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Abstract

We use tailored surveys and benchmarking in the flat-weave rug industry to better un-

derstand the shortcomings of standard productivity measures. TFPQ performs poorly be-

cause of variation in product specifications across firms. Controlling for specifications aligns

TFPQ with lab benchmarks. We also collect quality metrics to construct quality productiv-

ity (the ability to produce quality given inputs) and find substantial dispersion across firms.

This motivates interest in multi-dimensional productivity, or capability. As quality produc-

tivity is negatively correlated with TFPQ, TFPR may perform better at capturing capabilities

in settings where better firms make products with more demanding specifications that have

greater input requirements.
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1 Introduction

Economists have long recognized that the reason some countries are richer than others is

not primarily due to differences in their endowments or resources, but because of how effec-

tively their firms deploy those resources to generate economic activity. This prompts a set of

obvious questions. How large are productivity differences across firms? What drives this disper-

sion? What policies are most effective at raising productivity? Answering these questions is an

active area of research (see the review by Syverson, 2011) and central to this goal is the ability to

accurately measure the productivity of firms.

What the researcher typically wants is a measure of physical output conditional on physi-

cal inputs, termed quantity-based productivity (TFPQ). This requires data on input and output

quantities that are not typically available. In cases where these data are available, quantities

are likely measured with substantial error since they cannot be easily read off accounting state-

ments. Even if well measured, product specifications and quality levels can vary dramatically

across firms and within firms across product lines—variation that is not well captured by dis-

aggregated product categories in typical administrative datasets. This makes it difficult to both

measure productivity for firms that produce many varieties or to compare productivity across

firms making different varieties. Multi-product firms pose further challenges since output and

input mixes vary even more widely across products than within.

As most firm-level datasets only provide expenditure and revenue data, much of the liter-

ature relies on revenue-based productivity (TFPR) measures that also capture differences in

markups and quality across firms. However, if a firm’s capabilities come from its ability to pro-

duce both quality and quantity, TFPR may be closer to the object of interest even though it con-

founds forces unrelated to productivity.

The existing literature has pursued various approaches to understand and to mitigate these

measurement issues by drawing upon additional data (e.g., prices) alongside (often strong) iden-

tifying assumptions.1

We take a different approach. We develop tailored surveys focusing on a specific industry—

flat-weave rugs—that directly address many of these measurement issues through the combi-

nation of detailed product specifications and external assessments of quality. The surveys allow

us to calculate not only quantity productivity (the ability to produce quantity with a given set of

inputs), but also quality productivity (the ability to produce quality with a given set of inputs)

and capabilities (the combination of the two, essentially a TFPQ measure using quality-adjusted

1See de Loecker and Goldberg (2014) for a review of identification assumptions and measurement issues in pro-
duction function estimation.
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quantities).2

To better understand the shortcomings of standard productivity measures and potential reme-

dies, we compare survey-based productivity measures to productivity benchmarking exercises

which we argue are closest to true productivity. We find that standard TFPQ performs poorly

at measuring quantity productivity, shows excessive dispersion across firms, and is inversely

correlated with quality productivity. Controlling for product specifications—effectively mak-

ing apples-to-apples comparisons—goes a long way towards remedying those deficiencies. Al-

though TFPR does better than TFPQ at capturing broad capabilities, it performs worse than

methods that combine survey information with explicit quality measures.

2 Survey Design and Data

Our data come from surveys we designed and administered on 219 rug-making firms in

Fowa, Egypt. These firms produce a type of kilim rug called “duble” using double-treddle foot

powered looms. As part of a randomized experiment exploring the impact of exporting we re-

cruited all firms with 1-5 workers making this type of rug.

Rug producers receive orders with a particular set of specifications that include the design,

thread types, and thread count. Producers prepare the appropriate inputs, install the threads on

the loom and weave the rug. Although duble rugs are already a subset of a 10-digit HS-product

code, there are many varieties (we observe 435 unique combinations of specifications).

In addition to rugs having different specifications, rugs also differ in quality. Unlike specifications—

codifiable attributes of the rug that are typically chosen by the buyer—quality depends on weav-

ing technique and is difficult to codify or contract on. For example, how flat the rug lies is de-

termined by how skillfully the firm installs the thread on the loom, and whether the threads are

held correctly while weaving.

We created a survey instrument to address the measurement issues noted above in contexts

where output varies in quality and firms produce many varieties. We administered 6 rounds of

surveys at the product-line level capturing the rug produced in the prior month. (As produc-

tion runs last longer than a month in this industry, this was almost always a single variety of

rug.) These surveys recorded detailed rug specifications; prices and quantities of all inputs and

outputs; and labor hours spent on production and preparation activities. We also hired an in-

dependent quality assessor who graded each rug that the firm was working on at the time of the

survey across 11 different dimensions (grading on a 1 to 5 scale).3

2Hallak and Sivadasan (2013) also explore multidimensional firm productivity.
3The dimensions are: corners, waviness, packedness, weight, touch, warp thread tightness, firmness, design ac-

curacy, warp thread packedness, inputs, and loom.
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Additionally, we set up a controlled laboratory in a rented space where all firms were paid a

flat fee for their head weaver to produce a 0.98m2 rug with identical specifications using identical

material inputs and capital equipment we provided. We recorded dimensions, weight and time

taken to weave the resulting rug, and sent the rugs to be scored anonymously by both our qual-

ity assessor and a local professor of handicraft science. Atkin, Khandelwal and Osman (2017)

provide further details on the sample, rug production, and the laboratory.

