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Abstract 

Chronic sleep deprivation is a significant and understudied public health issue. Using 

BRFSS survey data from the United States and an administrative census of 160 

million hospital admissions from Germany, we study the causal relationship between 

sleep and health. Our empirical approach exploits the end of Daylight Saving Time in 

a quasi-experimental setting on a daily basis. First, we show that setting clocks back 

by one hour in the middle of the night significantly extends people’s sleep duration. 

Second, we show that this nighttime extension reduces the share of people who 

involuntarily fall asleep during the day. In addition, we find significant health benefits 

via sharp reductions in hospital admissions. For example, hospitalizations due to 

cardiovascular diseases decrease by ten per day, per one million population. Using an 

event study approach, we find that the effects persists for four days after the time shift. 

Admissions due to heart attacks and injuries also exhibit the same characteristic four-

day decrease. We provide a series of checks to rule out alternative mechanisms, and 

show that increasing sleep produces the human capital improvements. Finally, we 

discuss the benefits of additional sleep for the sleep-deprived as well as policy 

implications for nudging people to sleep more. Our findings illustrate the importance 

of public policies that target sleep deprivation. 
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1. INTRODUCTION 

Sleep deprivation has become a public health epidemic in recent years (CDC 2014). One third 

of the US population report that they usually sleep less than the recommended minimum of 7 hours 

per night (Ford et al. 2015; Liu et al. 2016, Sheehan et al. 2019). The Centers for Disease Control 

and Prevention (CDC) warn that insufficient sleep leads to greater risk of car accidents and work 

injuries, as well as many chronic diseases and conditions such as high blood pressure, coronary 

heart disease, stroke, mental distress, and all-cause mortality. 

Although the economic consequences of sleep deprivation are possibly substantial (Hillman et 

al. 2006; Mullainathan 2014), sleep has received relatively little attention in the economics 

literature until recently. Biddle and Hamermesh (1990) show that increases in time in the labor 

market reduce sleep. Sleep can also be impacted by television schedules (Hamermesh, 2008) and 

access to high-speed internet (Billari et al., 2018). Moreover, recent studies have identified causal 

relationships between inadequate sleep and reduced cognitive performance (Carrell et al. 2011; 

Giuntella et al. 2017), reduced wage returns (Gibson and Schrader, 2018), higher car accidents 

(Smith 2016), and higher incidences of obesity and diabetes (Giuntella and Mazzona, 2019). 

Hillman et al. (2006) estimate the economic costs of sleeplessness at almost one percent of GDP. 

In this paper, we investigate whether increasing people’s sleep reduces hospital admissions. 

To do this, we exploit the quasi-experimental nature of a regulation that affects the sleep pattern 

of more than one billion people in 70 countries around the globe: Daylight Saving Time (DST). It 

is the practice of setting clocks forward by one hour in spring and backward by one hour in the 

fall. Today, all countries in the European Union, the great majority of the U.S. states and Canadian 

provinces, as well as 40 other countries such as Mexico, Chile, Israel, and Iran observe DST. 
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Our identification strategy focuses on the time shift in the fall when the clocks “fall back” in 

the middle of the night; this regulation extends the duration of the night by one hour. We 

hypothesize that the additional hour allows especially sleep-deprived people to sleep more and 

find consistent evidence using a large US survey. We find a significant increase in self-reported 

sleep duration following the “fall back”, and a significant decrease in the share of people who 

report having unintentionally fallen asleep during the day. 

Next, we use the German Hospital Census to estimate the impact of the “fall back” on hospital 

admission rates across several disease categories. Exploiting all 160 million hospitalizations that 

occurred in Germany between 2000 and 2008 allows us to comprehensively control for seasonal 

and weekday confounders while maintaining enough statistical power to precisely identify 

population health effects at a daily level. We estimate changes in outcomes at the daily level 

compared to the neighboring weeks before and after the time shift while netting out seasonal and 

day-of-week effects.  

