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Abstract:  
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Introduction  

The goal of much of the empirical work in economics is to estimate a credibly causal 

(internally valid) effect, which also applies to the entire population of interest (externally valid). 

In an effort to obtain credible causal estimates, researchers typically exploit naturally occurring 

exogenous variation or employ randomized control trials (RCTs). However, even when the 

internal validity of estimates is credible, the same estimates often hold only for a localized 

subpopulation and may lack external validity (Imbens and Angrist, 1994). Whether the purpose 

of the research is to test hypotheses derived from theory, explain empirical regularities, or 

evaluate or inform policy making, it is often desirable to extend the causal estimates beyond the 

population for which the estimates directly apply.1 In RCTs, the experimental sample sometimes 

does, but often does not, correspond to the population of interest.2 As a result, the 

generalizability of the RCT results to the remaining population is pertinent to whether a given 

theory generally holds, the degree to which one mechanism explains a broader phenomenon, or 

whether a particular policy should be expanded or scaled back.  

Non-representative experimental samples may originate through either researcher or participant 

selection processes. In order to address the external validity of their work, many who design and 

implement RCTs attempt to randomly sample from the population or show the degree to which 

their experimental sample is representative of the broader population of interest. Despite 

researchers’ best efforts to achieve a representative experimental sample, participants are often 

self-selected, even if only in granting consent. Many of the most influential experiments within 

economics rest on voluntary selection into the study. Individuals randomized in the National 

Supported Work Demonstration used in LaLonde’s (1986) evaluation of observational methods, 

the Moving to Opportunity housing voucher experiment (Goering et al., 1999), and the Oregon 

health insurance experiment (Finklestein et al., 2012) are all self-selected into the experimental 

                                                           
1 While the categorization of purposes of experiments is provided by Roth (1986), this broader point has been 
written about eloquently in Angrist, Imbens, Rubin (1996), Heckman and Vytlacil (2005), Deaton (2009), Heckman 
and Urzua (2010), Imbens (2010), and Deaton and Cartwright (2017) as well as elsewhere. 
2 The composition of the population of interest depends on the question and audience. Policy makers may be only 
interested in the effect of the policy on those who currently select into it. However, in many instances the 
population of interest is much broader. Were the program expanded or the selection criterion changed, the effects 
on these new entrants may also be of interest.  Further, researchers often utilize RCTs to answer general 
questions, which also typically pertain to a broader population than the RCT sample.    
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sample to some degree.3 This self-selection may follow the Roy model, where those who benefit 

most from treatment select into the RCT, or a “reverse-Roy” selection process, where those who 

select into the RCT would do well even in the absence of treatment. Regardless of the process, in 

the presence of heterogeneous effects, nonrandom sample selection into an experiment may 

inhibit the generalizability of the experimental results to a broader population.  

Further, similarity between the experimental sample and the remaining population on observed 

characteristics does not guarantee that their responsiveness to the intervention will be the same. 

In this paper, we build off of Huber (2013) and Black et al. (2017), both of which examine 

selection on the basis of unobserved heterogeneity into compliance within the sample. Kowalski 

(2018) explicitly ties such tests to the external validity of estimates within the sample. We 

contribute to this literature by providing to our knowledge the first tests for external validity of 

experimental results to the broader population from which the experimental sample originates. 

We do this on the basis of unobserved heterogeneous characteristics, including heterogeneous 

responsiveness to treatment. These straight-forward tests both provide evidence for the extent to 

which results from RCTs are generalizable to a larger population of interest, beyond the 

experimental sample, and provide estimates of the direction and magnitude of selection on 

unobserved characteristics. 

We explore these matters in the context of an analysis of the efficacy of a freshmen year learning 

community in increasing first year college retention at a large four-year public research 

university. The United States currently lags behind several developed economies in the 

percentage of its population holding four-year degrees. While in 1995 the United States lead the 

world in the share of the population with a bachelor’s degree or higher, by 2016 it had fallen to 

tenth (OECD 1995, 2017). The share of the population aged 25-34 in the United States with 

tertiary degrees is 47.5%, which lags significantly behind international competitors such as South 

Korea, Canada, and Japan with rates ranging from 60-70%. A number of efforts, both public and 

private, have attempted to close that gap.4 Fostering increased college-going and college-

                                                           
3 In the National Supported Work Demonstration the majority of participants were drawn from those who had 
signed up, but were not enrolled in other government programs, but remaining slots were filled by “walk-in” 
enrollees (MDRC, 1980). 
4 Public initiatives were prominent in the Obama administration. For examples from the private sector, see the 
Lumina Foundation’s Strategic Plan to increase the percentage of college graduates from roughly 40% to 60% by 
the year 2025. https://www.luminafoundation.org/lumina-goal 
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completion is important for counteracting trends in growing wage inequality and in preparing the 

work force of the future. Higher education scholars are clear that success in the first year of 

college is key to college completion since first year retention rates are typically far below those 

of succeeding years (Isher & Upcraft, 2005).  

First year retention rates vary significantly across higher education institutions and institutional 

types. For full-time students, first year retention rates are close to 80% at four-year public and 

private institutions, and close to 50% at two-year institutions (U.S. Department of Education, 

2017). At elite four-year institutions, first year retention can be as high as 99%, whereas at 

lesser-known regional institutions that award four-year degrees, first year retention rates can be 

as low as 40% (U.S. News and World Report, 2018).  

In the past decade or so, colleges have responded to the challenge of improving first year college 

retention by creating first year experience programs to ease the transition into college and to 

support students academically and socially as they adjust to the college experience. These first 

year experience programs may take many forms, such as freshman seminars aimed at teaching 

study skills and time management, supplemental or remedial instruction in core subjects, and 

peer mentoring and tutoring. Learning communities are another heavily utilized first year 

experience commonly viewed by higher education institutions and researchers as central to 

enhanced first-year retention and thus to graduation (Pitkethly and Prosser, 2001). Learning 

communities bring together small groups of students, typically into thematically-linked courses 

for at least one term during freshmen year, in the hopes that students will better engage with 

course material, support one another socially and academically, and thereby enhance academic 

success, first year retention, and ultimately graduation. An independent study in 2010 by the 

John N. Gardner Institute for Excellence in Undergraduate Education found that 91% of 

reporting institutions claimed to possess a learning community of some form or another at their 

institution (Barefoot, Griffin, and Koch, 2012).  

We utilize an RCT design to explore the extent to which a learning community program at a 

four-year higher education research university increases first year college student retention. We 

offer first “intent to treat” (ITT) estimates of the effect of being randomized into treatment. 

Though there is relatively high compliance with the randomization, some students who were 

randomly assigned to the program (i.e., those who “won” the lottery) ended up not taking the 
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program, and some students who were not assigned to the program from the self-selected 

population (i.e., those who “lost” the lottery) made their way into the program nonetheless. Due 

to this two-sided noncompliance with the randomization we also estimate the “local average 

treatment effect” (LATE) of the program’s impact among those who comply with the 

randomization. This is the first study of which we are aware to generate estimates from an RCT 

design of the impact of a learning community on first year college retention at a four-year 

institution. The ITT and LATE estimates of program impact reveal no statistically significant 

effect on first year retention. 

Next, we consider the issue of generalizability of our results. To do so, we must first define the 

population of interest. Ultimately, the composition of the population of interest depends on the 

purpose of the research. Were the purpose of the empirical work to evaluate theory, the 

population of interest would be composed of the entire population for whom the theory is 

theorized to apply. In contrast, were it a pure policy evaluation, policy makers may be only 

interested in the effect of the policy on those who currently select into it. There is also a middle 

ground. Programs occasionally expand or change the selection criteria, and the effects on these 

new entrants may also be of interest.   

To illustrate this point, consider again the case of housing vouchers. Jacobs (2004) and Chyn 

(2018) argue that self-selection into the famous Moving to Opportunity experiment may have 

mitigated the estimated effects of neighborhoods reported in Goering et al. (1999), Orr et al. 

(2003), Sanbonmatsu et al. (2011), and Chetty et al. (2016). Those who selected into study may 

have been less susceptible to the effects of receiving a voucher than was the broader population. 

The involuntary receipt of housing vouchers may be somewhat unique to the context studied in 

Jacobs (2004) and Chyn (2018). Policy makers may well care more about the effects of vouchers 

on those who might apply to get them.5 However, the MTO experiment is also of great interest to 

social scientists because it identifies the effect of neighborhood quality for those who enter the 

study. Whether neighborhood quality matters to the lives of residents is a population-level 

question, for which the self-selection into the study may matter. While rightfully influential, the 

                                                           
5 Even if those who self-select into the program are the population of interest, the experimental sample may still 
fail to reflect the entire population of interest if randomization causes would-be participants to opt out, the 
experiment is not up to scale, or the exact recruitment and selection processes are subject to change. 
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question remains as to whether we can generalize the results from such RCTs to the subsets of 

the populations from which the experimental samples are drawn who do not appear in the 

experiment.  

In our context, the purpose of the research was to evaluate the FYLC policy at the implementing 

institution. While this purpose initially narrowed the population of interest, ultimately, there 

were several different populations of interest, at various stages in the history of the program’s 

evolution illustrating the potential broadening of the ex post population of interest. Initially, the 

intent of the experiment was to uncover the effect of the FYLC on the experimental population in 

a program with voluntary enrollment. Thus, we first examine whether we can generalize the 

LATE to the rest of the students who enrolled in the experiment. We follow Black et al. (2017) 

to test the external validity of the RCT LATE estimate within the experimental sample. We find 

that those who enter the experiment, but do not comply with the randomization either by 

selecting out of the learning community despite winning the lottery or by entering the program 

despite losing the lottery, are not statistically different from those who do comply with the 

randomization. These results support generalizing the RCT results to the average effect of 

treatment on those who select into the study. 

However, the population of interest moved beyond the experimental sample in two stages. The 

first stemmed from a deviation between the plan and the practice. A small share of the students 

who received treatment were late arrivals, and so never participated in the randomization 

process. Naturally, we should be interested in the effects of the program on these students as 

well. Second, the experimental results are specific to the particulars of the recruitment strategy, 

which may often evolve. In our context, in later years the institution extended the program to 

nearly 90% of the population of freshmen in the college in which the program originated. 6  As a 

result, the population of interest for policy evolved, making the external validity of the 

experimental results to a larger population of interest crucially important.   

                                                           
6 There exist many instances in the evolution of learning communities in which institutions of higher education 
initially experimented with these programs on a population of voluntary participants, only to later mandate them 
for targeted populations – from developmental students with weak academic skills to honors students with 
superior academic skills and even for the entire freshman class as a whole (see, for example, Matthews, Smith, and 
MacGregor 2012). 
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We examine the generalizability of our results to this larger student population by testing for 

selection (on unobserved characteristics) into the experiment. As with many experiments with 

human subjects, enrollment in the RCT for participation in the learning community is voluntary, 

and so there are questions of nonrandom selection on unobserved variables into the self-selected 

population. Unlike many RCT-designed studies, we possess information on the non-experimental 

population as well as those who selected into the experiment. This enables us to explore the 

extent of otherwise unobserved differences between the experimental sample and the broader 

population of interest. 

Our results on this latter set of external validity issues reveal that those students who express a 

desire to enroll in the program are, in many observed respects, from more vulnerable segments of 

the student population – they tend, for example, to have lower high-school GPAs, lower SAT 

scores, and come from less-advantaged backgrounds. However, in conducting the tests for 

selection into the experimental sample, we find that the experimental population differs 

significantly from the remaining population who do not enter the experiment on unobserved 

characteristics both unconditionally and conditional on observed covariates. In particular, their 

unobserved characteristics – presumably, things like grit, determination, focus, and commitment 

– make them even more likely to succeed in college, as measured by first year retention rates, 

than their peers who express no interest in the first year learning community. Consequently, the 

RCT results cannot be generalized to these larger populations of interest. Our results thus 

represent a cautionary tale for evaluative exercises in the context of voluntary selection that do 

not adequately address the problem of possible selection bias on unobserved characteristics. 