Online Appendix Table 1 provides summary statistics of the survey and lab, and Online Ap-

pendix Table 2 shows that our six product specifications (thread type, thread count, design dif-

ficulty, number of colors, market segment, duble subcategory) capture rug varieties relatively

well—specifications explain about half the variation in prices, output and revenue, and dimen-

sions such as thread count and type have the expected signs.

3 Measuring Productivity

We calculate several productivity measures from the survey data. The first measure we call

“unadjusted” productivity because, as in the existing literature, it does not adjust for the fact that

different firms produce rugs with different specifications (i.e., different varieties). We estimate

unadjusted TFPQ (φu) from a Cobb-Douglas production function:

x = φul
αlkαkeε (1)

where x is output in square meters, l is labor hours, k is capital (number of looms), and ε is mea-

surement error.4 For transparency, we estimate (1) in logs over every firm-round observation

using OLS and recover φu by exponentiating the residual. The Online Appendix replicates the

analysis estimating (1) using a control function.

Although this formulation is standard, a number of features reduce measurement concerns

compared to other settings. First, we observe quantities of x, l and k rather than revenues and

expenditures. Second, given the simple technology there are essentially no other inputs used

in production (e.g., no accounting, logistics, human resources). Third, we recorded the inputs

used for each specific rug produced so there is no error in allocating inputs to outputs.

Our second measure, “specification-adjusted” productivity, is more novel because it controls

for differences in the variety mix across firms that may make standard TFPQ measures mislead-

ing. To guide our specification adjustment, we place more structure on equation (1) by assuming

φu = φae
λγ , where λ denotes the vector of specifications which affect how quickly a rug can be

4At this level of disaggregation, the production function is best characterized as Leontief in materials. The unit of
analysis is the firm-round level.
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produced (e.g., a high thread count rug requires more labor and capital inputs) and γ are pa-

rameters to estimate. φa is specification-adjusted TFPQ that is recovered from estimating the

production function conditioning on the six specification controls.

These two measures essentially capture how many labor hours firms require to produce rug

quantity, potentially controlling for the specifications of the rug; we call these quantity produc-

tivity. While the literature typically explores a single dimension of productivity, as discussed

above, similar specification rugs also vary substantially in quality. Thus, there is a second di-

mension of productivity that also raises revenues:5 the skill of a firm at producing quality from

a given set of inputs. We term this quality productivity, or TFPZ.

It is necessary to construct a quality index in such a way that quality and quantity productiv-

ity estimates can be compared and aggregated. To do so, we let the consumers’ relative valuation

of quantity and quality guide us. For simplicity, we make the assumption that consumers have

CES demands between rugs and another good y, where consumers trade off the quality and

quantity of rugs as follows: U = ((Πjq
θj
j x)

σ−1
σ + (y)

σ−1
σ )

σ
σ−1 . The vector θ determines the trade off

between quantity and the eleven dimensions of quality q indexed by j. This implies demands:

lnx = (σ − 1)
∑
j

θj ln qj − σ ln p+ c (2)

where p is the price of the variety and c is a function of total expenditure and the rug price index

that is common across varieties. We recover the θjs by regressing (lnx + σ ln p)/(σ − 1) on our

eleven quality metrics and setting σ = 2.74 based on Broda and Weinstein (2006).6

We next conjecture a production function for producing consumers’ valued quality, Πjq
θj
j ,

with the same functional form as the quantity production function:

Πjq
θj
j = ζul

βlkβkeε (3)

where ζu is the residual after conditioning on labor and capital inputs.7 We assume ζu = ζae
λδ,

with the residual increasing in the firm’s quality productivity, ζa, and allowing the residual to also

depend on specifications (for example, ensuring high quality for a high thread count rug may

require more inputs than for a low thread count rug).8 Thus, as with quantity productivity, we

estimate two variants of quality productivity: unadjusted TFPZ (ζu) and specification-adjusted

5Atkin, Khandelwal and Osman (2017) shows that prices conditional on specifications increase in quality.
6This is their average elasticity estimate within the six-digit HS category for these rugs (HS 570231).
7In principle we could also adjust inputs with measures of input quality, particularly worker skill.
8Atkin, Khandelwal and Osman (2017) implicitly assume βl = βk = 0 as skill (rather than l and k) primarily

determines quality in this industry. Here, we posit similar production functions for quality and quantity.
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TFPZ (ζa).