Our findings show significant, sharp decreases in hospital admissions after the nighttime 

extension. Hospitalizations due to cardiovascular diseases decrease by ten per one million 

population, per day. This decrease lasts for four days. We find similar results across several disease 

categories and they are robust to multiple specifications. Our findings are in line with a large strand 

of the medical literature that has documented adverse physiological consequences of sleep 

restrictions (e.g. Moore et. al., 2002; Taheri et al., 2004; Berk et al., 2008; Mullington, et al., 2009; 

Killgore, 2010; Spaeth et al., 2013; for a review, see Banks and Dinges, 2007).We corroborate our 

main findings with permutation tests using all non-DST transition weeks during the year. We also 

conduct falsification tests using outcomes that have no theoretical link with sleep, such as receiving 

a flu shot in the previous year. Moreover, we discuss alternative mechanisms through which the 
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DST transition might affect health, such as the shift in daylight, and discuss why these mechanisms 

are unlikely to explain our findings. In the last part of the paper, we monetize the economic benefits 

of increasing sleep at the population level. 

This paper contributes to the human capital literature in economics. Since the seminal 

contributions by Becker (1964), Grossman (1972) and more recently by Heckman (e.g. Cunha and 

Heckman, 2007), many studies have theoretically modeled and empirically tested for human 

capital effects. Health is central component of human capital. For instance, studies have tested for 

the short and long-run effects of risky health behaviors (Cawley and Ruhm, 2011), ambient air 

pollution (Graff Zivin and Neidell, 2013; Currie et al., 2014), early life shocks (Kesternich et al. 

2015) or in utero conditions (Almond and Currie, 2011). 

This paper also relates to studies that have utilized daylight saving time as an empirical 

strategy. However, the large majority of DST studies have focused on spring DST. They have 

shown that falling back in time affects crime rates (Doleac and Sanders, 2015), traffic accidents 

(Hicks et al., 1998; Smith, 2016), energy demand (Kotchen and Grant, 2011; Sexton and Beatty, 

2014), as well as our well-being (Kountouris and Remoundou, 2004; Kuehnle and Wunder, 2016). 

A large number of medical and psychology studies have also investigated the relationship between 

daylight saving time and sleep (e.g. Van Dongen et al, 2003; Lahti et al, 2008; Barnes and Wagner, 

2009; Janszky et al. 2012; Jiddou et al. 2013; for a review see Harrison, 2013).  

 The next section briefly describes the data. Section 3 outlines the empirical methodology. 

Section 4 presents and discusses the findings and Section 5 concludes. 
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2. DATASETS 

We employ a two-step approach in our analyses. First, we use a large U.S. survey to test if 

people sleep more when the night extends by one hour through the fall DST transition. Second, we 

utilize administrative hospital data from Germany to test for the impact of increased sleep on 

hospitalizations across various disease categories. 

2.1 The U.S. Behavioral Risk Factor Surveillance System (BRFSS) 

The BRFSS is a large annual telephone survey of U.S. adults aged 18 and above, which is 

administered by the Centers for Disease Control and Prevention (CDC). The survey began in 1984 

with fifteen participating states; by 1996, all 51 U.S. states participated in the survey. It is, by 

design, representative of state populations. In 2009, several states have started to include questions 

on sleep duration in the survey; this question expanded to all states between 2013 and 2016.  

We focus on this period from 2013 to 2016, which includes 1.9 million survey responses in 

total. As shown in Figure 1, we extract six weeks around the time shift to ensure responses at a 

similar time of the year, to consider seasonalities in response behavior. Doing that, we obtain 

174,503 survey responses in the main sample. Further, we include a robust set of time controls in 

our analysis, including month and day-of-week fixed effects. 

Dependent Variables 

The question on sleep duration reads: “On average, how many hours of sleep do you get in a 

24-hour period? Think about the time you actually spend sleeping or napping, not just the amount 

of sleep you think you should get.” The answers are integers between 0 and 24. People on average 

report 7 hours of sleep, with a standard deviation of 1.5 (Table A1, Appendix). 32% report having 

slept 6 or fewer hours, which suggests a high level of sleep deprivation in the U.S. 
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However, the sleep question does not explicitly ask for the duration of sleep last night. Given 

the phrasing “24-hour period” and the emphasis on thinking about the time actually spent sleeping, 

the answers will likely be a weighted average of subjects’ sleep duration in the very recent past, 

with significant weight given to the previous night’s sleep. This measurement error will downward 

bias our estimates, as the true effect of the DST transition on sleep will only partially be reflected 

in the subjects’ responses. In other words, our estimates will likely be a lower bound of the true 

sleep effect. 