Lastly following LaLonde’s (1986) seminal work, we use the data to perform a “within-study 

design” comparing the experimental results to those from standard observational approaches, 

which have been used both by institutional researchers and academics to estimate the effects of 

FYLCs. Moreover, we analyze these two sets of results considering the internal and external 

validity of both experimental and the standard observational approaches in order to reflect on 

what we learn from such within-study designs in general.  

Using OLS, a quasi-maximum-likelihood nonlinear estimation, and propensity score matching, 

we estimate the effect of FYLCs on the first year college retention both unconditionally and 

conditional on the variables available to institutions for admission decisions. We find stark 
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differences in estimated impacts between the two approaches, with the observational methods 

revealing large and statistically significant benefits of the program and the RCT uncovering little 

discernable impact. 

What explains these disparate findings? The observational analysis (on a particular population or 

a random sample of it) provides an estimate of the effect of treatment on that population if the 

assignment of treatment is exogenous conditional on the set of covariates. The RCT, on the other 

hand, provides an internally valid estimate (assuming proper randomization) of treatment on the 

sample that was selected and participated in the experiment. Only in the presence of random 

selection into both the experiment and treatment would we expect the results of the different 

approaches to be the same. Absent this, differences alone between the two sets of results are 

uninformative as to which results (if any) should be privileged in arriving at a population-level 

parameter. Without further tests, we do not know whether selection into treatment or into the 

experiment is problematic, nor the relative magnitudes of the selection issues. The tests that we 

propose provide more clarity on such selection. Here (as in LaLonde, 1986), treatment is 

administered largely through the experiment.7 As a result, the nonrandom selection into the RCT, 

which made the RCT externally invalid, causes the observational analysis to be biased.  

The paper is organized as follows: First, we review the literature on the central contributions of 

the paper – evaluations of the impact of learning communities on first year college retention and 

the issue of “external validity” in RCT estimates of program impact. Second, we describe in 

greater detail the learning community program at this institution, the nature of the randomized 

control trial design, and the data to be used in the analysis. Third, we describe the empirical 

methodology, followed by the results. The final section offers a summary discussion and 

conclusion. 

Literature Review 

Many evaluation studies of the broad range of first year experience programs are  

conducted by “in-house” institutional researchers. These studies commonly take the form of 

survey data on student and faculty participants, reporting on features such as satisfaction with the 

                                                           
7 In LaLonde (1986), the only members within the data who receive treatment first enlisted in the experimental 
study.   
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experience and subjective responses of the extent to which the program achieved a set of pre-

established goals. An early review of program evaluation studies containing more rigorous 

research designs is contained in Barefoot, Warnock, Dickinson, Richardson, and Roberts (1998). 

The empirical designs of some of these studies are simple comparisons of outcome means (e.g., 

retention or freshman year GPA) across participant and non-participant groups, while others add 

covariates to control for differences in observed background characteristics. Few employ 

empirical strategies designed to handle possible nonrandom selection on unobserved covariates. 

Pascarella and Terenzini (2005) offer a somewhat more recent review of first year experience 

evaluations and call for a randomized control trial (RCT) design, which can address the problem 

of selection bias.  

Numerous observational studies have been published since the appearance of Pascarella and 

Terenzini’s review article (e.g., Porter and Swing, 2006, and Jamelske, 2009), some utilizing 

more advanced techniques, such as propensity score matching (Clark and Cundiff, 2011), 

instrumental variables (Pike, Hansen, and Lin, 2011), and Heckman’s two-step procedure 

(Hotchkiss, Moore, and Pitts, 2006). In each, the exogeneity assumptions necessary for causal 

interpretation of the results are problematic. A handful of studies of first-year experience 

programs contain more convincing internal validity through RCT designs to avoid selection bias 

in their estimates of the causal impact of first year experience programs. For instance, Bettinger 

and Baker (2014) find that peer mentoring via phone, text messaging, and social networks has a 

statistically significantly 5-6 percentage point increase on retention of nontraditional students in 

a wide range of American universities. In contrast, Paloyo, Rogin, and Siminski (2016) find a 

small and statistically insignificant effect of supplemental instruction in certain introductory 

courses on grades in those courses in a large Australian university. Angrist, Lang, and 

Oreopoulis (2009) find sizable positive impacts of academic support services such as peer 

advising, mentoring, and supplemental instruction at a large Canadian university, but only for 

female students. 

Focusing on the impact of learning communities more specifically, there are three RCT studies 

that estimate their impact on various programmatic outcomes. Two of these studies estimate the 

impact of remedial learning communities on retention rates in two-year community college 

settings (Scrivener et al. (2008) and Visher et al. (2012). Both find small positive effects on 
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performance in remedial courses, though no effects on first year retention. Interestingly, 

Scrivener et al. (2008) find in a two-year follow-up study that program participants were 5 

percentage points more likely still to be pursuing their degree than control group members. 

However, causal effects identified in the community college setting are likely to differ from 

those at four-year institutions. Community colleges typically draw differentially from the 

academic and soft-skills distributions. Four-year universities also tend to provide more 

opportunities for a community to develop naturally through on-campus housing and additional 

extra-curricular programs. Consequently, the effects of learning communities on retention at 

four-year institutions warrants further examination.   

The third RCT evaluation of learning communities provides the closest study to the one at hand. 

Russell (2017) examines the effects of experimental study groups at the Massachusetts Institute 

of Technology, an elite four-year institution highly regarded in the sciences, technology, 

engineering, and mathematics (STEM) fields. This learning community brings groups of students 

together in linked introductory courses with smaller class sizes, enhanced mentoring by both 

upper-division majors and faculty, and dedicated study spaces to foster the formation of 

academic and support study groups. While the overall effects on program participants are of 

mixed sign, small in magnitude, and noisy, subgroups of participants do display large, positive, 

marginally statistically significant program effects on some outcomes. Women in the program 

are statistically more academically successful, as measured by GPA and total credits, and 

underrepresented minority students are though noisily estimated twice as likely to major in 

higher-paying STEM fields as a result of the program. First year retention was not an outcome 

variable that was evaluated in this study and effects on male, racial majority, and high income 

students are not reported.  

In this paper, we utilize an experimental design to evaluate the impact on retention of a learning 

community program with voluntary enrollment, taking place at a large four-year public research 

university with a diverse student body. The existing literature to date has not offered a rigorous 

causal estimate of the impact of a learning community on first year retention for a four-year 

institution of higher education.  

In the treatment effects literature, every effort is made to estimate a true causal estimate of 

program impact that is distinct from estimates which are plagued by bias and thus internally 
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invalid, or which hold only for some local population and therefore lack the external validity to 

generalize to the broader population of interest. One such parameter, the average treatment effect 

(ATE) can be defined using the potential outcomes framework of Rubin (1974). Let Y1i be the 

outcome individual i would realize were she given treatment (Di=1), and Y0i be the outcome 

individual i would realize were she not given treatment (Di=0). The ATE is then E[Y1i – Y0i] over 

the population. The fact that both potential states of the world are not realized simultaneously for 

the same individual, requires researchers to assume that for some subsample the assignment into 

treatment is otherwise independent of the outcomes. The exact assumptions required for internal 

validity depend upon the parameters to be estimated and the empirical design employed, whether 

it be a randomized control trial (RCT) or an observational design such instrumental variables 

(IV).  

Imbens and Angrist (1994) show that researchers can identify average treatment effects on a 

subsample of the population with minimal assumptions – namely, (1) an instrument (Z) exists 

such that it causally affects assignment into treatment, and is otherwise unrelated to the potential 

outcomes (Y1 and Y0) and (2) the instrument monotonically affects assignment into treatment, 

which may be expressed in the binary case, without loss of generality, as D1i  ≥ D0i, for all i, 

where D1 is the treatment assignment that would be realized were the instrument to take a value 

of 1. Under these assumptions, Imbens and Angrist show that researchers identify a local average 

treatment effect (LATE), that is the ATE for the subsample whose assignment into treatment was 

determined by the instrument. They term this subsample the compliers, as opposed to always-

takers or never-takers who respectively would or would not enter the treatment regardless of the 

value the instrument takes. Monotonicity assumes that there are no so-called defiers, who are 

responsive to the instrument in the opposite direction as the compliers. 

With an RCT, we need only assume that the randomization was truly random in order to conduct 

an intent to treat analysis (ITT), by which researchers identify the average effect of trying to 

apply treatment to some sample involved in the RCT (Angrist, Imbens, and Rubin, 1996). There 

may be limits to the usefulness of ITT analyses. The presence of no-shows from those randomly 

assigned to treatment and substitution into treatment of those who were not randomly assigned to 

treatment can obscure the true effect of treatment. However, by using the randomization as an 

instrumental variable, we can recover an estimate of the effect of treatment itself (Bloom, 1984). 
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Doing so, though, requires the same assumptions as shown in Imbens and Angrist (1994) and 

provides an estimate of a similar parameter. Thus, when we use randomization as an IV, we 

obtain an estimate of the average effect of treatment for those who participated in the 

randomization and who received treatment because of the randomization. Thus, it is a LATE 

rather than an estimate of “the treatment on the treated,” which is a term often misapplied to this 

parameter. 

There are multiple selection processes which may lead the LATE for the subsample for which 

we have a causal estimate to differ from the ATE of the entire population of interest. First, the 

compliers for whom we have estimated the LATE may differ from those who dropout of 

treatment and those who substitute into treatment. In which case, it would be unreasonable to 

expect the LATE for the compliers to carry over to the rest of the sample who received 

treatment. Researchers often compare the observed characteristics of those who leave and those 

who substitute into treatment – in violation of their initially-assigned status – with those who 

remain in their assigned control or treatment groups as rough evidence for whether such non-

compliance with the randomization is worrisome. Huber (2013) provides new tests for 

nonrandom noncompliance on the basis of unobserved characteristics, and Black et al. (2015) 

extends similar tests to more general settings. Failure of these tests to identify differences in 

unobserved characteristics in the no-shows or crossovers, provides reassurance that the RCT is 

externally valid and that the LATE may generalize to other populations of the experimental 

sample. 

As noted above, the population may but often does not include the entire population of interest.  

Deaton and Cartwright (2017) comment that “frequently, [the experimental sample] is selected in 

some way, for example to those willing to participate, or is simply a convenience sample that is 

available to those conducting the trial.” To some extent this is true of the study at hand. 

However, the issue of nonrandom selection into RCTs is not unique to this context. The ethics of 

conducting RCTs on human subjects usually requires participants’ consent, making virtually all 

social experiments in which the population of interest is broader than the experimental sample 

susceptible to such selection.  



                                                     13 
 

Andrews and Oster (2018) and Ghanem, Hirshleifer, and Ortiz-Becerra (2018) give careful 

attention to the issue of possibly non-random sample selection of RCTs.  Andrews and Oster 

(2018) model the decision to participate in a study and approximate weights using observed 

variables to adjust RCT results to provide an estimate of the ATE and provide bounds on the 

ATE. These estimates and bounds require assumptions on the relationship between the observed 

and unobserved covariates, and their relationship to treatment effect heterogeneity, which may 

not hold in many cases.  

Ghanem, Hirshleifer, and Ortiz-Becerra (2018) provide distributional tests for non-random 

attrition on the basis of baseline outcome data. These rigorous tests provide concrete evidence of 

whether attrition threatens the validity of the RCT results without further data. However, attrition 

is but one way in which an experimental sample may become unrepresentative. Further, with 

only baseline data on those who attritt, these tests can address only time-invariant unobserved 

heterogeneity and are unable to incorporate within tests differences in responsiveness to 

treatment.  

We directly test for selection into the experiment on the basis of unobserved characteristics and 

heterogeneous responsiveness to treatment. We do so by comparing outcomes for those who do 

not receive treatment, by whether they participate in the experiment, both conditional on 

observed covariates and unconditionally. We do the same among the treated populations 

comparing those who receive treatment by randomized assignment to those who received 

treatment without participating in the randomization. We interpret the results of those tests as 

pertaining to the external validity of the research design.  

Comparison of outcomes between the experimental control and the untreated population has 

been conducted in Lise, Seitz, and Smith (2015) and Sianesi (2017). Lise, Seitz, and Smith 

(2015) adopt a within-study design to test the performance of their search and matching model 

against the results of the Canadian Self Sufficiency Project, which uses randomization to 

evaluate the effectiveness of incentivizing welfare beneficiaries to seek employment. They do so 

by first calibrating their model of the population using the control sample from the experiment. 

They then introduce the treatment into the model and compare the predicted outcomes from the 
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model to the experimental results. In so doing, they hold the experiment as the high standard 

against which the model is evaluated.  

Sianesi (2017) develops nonparametric tests for randomization bias that compare the outcomes 

of the control group to those who opt out or were directed away from the study, similar to some 

of the tests we propose. Under the assumption of homogeneous average responsiveness to 

treatment across those who select into or out of the study (CIA-β), Sianesi attributes any 

differences in unobserved characteristics as being the result of the randomization itself. She then 

applies these tests to examine the selection on unobserved variables into and primarily out of the 

Employment Retention and Advancement (ERA) experiment in the United Kingdom. Sianesi 

finds substantial selection on unobserved variables into the experiment in the ERA context, 

similar to what we find in this study. However, under CIA-β, she credits such selection as 

evidence of the randomization causing differing results. Whereas, we view selection on 

unobserved characteristics to be evidence against the external validity of the RCT estimates.   

It seems difficult to maintain that responsiveness to treatment would be the same (CIA-β) across 

populations that differ significantly on unobserved characteristics. Our additional tests compare 

the outcomes of those who receive treatment within the randomized sample to those who receive 

treatment otherwise, thus incorporating heterogeneous responsiveness to treatment into the tests. 

When such “essential heterogeneity”8 is integrated into the tests, maintaining homogenous slopes 

despite significant differences on total unobserved heterogeneity seems unreasonable. 

Consequently, rather than assuming homogeneous responsiveness to treatment we view these 

tests as directly testing the external validity of the experimental LATE estimates. These tests are 

very simple to perform, but do require data about individuals not randomly assigned. We provide 

more detail about the context of our RCT and the methodological details of our tests below. The 

benefit to researchers is that we illustrate a way for researchers using RCTs to provide more 

concrete evidence of the external validity of their experimental results. 

Our final exercise follows LaLonde’s seminal work (1986), which gave rise to a “within-study 

design” literature. Such studies largely depict social experiments as the standard against which 

                                                           
8 “Essential heterogeneity” is the term Heckman et al. (2006) coins to describe such heterogeneous 
responsiveness. 
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the performance of observational approaches are judged. However, we argue that one cannot 

necessarily assign a hegemony of estimation design to every case, particularly if a population 

parameter is of paramount interest. There are at least two reasons for this conclusion. First, as 

suggested by Calonico and Smith (2017), within-study designs are context dependent; the sample 

for comparison and the variables available to researchers may matter a great deal.  For example, 

the fact that the observed variables are inadequate to capture differences across populations in 

one context does not imply that the same holds true in all contexts. In other instances, the 

assignment of the variable of interest conditional on observed covariates may not lead to 

selection bias either due to exogenous natural assignment of “treatment” or to the richness of the 

set of the observed variables.    

We add to this discussion evidence of a second point; namely that RCTs and observational 

analyses often estimate different parameters. The parameters identified in each study depend 

upon both the strategy researchers use and the sampling they employ. Consider instances (such 

as the one explored in this paper) where the observational sample is randomly selected or 

includes the broader population from which the RCT sample is drawn through the participation 

decision of both researchers and participants. Were treatment exogenously dispersed throughout 

each sample (conditional on covariates), OLS would deliver an estimate of the average effect in 

the population or on the selected population depending on which sample was used. Were some 

form of instrumentation needed to focus attention on only the exogenous variation in treatment 

(either due to naturally occurring endogeneity or noncompliance with the randomization of the 

experiment), the analysis of each sample would produce a different LATE. It is not clear which 

would be more representative of the average population effect. Accordingly, we demonstrate the 

necessity of testing for the external validity of the RCT, as the results of these tests determine 

whether the RCT results are indeed the standard against which we should assess observational 

approaches.  

Background and Data 

The First Year Learning Community (FYLC)9 began on a small scale and included 

approximately 200 students from a population of roughly 4,000 incoming freshman. During its 

                                                           
9 Not the program’s actual name.  
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founding there was a growing sense on campus that students – and freshmen in particular – were 

facing larger and more impersonal classes as enrollments had increased substantially during the 

preceding decade. The proposed first year learning community had several goals, but one of the 

most important was to increase first to second year retention rates of freshman students by 

offering them a small learning community experience in what was rapidly becoming a large 

research university setting.  

The basic structure of the program is a year-long, theme-driven sequence of courses, structured 

study sessions, peer mentoring, and extra-curricular activities designed to foster academic 

achievement and socialization, and thereby to increase retention rates for freshmen participants.  

The FYLC is modeled after coordinated studies learning community programs in which two or 

more courses are linked around a specific theme (Laufgraben, Shapiro and Associates, 2004; 

Kuh, Kinzie, Schuh, Whitt and Associates, 2005; Zhoa and Kuh, 2004). The general format may 

vary across institutions – for example, the courses may all take place in the first term of freshman 

year as opposed to being spread out over the entire year, as is the case with the FYLC – but the 

basic idea is similar and the intention is the same: that students will better engage with course 

material, support one another socially and academically, and thereby enhance academic success, 

first year retention, and ultimately graduation. 

During the initial few years of the FYLC implementation, the program was evaluated using 

standard observational analyses, controlling for differences across those who enrolled in the 

program and those who did not in various background characteristics, such as gender, high-

school GPA, SAT scores, first generation college status, and socio-economic status. The results 

of this design suggested that students in the FYLC program were retained at a much higher rate 

(and statistically significantly so) than students in the comparison group (Fairris, Castro and Son, 

2010).  However, students voluntarily enrolled in the FYLC on a first-come, first-served basis, 

and the evaluation may consequently suffer from bias due to nonrandom selection on unobserved 

characteristics. This provided the impetus for an analysis of impact utilizing an RCT design.  

With the help of a Fund for the Improvement of Post-Secondary Education (FIPSE) grant from 

the Department of Education, student capacity in the FYLC was doubled over two years. The 

random assignment feature was institutionalized in the following way: Program staff solicited 

intent to participate commitments from incoming freshmen, following communications about the 
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program to both parents and students prior to freshman orientation. Every entering freshman 

student received the same information about the program and was encouraged to enroll in the 

lottery to be in the program. The goal was to receive expressions of interest by 1000 incoming 

freshmen each year, 450 of whom would then be randomly assigned to the available program 

seats and the others would be assigned to the control condition. This would allow us to detect an 

effect of about 0.05 change in first year college retention at a power of 0.9, similar to that 

detected in Scrivener et al. (2008).10 The staff was largely successful in accomplishing this goal.  

In prior years, the program had been highlighted in presentations to matriculating students and 

their parents at consecutive sessions of the summer freshman orientation program, at which 

incoming students enroll for fall classes. Whenever enrollment reached program capacity at 

those enrollment sessions, the program was no longer advertised in presentations at subsequent 

orientation sessions to either students or parents. The new random assignment regime roughly 

approximates the old program implementation procedure, but with several differences that could 

have conceivably affected program participation and program outcomes pre- and post-random 

assignment. Under the former regime, program participants were essentially drawn from among 

the self-selected student population (i.e., those who would have expressed an intent to enroll had 

they been asked) on a “first-come, first-served basis” during consecutive summer enrollment 

sessions. Under the new regime, participants are randomly assigned from the self-selected 

population.  Non-participants among the self-selected population under the old regime were 

simply unaware of the program or found that the FYLC classes were filled if they tried to enroll. 

Under the new regime, the control group was notified that they had not been chosen to 

participate in the program, perhaps giving them further encouragement to seek out alternative 

first year experiences or disappointing them and thereby leading to behaviors that would not 

have occurred under the previous regime. Additionally, students and parents were given greater 

opportunity to discuss the program before expressing an interest in the program under random 

                                                           
10 Some may worry about the lack of power due to a binary outcome. As a result, we also perform similar analysis 
with GPA as the outcome variable. With regard to the analysis of 1st year GPA, at a power of 0.9 our desired 
sample size would allow us to detect an effect of 0.07 grade points. Our data contains 2nd year cumulative GPA for 
just the first cohort. For analysis on 2nd year GPA at a power of 0.9 our desired sample size would allow us to 
detect an effect of 0.10 grade points. We include the RCT results of the FYLC program on GPA in Table A2 in the 
appendix. The results for GPA are similar to those for first year retention. We find no statistically significant effects 
of the FYLC despite the increased power.  
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assignment. Under the former regime, the enrollment decision took place within a day of 

students and parents hearing about the program during freshman orientation.  

Data for this analysis come from student records on the two freshman cohorts during the years 

for which the program capacity was increased by virtue of the federal grant. A unique feature of 

our analysis is that in addition to retention and demographic information for the self-selected 

population who applied to be part of the program, we also gather information on the remainder 

of the freshman class who at the outset expressed no interest in program participation. Having 

information on the non-experimental population is unfortunately rare in RCT designs. We use 

this additional information to shed light on the nature of various selection issues which are 

impossible to explore without it.  

We begin by aggregating the two cohorts into a single sample for the purpose of analysis.  This 

yielded a sample of 8131 students, 1565 of whom applied to be part of the FYLC, and 824 of 

which were chosen through the lottery system to be part of the program. In addition to first year 

retention (where, 1=returned for a second year at this institution, and 0=did not return), we have 

a host of student background characteristics from student records that are used as control 

variables in the analyses to follow. Table 1 lists these characteristics variables and shows their 

means for three primary populations of interest.  

Table 1: Student Background Characteristics 
        

 Assigned 
Control 

Assigned 
Treatment 

Difference  Lottery 
Sample 

Non-lottery 
Sample 

Difference 

High-school 3.46 3.46 0.01  3.46 3.53 -0.07 
GPA   (0.02)    (0.01) 
SAT math 494.25 498.65 4.40  496.57 544.40 -47.83 
   (6.15)    (3.63) 
SAT writing 491.42 496.40 4.98  494.04 508.33 -14.29 
   (5.77)    (3.29) 
SAT verbal 488.00 491.14 3.14  489.65 502.39 -12.73 
   (5.88)    (3.31) 
Female 0.68 0.69 0.01  0.69 0.50 0.19 
   (0.02)    (0.01) 
1st generation 0.63 0.62 -0.01  0.62 0.56 0.07 
   (0.02)    (0.01) 
Low income 0.60 0.62 0.01  0.61 0.56 0.05 
   (0.02)    (0.01) 
Lives on  0.74 0.75 0.01  0.75 0.71 0.04 
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Campus   (0.02)    (0.01) 
        
N 741 824 1565  1565 6566 8131 
        

 Low income is defined as family income below $30,000. Robust standard errors are in 
parentheses.   
 

None of the background variables is statistically significantly different across the treated and 

control populations. The same should be true for unobserved characteristics as well (Shadish, 

Cook & Campbell, 2002). This is decidedly not the case when we compare students who self-

selected into the lottery with those who self-selected out of the lottery. The Table 1 results reveal 

that these two groups are statistically different with regard to every observed background 

characteristic. Moreover, with the exception of being proportionately substantially more female 

and slightly more likely to live on campus, the ways in which the lottery students differ would 

suggest they possess greater vulnerability to attrition between the first and second year of 

college. They possess lower SAT scores (nearly 10 percent below average for math), slightly 

lower high-school GPAs, and they are substantially more likely to be a first generation college 

student and from a low-income family. We turn to a careful analysis of how observed 

background characteristics translate into retention prospects below.   

As mentioned above, there are three important instances of migration between assigned groups in 

the data. In Table A1 in the appendix, we show how these migrants differ from the rest of their 

assigned group, by regressing treatment on student covariates separately within each of the three 

exclusive subpopulations: 1) those who were assigned treatment; 2) those who were assigned 

control status; 3) those who did not enroll in the lottery.  

Of the 824 students initially assigned to the treatment group, 170 (or 21%) did not attend any of 

the program courses or services. They are not a random draw from the assigned treatment group. 

These no-shows have statistically significantly slightly higher SAT math scores, slightly lower 

verbal scores, and were substantially less likely to come from low income families than those 

who remained in the program.   

There is also contamination in the control sample in this randomized control trial.  An analysis of 

course enrollment records indicated that 108 students (15%) assigned to the control group 
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enrolled in FYLC courses (presumably with permission of the program director and as a partial 

replacement for those no-shows from the assigned treated group) even though they technically 

should not have been allowed to do so. These crossovers possess statistically significantly 

slightly lower SAT math scores, higher verbal scores, and were more likely to be female and to 

live on campus than those who remained in the control population.  

Finally, 117 of 6,566 students (2%) who did not initially express interest in enlisting in the 

program and were accordingly not entered into the lottery eventually entered the program. 

Though the observed differences are much smaller in magnitude, these late-takers possess lower 

high-school GPAs, lower math SAT scores, high verbal SAT scores, are more likely to be female 

and first generation college students, and less likely to be from a poor family (defined as earning 

less than $30,000 per year) than the rest of the freshman class in the non-lottery population.    

We present a figure depicting these various subpopulations in Figure A1 of the appendix. None 

of these various migrations in violation of initial assignment bias the “intent to treat” estimates of 

program impact, though they do present complications in estimating the effects of treatment 

itself. However, their presence also provides opportunities for exploring the extent to which our 

estimated LATE can be generalized to the entire population of interest. We explore these issues 

as well in the analysis below. 

Empirical Methodology  

 We divide our empirical analysis into three sections. First, we utilize the RCT design to 

identify the intent to treat effect of the FYLC on 1st year retention, as well as the average 

treatment effect on the treated. Second, we test for selection on unobserved characteristics 

between compliers and always-takers, between compliers and never-takers (non-random 

attrition), and (most importantly) for non-random selection into the experiment. Third, we 

compare the results from our RCT to estimates that would be obtained using standard 

observational methods. More detail about each set of analyses is given below.   

Analysis 1 

Randomization among the experimental group provides two groups of similar size; those who 

won and those who lost the lottery. These two groups should be in expectation identical with 
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respect to both observed and unobserved pre-determined characteristics. Accordingly, we may 

estimate the causal “intent to treat” effects of the program using standard approaches. 

Due to the ease of interpretation, we begin by estimating a linear probability model using 

ordinary least squares among the population who selected into the lottery according to the 

following specification: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝑖𝑖 = 𝛼𝛼 + 𝑤𝑤𝑤𝑤𝑛𝑛𝑖𝑖𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝜖𝜖𝑖𝑖, (1) 

where Retentioni indicates whether student i remained in school the following year, woni 

indicates whether individual i entered and won the lottery, and Xi is a rich vector of student 

background characteristics discussed in the “Data” section above. As causal identification does 

not hinge on the covariates we conduct the analysis both with and without conditioning on X. We 

prefer to include these controls because doing so generally provides more efficient estimates that 

remain consistent.11     

As stated above, the main dependent variable used for this analysis is first year retention 

(equaling 1 if the student persists into the second year and 0 otherwise). Consequently, we may 

wish to adopt a functional form that respects this binary form. However, we do not know the 

exact functional form of the error term, and may wish our inference to be robust to 

heteroscedasticity. Standard maximum likelihood approaches require assuming that the 

functional form is properly specified including that the errors are independent and identically 

distributed for consistency. Using the quasi-maximum likelihood estimation (QMLE) 

framework, we can allow some features of the density function to be misspecified, but still 

consistently identify the conditional mean with appropriate inference, as long as we correctly 

specify the distributional family (Gourieroux, Monfort, and Trognon, 1984). The log likelihoods 

of many commonly specified distributions (such as normal, exponential, Bernoulli, and Poisson) 

all belong to the linear exponential family. Similar to Papke and Wooldridge (1996), we use the 

logit QMLE to estimate the non-linear model below: 

 
𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑿𝑿] =

𝑒𝑒(𝛼𝛼+𝑤𝑤𝑤𝑤𝑛𝑛𝑖𝑖𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼+𝑿𝑿𝒊𝒊𝜸𝜸)

1 + 𝑒𝑒(𝛼𝛼+𝑤𝑤𝑤𝑤𝑛𝑛𝑖𝑖𝛽𝛽𝐼𝐼𝐼𝐼𝐼𝐼+𝑿𝑿𝒊𝒊𝜸𝜸). 
(2) 

                                                           
11 However, the inclusion of covariates may introduce finite sample bias, which may give reason to prefer the 
nonparametric approach described below. For references see Yang and Tsiatis (2001), Tsiatis et al. (2008), 
Schochet (2010), and Lin (2013). 



                                                     22 
 

We then average over the estimated partial effects for each observation to obtain an estimate of 

the average intent to treat effect, which is easily comparable to the estimates from OLS 

estimation. Again, we perform estimation both including and excluding the vector of control 

variables (X). 

Were compliance with the lottery perfect, the average intent to treat estimate would also provide 

an estimate of the average effect of treatment for the experimental sample. However, 170 

individuals entered and won the lottery, yet never joined the FYLC, and 108 students lost the 

lottery, but were still able to make their way into the program. Estimates of the intent to treat 

may be misleading regarding the efficacy of treatment, because they ignore contamination of the 

treatment and control groups. 

We attempt to uncover the average effect of the treatment on the compliers using 2-stage least 

square with the lottery as an instrumental variable for enrollment in the FYLC. Thus, we model 

FYLC according to the following: 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝑖𝑖 = 𝛼𝛼 + 𝑤𝑤𝑤𝑤𝑛𝑛𝑖𝑖𝛿𝛿1 + 𝑿𝑿𝒊𝒊𝜹𝜹𝟐𝟐 + 𝑒𝑒𝑖𝑖, (3) 

where FYLCi indicates whether student i enrolled in the learning community. We then use the 

fitted values from this regression to estimate the average effect of FYLC on retention. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 = 𝛼𝛼 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶𝚤𝚤� 𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟏𝟏 + 𝜖𝜖𝑖𝑖. (4) 

 

With non-linear estimation including the fitted values does not yield consistent estimates. 

However, we can treat the endogeneity in FYLC by also including the residuals from estimating 

equation 3 (Vytlacil, 2002; Wooldridge, 2014). We use logit QMLE to estimate the following: 

 
𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅|𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑿𝑿] =

𝑒𝑒(𝛼𝛼+𝑤𝑤𝑤𝑤𝑛𝑛𝑖𝑖𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇+𝑿𝑿𝒊𝒊𝜸𝜸𝟏𝟏+𝒗𝒗𝒊𝒊�𝜸𝜸𝟐𝟐)

1 + 𝑒𝑒(𝛼𝛼+𝑤𝑤𝑤𝑤𝑛𝑛𝑖𝑖𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇+𝑿𝑿𝒊𝒊𝜸𝜸𝟏𝟏+𝒗𝒗𝒊𝒊�𝜸𝜸𝟐𝟐), 
(5) 

where 𝒗𝒗𝒊𝒊�  are the residuals from estimating equation (3) with OLS. The t-statistic on 𝜸𝜸𝟐𝟐 provides 

a convenient test for whether the noncompliance with the lottery introduces selection bias, 

necessitating the instrumental variables approach. Since the included residuals are estimated, the 

standard errors we use for inference must account for possible estimation error. Consequently, 

we bootstrap both stages of our estimation with 500 replications to estimate the standard errors. 
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While this procedure provides us with internally valid causal estimates of the effect of treatment, 

without further assumptions these estimates hold only for those who actually received treatment 

because they won the lottery. We may wonder whether these estimates generalize to the average 

treatment effect among the whole experimental sample. Our second set of analyses will directly 

test whether such selection in and out of treatment is ignorable for identifying broader treatment 

effects, after conditioning on observed covariates.  

Still a more interesting parameter may be the average treatment effect for a larger population of 

interest—for example, what we expect to happen to the first year retention rate if all were 

automatically enrolled in FYLC. Broadening these results to the average treatment effect 

requires that selection into the lottery is also ignorable.12 In our second set of analyses, we will 

also gain insight into whether those who self-select into the lottery differ on unobserved 

characteristics compared to those who do not enter the lottery. 

Analysis 2 

In this piece of analysis, we examine the extent to which our RCT results may generalize to 

broader populations. In so doing, we first apply the tests proposed in Black et al. (2017) which 

are closely related to those introduced by Huber (2013) to judge whether we may reliably 

generalize our experimental results to the rest of the experimental sample. We then introduce 

tests for whether the experimental sample is representative of the entire population of the 

incoming freshmen class.   

To formalize these tests, let D indicate treatment (FYLC participation), Y be the outcome (first 

year retention), and Z denote the binary assignment (whether or not an individual wins the lottery 

for FYLC participation). We add to this familiar framework L as an indicator for participation in 

the experiment. Much of the earlier treatment effects literature as well as both Huber (2013) and 

Black et al. (2017) considers only the population for which L=1. However, we are ultimately also 

interested in generalizability to the entire population, and so we must add two additional groups to 

the typical division of the sample among compliers, always-takers, and never-takers. Namely, we 

                                                           
12 We must also assume the “stable unit treatment value assumption (SUTVA)” from Rubin (1980) which holds that 
individuals’ responsiveness to treatment is unaffected by the number of others who also receive treatment. This 
assumption may be restrictive as increases in scale may affect the quality of instructors and mentors providing 
services. However, we consider these concerns secondary to the selection effects present in our context. 
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add the “late-takers” who take-up the treatment despite not entering the lottery, and the “never-

ever-takers” who do not enter the lottery and do not take the treatment. Again, we maintain the 

monotonicity assumption that there are no defiers. Accordingly, we summarize the groups that 

comprise our sample, and write the expected outcome for each subsample conditional on X=x in 

Table 2. 

 

We write the model in familiar linear form with unobserved heterogeneous intercepts as well as 

heterogeneous effects of treatment: 

 𝑌𝑌𝑖𝑖 = 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝐷𝐷𝑖𝑖𝑏𝑏𝑖𝑖 + 𝜀𝜀𝑖𝑖,   (6) 

where Xi denotes a vector of observed characteristics. Here, 𝜀𝜀𝑖𝑖 represents the unobserved 

heterogeneous intercept, while bi = β + ei represents the heterogeneous responsiveness to 

treatment, which are centered on the ATE, β. Note that the model implicitly assumes that neither 

Z nor L directly affects the outcome variable, however selection into treatment may depend on 

both. 

Table 2 Sample composition 

Name Conditional outcomes Type composition 

Complacent 

Treatment 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 1,𝑍𝑍 = 1) = 𝒙𝒙𝒙𝒙 + 𝛽𝛽 + 𝑒̅𝑒𝑡𝑡 + 𝜀𝜀𝑡̅𝑡 Compliers and always-takers 

Complacent 

Control 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 0) = 𝒙𝒙𝒙𝒙 + 𝜀𝜀𝑐̅𝑐 Compliers and never-takers 

No-shows  𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 1) = 𝒙𝒙𝒙𝒙 + 𝜀𝜀𝑛̅𝑛𝑛𝑛 Never-takers 

Crossovers 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 1,𝑍𝑍 = 0)

= 𝒙𝒙𝒙𝒙 + 𝛽𝛽 + 𝑒̅𝑒𝑐𝑐𝑐𝑐 + 𝜀𝜀𝑐̅𝑐𝑐𝑐 

Always-takers 

Never-ever-takers 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 0,𝑍𝑍 = 0) = 𝒙𝒙𝒙𝒙 + 𝜀𝜀𝑛̅𝑛 Never-ever-takers 

Late-takers 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 0,𝑍𝑍 = 0) = 𝒙𝒙𝒙𝒙 + 𝛽𝛽 + 𝑒̅𝑒𝑙𝑙 + 𝜀𝜀𝑙̅𝑙 Late-takers 
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Following Black et al. (2017), in order to test for nonrandom selection into compliance on the basis 

of unobserved heterogeneity we can test whether the mean heterogeneous fixed errors and 

heterogeneous effects differ across populations using side-by-side comparisons. For instance, the 

difference between controls and no-shows may be expressed as the following: 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 0) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1,𝑍𝑍 = 1) = 𝜀𝜀𝑐̅𝑐 − 𝜀𝜀𝑛̅𝑛𝑛𝑛.   (7) 

As does Black et al. (2017), we can test whether this difference is zero in the following conditional 

mean function for the sample that enters the lottery but does not take up treatment: 

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0, 𝐿𝐿𝑖𝑖 = 1) = 𝑍𝑍𝑖𝑖𝜋𝜋01 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟎𝟎𝟎𝟎.   (8) 

As both Huber (2013) and Black et al. (2017) note, because the no-shows are composed only of 

never-takers and the control group of never-takers and compliers, this test ultimately assesses 

whether the compliers differ systematically on the basis of unobserved characteristics from never-

takers. Thus, if we reject the null the hypothesis that 𝜋𝜋01 = 0, then selection on unobserved 

characteristics  may be problematic, and the LATE results from the RCT are unlikely to generalize 

to the remaining experimental sample. We repeat the exercise among those in the experimental 

sample who receive treatment. 

Accordingly, we can test whether always-takers differ systematically from compliers within the 

lottery by estimating the following for the sample that enters the lottery and takes treatment:  

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 1, 𝐿𝐿𝑖𝑖 = 1) = 𝑍𝑍𝑖𝑖𝜋𝜋11 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟏𝟏𝟏𝟏.   (9) 

Performing a standard t-test on 𝜋𝜋�11 tests whether 𝑒̅𝑒𝑡𝑡 + 𝜀𝜀𝑡̅𝑡 − (𝑒̅𝑒𝑐𝑐𝑐𝑐 − 𝜀𝜀𝑐̅𝑐𝑐𝑐) is nonzero. Whereas the 

former test examines whether there is selection into attrition, the latter test also factors in 

possible heterogeneous treatment effects.13  

To introduce our tests for selection into the experimental sample on the basis of unobserved 

heterogeneity, we first split the population into just four groups: those who entered the lottery and 

received treatment; those who entered the lottery and did not receive treatment; those who did not 

enter the lottery and did not receive treatment; and those who did not enter the lottery but did 

receive treatment. This last group – the late-takers – may not be present in all settings, but they are 

certainly not unique to our experiment. The compliers who were moved by housing demolitions 

                                                           
13 Under the assumption that 𝜀𝜀𝑐̅𝑐 − 𝜀𝜀𝑎̅𝑎 = 𝜀𝜀𝑡̅𝑡 − 𝜀𝜀𝑠̅𝑠 (which may only hold in special cases), testing the difference between 𝜋𝜋10�  and 
𝜋𝜋00�  provides a direct test for whether there the effects of differ between the compliers and always-takers in the population. 
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in Jacobs (2004) and Chyn (2018) are essentially late-takers to Moving-to-Opportunity compliers 

from Goering et al. (1999), Orr et al. (2003), Sanbonmatsu et al. (2011) and Chetty et al. (2016). 

Late-takers are also present in the data underlying the evaluation of the efficacy of Teach for 

America in Glazerman, Mayer, and Decker (2006) and in the large-scale class-size experiment of 

Tennessee STAR analyzed in Folger and Breda (1989), Krueger (1999), Krueger and Whitmore 

(2001), and Chetty et al. (2013) among many others. The late-takers are not necessary to test for 

selection on unobserved variables, but their existence provides an additional test for selection into 

the experiment on the basis of unobserved variables, including responsiveness to treatment. Let 

𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 0, 𝐿𝐿 = 0) = 𝜀𝜀0̅0, 𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 0, 𝐿𝐿 = 1) = 𝜀𝜀0̅1, 𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 0) = 𝜀𝜀1̅0, and 

𝐸𝐸(𝜀𝜀𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 1) = 𝜀𝜀1̅1.14 Likewise, let 𝐸𝐸(𝑒𝑒𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 0) = 𝑒̅𝑒10 and 𝐸𝐸(𝑒𝑒𝑖𝑖|𝐷𝐷 = 1, 𝐿𝐿 = 1) =

𝑒̅𝑒11.15 Accordingly, the difference in outcomes conditional on X = x within treatment status is 

given by the following:  

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1, 𝐿𝐿 = 0) = 𝑒̅𝑒11 + 𝜀𝜀1̅1 − 𝑒̅𝑒10 − 𝜀𝜀1̅0   (10) 

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0, 𝐿𝐿 = 0) = 𝜀𝜀0̅1 − 𝜀𝜀0̅0   (11) 

If we restrict the sample to those who do not receive treatment, an indicator for participation in the 

experiment would absorb any mean differences in unobserved characteristics between those who 

do and do not participate in the experiment. Thus, we can test for selection into the experiment on 

the basis of such unobserved characteristics by conducting a simple t-test on the estimated 

coefficient on L in the regression of Y on X and L with this restricted sample:  

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0) = 𝐿𝐿𝑖𝑖𝜋𝜋0 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟎𝟎.   (12) 

So long as the treatment and non-treatment do not differ by participation in the lottery and for any 

setting of covariates there is a chance to see each state of treatment, a substantially or significantly 

non-zero 𝜋𝜋0� provides evidence of selection on unobserved characteristics into the experiment, 

making the claim of external validity of the experimental results to the non-experimental 

population difficult to accept. The intuition is simple, since neither received treatment, any 

differences in outcomes must be due to differences in selection. Further the sign and magnitude of 

𝜋𝜋0� demonstrates the extent and direction of the selection bias. 

                                                           
14 As the model is full saturated, we may write 𝜀𝜀1̅1 = 1 − 𝜀𝜀1̅0 − 𝜀𝜀0̅1 − 𝜀𝜀0̅0. 
15 We may add 𝐸𝐸(𝑒𝑒𝑖𝑖|𝐷𝐷 = 0, 𝐿𝐿 = 0) = 𝑒̅𝑒00 and 𝐸𝐸(𝑒𝑒𝑖𝑖|𝐷𝐷 = 0, 𝐿𝐿 = 1) = 𝑒̅𝑒01 such that 𝑒̅𝑒11 = 1 − 𝑒̅𝑒10 − 𝑒̅𝑒01 − 𝑒̅𝑒00, 
where 𝑒̅𝑒00 and 𝑒̅𝑒01 are the average differential effects those who did not receive treatment whether or not they 
were in the experiment would have experienced were they to have received treatment. 
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Granted that some who did not enter the lottery make their way into treatment, we may conduct 

an additional test on the remaining sample, restricted to those who do receive treatment: 

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 1) = 𝐿𝐿𝑖𝑖𝜋𝜋1 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟏𝟏.   (13) 

A simple t-test on 𝜋𝜋1� with this restricted sample provides a summative test of whether 𝑒̅𝑒11 + 𝜀𝜀1̅1 −

𝑒̅𝑒10 − 𝜀𝜀1̅0 equals zero. In so doing, we test whether those who do not enter the experiment differ 

on the basis of unobserved characteristics and heterogeneous effects from those who do enter the 

experiment.16 

In order to show what these tests reveal and the assumptions upon which our interpretation of the 

results rely, we revisit the potential outcomes framework where Y is the observed outcome, Y1 is 

the outcome that would be manifested under treatment, and Y0 is the outcome that would be 

manifested without treatment. As before, L=1 denotes participation in the lottery, Z=1 denotes 

being selected for treatment by the lottery, and D=1 indicates receipt of treatment. Let P (P= 

E(D|L=0)) stand for the share of those who do not participate in the lottery, but do receive 

treatment.  

In simple settings, interpretation of the test requires no additional assumptions. Specifically, 

when compliance with the randomization is perfect and treatment status is homogeneous among 

the non-experimental population, we maintain, that the randomization was carried out properly. 

That is E(Y1|L=1,Z=1) = E(Y1|L=1,Z=0) and E(Y0|L=1,Z=1) = E(Y0|L=1,Z=0).  Second, we 

maintain that being selected for the control (or treatment) has no effect on the outcome 

independent of treatment status, such that E(Y|L=1,D=0,Z=0) = E(Y0|L=1,D=0) = E(Y0|L=1) = 

E(Y|L=1,D=0).17 Both of these assumptions are standard to interpreting experimental results.  

Interpretation of the results from our tests in more complicated settings require assumptions 

beyond the standard assumptions previously mentioned and the standard monotonicity 

assumption required for estimating the LATE.18 Noncompliance leads us to add the first 

additional assumption; namely, that noncompliance with the randomization is “ignorable, i.e., 

                                                           
16 Under the assumption that 𝜀𝜀0̅1 − 𝜀𝜀0̅0 = 𝜀𝜀1̅1 − 𝜀𝜀1̅0, testing the difference between 𝜋𝜋1� and 𝜋𝜋0� provides a direct 
test for whether the effects differ between the experimental sample and the remaining population.  
17 Equivalently, E(Y|L=1,D=1,Z=1) = E(Y1|L=1,D=1) = E(Y1|L=1) = E(Y|L=1,D=1). 
18 With noncompliance, in order to interpret the experimental results as estimating a LATE, we must maintain the 
standard monotonicity assumption introduced by Imbens and Angrist (1994) that there are no defiers, who are 
responsive to the randomization in the opposite direction as the compliers. 
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not jointly related to treatment and the outcome.”19  Were noncompliance problematic for 

generalizing within the experimental sample, it may be uninteresting to pursue the question of 

generalization to an even broader population. Further, we obtain evidence pertaining to whether 

noncompliance is ignorable by following Huber (2013) or Black, et al. (2017). Combining this 

assumption with the standard assumptions  previously listed implies the following: E(Y1|L=1) = 

E(Y1|L=1,D=1) = E(Y1|L=1,D=0) = E(Y|L=1,D=1) and E(Y0|L=1) = E(Y0|L=1,D=0) = 

E(Y0|L=1,D=1) = E(Y|L=1,D=0).  

Lastly, due to the presence of both individuals who do and do not take treatment in the non-

experimental population, we utilize a second additional assumption; namely monotonic selection 

by potential outcome. That is if E(Y0|L=0,D=1) >> E(Y0|L=0,D=0], then E(Y1|L=0,D=1) ≥ 

E(Y1|L=0,D=0).20 While this assumption seems reasonable, it does rule out instances where 

among the non-experimental population, differences in responsiveness to treatment are larger in 

magnitude and opposite signed as the differences in levels of the potential outcome between 

those who select into or out of treatment.   

First, we examine the simple case in which compliance with the randomization is perfect within 

the experiment and the entire population that does not enter the experiment also does not enter 

treatment. In this simple case, we only need our first two assumptions.  We would like to test 

whether E(Y1|L=1) = E(Y1|L=0) and E(Y0|L=1) = E(Y0|L=0), but with our data we are left 

testing E(Y|L=1,D=1) against E(Y|L=0,D=1) and E(Y|L=1,D=0) against E(Y|L=0,D=0). In 

comparing E(Y|L=1,D=0) to E(Y|L=0,D=0], we directly test whether there is selection into the 

experiment on the potential level of the outcome under no treatment. Likewise, consider the case 

in which the entire non-experimental population receives treatment and the control group within 

the experiment experiences a withholding of treatment. By the same logic, comparing 

E(Y|L=1,D=1) to E(Y|L=0,D=1) provides a direct test of selection into the experiment on the 

potential level of outcome and responsiveness to treatment.     

Next, we consider a slightly more complicated case in keeping with the current study, where 

there is not perfect compliance nor is treatment status homogenous among the non-experimental 

                                                           
19 For consistency, we adopt this phrasing is from Huber (2013).  
20 Equivalently, we could state the assumption as E(Y0|L=0,D=0) >> E(Y0|L=0,D=1], then E(Y1|L=0,D=0) ≥ 
E(Y1|L=0,D=1). 
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population. Under our third assumption, we focus on instances where noncompliance is 

ignorable. Under these three assumptions, we may write the differences in realized outcomes 

stratified by realized treatment status as the following: 

 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 0) = 

𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 0) + 𝑃𝑃[𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 0,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌0|𝐿𝐿 = 1)]  = 0, 

  (14) 

 

 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 1) = 

𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1) − 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0) + 𝑃𝑃[𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 0,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌1|𝐿𝐿 = 1)]  = 0. 

  (15) 

   

The first unconditional test we conduct under these assumptions compares the expected 

outcomes of those who did not receive treatment by whether they participated in the lottery. The 

first difference on the right hand side of equation (14) directly examines whether there is 

selection into the lottery on the basis of potential outcomes in the absence of treatment. The latter 

difference could be nonzero either from selection into the lottery or selection into treatment in 

the non-randomized population. The second test we conduct compares the expected outcomes of 

those who did receive treatment by whether they participated in the lottery. In equation (15), the 

first difference directly examines whether there is selection into the lottery on the basis of 

potential outcomes in the event that both populations were to receive treatment. Again, the latter 

difference could be nonzero either from selection into the lottery or selection into treatment in 

the non-randomized population.  

Taken together, the two tests may demonstrate how problematic selection into the experiment is. 

Suppose we observe meaningfully positive differences between the lottery and non-lottery 

populations within both states of treatment according to the following:  

 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 0) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 0) ≫ 0,   (16) 

and  

 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 1,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌|𝐿𝐿 = 0,𝐷𝐷 = 1) ≫ 0.   (17) 

   

The inequality in equation (16) could be due to those who select into the lottery having higher 

potential outcomes on average than those who do not self-select, or to those who select into 
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treatment, but not the lottery, having higher than average potential outcomes than the remaining 

non-lottery population. Similarly, the inequality in equation (17) could be due to those who 

select into the lottery having on average higher potential outcomes than those who do not, or 

those who do not select into treatment nor the lottery having on average higher potential 

outcomes than those who do select into treatment but did not enter the lottery. However, among 

those who do not enter the lottery, we cannot simultaneously maintain that those who chose to 

receive or not to receive treatment are positively selected on their propensity to persist in college.  

The fact equations (16) and (17) depend on different potential outcomes (Y0 and Y1 respectively) 

creates a complication that necessitates the monotonic selection on potential outcomes 

assumption. With this assumption, we hold that differences in responsiveness to treatment are 

not so large and in the opposite direction as to reverse the sign of selection on the differences in 

levels of the potential outcome between those who select into or out of treatment. Under this 

assumption, both tests agreeing on the direction of selection implies that the lottery population is 

non-randomly selected from the larger population. Therefore, generalizing the results to the 

larger population would be unreasonable. Naturally, the similar reasoning would hold, if both 

were substantially negative. Disagreement between the tests suggests strong selection into 

treatment among the non-lottery population. Having both differences qualitatively close to zero 

is reassuring regarding the representativeness of the experimental population. 

We follow this nonparametric approach to the question by using a nonparametric test for whether 

the difference between retention rates for those who do and do not chose to enter the lottery are 

meaningful. Following Efron’s (1982) nonparametric percentile method, in each of 10,000 

repetitions, we resample the data with replacement and randomly assign each draw to the 

“lottery” according to the binomial distribution, keeping the shares of the treated and untreated 

populations who enter the lottery constant at 87 percent and 11 percent respectively. We then 

find the placebo differences (π0 being the average difference in retention by lottery participation 

for those who do not receive treatment and π1 serving as the same for the treated). Next, we 

compare the differences in retention observed under the actually lottery participation decisions to 

the distribution of placebo differences we observe under random assignment of “lottery 

participation.” The percentiles of the distribution of these differences around the median of these 

differences may be sensibly be interpreted as the according confidence intervals.  
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As shown in Young (2016) using a similar approach, we may also construct nonparametric p-

values for our previously estimated mean differences, π0 and π1. We can do so using either 

comparisons in the coefficients or comparisons in the t-statistics. For the coefficients, the p-value 

becomes essentially the share placebo coefficient estimates whose absolute value (or square) is 

greater than the absolute value of the difference using actual lottery assignment.  

Similarly, we can calculate the p-value of our original estimate using the t-statistics from each 

repetition. Accordingly, Young (2016) shows that with M additional draws the p-value of the 

difference is given by the following: 

 Sampling randomization p-value = 1
𝑀𝑀+1

{∑ 𝐼𝐼𝑚𝑚(> 𝑡𝑡𝑎𝑎2)𝑀𝑀
𝑚𝑚=1 + 𝑈𝑈[1 + ∑ 𝐼𝐼𝑚𝑚(= 𝑡𝑡𝑎𝑎2)𝑀𝑀

𝑚𝑚=1 ]},  (18) 

   

where U is a random variable drawn from the uniform distribution, 𝑡𝑡𝑎𝑎2 = � 𝜋𝜋�𝑎𝑎
𝑠𝑠𝑠𝑠(𝜋𝜋�𝑎𝑎)

�
2
 is the squared 

t-statistic from the actual lottery participation decisions and 𝐼𝐼𝑚𝑚(> 𝑡𝑡𝑎𝑎2) and 𝐼𝐼𝑚𝑚(= 𝑡𝑡𝑎𝑎2) are indicator 

functions for whether the placebo squared t-statistic is larger than 𝑡𝑡𝑎𝑎2. These approach avoids 

possible finite sample bias and applies minimal assumptions or structure to the data, while 

providing valid and transparent inference.  

Another way to approach the issue of external validity is to compare the populations who select 

into treatment after enrolling in the experiment against those who select into the treatment without 

enrolling in the experiment, as well as doing the same for those who choose not to take treatment 

at all. The idea here is that if in the natural world participation in treatment is voluntary, and the 

selection processes into (or out of) treatment are similar within and outside of the experimental 

setting, we can reveal whether participation in the experiment alters the findings. These 

comparisons will lack the power of the earlier tests, but with sufficient sample size may allow us 

more insight into the comparability of each population.  

Accordingly, we  narrow our test for whether selection differs across those who select into the 

experiment and those who do not by estimating the following on the no-shows and never-ever-

takers:  

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 0,𝑇𝑇 = 𝑛𝑛, 𝑒𝑒) = 𝐿𝐿𝑖𝑖𝜋𝜋00 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟎𝟎𝟎𝟎.   (19) 
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Performing a t-test on our estimate of 𝜋𝜋00 provides evidence on whether the never-takers are 

representative of those who do not take the treatment and never enlisted in the experiment.  

We can duplicate this analysis on the sample that receives treatment to build differences in the 

heterogeneous effects into the analysis: 

 𝐸𝐸(𝑌𝑌𝑖𝑖|𝐷𝐷𝑖𝑖 = 1,𝑇𝑇 = 𝑑𝑑, 𝑙𝑙) = 𝐿𝐿𝑖𝑖𝜋𝜋10 + 𝑿𝑿𝒊𝒊𝜸𝜸𝟏𝟏𝟎𝟎.   (20) 

Performing a t-test on our estimate of 𝜋𝜋10 provides evidence on whether the always-takers are 

representative and whether we may expect the experimental results to generalize to those who 

never entered the experiment.  

 

Analysis 3  

In this section, we conduct a conventional observational analysis of program impact on the 

treated population. We conduct this analysis with two purposes in mind. First, we compare the 

observational results with the experimental estimates to explore issues of bias in conventional 

observational designs where the population of interest may be only those students who 

voluntarily enroll in the experiment. The observational design is still commonly used by in-house 

institutional researchers and appears in much of the earlier-published program evaluation studies 

of first year learning communities, in the context of both voluntary and mandated enrolment.   

Secondly, we conduct this within-study design to reflect on the difference in the observational 

and experimental results in the context of our tests for external validity, where the population of 

interest extends beyond those who self-selected into the experiment, and the aim of the 

observational design is to uncover the population average effect of the program rather than the 

effect of the program for those who selected into the experiment and were moved into the 

program by way of randomization. Differences in results between the two approaches may 

originate from either lack of internal validity of the observational approaches or lack of external 

validity of the RCT or both. We use the results from analysis 2 to provide evidence for the cause 

of any divergence in results from these two approaches.   

If the treated and untreated populations are alike conditional on our set of observed 

characteristics, observational analyses will produce unbiased causal estimates of the average 



                                                     33 
 

program impact over both the self-selected and larger populations of interest. However, if the 

two groups differ with regard to unobserved characteristics which cannot be controlled for in the 

analysis and which affect retention prospects – observational methods will lead to biased and 

generally uninformative estimates. 

We first estimate the effect of enrollment in the FYLC on first year retention using unconditional 

OLS regressions, covariate adjusted OLS regressions, and logit QMLE analysis. This analysis is 

similar to the analysis used to identify our average intent to treat estimates. The first key 

difference is that in these analyses we use the full sample of freshman entrants including both the 

self-selected lottery entrants and those who initially did not apply for the FYLC lottery. The 

second key difference is that for these analyses, treatment is measured by an indicator for 

enrollment in the FYLC instead of by an indicator for winning the lottery.  

 We supplement this analysis by also adding more sophisticated propensity score matching 

techniques, which are used by Clark and Cundiff (2011), for example, to evaluate the efficacy of 

a FYLC without random assignment. Accordingly, we estimate both the average treatment effect 

on the treated by averaging over the difference between the retention of each treated student and 

the retention of the student in the remaining population who is most similar to the treated 

student, but did not receive treatment. We also report estimates of the average treatment effect 

for comparability. Such techniques require “modelling” of the propensity to enter treatment 

(FYLC) based on observed characteristics. We adopt the standard practice of using logit to 

estimate these propensity scores. As we are estimating these propensity scores, conducting 

appropriate inference requires that we account for possible estimation error. We consequently 

bootstrap the standard errors to account for this issue.  

Validity of this and similar techniques require two assumptions; overlap and ignorability (also 

known as the conditional independence assumption). In our context, the ignorability assumption 

requires that we possess sufficient information in the control variables such that there would be 

no expected difference in retention between those who receive treatment and those who do not in 

the absence of treatment. In our notation, we must maintain the following: 

𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 1) − 𝐸𝐸(𝑌𝑌𝑖𝑖|𝒙𝒙,𝐷𝐷 = 0) = 0.   (21) 
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Researchers typically cannot directly test whether ignorability is violated. However, the tests we 

provide in the proceeding section allows us to do just that.  

Figure 1: Overlap in the propensity scores by treatment status 

 

Figure notes: Propensity scores estimated using logit. 

The overlap assumption requires that, for any setting of observed characteristics, there is a 

chance the individual could be in either the treatment or control group. We can examine the 

overlap assumption through the estimated propensity scores. Figure 1 presents histograms of 

these estimated propensity scores split by treatment status. Crump, Hotz, Imbens, and Mitnik 

(2009) provide a rule of thumb that observations with propensity scores above 0.9 and below 0.1 

should be discarded. We accordingly perform all analyses both on the full sample as well as this 

trimmed subsample.  

Results 

Analysis 1 
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Table 3: RCT estimates 
Panel A: Intent to treat effects of winning lottery on first year retention (reduced form estimates) 
 (1) (2) (3) (4) 
 Retention Retention Retention Retention 
Won lottery 0.019 0.018 0.019 0.018 
 (0.015) (0.015) (0.015) (0.014) 

 
 
Panel B: Estimated LATEs of FYLC on 1st year retention (2nd Stage estimates)  
FYLC 0.029 0.027 0.030 0.027 
 (0.022) (0.022) (0.025) (0.022) 
Residuals   -0.012 -0.004 
   (0.032) (0.029) 
     
     
Panel C: OLS 1st stage estimates of the effect of winning the lottery on FYLC participation 
Won lottery 0.648 0.648 0.648 0.648 
 (0.019) (0.019) (0.019) (0.019) 
     
Observations 1565 1565 1565 1565 
Retention Mean 0.910 0.910 0.910 0.910 
Controls No Yes No Yes 
Model LPM LPM QML QML  

The first two column report results from linear models whereas columns (3) and (4) report 
estimates from nonlinear estimation. Logit was used in QML estimation. The control function 
residuals used with QML in panel B were estimated using OLS. Columns (1) and (3) are 
unconditional estimates whereas columns (2) and (4) include baseline covariates. Robust 
standard errors in parentheses. Bootstrap standard errors with 500 replications were used for 
inference in QML control function estimation.  

The ITT and the LATE estimates of program effect from the RCT design appear in Panels A and 

B, respectively, of Table 3. The ITT estimates are not altered in any meaningful way by the 

introduction of controls, and are exactly the same whether estimated by OLS or logit QML. The 

quantitative magnitude – a roughly two percentage point increase in the retention probability – is 

not insubstantial, but the estimates have large standard errors and none are close to being 

statistically different from zero at any conventional threshold. 

Panel B gives the LATE estimates, while Panel C provides the first stage estimates, which reveal 

that the randomization provides a strong instrumental variable in explaining variation in FYLC 

participation. The estimated impacts of the program in the second-stage regression analysis 

increase in quantitative magnitude – by roughly one percentage point – compared to the intent to 



                                                     36 
 

treat estimates, but once again these estimates are imprecisely estimated and thus statistically 

insignificantly different from zero.  

The control function residuals in columns 3 and 4 of Panel B preview some of the analysis 

presented in Analysis 2 below. The coefficient estimates are small and far from statistically 

significant. Thus, we fail to reject the null hypothesis of ignorable noncompliance. This provides 

the first piece of reassurance that the estimated LATE may generalize to the rest of the 

experimental population.   

Analysis 2  

Columns (1) and (2) of Panel A compare the retention probabilities of no-shows and the control 

population. Comparing the estimated coefficient on being randomly selected for participation in 

the FYLC program (i.e., having “won” the lottery) across the two columns, there is no 

statistically significant change in the magnitude of the estimate and thus no detectable 

substantive difference in the impact of controlling for observed characteristics across the two 

populations as regards their retention prospects. Moreover, the estimated coefficient on “won” in 

the column (2) results with controls is statistically insignificantly different from zero, implying 

no detectable substantive difference across the two populations regarding the impact of 

unobserved characteristics on retention.  

Columns (3) and (4) do the same, but exploring selection issues regarding the retention 

probabilities of the treated and crossovers populations – crossovers, being those who migrated 

from the control population to become treated despite losing the lottery. The results are similar; 

we see little difference in retention propensities across the crossovers and treated populations 

based on differences in either observed or unobserved background characteristics. Thus, the 

panel A results suggest that the two migrations within the experimental population do not present 

problems in estimating the program impact in the RCT design. The ITT and LATE estimates are 

of inconsequential difference, and the estimated program impact can be comfortably generalized 

to apply to migrants as well as to assignment compliers.  

Table 4: Testing for selection into and within the lottery 
 (1) (2) (3) (4) 
Panel A: Test for nonrandom attrition and noncompliance with the lottery 
Won 0.009 0.000 0.005 0.005 
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 (0.025) (0.026) (0.029) (0.029) 
Observations 803 803 762 762 
Controls No Yes No Yes 
Sample Control + No-

shows  
Control + No-

shows  
Treated + 

Crossovers 
Treated + 

Crossovers 
Treatment status Untreated Untreated Treated Treated 
     
Panel B: Test for selection into the experiment among the untreated 
Lottery 0.028 0.039 0.035 0.040 
 (0.011) (0.011) (0.023) (0.023) 
Observations 7252 7252 6619 6619 
Controls No Yes No Yes 
Sample Control + No-

shows + Never-
ever-takers 

Control + No-
shows + Never-

ever-takers 

No-shows + 
Never-ever-takers 

No-shows + 
Never-ever-takers 

Treatment status Untreated Untreated Untreated Untreated 
     
Panel C: Test for selection into the experiment among the treated 
Lottery 0.067 0.063 0.062 0.062 
 (0.034) (0.033) (0.042) (0.045) 
Observations 879 879 225 225 
Controls No Yes No Yes 
Sample Treated + 

Crossovers + Late-
takers  

Treated + 
Crossovers + Late -

takers 

Crossovers + Late 
-takers 

Crossovers + Late 
-takers 

Treatment status Treated Treated Treated Treated 
All results are from OLS regressions. Robust standard errors in parentheses.  

In Panels B and C of Table 4, we explore issues of non-random selection into the lottery itself 

among the untreated and treated populations, respectively. Columns (1) and (2) of Panel B 

explore the extent to which those who selected into the lottery, but were untreated, differ 

regarding the probability of retention from the “never-ever takers” (i.e., those who did not select 

into the lottery and did not later become treated as late-takers). Column (1) provides the 

unconditional estimates, such that the reported coefficient provides the nonparametric difference 

in the mean outcomes of the untreated by whether or not they participated in the lottery. Column 

(2) conditions on predetermined observed student characteristics. While this approach may 

introduce finite sample bias, it is also generally more efficient (though not noticeably in this 

case) and focuses attention on the differences on unobserved variables. The fact that the 

coefficient on Lottery is statistically and economically significantly positive in both 

specifications indicates that those who enter the lottery are more likely to persist in college 
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regardless of the program, as neither population in these regressions took part in the FYLC. The 

fact that the magnitude of the coefficient grows from 0.028 (p-value = 0.013) to 0.039 (p-value = 

0.001) with the addition of covariates indicates that lottery participants are negatively selected on 

observed characteristics – something we presented as a preliminary hypothesis in the comparison 

of background characteristics across these two populations in the “data” section above. However, 

the positive selection into the lottery based on unobserved characteristics is more pronounced 

than the negative selection on observed variables.  

Columns (3) and (4) of Panel B test for differences across the never-takers and the never-ever-

takers in retention probabilities. The former expressed an interest in the lottery but, having won, 

decided not to participate in the program, whereas the latter also did not participate in the 

program but never expressed a desire to do so. Neither group was treated; the difference is in 

selection into the lottery.  Once again, we find evidence of positive selection on unobserved 

characteristics among those who entered the lottery. With the smaller sample size, these 

estimates are less precise, but the magnitudes are roughly comparable to those of columns (1) 

and (2). From column (4), we estimate that the never-takers are 4 percentage points more likely 

to persist beyond the first year (p-value = 0.077) than are the never-ever-takers. The Panel B 

results indicate that there is positive selection into the lottery based on unobserved characteristics 

for the untreated population, and thus that the RCT findings of program impact cannot be 

generalized to the students who elect not to participate in the lottery and who maintain that 

commitment.  

In Panel C we turn to selection into the lottery among the treated populations. Columns (1) and 

(2) compare retention probabilities for the treated population that selected into the lottery and 

those late-takers who expressed no interest in the program initially, but later changed their minds 

and were admitted into the FYLC. We find that, among the treated, those who entered the lottery 

are roughly 6 percentage points (p-value = 0.062) more likely to persist than those who came 

into the program as late crossovers. In columns (3) and (4), a comparison is made between two 

final treated groups – the crossovers and late-crossovers – both of whom were treated and 

migrated from initially assigned or chosen positions in order to receive treatment. Once again, 

the central distinguishing feature of these two groups is the initial decision to participate in the 

lottery. While the results reveal no statistically significant difference in retention probabilities 
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across these two groups, owing to either observed or unobserved variables, the quantitative 

magnitude of the difference owing to unobserved characteristics is very large (equivalent to the 

estimate in the first two columns). It is possible that the much-reduced sample size may explain 

the somewhat larger standard errors that render the difference in conditional retention 

probabilities statistically insignificantly different from zero. Though the results from Panel C are 

not statistically significantly different from those in Panel B, the fact that the estimated 

coefficient on the indicator for lottery entrance in Panel C is nearly double that from Panel B is 

suggestive of differences in heterogeneous effects of the program between populations.   

Figure 2: Distribution of placebo 𝜋𝜋� where “lottery participation” is randomly assigned 

 
Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the differences in the mean retention between experimental and non-experimental 
populations within treatment status.  

In Figures 2 and 3 we show the distributions of placebo coefficients and corresponding t-

statistics from our randomization tests. Figure 2 presents the estimated differences in retention 

among the untreated (on the left) and among the treated (on the right) when “lottery 

participation” is randomly assigned is randomly assigned in each of 10,000 repetitions. We show 

the estimated difference in retention using the actual lottery participation using a red verticle 
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line. Figure 3 repeats the exercise using the t-statistics on each difference to incorporate the 

precision of each estimate into the simulation. In each case the red line lies on the far right side, 

indicating that the realized differences in retention between those who actually do and do not 

participation in the experiment are unlikely to result from pure chance.  

Figure 3: Distribution of placebo t-statistics where “lottery participation” is randomly assigned 

 

Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the differences in the mean retention between experimental and non-experimental 
populations within treatment status.  

We show the formalized p-values from our randomization tests as well the selected distributional 

values of the placebo distributions in table 5. Rows one and three of table 5 present the 

nonparametric unconditional differences in retention rates between the experimental and non-

experimental populations stratified by treatment status with the accompanying p-values from 

randomization testing based only on the coefficent estimates. For comparison, the second and 

third rows show the first, fifth, tenth , fiftieth, nintieth, nity-fifth, and ninty-nineth percentile of 
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the placebo differences when lottery participation is randomly assigned.21 Following Young 

(2016) we repeat the exercise using the t-statistics presented in table 4 compared against the 

distribution of placebo t-statistics. For all tests and for both the treated and untreated populations, 

the p-values from the randomization tests fall between 0.015 and 0.03.       

Table 5: Nonparametric randomiaztion testing results 

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Statistics estimate p-value mean p1 p5 p10 p50 p90 p95 p99 
Coefficients           
Untreated           
Actual 𝜋𝜋0� 0.028 0.018         
Placebo 𝜋𝜋0�   -0.000 -0.030 -0.021 -0.016 -0.000 0.015 0.020 0.029 
Treated           
Actual 𝜋𝜋1� 0.067 0.026         
Placebo 𝜋𝜋1�   -0.000 -0.061 -0.045 -0.035 -0.001 0.035 0.048 0.070 
           
t-statistics           
Untreated           
Actual t0 2.27 0.025         
Placebo t0   0.021 -2.239 -1.581 -1.238 -0.007 1.304 1.693 2.509 
Treated           
Actual t1 2.37 0.029         
Placebo t1   -0.121 -3.019 -1.962 -1.478 -0.047 1.127 1.466 2.020 

Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. P-values 
constructed from the share of squared placebo estimated coefficients (t-statistics) greater than the 
squared actual estimated coefficients (t-statistics). The distribution of these squared statistics are 
shown in figures A2 and A3. 

As both the treated and untreated populations reveal that those who participate in the experiment  

are more likely to persist in college than those who do not, we conclude that there is evidence of 

positive selection on unobserved characteristics into the lottery. The RCT results cannot be 

reasonably generalized to those who do not self-select into the lottery, regardless of ultimate 

treatment status.  As a result, it seems there is little external validity of this RCT to the remaining 

population.  

                                                           
21 The p-vales are constructed using the square of the differences and t-statistics. 
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Analysis 3 

If the evaluation of program impact had not relied on random assignment, but rather had utilized 

an observational research design, how would the estimated program impact have differed?  We 

generate an observational estimate of program impact for a capacity constrained setting, where 

the treated, including crossovers and late-takers, are compared to non-participants that include 

both the control, no-shows, and never-ever-takers.  

Table 6: Observational analysis estimates of program effects.  

 (1) (2) (3) (4) (5) 
Panel A: Full sample 
FYLC 0.038 0.049 0.052 0.044 0.027 
 (0.010) (0.011) (0.013) (0.020) (0.016) 
Observations 8131 8131 8131 8131 8131 
Mean 0.91 0.91 0.91 0.91 0.91 
Controls No Yes Yes Yes Yes 
Estimation OLS OLS Logit PSM ATT PSM ATE 
  
Panel B: Sample restricted on propensity score 
FYLC 0.050 0.052 0.058 0 .050 0.054 
 (0.013) (0.013) (0.017) (0.023) (0.015) 
Observations 3816 3816 3816 3816 3816 
Mean 0.88 0.88 0.88 0.88 0.88 
Controls No Yes Yes Yes Yes 
Estimation OLS OLS Logit PSM ATT PSM ATE 

Robust standard errors in parentheses. Bootstrap standard errors with 500 replications were 
used for inference on propensity score matched estimates of the treatment on the treated. The 
restricted sample uses only observation for which there is overlap with propensity scores 
greater than 0.1 and less than 0.9. For PSM we present the estimated average treatment on the 
treated as well as estimates of the ATE.  
 
The results are in Table 6. Contrary to the findings from the RCT design, the estimated 

coefficient on the treatment variable in the observational analysis is positive and statistically 

significant regardless of specification or procedure invoked. Moreover, the estimated quantitative 

impact is large – a roughly 5 percentage point gain in retention probability by virtue of 

participation in the FYLC. However, because selection into treatment largely transpires through 

selection into the RCT, we know from the results in Panel B, column (2), of Table 4 that this 

estimate is biased due to self-selection on unobserved characteristics. For observationally 
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equivalent students, those who self-select into the lottery have statistically significantly different 

and quantitatively higher retention rates independent of program participation. 

Based on the observed differences among the treated and control populations and the way in 

which retention probabilities are negatively correlated with those differences, analysts employing 

such observational analyses might be tempted to hypothesize that the observational results are 

underestimates of true program impact. Indeed, such reasoning underlies the bounds of ATEs 

proposed in Andrews and Oster (2018). Note that as we restrict the sample to that for which there 

is more overlap on observed covariates, the observational estimates universally grow. While 

students who select into the experiment may be vulnerable with regard to observed correlates 

regarding first year retention, this vulnerability is combined with unobserved characteristics – 

such as commitment, grit, deep academic engagement, or a healthy work ethic – that more than 

make up for their observational vulnerabilities.  

As a final exercise, and by way of summarizing the empirical findings, we decompose the 

findings from Table 6 into selection into each of the six populations according to the test for 

nonrandom noncompliance outlined in Huber (2013). In the first two columns of Table 7, we 

focus exclusively on the experimental sample as a direct application of Huber (2013). The 

omitted category in columns (1) and (2) are the control group who entered the lottery, lost the 

lottery, and did not enroll in the FLYC. Column (1) presents the results from a simple regression 

of retention on indicators for winning the lottery, entering the FYLC after entering the lottery, 

and winning the lottery and entering the FLYC. In column (2), we add controls. Thus, the 

coefficient on Won indicates the increased retention from just winning the lottery, whereas Won 

lottery x FYLC reveals the increased retention from winning and also entering the FLYC. The 

coefficient on Entered lottery x FYLC reveals the marginal change in retention among those who 

did not win the lottery but managed to make it into the program.  

Columns (3) and (4) present the decomposition of the results from Table 6. Here, the full sample 

is used and we add an indicator for those who entered the lottery as well as an indicator for not 

entering the lottery but entering the FYLC. The omitted category for these regressions is 

composed of those never-ever-takers who do not enter the lottery and do not enter the FYLC. 
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In the aggregate, these results echo those previously presented. Columns (1) and (2) reveal that 

we can identify no evidence of a causal effect of the FYLC on retention for those who select into 

the experiment. Further, there are no substantive differences, regarding retention probabilities 

and thus likely program impact, between the compliers, never-takers, and always-takers. 

Columns (3) and (4) show that the only statistically meaningful difference in retention prospects 

is between those who do and do not enter the lottery (p-values of 0.038 and 0.003 respectively). 

The observed analysis leads to a biased estimate of program impact when the population of 

interest is those who self-selected into the study.  

Table 7: Testing for selection into the lottery, of compliers, and into attrition with interactions  

 (1) (2) (3) (4) 
 Retention Retention Retention Retention 
     
Won lottery 0.009 0.003 0.009 0.002 
 (0.025) (0.025) (0.025) (0.025) 
Entered lottery 0.019 0.025 0.035 0.026 
x FYLC (0.029) (0.030) (0.044) (0.044) 
Won lottery  -0.003 -0.002 -0.003 -0.001 
x FYLC (0.038) (0.038) (0.038) (0.038) 
Entered    0.027 0.038 
Lottery   (0.013) (0.013) 
FYLC   -0.016 -0.002 
(no lottery)   (0.033) (0.032) 
     
Observations 1565 1565 8131 8131 
Controls No Yes No Yes 
Sample Lottery Lottery Full Full 

All results are from OLS regressions. Robust standard errors in parentheses.   

The results also provide evidence that calls into question the generalizability of the LATE 

estimate of program impact from the RCT design for the non-experimental population. While we 

observe no detectable selection into or out of treatment within the experimental sample, we do 

observe selection into the experiment itself on otherwise unobserved propensities to persist in 

college and possibly in responsiveness to treatment. Thus, it would be unreasonable to generalize 

the RCT results to those who entered the program late without participating in the lottery or to 

those who might join as the scale expands.  
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How do we accordingly assess the experimental and observational approaches? In this instance, 

we have no means by which to directly assess selection into treatment for those who did not 

enter the experiment. However, the majority of our treated population received treatment by 

selecting into the study. As a result, the nonrandom selection that compromises the external 

validity of the experimental results also contaminates the internal validity of the observational 

estimates whether the population of interest is the self-selected or a larger segment such as the 

entire freshman class. Were the experimental sample representative, the two approaches would 

provide more similar estimates. It would be unreasonable to claim that either estimate – the 

experimental or the observational – captures the population average effect of the FYLC on first 

year college retention. Thus, the take away from the difference in observational and experimental 

results is not the superiority of the experimental, except when the population of interest is limited 

to the self-selected, but rather, these differences are symptomatic of persistent problems in 

uncovering the population parameter.  It is only by applying tests for external validity that we 

can determine whether the RCT delivers a valid estimate of this elusive parameter. 

Conclusions 

This paper introduces new tests for the external validity of RCTs beyond the experimental 

population. It does so by first utilizing an RCT design to estimate the impact of a learning 

community on first year college retention for those who select into the study at a large four-year 

research university. It is the first of its kind of which we are aware. We find that both the “intent 

to treat” and the “local average treatment effect” estimates of program impact are small and 

statistically insignificantly different from zero. The first year learning community program at this 

institution had no measureable causal effect on student retention into the second year of college 

for the treated population.  

There were significant migrations from the assigned populations in the experimental sample. In 

conducting tests from Black et al. (2015) for whether the assignment compliers differ 

substantially from the never-takers or always-takers on the basis of unobserved propensities to 

persist, we find little difference. As a result, it seems that the “local average treatment effect” 

estimate of program impact may be safely generalized to the remaining experimental population.  

However, when we add tests for whether the experimental sample is representative of a broader 

population of interest – for example, the entire freshman class – we find that those who enter the 
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lottery, and thereby express initial interest in the first year learning community program, are 

quite different from those who elect not to enter the lottery. In particular, we find that lottery 

participants possess unobserved characteristics that lead them to be far more likely, statistically 

and quantitatively, to return for a second year of college compared to those who decline to 

participate in the lottery. Thus, while the RCT findings may serve as a causal and unbiased 

estimate of program impact for the treated population of self-selected students, these results are 

in no way generalizable to the population who did not enroll in the experiment.   

These results serve to highlight a few important broader lessons, all of which emanate from the 

central insight that selection on unobserved characteristics matters. First in the spirit of Calónico 

and Smith (2017), our observational analysis makes clear that our seemingly rich set of 

covariates is insufficient for maintaining the conditional independence assumption. These 

observational results suggest, incorrectly, that the program led to a large statistically significant 

increase in first year retention for treated students. Even more interestingly, given the nature of 

the selection process on observed variables – where students who selected into the study 

disproportionately possess observed background characteristics that are negatively associated 

with first year retention – researchers employing observational techniques might be inclined to 

hypothesize, under a presumption that unobserved differences across the self-selected 

experimental and non-experimental populations are likely to follow the same pattern as do 

observed differences, that observational analyses of program impact are underestimates of the 

true effect of the program. Such is not the case here. As we have seen, our results reveal that the 

unobserved characteristics of the self-selected control population have a strongly positive effect 

on retention.  

Nonrandom selection affects the assessment of external validity as well as internal validity. In 

much of the existing research employing an RCT design, testing for selection into the 

experimental sample has not been conducted, either because the data on nonparticipants do not 

exist or because researchers have not made use of it. And yet selection issues of various sorts 

emerge in many of these contexts. Our results suggest that non-random selection based on 

unobserved characteristics including responsiveness to treatment may matter greatly for the 

generalizability of the RCT results. Information on non-participants is critical in testing for such 

non-random selection. Thus, we recommend that when conducting RCTs, researchers should 
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collect or link their studies to more comprehensive data on the population of interest and show 

concretely whether the results of their study generalize beyond the experimental sample.  

Without further testing researchers ought not to conclude that observational approaches fail when 

observational estimators yield different results than an RCT. The context matters greatly. 

Assuming the observational analysis and RCT rely upon samples with different selection 

processes (e.g., the population from administrative data, a random sample from the population, a 

researcher non-randomly selected sample, or a participant self-selected sample), the two 

approaches estimate different parameters. Even if both approaches are internally valid, they may 

arrive at different results. In which case, the representativeness of the samples determines which 

estimate provides a closer approximation to the effect in the broader population. The tests that 

we have introduced provide concrete evidence of where these biases lie and should be 

incorporated into any similar within-study design. 

Finally, we reflect on what constitutes the population or parameter of interest. Economists and 

many other social scientists are often interested in parameters pertaining to broader populations. 

What is the elasticity of labor? What is the effect of health insurance on health or financial 

stability? Does the neighborhood in which an individual lives affect the course of their lives? 

Does a learning community help freshmen to persist in college? Each of these regard populations 

that are broader than those who may be selected for and may select into an experiment. However, 

for those implementing the FYLC, were the scale and selection criteria stable, the effect of the 

program for those who choose to enter it may be the exact parameter in which they are 

interested. Thus, which parameter is of most interest is context dependent and may be 

determined by whether we are in the phrasing of Roth (1986) “speaking to theorists” or 

“whispering in the ear of princes.”  
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Appendix for online publication: 

Figure A1: Map of the populations within the data 

 
Figure A2: Distribution of squared placebo coefficients 

  
Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the squared differences in the mean retention between experimental and non-
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experimental populations within treatment status. 
 
 
Figure A3: Distribution of squared placebo t-statistics 

 
Notes: Binomial random assignment to lottery participation with probabilities of inclusion in the 
lottery by treatment status set at 0.11 for the untreated and 0.87 for the treated reflecting the 
shares observed in the data. Distributions constructed from 10,000 repetitions. The red verticle 
lines denote the differences in the mean retention between experimental and non-experimental 
populations within treatment status. 
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Table A1: Observable differences between treatment sample in different populations 
 (1) (2) (3) 
 FYLC FYLC FYLC 
High-school 0.010 -0.007 -0.007 
GPA (0.041) (0.036) (0.003) 
SAT math -0.059 -0.053 -0.010 
 (0.021) (0.017) (0.002) 
SAT writing -0.023 -0.022 0.001 
 (0.028) (0.025) (0.003) 
SAT verbal 0.066 0.050 0.006 
 (0.027) (0.023) (0.003) 
Female 0.053 0.051 0.013 
 (0.033) (0.027) (0.003) 
1st generation 0.013 -0.001 0.009 
 (0.035) (0.033) (0.004) 
Low income 0.072 0.014 -0.006 
 (0.035) (0.033) (0.004) 
Lives on  0.017 0.059 0.003 
campus (0.034) (0.028) (0.004) 
N 824 741 6572 

SAT scores are divided by 100 for presentation. Robust standard errors are in parentheses. All 
regressions use OLS and also include cohort indicators and indicators for missing covariates.  
p<0.01,  p<0.05,  p<0.1 
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Table A2: RCT estimates of the effects on GPA  
Panel A: Intent to treat effects of winning lottery on first and second year GPA (reduced form 
estimates) 
 (1) (2) (3) (4) 
 1st Year GPA 1st Year GPA 2nd Year GPA 2nd Year GPA 
Won lottery 0.016 0.018 0.015 -0.016 
 
 

(0.030) (0.027) (0.038) (0.036) 

 
Panel B: Estimated LATEs of FYLC on 1st and 2nd year GPA (2nd Stage estimates)  
FYLC 0.024 -0.027 0.022 -0.018 
 (0.045) (0.044) (0.053) (0.053) 
     
     
Panel C: OLS 1st stage estimates of the effect of winning the lottery on FYLC participation 
Won lottery 0.648 0.648 0.648 0.648 
 (0.019) (0.019) (0.019) (0.019) 
     
Observations 1489 1489 662 662 
GPA Mean 2.812 2.812 2.901 2.901 
Controls No Yes No Yes 
     

All estimates are from linear regressions. Columns (1) and (3) are unconditional estimates 
whereas columns (2) and (4) include baseline covariates. 1st GPA includes FYLC course grade. 
2nd year GPA only exists in our data for the earlier cohort. Robust standard errors in 
parentheses.  p<0.01,  p<0.05,  p<0.1 
 

 

 