Given our assumptions on supply and demand, it is straightforward to aggregate quantity

and quality productivity by forming a production function for the Πjq
θj
j x aggregator valued by

consumers (Πjq
θj
j x = ζaφae

λ(γ+δ)lαl+βlkαk+βkeε+ε). The implied productivity aggregator, which

we term specification-adjusted TFPC or firm capability, is the product of specification-adjusted

TFPZ and TFPQ (ζaφa).9 Similarly, unadjusted TFPC is ζuφu.

Finally, we also estimate standard TFPR from equation (1) but replacing x, l and k with rug

revenues, labor expenditures and the value of the capital stock, respectively.10

We compare the survey-based measures with productivity benchmarks from the controlled

lab. The lab provides direct measures of quantity productivity in meters squared per unit input:

Lab TFPQ = .98m2/(lα̂llabk
α̂k
lab), where llab is the hours taken to produce the rug in the lab, and klab =

1 is the number of looms. We calculate lab quality productivity, Lab TFPZ= Πjq
θ̂j
lab,j/(l

β̂l
labk

β̂k
lab), by

combining the anonymized quality assessments for the lab rugs (averaging over the two experts’

grades) with the θ̂js from regression (2). The α̂s and β̂s come from the specification-adjusted

production function estimates above. Lab capabilities, Lab TFPC, is simply the product of Lab

TFPQ and Lab TFPZ.

As we are able to ensure that inputs and product specifications are identical across firms, we

believe that the lab measures contain the least measurement error and come closest to reflecting

firms’ true productivity.11 Thus, we treat them as benchmarks with which to assess our survey

measures.

To summarize, the surveys provide two measures of quantity productivity (φu,φa), two of

quality productivity (ζu,ζa), two of capability (ζuφu,ζaφa), and TFPR. The controlled lab provides

three benchmarks: lab quantity productivity (Lab TFPQ), lab quality productivity (Lab TFPZ),

and lab capabilities (Lab TFPC).

For each firm, we have one survey-based measure for each survey round. To reduce noise, we

take firm-level averages over all post-baseline rounds and present all the productivity measures

relative to the mean.12 The Online Appendix provides further details on implementation and the

production function estimates.

9This approach mirrors the price index literature with equation (2) acting as a hedonic regression that quality
adjusts quantities before estimating the production function.

10Rug revenues and the value of k come from direct survey questions. Labor expenditures equal wages paid to
employees and the take home pay of weaver-owners. Values are adjusted using the monthly CPI.

11Since the loom, specifications, and inputs are identical for all firms in the lab, we do not need to specification
adjust to compare across firms.

12The experiment in Atkin, Khandelwal and Osman (2017) showed that inducing firms to export raised productiv-
ity. To ensure that we are not combining estimates for the same firm pre and post treatment, we only include the post
treatment rounds.

6



4 Comparing Productivity Measures

We now explore the relationship between the various productivity measures and draw con-

clusions for practitioners working with less-rich datasets. We also discuss the dispersion in pro-

ductivity across firms implied by each measure, a key moment of interest in the productivity

literature.

Result 1: Importance of Adjusting for Product Specifications. Comparing unadjusted TFPQ

across firms is challenging when specifications vary substantially.

Figure 1 plots both unadjusted and specification-adjusted TFPQ against Lab TFPQ—the mea-

sure we believe is closest to true quantity productivity.13

Consistent with the claim above, although the slope is positive (β = 0.13), unadjusted TFPQ

only weakly correlates with Lab TFPQ (corr=0.02). Specification-adjusted TFPQ has a steeper

slope and a stronger correlation with Lab TFPQ (β = 0.51,corr=0.14). This shows the value of

finer product-category controls for accurately measuring quantity productivity.

Result 2: Quantity versus Quality Productivity. In this industry, as in many others, consumers

place substantial value on quality. Our prior is that firms that are able to produce high quality are

highly skilled, and so can also produce products with a given set of specifications more quickly.

If there is a strong positive correlation between the two, then quality-productivity measures may

do a satisfactory job at capturing a firm’s broader capabilities.

Figure 2 shows two plots. The first reveals a strong negative relationship between unadjusted

TFPQ and unadjusted TFPZ (black). Thus, the in the absence of specification controls, quan-

tity and quality productivity are negatively correlated: firms that make lower quality rugs pro-

duce more quickly. However, and further showing the importance of adjusting for specifications,

this relationship flips when we adjust for specifications (the second plot in gray, specification-

adjusted TFPQ against specification-adjusted TFPZ). Consistent with our prior, quantity and

quality productivity are positively related. More capable firms take longer to manufacture rugs

only because they typically make varieties with more demanding specifications.

Thus, and as we show more directly below, in the absence of specification controls, TFPQ

may be a misleading measure of broad capabilities given the strong negative correlation be-

tween unadjusted quantity and quality productivity.