We supplement the estimation with another survey question about tiredness during the day. 

Between 2009 and 2010,1 the BRFSS asked: “During the past 30 days, for about how many days 

did you find yourself unintentionally falling asleep during the day?” The responses are integers 

between 0 and 30. We convert them into a binary variable of whether the subject has 

unintentionally fallen asleep in the past 30 days. On average, 35% of people report having 

unintentionally fallen asleep in the past 30 days (Table A1, Appendix).  

If the fall nighttime extension induces people to sleep more, we should see an increase in the 

sleep duration and a similar decrease in people falling unintentionally asleep during the day. We 

discuss issues related to measurement errors of both variables in Appendix B.  

Daylight Saving Time in the United States 

In the United States, DST ends on the first Sunday in November. The time change occurs at 

2am, where the clocks are set back to 1am, effectively extending the night by one hour. DST is 

observed by most states. Our empirical strategy only uses states that observe DST. 

                                                           
1 This survey question was only asked during these two years. 
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2.2 German Hospital Admissions Census  

The second dataset provides objective health measures. The dataset comprises all German 

hospital admissions from 2000 to 2008. The 16 German states collect these information and the 

German Federal Statistical Office provides restricted data access for researchers. Germany has 

about 82 million inhabitants and about 17 million hospital admission per year. To obtain the 

working dataset, we aggregate the admission-level data on the daily county level and then 

normalize admissions per 100,000 population. The data include information on age and gender, 

the day of admission, the county of residence as well as the diagnosis in form of the ICD-10 code.  

As with the BRFSS, our working dataset focuses on the six weeks around the time shift (Figure 

1). This main sample has 336,604 county-day observations.2 We leave the data at the county-level 

and do not further aggregate up to the national level for a few reasons. This allows us to stratify 

the effects by county characteristics. Another reason is that we lose statistical power when 

aggregating up to a time series at the national level. 

Dependent Variables 

First, we generate all cause admission rate. On a given day, we observe 59.77 hospital 

admissions per 100,000 population (Table A1, Appendix).  

Next, by extracting the ICD-10 codes I00-I99, we generate cardiovascular admission rate, the 

single most important subgroup of admissions (9.53 admissions per 100,000 population, Table 

A1). Extracting the codes I20 and I21, the heart attack rate is 1.59 admissions per 100,000 

population. 

                                                           
2 Between 2000 and 2008, Germany had up to 468 different counties. Mostly, due to mergers and reforms of the 

administrative boundaries, the number of counties varies across years. 
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Finally, we generate the injury rate (V01-X59) as well as the respiratory (J00-J99), metabolic 

(E00-E90), neoplastic (C00-D48), and infectious admission rate (A00-B99). We also test for 

changes in drug overdosing (T40) per 1 million population. 

Daylight Saving Time in Germany 

In Germany, DST ends on the last Sunday of October in all German states. The time change 

occurs on 3am where the clocks are set back to 2am.  

3. EMPIRICAL SPECIFICATION 

Our identification strategy relies on a plausibly exogenous extension of night sleep created by 

the nighttime extension through the end of DST in the fall. The transitions occur on different dates 

each year. Our large datasets allow us to comprehensively control for seasonal confounders, 

weekday effects, and yet still precisely estimate the health effects. Our preferred empirical 

specification identifies the effects at the daily level. We also estimate models at the weekly level 

to capture medium-term and potential intertemporal substitution effects.  

3.1 Main Specification 

Our preferred specification employs daily dummies around the DST time shift in the fall: 

yid = ß0 + ß1DSTd + Vacationd + DOW*ϕm + ϕm*δt + Xid’γ + μs + ɛid (1) 

Where yid is the outcome variable. For example, using the German Hospital Census it stands 

for admission rates in county i on day d. DST is a vector of fifteen daily dummies around the end 

of DST, -7,-6,…,0,…6, 7, where 0 indicates the day of the time shift.  

Equation (1) includes controls that net out seasonal and weekday confounders. These are 

crucial when using high-frequency data within the DST context. For example, hospital admissions 
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decrease on Sundays and on national holidays (Witte et al., 2005). Vacationd controls for public 

holidays and Halloween.3 

Due to the relevance of day-of-week (DOW) effects, we additionally interact DOW with month 

fixed effects (DOW*ϕm). This is important, as Sundays in November may be systematically 

different from Sundays in September. For example, in our data, relative to Sundays, hospital 

admissions almost double on Mondays and this effect varies over the months of a year. Because 

DST ends always on Sundays, it is crucial to net out DOW effects by month of the year. 

Our model also routinely includes month-year fixed effects (ϕm*δt) and some specifications 

additionally include linear and quadratic time trends at the annual level. However, the findings are 

robust to replacing month-year fixed effects with separate month and year fixed effects and 

omitting time trends. In addition, Equation (1) corrects for county-level or individual-level socio-

demographics (Xid’γ) and persistent differences across states or counties (μs).  

Because it is unlikely that county-level admission rates are either independent over time or 

across space, we correct the standard errors, ɛid, by applying two-way clustering across counties 

and over time (Cameron et al., 2011). When using the independently drawn and representative 

observations of the cross-sectional BRFSS, we cluster standard errors only at the date level (as it 

is no panel). All BRFSS regressions are probability weighted.  

                                                           
3 In Germany, official school vacations vary at the level of the 16 states by date, and also in lengths. Fall vacations lie 

between the beginning of October and mid-November, and vary by state, both in term of time and length. In the U.S., 

we include a dummy for Halloween, which occurs on October 31st each year. Halloween is only a very recent 

phenomenon in Germany. However, the German findings are robust to including Halloween fixed effects. 



10 

3.2 Identification 

The key idea of our identification strategy is that DST transitions create plausibly exogenous 

variations in people’s sleep duration by extending the nighttime by one hour. Because fall DST 

simply extends night sleep for those you want to sleep more, we argue that it is a relatively clean 

setting without severe confounding factors (unlike in spring where the media regularly warns about 

drastic health effects and urges vulnerable people to take action).4 

Turning the clocks back in the middle of the night is arguably exogenous to individuals. Our 

main specification de-trends the outcome variables using day-of-week by month and month-year 

fixed effects, in addition to the other controls in equation (1). We also disentangle weekday and 

seasonal effects from vacation days or national holidays. The richness of our data still allows us to 

obtain precise estimates at the daily level. However, we also compare the day-to-day short-term 

effect of the change in time to the net effect on a weekly basis. Moreover, in effect heterogeneity 

specifications that test for behavioral mechanisms, we stratify the results by ambient climatic 

conditions such as temperatures and hours of sunshine. 

Sample Selection  

As illustrated by Figure 1, we restrict our main sample to three weeks before and three weeks 

after the time shift. Our preferred specification focuses on the week after DST as treatment week 

                                                           
4 Our findings are broadly consistent with the medical and psychology literature on DST transitions and sleep, 

although these studies overwhelmingly focus on spring and employ different empirical strategies (cf. Lahti et al, 2008; 

Barnes and Wagner, 2009; Janszky et al. 2012; Jiddou et al. 2013; Harrison 2013). Interestingly, although we find 

single daily significant increases in admissions on the Monday and Tuesday after spring DST, e.g. for injury 

admissions, we do not find spring effects that are as clean and clear as the fall effects (Jin and Ziebarth, 2016). We 

hypothesize that this is a result of possible behavioral adjustments in spring. For example, to the extent that vulnerable 

people follow the very salient medical advice in the media, they likely adjust their bedtime schedules to ensure that 

they sleep enough, cf. “Your Daylight Saving Time Survival Guide” (Van Hare, 2019) or “It's Daylight Saving Time! 

6 Tips to Help You Deal with the Change”(Carroll, 2016 ).  



11 

and presents the main findings in an event study type graph by plotting 15 daily dummy estimates 

-7, -6,…,0,….6, 7, where 0 represents the time shift. In other words, after netting out day-of-week, 

seasonal and other controls, Equation (1) compares the daily outcomes in the week before and after 

fall DST to four additional control weeks, as shown by Figure 1. 

To check if the results are sensitive to this six-week sample selection around DST, we also 

estimate the models using all 52 weeks of the year, and the results remain robust. The findings are 

also robust to assigning all three post-transition weeks to the “treatment group.” Doing this yields 

results that are similar to a standard Regression Discontinuity design (cf. Hausman and Rapson, 

2018), where the post-treatment outcomes are compared to that of the pre-treatment, conditional 

on all covariates shown in Equation (1), see for example Doleac and Sanders (2015).5 

[Insert Figure 1 about here] 

4. RESULTS 

4.1 The Effects of Fall Back on Sleep Duration 

Using the BRFSS, we first estimate the impact of the nighttime extension on sleep duration 

and tiredness. Without correcting for any seasonalities or other background characteristics, Figure 

2 simply plots the mean reported sleep at the daily level for (a) those who were interviewed just 

before and after the DST transition, and (b) those who were interviewed in the weeks before and 

after. The black vertical line represents the DST transition that occurs for the dark blue line. As 

seen, the sleep duration for (b) remains relatively stable across all seven days of the week. 

Moreover, the sleep duration for (a)exhibits a trend that is very similar on Thursday to Saturday 

                                                           
5 The results are available upon request. 
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just before the transition. However, reported sleep then sharply increases on the Sunday of the 

nighttime extension, and this increase lasts for three days. In particular, the difference on Monday 

is statistically significant at the 1% level. On Tuesday, it is significant at the 5% level. 

[Insert Figures 2 and 3 about here] 

Next, we estimate a regression model as in Equation (1) and test if the results are robust to the 

inclusion of seasonal and other controls. Figure 3a plots the regression coefficients of the fifteen 

daily dummies in Equation (1), with hours of sleep as dependent variable. The x-axis represents 

the days relative to the nighttime extension (0 is the Sunday of the transition), and the y-axis shows 

the effect on sleep duration. Again, we see a sharp increase in self-reported sleep on the Monday 

following the transition. This effect persists for several days and is consistent with Figure 2. 

Together, they provide consistent evidence that people sleep more when clocks fall back in fall in 

the middle of the night. 

We further corroborate these findings with a few more tests. Figure 3b plots the daily dummies 

of Equation (1) with unintentionally fell asleep as dependent variable. Consistent with our priors, 

we observe a sharp decline in the share of people who unintentionally fell asleep during the day 

after the nighttime extension. The decline is immediate and largest on the Sunday of the transition; 

and it persists for about four days before dissipating. The relatively clear pattern is even more 

reassuring when put into context because the measure is again a weighted average of the 

participants’ reported tiredness in the past 30 days, creating a downward bias in our estimates. The 

sample is also relatively small due to the limited data availability. Despite these challenges, we 

find a significant decrease in tiredness at the daily level following the nighttime extension. 

[Insert Table 1 about here] 
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Finally, Table 1 estimates the effect on sleep for the entire week of the time shift. That is, we 

run Equation (1) but replace the daily DST dummies with a binary Week of Transition indicator 

that equals one for the entire week of the transition (from Sunday of the transition until the 

Saturday after). According to column (1), on average, people sleep an additional 0.026 hours per 

night for seven days, for a total gain of 11 minutes of sleep per night throughout the week. This 

estimate is statistically significant at the 1% level. Note that this is a population average, which is 

also averaged over the entire DST week. Figures 2 and 3 suggest that the effect is concentrated 

during the first days after the transition. 

Column (2) turns to our measure of tiredness during the day. People are, on average, 4.4 

percentage points less likely to unintentionally fall asleep during the treatment week, which is 

equivalent to a 13% decrease. The estimated weekly effect is statistically significant at the 5% 

level.  

To summarize, while our sleep measures are self-reported, the results consistently provide 

evidence in support of the idea that the nighttime extension effectively extends people’s sleep. Our 

sleep variables are likely downward-biased, but we still find effects, even at the daily level.  

 

4.2 The Effects of Fall Back on Hospital Admissions 

Next, using a census of hospital admissions for Germany from 2000 to 2008, we investigate 

whether the nighttime extension had any effect on hospital admissions. Table 2 shows the estimates 

by disease groups per 100,000 population in Germany. Each column is one model as in Equation 

(1) but the main regressor of interest is a dummy indicating the week of DST transition.  

[Insert Table 2 about here] 
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Except for drug overdosing, all estimates are negative and highly significant, mostly at the 1% 

level. The weekly decreases in daily admissions range from 8.3% for the all cause admission rate 

(column (1)) to a similar 7.5% for cardiovascular admissions (column (2)). Injuries decrease by 

almost 5% or about 2.7 per 1 million population.  

[Insert Figures 4 and 5 about here] 

Next, we zoom in and plot the daily estimates of Equation (1) in event study-type graphs. 

Figure 4a shows all cause admissions per 100,000 population and Figure 4b cardiovascular 

admissions per 100,000 population. Despite conservative two-way clustering, we are able to 

identify even daily effects in a very precise manner. Please note that the event study graphs do not 

represent simple descriptive graphs but compare the effects in the treatment group relative to the 

control group (Figure 1) after having netted out of seasonal and weekday confounders as 

formalized by Equation (1). 

The two event study graphs show a characteristic four-day pattern of decreases in admissions: 

We observe significant decreases in overall and cardiovascular admissions on days one to four 

after the time shift. The effect is strongest on the Monday after the clocks are set back, and it 

decreases smoothly over the next three days before it disappears on day five. The decrease for 

cardiovascular admissions equals about 10 avoided admission per one million population for four 

days.  
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In robustness checks, we obtain exactly the same pattern using the full sample (Figure A1, 

Appendix) as well as heart attacks and injuries (Figure 5). The consistency of these patterns for 

even heart attacks is reassuring.6  

Finally, we examine hospital admissions due to drug overdosing, which arguably has a weaker 

theoretical link with sleep. Illicit drugs are highly addictive, which limits the extent to which 

additional sleep can help prevent those who are on the margin of overdose from being hospitalized. 

As such, we do not expect to see a strong effect on drug-related hospital admissions. Indeed, Figure 

6 does not show much of an effect.  

[Insert Figure 6 about here] 

In conclusion, we interpret the similarity of these four-day patterns as strong support for our 

identification strategy. The implication is that additional sleep leads to immediate health 

improvements for people who are on the margin of being hospitalized and prevents about ten heart 

admissions per one million population for four days. (On average per day, 7815 people are 

admitted to German hospitals because of heart issues, cf. Table A1.) This finding is very consistent 

with, and underscores, the medical advice that people on the margin of having acute heart failure 

should get sufficient bed rest (Millane et al. 2000).  

4.3 Alternative Mechanisms 

Next, we explore alternative channels through which the DST transition may affect hospital 

admissions. One possible channel is through a shift in ambient light. As the clocks “fall back” by 

one hour, sunrise and sunset both occur at earlier times. One could hypothesize that, because 

                                                           
6 Note that the German data do not allow us to distinguish between emergency room visits, elective visits and other 

type of admission. We solely see the primary diagnosis and know that the patient stayed overnight, which excludes 

ambulatory elective surgeries.  
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mornings get brighter earlier, people are more likely to exercise in the morning following the 

transition (and less likely to exercise in the evening). To test for such an exercise effect, we use a 

question in the BRFSS on exercising and estimate our standard model in Equation (1). Figure 7a 

shows the daily effects. In line with Giuntella and Mazzonna (2019), we find no evidence that the 

frequency of exercise changes due to the time shift.  

[Insert Figure 7 about here] 

Next, we stratify the effects by weather conditions using the German Hospital Census. We use 

data from more than one thousand ambient weather monitors on a daily basis from 2000 to 2008. 

The underlying hypothesis is that weather conditions determine how and where individuals spend 

their time (Gebhart and Noland, 2014); better outdoor conditions should also indicate whether 

changes in exercising behavior play a confounding role. Table A2 stratifies the effects by (i) 

temperature, (ii) rainfall, (iii) sunshine, and (iv) cloudiness. