common data sources were the Census (Frade et al. 2011; Sathaye and Kelley 2013) 

and household travel surveys, either national (Hilshey et al. 2013) or local (Chen et al. 2013), or foreign 

equivalents (Frade et al. 2011; Mehta et al. 2017). The most common solution methods were various 

forms of optimization, with the most common subgrouping being linear or mixed integer optimization 

(Chen et al. 2013; Frade et al. 2011; Worley et al. 2012; Xi et al. 2013). 
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This paper expands on previous work using local household travel survey data and mixed linear 

optimization, such as (Chen et al. 2013). This paper contributes to the literature by jointly minimizing 

driver and charging equipment owner costs and also by creating a method to evaluate the effects of 

different levels of vehicle automation on the optimal solution. This paper further contributes by 

expanding the scope of infrastructure owner costs to include real estate opportunity costs, rather than 

just construction and maintenance costs.  
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 Table 1. Summary of Assorted Studies Investigating the Optimization or Grid Effects of Electric Vehicle Charging 

Study Region Electric 
Vehicle 
Adoption 
Variable 

Travel Data 
Source 

Method While 
Parked 
or 
Along 
Route 

Owner, 
Driver or 
Grid 
Focused 

Time 
Dependent 

(Sweda 
and 
Klabjan 
2011) 

Chicagoland 
(Chicago) 

No US Census Agent Based Both Operator No 

(Worley 
et al. 
2012) 

Chicagoland 
(Chicago) 

No None Mixed 
Integer 
Optimization 

Both Operator No 

(Bae and 
Kwasinski 
2012) 

None No None Fluid 
Dynamic 
Traffic Model 
& M/M/s 
Queueing 

Along 
Route 

Grid Yes 

(Knapen 
et al. 
2012) 

Flanders, 
Belgium 

No Multiple Activity 
Based Model 

Along 
Route 

Grid Yes 

(Chen et 
al. 2013) 

Puget 
Sound 
(Seattle) 

No Regional 
Household 
Travel Survey 

Mixed 
Integer 
Optimization 

While 
Parked 

Driver No 

(Hilshey 
et al. 
2013) 

New 
England 

No National 
Household 
Travel Survey 

Monte Carlo While 
Parked 

Grid Yes 

(Nie and 
Ghamami 
2013) 

Chicago, IL 
to Madison, 
WI 

No None Karush–
Kuhn–Tucker 
Approach 
(KKT) 

Along 
Route 

Operator 
and 
Driver 

No 

(He et al. 
2013) 

None No None Active-Set 
Algorithm & 
KKT 

While 
Parked 

Operator 
and Grid 

No 

(Sathaye 
and Kelley 
2013) 

Texas 
Triangle 

Yes US Census, 
TEXDot 

Root Finding 
Method 

Along 
Route 

Operator No 

(Xi et al. 
2013) 

Central-
Ohio 

Yes Mid-Ohio 
Regional 
Planning 
Commission 

Linear 
Integer 
Programming 

While 
Parked 

Operator No 

(Frade et 
al. 2011) 

Lisbon, 
Portugal 

Yes Multiple Mixed-
Integer 
Optimization 

While 
Parked 

Operator 
and Grid 

Yes 

(Huang et 
al. 2015) 

Sioux Falls 
(South 
Dakota) 

No None Multipath 
Refueling 

Along 
Route 

Operator No 
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Study Region Electric 
Vehicle 
Adoption 
Variable 

Travel Data 
Source 

Method While 
Parked 
or 
Along 
Route 

Owner, 
Driver or 
Grid 
Focused 

Time 
Dependent 

Location 
Model 
(Fuel 
Capturing 
Location 
Model) 

(Ghamami 
et al. 
2016) 

Chicago–
Madison–
Minneapolis 
Corridor 

Yes Hybridcars.com Mixed-
Integer Non-
Linear, 
Simulated 
Annealing 

Along 
Route 

Driver 
and 
Operator 

No 

(Zhu et al. 
2016) 

Beijing No None Genetic 
Algorithm-
Based 
Method 

While 
Parked 

Operator No 

(Mehta et 
al. 2017) 

Singapore Yes Land Transport 
Authority 
Singapore 

Genetic 
Algorithm 

While 
Parked 

Grid Yes 

This Paper Puget 
Sound 
(Seattle) 

No Regional 
Household 
Travel Survey 

Mixed 
Integer 
Optimization 

While 
Parked 

All No 

 

1.2: Data Sources 

The primary data source used is the Puget Sound 2014 Regional Travel Survey (Kilgren 2015). 

This survey includes a list of respondent trips with origin and parking location by Travel Analysis Zone 

(TAZ), census tracts, census block, and parking location name. The locations of census tracts and TAZs 

were obtained from the Puget Sound Regional Council GIS database (Norton n.d.). Travel zones, census 

blocks, and census tracts include water bodies in files to show shores and islands. For locational 

purposes, all water area was removed from zonal, tract, and block shapefiles. Real estate assessment 

data was taken from 2006 King County GIS data (“KCGIS Data Download” 2014). According to Zillow, 

King County real estate prices recovered from the recession and reached 2007 levels between 2015 and 

2016 (Zillow Inc 2017); therefore, these data were used as given. EV fuel economy was estimated using a 
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range of EPA fuel economy ratings (EPA n.d. X) and taken as 35 kWh per 100 miles. King County per 

capita income of $42,000 in 2015 is from the Census Bureau and is not statically different than the 

area’s median worker’s income (U.S. Census Bureau 2017). Electric prices were taken from a Bureau of 

Labor Statistics report on the metropolitan area and used 2015 retail prices of about $0.10 per kWh (US 

DOL 2017). All monetary values are in 2015$. 

 2: Methods 

2.1: Data Sorting and Calculations 

Trips were aggregated from the trip data set of the Puget Sound 2014 Regional Travel (Kilgren 

2015). This data set included about 48,000 trips total. Trips were included for our model if: 

• The trip’s purpose was travel to the person’s workplace 

• They were by a car or carpool 

• The person recording the trip was the driver 

• The vehicle was parked in either a parking lot or on the street near the destination, not in a 

Park N Go lot, for intermodality 

• The trip started between 6 a.m. and 6 p.m. 

Various additional filters were used to remove error values or incomplete responses that 

affected the data of interest. After filtering the data approximately 3,500 trips were used for our model. 

From each trip, the following information was extracted: 

• Destination census block group 

• Trip distance 

• Hour of arrival, rounded down 
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• Hour of exit, defined as the sum of the duration of time spent at destination and the hour of 

arrival, rounded down 

• The respondent unique ID associated with the trip 

The maximum potential utilization rate of all autonomous enabled charging was estimated using 

a 10,000 iteration Monte Carlo simulation. In these scenarios it is assumed that a single parking space 

per charger will charge the vehicles and that the level 4 or 5 autonomous vehicles will drive themselves 

into and out of the charging and normal parking spaces. For each iteration a random trip was sampled 

from the pool of all non-zero distance trips in the travel survey. This trip's distance was used, along with 

a 20 miles of electric range per hour charge rate for a Level 2 EV charger (6.6 kW) (Smith and Castellano 

2015), to determine the time required for a full charge for each vehicle. After a full charge was achieved, 

1 additional minute was assumed to elapse during switching to the next vehicle. This continued until at 

least 8 hours had passed, when the vehicle left the charger. This was applied for all autonomous 

charging scenarios. The utilization rate was the time that a vehicle was charging divided by the total 

time elapsed. Maximum utilization was found to have a mean of 31% and a standard deviation of 6.8%. 

The histogram of the maximum utilization iterations is shown in Fig. 1. For the level 0-3 automation 

scenario it is asusmed that each vehicle will use a charging space for the whole time that parking is 

needed. 
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Fig. 1. Maximum Utilization Rate Histogram 

Parking demand was aggregated based on destination census block. For each block, we 

calculated the peak number of spots demanded, the total number of trips ending in the block, the total 

number of miles traveled to the block, the average number of miles per trip for the zone, and the 

average number of trips demanded per peak spot demanded. The number of spots demanded in each 

hour is calculated in Equation 1. These were calculated from the Puget Sound 2014 Regional Travel 

Survey (Kilgren 2015), starting at values of 0 at 6 a.m. and ending at 6 p.m. 

For each hour and zone jointly, the parking spot demand was calculated as shown in Equation 1, 

starting at 6 a.m., with demand and departures of 5 a.m. defined as 0. Peak parking demand for a zone 

was defined as the maximum demand of all hours between 6 a.m. and 7 p.m. This calculates the 

maximum number of spots of parking in any zone that would be demanded for one specific hour, as cars 

both leave and arrive throughout the day. 

 Equation 1: Hourly Parking Spot Demand 

𝐷𝑒𝑚𝑎𝑛𝑑𝑡 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1 + 𝐴𝑟𝑟𝑖𝑣𝑖𝑎𝑙𝑠𝑡 − 𝐷𝑒𝑝𝑎𝑡𝑢𝑟𝑒𝑠𝑡−1 

The arrival rate, shown in Fig. 2, is highest in the early morning, peaking at 8 a.m. It then drops 

rapidly. Departures, shown in Fig. 3, are more evenly distributed and more concentrated in the early 
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afternoon, peaking at 5 p.m. When taken together, these result in a peak driver parking demand 

occurring at 9 a.m. Commute distances in Seattle, shown in Fig. 4, are highly concentrated around short 

distances. The peak is up to 2 miles and generally follows a normal distribution.  Fig. 5 shows the 

histogram of the parking duration for the trips. Parking duration appears to follow a bimodal distribution 

with a small peak at 4 hours and a steep peak at 9 hours long.  
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Fig. 2. Histogram of Driver Arrival Times 

 

Fig. 3. Histogram of Driver Departure Times 
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Fig. 4. Histogram of Commute Distances 

 

Fig. 5. Histogram of Parking Durations 

King County, Washington has approximately 1,500 census block groups and commuting parking 

demand was found for about 900 of these. Distances between the census blocks were calculated from 

the Puget Sound Regional Councils GIS database (Norton n.d.). Manhattan distance was used — that is, 

the sum of the absolute value of the differences between the x and y centroids. This was used to derive 

the cost of walking and cost of driving. In both cases, two trips were expected every day of a 260-day 

work year. The cost of walking from a parking space to a destination was based upon King County’s 

$41,700 per capita income, 2015$ (U.S. Census Bureau 2017), a 52-week year, a 40-hour work week, a 3-

mph average walking speed (National Academies of Sciences, Engineering, and Medicine 2013), and a 

50% assumed value of time discount for personal vehicle traveled, factored by a 220% increase for time 

value of walking when compared to personal vehicle travel (National Academies of Sciences, 

Engineering, and Medicine 2013). This leads to a yearly cost of ~ $5,400 a year per mile-spot, when 

diverting parking from desired zones, as shown in Equation 2. 

 Equation 2: Cost of Walking 

7.35
$

𝑚𝑖
≈ 41,700

$

yr
∗

1

52

𝑦𝑟

𝑤𝑒𝑒𝑘
∗

1

40

𝑤𝑘

ℎ𝑟
∗

1

3

ℎ𝑟

𝑚𝑖
∗ 0.5 ∗ 2.2 
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The costs of additional vehicle travel for a Level 5 EV to travel to another parking area was 

estimated using a $0.10 per kWh electricity cost (US DOL 2017), a 35 kWh per 100 mi fuel economy (EPA 

n.d. X), $0.005  / mi maintenance cost (Alexander and Davis 2013), and a $0.246  / mi depreciation cost 

(AAA 2015), the last cost not being specific to electric vehicles. All costs are in 2015$. This leads to about 

a $0.33 per mile cost a when diverting parking from desired zones, as shown in Equation 3. This is much 

less than the costs of walking. In a drop-off and pick-up scenario with vehicle automation, chargers can 

be expected to be further from demand where parking would be less expensive. This enables significant 

infrastructure cost savings by traveling further than the maximum allowable walking distance. We note 

that the costs of automation equipment have not been included in this estimate, which represents an 

optimistic assumption. 

Equation 3: Cost of Driving 

0.33
$

𝑚𝑖
≈ (0.35

𝑘𝑊ℎ

𝑚𝑖
∗ 0.1

$

𝑘𝑊ℎ
+  0.05 

$𝑚𝑎𝑖𝑛𝑡.

𝑚𝑖
+  0.246 

$𝑑𝑒𝑝𝑟.

𝑚𝑖
) 

Real estate costs for parking spaces were estimated using data from King County GIS (“KCGIS 

Data Download” 2014). Parcel data points were spatially joined and aggregated into each census block. 

The specific data point used was the average assessed unimproved land value per square foot of all 

parcels in a block. The average was taken only from parcels that had positive real estate values. 

Unimproved values were used in the absence of gross-square-foot values for a parcel, which would 

allow the value of built structure space to be used, as opposed to the value of a parking lot. Some blocks 

had no parcels with positive assessed real estate values. Of these, only one was a full block. The others 

were pieces of census blocks, cut by the borders of the county and with small dimensions for distance 

calculations. The full block and two of the cut-off blocks also had travel demand. For the full census 

block, ID 530330211004, the average cost of the seven surrounding zones, 18.8 $/sq-ft, was used. For 

block 530610507005, the average of the full two zones below it, 19.5 $/sq-ft, was used. For block 
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530610509003, the average of the full two zones below it, 22.1 $/sq-ft, was used. The few remaining 

blocks with no real estate and demand data were removed from consideration for charger placement. 

The size of a parking space was taken as 15m2, as defined by the Seattle city code for a standard space 

for “large vehicle” (City of Seattle 2017). This ignores the additional space required for navigation, which 

would change based upon scale and parking lot design. In addition, since Level 4 or Level 5 vehicles that 

parked themselves autonomously would not require space for doors to open, spaces could be narrower 

than traditional spots. 

2.3: Charger Selection and Infrastructure Costs 

Based on the costs of electric vehicle infrastructure equipment (Smith and Castellano 2015), we 

estimated the installed capital costs of Level 2 charging equipment to be $10,000 per charger. This is 

based on $4,000-6,000 single-port level 2 charger and $600-$13,000 (mean $3,000), for installation 

(Smith and Castellano 2015). A conservative combined estimate of $10,000 was used to account for the 

high variability in costs and the likelihood that retrofits would be needed for facilities without adequate 

electrical wiring capacity. Level 2 chargers can charge at a rate of 6.6 kW, providing a typical vehicle 

about 20 miles of range per hour of charging (Smith and Castellano 2015). Given the trip distance 

distribution seen in Fig. 4, this will fully recharge more than 95% of all trips considered in under 2 hours. 

DC charging would not make economic sense, given combined equipment and installation costs of 

$40,000-$90,000 (Smith and Castellano 2015). For levels 4 and 5 automation, where one charger can 

fulfill multiple vehicles, DC charging would cost more per mile per hour than level 2 charging (Smith and 

Castellano 2015), a gap that increases as one accounts for the time to switch out vehicles. This $10,000 

capital cost for a Level 2 charger was annualized over 15 years, using the City of Seattle’s current 4.122% 

30-year bond rate (City of Seattle n.d.) to about $900 per year. Maintenance is likely to be insignificant 

except in cases of vandalism or a failure not covered by warranty (Smith and Castellano 2015). Wireless 

communication is likely to be necessary to allow for autonomous parking, and the U.S. Department of 
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Energy lists current wireless infrastructure for charging costs as between $100-$900 a year (Smith and 

Castellano 2015). We assumed this was unnecessary in non-autonomous scenarios, but a necessary 

additional cost in autonomous scenarios with a cost of $500 per year per charger.  

 2.4: Optimization 

2.4.1: Optimization Model Overview 

This paper builds off of prior mixed linear optimization work in the literature and expands upon 

those models to capture join driver-owners cost minimization and to capture the possible effects of 

vehicle automation on owner and driver costs. This paper is focused on building a modular optimization 

model and uses the unweighted data as a direct input rather than building a model for travel demand. 

This model further expands on prior work by calculating charging station owner cost in terms of a real 

estate component, based on assessed unimproved real estate values and the average cost to install one 

charging station. In this paper’s model, each charging space has a limited capacity and multiple spaces 

can be placed in each location. This paper uses the owner cost as a component of the objective function 

to find the socially optimum amount and distribution of spending. Charging station owner cost could 

also be used as a constraint, either in addition to or instead of in the objective function, to find the 

optimum way of allocating a given owner cost, which may be possibly less than the socially optimum 

one. This paper also uses trip distance, time, and assigned parking data to calculate the temporal 

changes in electricity demand caused by vehicle charging. 

In addition to a base case model, showing optimization for no automation (levels 0-3), there are 

also individual models for level 4 and level 5 automation. For level 4 and level 5 automation, demand is 

served in terms of miles, rather than trips, to account for the ability of vehicles to queue themselves for 

charging without human intervention. The level 4 automation scenario could also be adapted to cover 

smart charging infrastructure scenarios. This would require adjusting infrastructure costs to account for 
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the different technology and potentially limiting the number of vehicles that could be served by a single 

charger. For level 5 automation, the maximum access cost constraint is removed and costs (c) is 

redefined as a function relating distance from parking to destination to the costs of energy consumption 

and vehicle deterioration needed to travel that distance. As with Chen et al., this paper simplifies the 

solution by ignoring the increase in charging demand, but not cost, from changes in trip distance caused 

by parking diversions. 

Table 2 summarizes all variables and constants used in the optimization models, as well as the 

constants’ sources. Variable definitions given here are general, e.g. demand, and may have slightly 

different definitions or be calculated differently in the various scenarios, i.e. demand in number of 

stations (integer) or miles. The following sections detail how each variable is used and calculated in each 

scenario. 
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Table 2: Variable and Constant Definitions and Sources 

Variable/Constant Definition Source 

𝑖, 𝑗 Travel Analysis Zone ID N/A 

𝑐𝑖𝑗  Driver cost of parking in zone 𝑖 

when traveling to zone 𝑗, $ 

N/A 

𝑦{𝑚𝑖}𝑖𝑗  Demand for parking in zone 𝑖 

served in zone 𝑗, either number 

of stations or miles {mi} of 

charging needed 

N/A 

𝐾𝑖 average number of trips per 

peak trip in zone 𝑖, can be 

fractional, count 

Household Travel 

Survey(Kilgren 2015) 

𝐿 Charging infrastructure owner 

costs, $ 

(Smith and Castellano 

2015) (City of Seattle n.d.) 

(Zillow Inc 2017) 

𝑥𝑗 # of chargers in j, integer N/A 

𝐷𝑖 Demand for parking in zone 𝑖, 

either number of vehicles or 

miles 

N/A 

𝑑𝑖𝑗  walking distance between zone 

𝑖 and location 𝑗, miles 

(Norton n.d.) 

𝑤𝑖𝑗 Binary variable, true if any 

demand in zone 𝑖 served in zone 

𝑗 

N/A 
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Variable/Constant Definition Source 

𝑊 maximum walking 

distance, miles 

(Chen et al. 2013) 

𝐴𝑗 real estate cost per 

parking space and charger at 

location 𝑗, $ 

(“KCGIS Data 

Download” 2014) 

𝐵 costs per charging 

station, equipment and 

installation, $ 

(Smith and Castellano 

2015) 

𝐸 cost of walking, $ / mile (U.S. Census Bureau 

2017) 

𝑈 maximum charger 

utilization rate, % 

N/S 

𝑞 charger capacity, miles per shift (Smith and Castellano 

2015) 

𝑄𝑗 zone charge capacity, miles N/A 

𝐶𝑤 cost of wireless AV 

communication equipment 

maintenance, $ / year 

(Smith and Castellano 

2015) 

𝐹𝑒 fuel economy, kWh / mi (EPA n.d. X) 

𝑃𝑒𝑙𝑐 price of electricity, $ / kWh (US DOL 2017) 

(𝐴|𝑃, 𝑖) annuity value of current 

lump sum, $ 

(City of Seattle n.d.) 
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2.4.2: Levels 0-3 Automation Model 

In Levels 0-3 automation, all chargers must be occupied by the same vehicle for the full time 

that a vehicle is present. Demand is taken as the peak amount of parking demanded in any census block. 

This model minimizes the sum of the charging station owner cost for building the infrastructure and the 

cost of drivers walking between their parking spaces and workplaces, as shown in Equation 4. The latter 

is limited by a maximum 0.25-mile walking distance, shown in Equation 10. For the cost of distance, each 

peak trip is multiplied by the total number of trips per peak trip for each zone, Kij. This model is defined 

in Equation 4 through Equation 13. 

 

Objective: 

Equation 4 

min [∑ (∑ {𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗 ∗ 𝐾𝑖}
𝐽

𝑗
)

𝐼

𝑖
+ 𝐿] 

Decisions: 

 

• 𝑦𝑖𝑗 = peak parking demand of zone i served in location j, (stations to build in j), integer 

 

What we Want: 

Equation 5 

𝑥𝑗 = # of chargers in j = ∑ 𝑦𝑖𝑗

𝐼

𝑖
 

Constraints: 
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Equation 6 

∑(𝑦𝑖𝑗)

𝐽

𝑗

= 𝐷𝑖, ∀ i, (all parking demand served) 

Equation 7 

∑(𝑦𝑖𝑗)

𝐼

𝑖

≤ 𝑥𝑗, ∀ j,   (charging supply constraint) 

Equation 8 

𝑦𝑖𝑗 ≥ 0 ∀ i ∀ j  (non-negativity constraint on parking demand) 

Equation 9 

𝑥𝑗 ≥ 0 ∀ j (non negative station assignment) 

Equation 10 

𝑑𝑖𝑗 ∗ 𝑤𝑖𝑗 <= 𝑊 ∀ 𝑖 ∀ 𝑗 (maximum walking distance) 

Given: 

Equation 11 

𝐿 = ∑ (𝑥𝑗 ∗ (𝐴𝑗 + 𝐵) ∗ (𝐴|𝑃, 𝑖))

𝐽

𝑗

, (owner cost) 

Equation 12 

𝑐𝑖𝑗 = 𝑑𝑖𝑗 ∗ 𝐸 ∗ 2 ∗ 260, (walking costs) 

Equation 13 

𝑤𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖𝑗 > 0

0, 𝑒𝑙𝑠𝑒
} , (binary check if anyone walked between i and j) 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑎𝑠 {𝑤𝑖𝑗 ∗ 900,000 ≥ 𝑦𝑖𝑗} 
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Input Parameters: 

• 𝐷𝑖 = parking demand at zone i, peak vehicles, count 

• 𝐴𝑗 =  real estate cost per parking space and charger at location j, $ 

• 𝐵 =  costs per charging station, equipment and installation, $ 

• 𝑑𝑖𝑗 =  walking distance between zone i and location j, miles 

• 𝐸 =  cost of walking, $ / mile 

• 𝑊 =  maximum walking distance, miles 

• 𝐾𝑖 = average number of trips per peak trip in zone i, can be fractional, count 

• (𝐴|𝑃, 𝑖) = annuity value of current lump sum, $ 

 

2.4.3: Level 4 Automation Model 

With level 4 automation, several vehicles can queue to use to a single charger, allowing the 

charger to serve more than one vehicle per day. To account for this, demand is redefined as the 

aggregate miles that drivers must drive to reach their destination in each zone. Each charger can then 

charge up to its 20 miles of EV range per hour capacity times the expected utilization rate of 31%, based 

upon the county’s trip-length distribution. Each trip between blocks is assumed to have the average 

number of miles of the trips from the origin block, DAvg-i. The model for level 4 automation is described in 

Equation 14 through Equation 25. Equation 25 is a simplification, used to convert between aggregate 

miles, Ymi-ij, and individual trips, Yij, in order to calculate driver costs. This scenario could also be adapted 

for smart charging scenarios. The values for the cost of electric vehicle chargers and maintained would 

need to be adjusted for the new technologies. Additionally, a constraint may need to be added to cover 

a potential limit on the number of vehicles a single charger could serve, as a physical hook-up would be 

needed for each individually parked vehicle. 
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Objective: 

Equation 14 

min [∑ (∑ {𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗}
𝐽

𝑗
)

𝐼

𝑖
+ 𝐿] 

Decisions: 

• 𝑦𝑖𝑗 = total trips ending in zone i served in location j, count 

What we Want: 

Equation 15 

𝑥𝑗 = # of chargers in j = 
(∑ 𝑦𝑖𝑗

𝐼
𝑖 )

𝑈 ∗ 𝑞
, integer 

Constraints: 

Equation 16 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐽

𝑗

≥ 𝐷𝑖, ∀ I, (all parking demand served) 

Equation 17 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐼

𝑖

≤ 𝑄𝑗, ∀ j, (charging supply constraint) 

Equation 18 

𝑦𝑖𝑗 ≥ 0 ∀ i ∀ j (non-negativity constraint on parking demand) 

Equation 19 

𝑥𝑗 ≥ 0 ∀ j (non-negative station assignment), 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

Equation 20 

𝑑𝑖𝑗 ∗ 𝑤𝑖𝑗 <= 𝑊 ∀ 𝑖 ∀ 𝑗 (maximum walking distance) 
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Given: 

Equation 21 

𝐿 = ∑ (𝑥𝑗 ∗ ((𝐴𝑗 + 𝐵) ∗ (𝐴|𝑃, 𝑖) + 𝐶𝑤))

𝐽

𝑗

, (owner cost) 

Equation 22 

𝑐𝑖𝑗 = 𝑑𝑖𝑗 ∗ 𝐸 ∗ 2 ∗ 260, (walking costs) 

Equation 23 

𝑤𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖𝑗 > 0

0, 𝑒𝑙𝑠𝑒
} , (binary check if anyone walked between i and j) 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑎𝑠 {𝑤𝑖𝑗 ∗ 900,000 ≥ 𝑦𝑖𝑗} 

Equation 24 

𝑄𝑗 = 𝑥𝑗 ∗ 𝑈 ∗ 𝑞, zone charge capacity, miles 

Equation 25 

𝑦𝑚𝑖𝑖𝑗
= 𝑦𝑖𝑗 ∗ 𝐷𝑎𝑣𝑔𝑖

 

Input Parameters: 

• 𝐷𝑖 = parking demand at zone i, peak driver miles 

• 𝐷𝑎𝑣𝑔𝑖
= mean trip distance for trips ending in zone i, miles 

• 𝐴𝑗 =  real estate cost per parking space and charger at location j, $ 

• 𝐵 =  costs per charging station, equipment and installation, $ 

• 𝑑𝑖𝑗 =  walking distance between zone i and location j, miles 

• 𝐸 =  cost of walking, $ / mile 

• 𝑊 =  maximum walking distance, miles 

• 𝑈 = maximum charger utilization rate, % 
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• 𝑞 = charger capacity, miles per shift 

• (𝐴|𝑃, 𝑖) = annuity value of current lump sum, $ 

• 𝐶𝑤 = cost of wireless AV communication equipment maintenance, $ / year 

 

2.4.4: Level 5 Automation Model 

For level 5 automation, the maximum walking distance is removed to account for the ability of 

vehicles to drop off and pick up their passengers. The cost of walking is therefore replaced with energy 

and vehicle depreciation costs for this extra distance of vehicle travel, as calculated in Equation 33. 

Otherwise, the model is identical to that of level 4 automation and is defined in Equation 26 through 

Equation 36. 

 

Objective: 

Equation 26 

min [∑ (∑ {𝑐𝑖𝑗 ∗ 𝑦𝑖𝑗}
𝐽

𝑗
)

𝐼

𝑖
+ 𝐿] 

Decisions: 

• 𝑦𝑖𝑗 = total trips ending in zone i served in location j, count 

What we Want: 

Equation 27 

𝑥𝑗 = # of chargers in j = 
(∑ 𝑦𝑖𝑗

𝐼
𝑖 )

𝑈 ∗ 𝑞
 

Constraints: 
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Equation 28 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐽

𝑗

≥ 𝐷𝑖, ∀ I, (all parking demand served) 

Equation 29 

∑ (𝑦𝑚𝑖𝑖𝑗
)

𝐼

𝑖

≤ 𝑄𝑗, ∀ j, (charging supply constraint) 

Equation 30 

𝑦𝑖𝑗 ≥ 0 ∀ i ∀ j (non-negativity constraint on parking demand) 

Equation 31 

𝑥𝑗 ≥ 0 ∀ j (non-negative station assignment) 

Given: 

Equation 32 

𝐿 = ∑ (𝑥𝑗 ∗ ((𝐴𝑗 + 𝐵) ∗ (𝐴|𝑃, 𝑖) + 𝐶𝑤))

𝐽

𝑗

, (owner cost) 

Equation 33 

𝑐𝑖𝑗 = 𝑑𝑖𝑗 ∗ 𝐹𝑒 ∗ 𝑃𝑒𝑙𝑐 ∗ 2 ∗ 260, (drop-off/pick-up energy cost, $) 

Equation 34 

𝑤𝑖𝑗 = {
1, 𝑖𝑓 𝑦𝑖𝑗 > 0

0, 𝑒𝑙𝑠𝑒
} , (binary check if anyone walked between i and j) 

𝑠𝑜𝑙𝑣𝑒𝑑 𝑎𝑠 {𝑤𝑖𝑗 ∗ 900,000 ≥ 𝑦𝑖𝑗} 

Equation 35 

𝑄𝑗 = 𝑥𝑗 ∗ 𝑈 ∗ 𝑞, zone charge capacity, miles 

Equation 36 

𝑦𝑚𝑖𝑖𝑗
= 𝑦𝑖𝑗 ∗ 𝐷𝑎𝑣𝑔𝑖
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Input Parameters: 

• 𝐷𝑖 = parking demand at zone i, peak driver miles 

• 𝐷𝑎𝑣𝑔𝑖
= mean trip distance for trips ending in zone i, mile 

• 𝐴𝑗 =  real estate cost per parking space and charger at location j, $ 

• 𝐵 =  costs per charging station, equipment and installation, $ 

• 𝑑𝑖𝑗 =  walking distance between zone i and location j, miles 

• 𝑈 = maximum charger utilization rate, % 

• 𝑞 = charger capacity, miles per shift 

• 𝐹𝑒 = fuel economy, kWh / mi 

• 𝑃𝑒𝑙𝑐 = price of electricity, $ / kWh 

• (𝐴|𝑃, 𝑖) = annuity value of current lump sum, $ 

• 𝐶𝑤 = cost of wireless AV communication equipment maintenance, $ / year 

3: Results and Discussion 

The optimal number of chargers, given by our models, for levels 0-3, level 4, and level 5 

automation are of 1,900, 680, and 331 chargers, respectively. These cover a total of 2,300 trips and 

1,900 peak trips. This leads to each charger covering an average of 1.2, 3.5, and 7.4 trips, with 4.4%, 

13%, and 27% of the 13 hours through 6 a.m. and 6 p.m. spent charging vehicles. The maximum 

utilization rate that the model would assign is the 31% expected utilization rate calculated in Section 3.1. 

The annualized equipment and parking costs, to build upon these scenarios, for levels 0-3, level 4, and 

level 5 automation are $1.75 million, $932,000, and $436,000, respectively, while the total driver and 

owner costs, are $1.75 million, $937,000, and $540,000, respectively.  

The difference between these two sets of values show the potential transfer of cost payment 

from charger/parking facility owners to drivers, assuming driver parking fees are constant. Without any 
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automation the ability to move to cheaper areas is limited by walking distances, hence effectively all the 

extra costs to handle EVs is covered paid by the charger owner. Under limited automation or smart 

charging scenarios the ability to increase utilization of chargers encourages charger owners to move 

some chargers to cheaper, but more distant, locations. This however is still bounded by walking 

limitations and drivers incur only 0.5% of net social costs. It is only when automation decouples parking 

locations from the need to walk to final destinations under level 5  when significant costs can be 

transferred to drivers, in the form of increased energy consumption and wear in tear, totaling 19% of 

net social parking costs. In all automation scenarios, however, net social savings dwarf the potential 

increase in driver costs. Moving from no automation or smart charging to level 4 automation or smart 

charging entails transferring just 0.6% of net social savings to drivers, while moving to full automation, 

from no automation, transfers 13% of net social savings from charger owners to drivers. These transfers 

could be removed or lessoned by changes in parking fees, without changing the socially optimal charger 

placement. 

 The histograms of the distribution of chargers for levels 0-3, level 4, and level 5 automation are 

shown in Fig. 6 through Fig. 8. These histograms don’t include the zones with zero chargers and truncate 

the largest groupings. Fig. 9 through Fig. 11 show the percentage decrease in number of charging 

stations, by census block, when increasing the level of automation. The legend groups these by equal 

percentile size groups. When moving from no automation to level 4 automation, roughly a quarter of 

the blocks keep the same number of, or no, chargers, another quarter decrease the number of chargers 

by as much as a third, another quarter decrease by up to two-thirds, and the final quarter decrease by 

up to 100%. When moving from no automation to level 4 automation, one-third of the blocks register no 

change, one-third decrease by up to one-half, and the remaining third decrease by up to 100%. When 

moving between level 4 and level 5 automation, one-third of the blocks register no change in chargers, 

one-third decrease by up to 93%, and the remaining third decrease by up to 100%. 
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The hourly electric demand from the chargers is shown in 

 

Fig. 12. Under levels 0-3 automation, demand peaks with the arrival times, between 7 a.m. and 

9 a.m., with demand at just over 2,000 kWh between 8 and 9 a.m. After this point electric demand 

rapidly decreases until 11 a.m., after which it continues to slowly decrease. The pattern under level 4 

automation is similar, except that the 7 a.m. to 9 a.m. peak is level at just under 1,500 kWh, reducing 

about fourth of the peak demand. Under level 5 automation, electric demand stays steady at just under 

700 kWh until 4 p.m., when it starts decreasing as people leave their workplaces. This is a 31% decrease 

of the peak electrical demand under level 4 automation and a decrease of 68% under level 5 

automation, when compared to no automation. This shows that simply taking advantage of the 

automated queueing allowed by automation can significantly smooth the demand peaks without 

specific consideration to grid management. 
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Fig. 6. Histogram of Charger Distribution for Levels 0-3 Automation, 995 Blocks with 0, 1,900 Total Chargers 

 

Fig. 7. Histogram of Charger Distribution for Level 4 Automation, 960 Blocks with 0, 680 Total Chargers 
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Fig. 8. Histogram of Charger Distribution for Level 5 Automation, 1,275 Blocks with 0, 331 Total Chargers 

Fig. 9. Percent Decrease in Chargers from Level 0 to Level 4 Automation: Percentile Groups 
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Figure 10: Percent Decrease in Chargers from Level 4 to Level 5 Automation: Percentile Groups 
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Fig. 11. Percent Decrease in Chargers from Level 0 to Level 5 Automation: Percentile Groups 
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Fig. 12. Hourly Electric Demand Under Each Level of Automation 

4: Conclusion 

This paper presented a method to characterize the impact of privately-owned autonomous 

electric vehicles on electric vehicle charger placement, distribution, utilization, and power demand. EV 

charger placement was optimized based on minimizing charging station owner and driver costs. Without 

any automation, we assumed each vehicle would occupy a charger for the entire duration that it is 

parked, whether or not it was finished charging. For level 4 automation it was assumed that vehicles 

could vacate themselves from a charger when they are fully charged and allow another vehicle to 

charge, with a 1-minute time to switch vehicles. For no automation and level 4 automation, the driver 

costs were limited by a maximum 0.25-mile walking distance. For full, level 5 automation, driver cost 

was unbounded. 
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The electrical demand of the optimal solution for these scenarios was also estimated. Moving 

from levels 0-3 to level 4 and level 5 automation reduces the peak electrical load by 31% and 68%, 

respectively. This is from a peak load of about 2,000 kWh in the peak hour or 1 kWh per peak vehicle. If 

the number of peak EV trips were to be 1 per worker for the whole population, over 2 million in King 

county (U.S. Census Bureau 2017), then this peak would be over 1,000 MWh. Moving from no 

automation to level 4 automation lowered charging station owner costs by 47% and total costs, 

including both charging station owner and driver costs, by 46%. Moving from levels 0-3 automation to 

level 5 automation decreased charging station owner costs by 75% and total costs by 69%. Without any 

automation, the cost borne by drivers is insignificant as each vehicle can only serve one driver at a time 

and drivers' distances between their workplace and their parking spots are limited. This cost increases in 

significance in the level 4 automation scenario, where a driver walking distances are longer to share a 

charger with other drivers. The total cost borne by drivers, however, is only 0.5% of the total charging 

station owner cost. The cost borne by drivers is much more significant with level 5 automation, where a 

vehicle travels autonomously to much greater distances than are possible via walking with the 

equipment cost savings. Here the cost borne by drivers is 24% of the total equipment and real estate 

costs. Due to this, increasing the relative cost borne by drivers will only significantly change the level 5 

automation scenario, by decreasing the movement of charging stations. 

Electric vehicles are experiencing market growth and significance while automated technologies 

are being introduced to the market. This paper has shown that these two technologies have potential 

synergies and a novel method to take advantage of these synergies while optimizing electric vehicle 

infrastructure deployment. It has also shown that taking advantage of the potential synergies between 

these technologies would allow for significant decreases in support infrastructure cost. This would also 

allow for smoothing of the electric demand caused by electric vehicles. 
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5: Limitations and Future Work 

The model was found to be computationally feasible for levels 0-3 and level 4 automation. A 

proven optimal solution to the level 5 automation scenario could not be found, due to computational 

limits. The solution reported is no more than 1.7% from the optimal solution. This reflects a possible gap 

of $9,000, which is under the assigned cost of a single charging station. Given more resources, the true 

optimal solution could likely be found, though the decrease in social cost would not be large enough to 

change the paper’s conclusions. 

None of our scenarios directly accounted for the temporal aspect of parking demand in the 

optimization model itself. For no automation, the maximum hourly demand of each individual zone was 

used. This has the potential to overestimate the optimal number of stations, as neighboring zones may 

have different peak demand times. For the automated-vehicle scenarios, the total number of miles 

traveled was used. Many of these miles might be spaced close together and need to be charged in less 

than the full timeframe, a possibility suggested by the distribution of parking durations shown in Fig. 5. 

This leads to a potential underestimation of the optimal number of stations necessary to fulfill demand. 

Accounting for this temporal dimension would have greatly increased computational complexity. Given 

the limits reached when modeling level 5 automation, this complexity was beyond the resources 

available to the authors for this paper. Creating and running a time-sensitive set of models would 

provide more precise solutions. 

This paper used the Puget Sound Household Travel Survey's (Kilgren 2015) trips as a direct and 

unweighted demand input. Using the data directly provides more concentration of travel demand than 

reality and using the data unweighted introduces likely bias; however, the main goal of this paper is to 

present the novel methodology for optimizing charging infrastructure for automation and testing the 

potential gains from this technology and joint approach. These potential gains come from the ability to 
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queue vehicles for a charger and eliminate the maximum-walking-distance constraint. The first potential 

gain is affected by the trip-length distribution, which is strongly low weighted, even when accounting for 

data bias. The second potential gain is affected by the concentration of demand and by the distribution 

of real estate costs relative to demand. The concentration of demand is likely to be higher when directly 

using the survey data. The results should, therefore, still be informative on this method’s potential 

benefit. Without a demand model, areas of no visible demand are, in effect, removed from the model 

and see no chargers in any scenario, decreasing the ability to draw spatial distribution conclusions. 

Adding a demand distribution model would allow for specific spatial distribution conclusions to be 

drawn. Additionally, by using the data directly and in its entirety, for drivers, we ignore the question of 

who will adopt electric vehicles and which adopters will need workplace charging. Not everyone may 

purchase EVs and some who do will have sufficient range and charging at home. 

 The most specific spatial data provided by Puget Sound Household Travel Survey (Kilgren 2015) 

were census blocks. Distance was determined using the centroids of these zones. Travel within a zone 

was always considered free, while travel from the border of one zone to another was counted as being 

equivalent to between their centroids. This is a fundamental limitation of the data source. The increase 

of vehicle costs for level 4 and level 5 automation was not included in the model. The model only 

optimized for fleets that are fully level 0-3, level 4, or level 5 autonomous vehicles. Optimization models 

accounting for mixed fleets and/or deciding which level of automation is optimal given vehicle pricing 

would allow further insights. Distances for parking diversions were calculated as Manhattan distance. 

This is a potential underestimation, when accounting for the significant presence of bodies of water. 

Diversion costs also ignored increases in traffic congestion, which could be significant in the level 5 

scenario. 

The cost of a single parking space was taken as the space's individual physical footprint times 

the census block’s average assessed unimproved real estate value. Parking spaces need navigational 
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area as well, which changes as the number of spaces in a lot or garage increases. Market real estate 

value and usage is also affected by zoning and current built infrastructure, both of which this paper 

ignores. A more accurate real estate model accounting for the value of current parking infrastructure 

would allow for a more accurate balance of driver and owner costs. The cost of walking was based upon 

a constant, the median income. Car ownership and type of vehicle ownership is influenced by income. 

Therefore, using the median income may underestimate the true cost walking. Future studies could 

account for this. 

This paper only considered private vehicles for driver usage. Possible car-sharing was not 

evaluated, nor did the model attempt to account for the possibility of only charging overnight at the 

commuters’ homes. Future work could attempt to determine demand based upon home charging 

availability and the potential of car sharing. This would also add a cost to time to charge, beyond there 

being enough time to reach a full charge. 
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