Result 3: TFPR as a Proxy for TFPC. If capabilities are multidimensional, and consumers value

quality, TFPR may be preferable to TFPQ-based measures since higher prices and revenues may

13The figures show both the line of best fit, the slope and significance of this line, the correlation coefficient, as
well as a bin scatter of observations (each dot reflects about 10 firms). The online appendix reports a correlation
matrix for the various measures.
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capture the ability to produce high quality. Figure 3 explores this claim by comparing several

of our productivity measures to Lab TFPC, the capability measure that combines quality and

quantity productivity from the lab.

Consistent with the discussion above, unadjusted TFPQ is a misleading measure of capa-

bility: it is negatively correlated with Lab TFPC (black diamond). However, TFPR (grey circle)

does indeed mitigate this measurement issue since it is positively correlated with Lab TFPC. Al-

though the relationship is weak, this reversal of slope relative to unadjusted TFPQ reveals that

TFPR may be a more suitable proxy for a firm’s capability than TFPQ if product specifications

are unavailable. Specification-adjusted TFPQ (black triangle) is more strongly positively cor-

related with Lab TFPC. As shown in Result 1, it more accurately captures quantity productiv-

ity, and as shown in Result 2, quantity and quality productivity are positively correlated after

specification-adjusting. Reassuringly, specification-adjusted TFPC (grey square), which com-

bines specification-adjusted TFPQ and TFPZ, has the strongest positive relationship with Lab

TFPC.

Result 4: Unadjusted TFPQ Overstates Dispersion more than Specification-Adjusted TFPQ.

Table 1 provides 90-10 ratios for the various productivity measures (figures 4-7 plot the distri-

butions of TFPQ, TFPZ, TFPC and TFPR respectively). Dispersion in Lab TFPQ is over three

times smaller than unadjusted TFPQ. Adjusting for specifications closes about half this gap. This

suggests that dispersion in standard datasets may partially reflect product differentiation rather

than differences in underlying productivity.

Result 5: TFPZ Dispersion is Large. Table 1 reveals large dispersion in quality productivity.

The 90-10 ratio in Lab TFPZ is 2.2. From the surveys, the unadjusted and adjusted TFPZ ratios

are 2.5 and 1.5, respectively. This suggests that even within a very narrowly defined product

category, there is large quality variation across firms.

Result 6: TFPC is More Dispersed than TFPQ and TFPZ. Capabilities are even more dispersed

than either quantity or quality productivity. The 90-10 ratio for Lab TFPC is larger than that

for Lab TFPQ and Lab TFPZ (similarly for specification-adjusted TFPC). An implication of the

fact that quantity and quality productivity are positively correlated, this result suggests that the

broad capabilities of firms may be more dispersed than a single dimension of productivity. To

our knowledge, this is the first attempt to document dispersion in capabilities through direct

measurement.
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5 Concluding Remarks

We close with a summary of this measurement exercise. First, standard TFPQ performs

poorly at measuring quantity productivity. Using product specifications to make apples-to-

apples comparisons substantially raises the correlation with the lab benchmarks and halves the

gap in measured productivity dispersion between survey and lab measures. Second, firms differ

substantially along a second dimension of productivity—their ability to produce high-quality

products. Finally, if researchers are interested in broader capabilities of firms, TFPR—for all its

imperfections—may be a better proxy than (unadjusted) TFPQ. TFPQ is likely to perform partic-

ularly poorly in settings like ours where more capable firms make products with more demand-

ing specifications that take longer to manufacture. But, tailored surveys that collect product

specifications and direct measures of quality may be the best path to understand productivity

dispersion across firms.
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Table 1: Productivity Dispersion (90-10 Ratios)

Lab TFPQ 1.3 Lab TFPZ 2.2

Lab TFPC 2.3 TFPR 2.7

Unadj TFPQ (ϕu) 4.7 Adj TFPQ (ϕa) 3.1

Unadj TFPZ (ζu) 2.5 Adj TFPZ (ζa) 1.5
Unadj TFPC (ζuϕu) 4.3 Adj TFPC (ζaϕa) 3.5
Notes: Table reports 90-10 ratios for productivity measures.
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Figure 1: Adjusting for Product Specifications
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Figure 2: Quantity versus Quality Productivity
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Figure 3: TFPR as Substitute for TFPC
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Figure 4: Distribution of TFPQ
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Figure 5: Distribution of TFPZ
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Figure 6: Distribution of TFPC
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Figure 7: Distribution of TFPR
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Appendix

A.1 Summary Statistics

We collected data for 219 rug producing firms in Fowa, Egypt between July 2011 and June

2014. We administered six rounds of surveys that captured information on rugs produced in the

prior month including the rug specifications, prices and quantities of all inputs and outputs, la-

bor hours spent on production and preparation activities. We also hired an independent quality

assessor (a highly-skilled rug producer) who graded the rugs being produced at the time of the

survey along eleven quality metrics (grading on a 1 to 5 scale, with 5 being the highest quality).

Table A.1 provides the means and standard deviations of key variables used in our estimations.

After the last survey round, we set up a controlled lab in a rented space where all firms were

asked to send their main rug producer to produce a rug with identical specifications using the

same material inputs and capital equipment that we provided. The rug producer was paid a flat

fee for his time. We recorded the rug’s final dimensions and the time taken to weave it. We also

sent the rugs to be scored anonymously by both our quality assessor and a local professor of

handicraft science. We use the average score for each quality metric in this paper. Table A.1 also

reports the mean and standard deviations of the quality lab measures. Atkin, Khandelwal and

Osman (2017) provides further details on the surveys and the sample.

Table A.2 reports the association between the rug specifications and the price of the rugs,

overall output and total revenue of the firm during the month prior to the survey. The coeffi-

cients have signs consistent with our priors and the high R-squared suggests that specifications

can explain much of the variation in these variables.

A.2 Survey-Based Productivity Measures

A.2.1 Quantity Production Functions

Our production function estimation follows Atkin, Khandelwal and Osman (2017). The first

set of production function estimates do not control for rug specifications and hence provide our

unadjusted TFPQ estimates. We estimate the following Cobb-Douglas production function:14

xit = φu,itl
αl
it k

αk
it e

εit (4)

14We assume that output is Leontief in materials and therefore materials do not enter into the estimation.
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where xit is the output (in m2) of firm i in period t, lit is total labor hours, kit is the number

of active looms, and φu,it is the firm’s unadjusted TFPQ. The error term captures unanticipated

shocks as well as omitted variables (the specifications of the rugs produced). To estimate the

parameters of the production function, we take logs to obtain

lnxit = lnφu,it + αul ln lit + αuk ln kit + εit (5)

The second set of production function estimates controls for rug specifications and provide

our specification-adjusted TFPQ estimate. We estimate

lnxit = lnφa,it + αal ln lit + αak ln kit + lnλ
′
itγ + εit (6)

where φa,it is the firm’s specification-adjusted TFPQ and the vectorλit includes six rug specifica-

tions: rug difficulty, thread count, thread type, number of colors, market segment, and narrow

product type (where we include dummies for each value of the latter two categorical variables).15

The error term now only captures unanticipated shocks and measurement error.

We estimate TFPQ via OLS and a control function. For the OLS regressions, we estimate (5)

by regressing log of output on labor and capital. For (6), we add the six specifications to the

regression. We estimate the production functions using the full set of duble firms in our sample

of post-treatment rounds.16 Standard errors are clustered by firm. We report the estimates in

columns 1 and 2 of Table A.3 below.

In the control function approach (Olley and Pakes (1996)) we assume capital is subject to

adjustment costs, labor is a flexible input, and we use warp thread quantity as the proxy. We

estimate the production functions using the one-step approach proposed by Wooldridge (2009),

with lit−1 as the instrument for lit, and cluster standard errors by firm. We report these estimates

in columns 3 and 4 in Table A.3 below.

Unadjusted and specification-adjusted TFPQ are constructed from exponentiating the resid-

uals of these production functions and then averaging across rounds for each firm.

15As discussed in Atkin, Khandelwal and Osman (2017), we have two samples of firms that we pool over in this
production function estimation. For the firms in the first sample, we did not record the market segment or rug
difficulty. We replace these missing values with the corresponding values from the subsequent survey round.

16This differs from Atkin, Khandelwal and Osman (2017) where we estimate the production function only on the
sample of control firms to avoid having to take a stance on the Markov process governing productivity evolution over
time for the treatment firms. In this paper, since we are simply interested in cross-sectional comparisons, we only
focus on the post-treatment sample where export status is not changing and estimate the production function over
all firms.

16



A.2.2 Quality Production Functions

Quality productivity, TFPZ, is estimated as follows. As noted in the text, we begin by obtaining

the consumers’ valuations for quality implied by the following demand curve:

lnxit = (σ − 1)
∑
j

θj ln qj,it − σ ln pit + cit (7)

where qjs are the eleven quality metrics, p is the price that firm i receives for its rug produced at

the time of the survey, and c is a common price index. Using an estimate of σ = 2.74 from Broda

and Weinstein (2006), we can re-write (7) as an estimating equation:

(lnxit + 2.74 ln pit) / (2.74 − 1) = κ+
∑
j

θj ln qj,it + νit (8)

where κ is a constant and ν is measurement error. The estimates of the θjs are reported in Table

A.4.

With the estimates of θ in hand, we formulate the production function for producing con-

sumers’ valued quality, Πjq
θ̂j
j , with the same functional form as the quantity production function

in (5):

ln

(
Πjq

θ̂j
j,it

)
= ln ζu,it + βul ln lit + βuk ln kit + εit (9)

As before, we can estimate (9) via OLS or a control function to obtain unadjusted TFPZ. The

results are reported in Table A.5.

Analogously to specification-adjusted TFPQ, we can recover specification-adjusted TFPZ by

controlling for specifications in the quantity production production:

ln

(
Πjq

θ̂j
j,it

)
= ln ζa,it + βal ln lit + βak ln kit + lnλ

′
itδ + εit (10)

The results of estimating (10) via OLS and a control function are reported in Table A.5.

Unadjusted and specification-adjusted TFPZ are constructed from exponentiating the resid-

uals of these production functions and then averaging across rounds for each firm.

A.2.3 Capabilities Production Functions

For unadjusted firm capabilities, which we term unadjusted TFPC, we multiply output by the

quality aggregator to formulate a combined production function for xitΠjq
θ̂j
j,it, the combination

17



of quantity and quality that consumers value in their utility function.

ln

(
xitΠjq

θ̂j
j,it

)
= ln ζu,it + lnφu,it + (αul + βul ) ln lit + (αuk + βuk ) ln kit + εit (11)

As before, we estimate (11) via OLS and a control function, and report the results in Table A.6.

The structure of the production function implies that the coefficients of the capabilities pro-

duction function equal the sum of the coefficients from the quantity and quality production

functions (e.g., the sum of the labor coefficient in column 1 of Table A.3 and the labor coefficient

in column 1 of Table A.5.17). Unadjusted TPFC is the product ζuφu.

Similarly, we can estimate specification-adjusted TFPC from the following production func-

tion:

ln
(
xitΠjq

θj
j,it

)
= ln ζa,it + lnφa,it + (αal + βal ) ln lit + (αak + βak) ln kit + lnλ

′
it(γ + δ) + εit (12)

with the results reported in A.6. Specification-adjusted TPFC is the product ζaφa.

A.2.4 Revenue Production Functions

We estimate a revenue production function using the following specification:

ln rit = lnTFPRit + ηl lnwit + ηk ln rkit + εit (13)

where rit is the revenue of the firm, wit is the wage bill, and rkit is the value of the capital stock.

We estimate (13) via OLS and a control function and report the results in A.7. (Note that we do

not control for specifications in these regressions). TFPR is constructed from exponentiating the

residual of this production function and then averaging across rounds for each firm.

A.3 Description of Appendix Figures and Tables

• Table A.1 provides summary statistics for the variables used to estimate the production

functions.

• Table A.2 estimates the relationship between the rug specifications and price, output and

revenue.

• Table A.3 reports the coefficients from the quantity production function.

17Due to missing observations, the coefficients do not line up exactly. The paper uses the TFPC estimate that
comes from the product of the individual ζu and φu estimates.
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• Table A.4 reports the θs coefficients from the demand estimation.

• Table A.5 reports the coefficients from the quality production function.

• Table A.6 reports the coefficients from the capabilities production function.

• Table A.8 is the correlation matrix for the measures used in the paper estimated using OLS.

• Table A.9 is the correlation matrix for the measures used but estimated using a control

function approach.

• Table A.10 shows the correlation matrix including both OLS and control function values.
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Table A.1: Summary Statistics

Mean Standard Deviation Observations

Output (Square Meters) 59.43 (75.04) 900

Labor Hours 5.55 (0.29) 900

Capital (Looms) 0.08 (0.27) 912

(log) Thread Quantity 7.46 (0.28) 913

Difficulty Control 3.23 (0.83) 926

(log) Number of Colors 1.72 (0.99) 914

Mid-Market Segment=1 0.23 (0.42) 923

Low-Market Segment=1 0.42 (0.49) 923

Price (EGP/Square Meter) 29.29 (47.27) 913

Survey Quality: Packedness 3.25 (0.86) 913

Survey Quality: Corners 3.14 (0.85) 913

Survey Quality: Waviness 3.15 (0.84) 913

Survey Quality: Weight 3.22 (0.84) 913

Survey Quality: Touch 3.19 (0.49) 913

Survey Quality: Warp Thread Tightness 3.18 (0.81) 913

Survey Quality: Firmness 3.02 (0.56) 913

Survey Quality: Design Accuracy 3.32 (0.86) 913

Survey Quality: Ward Thread Packedness 3.19 (0.83) 913

Survey Quality: Inputs 3.20 (0.87) 913

Survey Quality: Loom 2.04 (0.24) 913

Lab Quality: Packedness 3.34 (0.63) 187

Lab Quality: Corners 3.29 (0.63) 187

Lab Quality: Waviness 3.28 (0.60) 187

Lab Quality: Weight 3.60 (0.83) 187

Lab Quality: Touch 3.29 (0.50) 187

Lab Quality: Warp Thread Tightness 2.95 (0.66) 187

Lab Quality: Firmness 3.24 (0.65) 187

Lab Quality: Design Accuracy 3.46 (0.62) 187

Lab Quality: Ward Thread Packedness 3.27 (0.68) 187

Lab Quality: Inputs 4.00 (0.00) 187

Lab Quality: Loom 2.00 (0.00) 187

Notes: Table reports summary statistics of the variables used to estimate the production functions. “Quality”

denotes the 11 quality metrics. “Lab” denotes the quality metrics from the controlled lab, which are averaged

over grades given by the quality assessor and professor of handicraft science. “EGP” denotes Egyptian pounds

(which was around 6.31 pounds to one USD over the sample period). See Atkin et al (2017) for more details

about the sample and variables.

21



Table A.2: Outcomes and Specifications

(1) (2) (3)

Price Output Revenue

(log) Thread Quantity 0.11 -0.01 0.11

(0.14) (0.12) (0.11)

Difficulty Control 0.13∗∗∗ -0.06∗ 0.07∗∗

(0.03) (0.03) (0.03)

(log) Number of Colors -0.02 -0.05∗ -0.06∗∗

(0.03) (0.03) (0.03)

Low-Market Segment=1 -0.84∗∗∗ 0.52∗∗∗ -0.30∗∗∗

(0.08) (0.07) (0.07)

Mid-Market Segment=1 -0.60∗∗∗ 0.31∗∗∗ -0.26∗∗∗

(0.08) (0.08) (0.06)

Product Type Dummies (6 Categories) Yes Yes Yes

Thread Type Dummies (6 Categories) Yes Yes Yes

r2 .536 .454 .117

N 825 890 818

Notes: Table reports the results of estimating the log price, log output and log revenue

on the six specifications. Standard errors clustered at the firm level in parentheses. Sig-

nificance: * 0.10, ** 0.05, *** 0.01.
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Table A.3: Quantity Production Function

(1) (2) (3) (4)

Unadjusted (OLS) Adjusted (OLS) Unadjusted (CF) Adjusted (CF)

Labor 0.61∗∗∗ 0.65∗∗∗ 1.41∗∗ 1.31∗∗∗

(0.11) (0.09) (0.70) (0.51)

Capital Inputs 0.19∗ 0.24∗∗ 0.41∗∗ 0.24∗∗

(0.11) (0.10) (0.19) (0.12)

(log) Thread Quantity -0.02 -0.28∗

(0.11) (0.17)

Difficulty Control -0.06∗∗ -0.12∗∗∗

(0.03) (0.04)

(log) Number of Colors -0.05∗ -0.07∗∗

(0.03) (0.03)

Low-Market Segment=1 0.56∗∗∗ 0.55∗∗∗

(0.07) (0.08)

Mid-Market Segment=1 0.37∗∗∗ 0.34∗∗∗

(0.07) (0.08)

Product Type Dummies (6 Categories) No Yes No Yes

Thread Type Dummies (6 Categories) No Yes No Yes

r2 .046 .506 .000 .508

N 899 889 595 591

Notes: Table reports the results of estimating the quantity production function. Columns 1 and 3 estimate the unadjusted production

function. Columns 2 and 4 estimate the specification-adjusted production function. Columns 1-2 estimate via OLS and columns 3-4

estimate via a control function. Standard errors clustered at the firm level in parentheses. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A.4: Consumers’ Valuation of Quality (θ′s)

(1)

Consumer Quality Valuation

Packedness 0.18

(0.26)

Corners -0.10

(0.26)

Waviness -0.09

(0.26)

Weight -0.10

(0.22)

Touch 0.15

(0.27)

Warp Thread Tightness 0.87∗∗∗

(0.25)

Firmness -0.31

(0.33)

Design Accuracy 0.76∗∗∗

(0.20)

Ward Thread Packedness 0.51∗∗

(0.24)

Inputs -0.09

(0.23)

Loom -0.70∗

(0.41)

r2 .168

N 892

Notes: Table reports the results of estimating the demand curve to ob-

tain consumers’ valuation of quality, θjs. Standard errors clustered at

the firm level in parentheses. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A.5: Quality Production Function

(1) (2) (3) (4)

Unadjusted (OLS) Adjusted (OLS) Unadjusted (CF) Adjusted (CF)

Labor 0.07 -0.01 -0.18 -0.05

(0.04) (0.03) (0.34) (0.12)

Capital Inputs 0.01 0.08∗∗ -0.02 0.09∗

(0.05) (0.03) (0.08) (0.05)

(log) Thread Quantity 0.02 0.08

(0.03) (0.06)

Difficulty Control 0.37∗∗∗ 0.35∗∗∗

(0.01) (0.02)

(log) Number of Colors 0.02∗∗ 0.02

(0.01) (0.01)

Low-Market Segment=1 -0.07∗∗∗ -0.10∗∗∗

(0.02) (0.03)

Mid-Market Segment=1 -0.07∗∗∗ -0.09∗∗∗

(0.03) (0.03)

Product Type Dummies (6 Categories) No Yes No Yes

Thread Type Dummies (6 Categories) No Yes No Yes

r2 .002 .672 .052 .742

N 891 882 589 585

Notes: Table reports the results of estimating the quality production function. Columns 1 and 3 estimate the unadjusted production

function. Columns 2 and 4 estimate the specification-adjusted production function. Columns 1-2 estimate via OLS and columns 3-4

estimate via a control function. Standard errors clustered at the firm level in parentheses. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A.6: Capabilities Production Function

(1) (2) (3) (4)

Unadjusted (OLS) Adjusted (OLS) Unadjusted (CF) Adjusted (CF)

Labor 0.67∗∗∗ 0.63∗∗∗ 1.32∗∗ 1.12∗∗∗

(0.10) (0.09) (0.65) (0.35)

Capital Inputs 0.20∗ 0.32∗∗∗ 0.35∗∗ 0.28∗∗

(0.10) (0.10) (0.15) (0.14)

(log) Thread Quantity 0.00 -0.19

(0.11) (0.19)

Difficulty Control 0.30∗∗∗ 0.23∗∗∗

(0.03) (0.04)

(log) Number of Colors -0.02 -0.05

(0.03) (0.03)

Low-Market Segment=1 0.47∗∗∗ 0.43∗∗∗

(0.07) (0.08)

Mid-Market Segment=1 0.29∗∗∗ 0.24∗∗∗

(0.08) (0.08)

Product Type Dummies (6 Categories) No Yes No Yes

Thread Type Dummies (6 Categories) No Yes No Yes

r2 .062 .341 .005 .279

N 891 882 589 585

Notes: Table reports the results of estimating the capability production function. Columns 1 and 3 estimate the unadjusted production

function. Columns 2 and 4 estimate the specification-adjusted production function. Columns 1-2 estimate via OLS and columns 3-4

estimate via a control function. Standard errors clustered at the firm level in parentheses. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A.7: Revenue Production Function

(1)

Log Revenue

Wage Bill 0.46∗∗∗

(0.10)

Value of Captial Stock 0.08∗∗

(0.04)

r2 .070

N 794

Notes: Table reports the results of estimating

the revenue production function. Column 1 es-

timates via OLS and column 2 estimates via a

control function. Standard errors clustered at

the firm level in parentheses. Significance: *

0.10, ** 0.05, *** 0.01.

Table A.8: Correlation Matrix (OLS)

Lab 
TFPQ

Lab 
TFPC

Lab 
TFPZ

Unadj. 
TFPQ

Adj. 
TFPQ

TFPR
Unadj. 
TFPZ

Adj. 
TFPZ

Unadj. 
TFPC

Lab TFPC 0.40*** 1.00
Lab TFPZ 0.07 0.94*** 1.00
Unadj. TFPQ 0.02 -0.15** -0.15** 1.00
Adj. TFPQ 0.14* 0.15** 0.11 0.42*** 1.00
TFPR -0.02 0.03 0.03 0.10 0.28*** 1.00
Unadj. TFPZ -0.05 0.45*** 0.50*** -0.40*** 0.01 0.07 1.00
Adj. TFPZ -0.17** 0.14* 0.22*** 0.08 0.15** -0.05 0.52*** 1.00
Unadj. TFPC 0.03 0.10 0.11 0.78*** 0.71*** 0.20*** 0.07 0.40*** 1.00
Adj. TFPC 0.07 0.19*** 0.19** 0.38*** 0.94*** 0.24*** 0.18*** 0.44*** 0.77***
Notes: Table reports the correlation between the variable at the top of each column with the variable in the associated
row. Significance: * 0.10, ** 0.05, *** 0.01.
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Table A.9: Correlation Matrix (Control Function)

Lab 
TFPQ

Lab 
TFPC

Lab 
TFPZ

Unadj. 
TFPQ 

Adj. 
TFPQ 

TFPR 
(CF)

Unadj. 
TFPZ 

Adj. 
TFPZ 

Unadj. 
TFPC 

Lab TFPC 0.40*** 1.00
Lab TFPZ 0.07 0.94*** 1.00
Unadj. TFPQ (CF) 0.03 -0.15** -0.16** 1.00
Adj. TFPQ (CF) 0.16** 0.18** 0.14* 0.45*** 1.00
TFPR (CF) 0.01 0.04 0.02 0.07 0.22*** 1.00
Unadj. TFPZ (CF) -0.04 0.45*** 0.50*** -0.40*** 0.03 0.11 1.00
Adj. TFPZ (CF) -0.17** 0.13* 0.21*** 0.18*** 0.16** -0.08 0.48*** 1.00
Unadj. TFPC (CF) 0.04 0.09 0.09 0.81*** 0.70*** 0.17** 0.02 0.44*** 1.00
Adj. TFPC (CF) 0.10 0.22*** 0.20*** 0.45*** 0.94*** 0.19*** 0.17** 0.43*** 0.77***
Notes: Table reports the correlation between the variable at the top of each column with the variable in the associated row.
Significance: * 0.10, ** 0.05, *** 0.01.
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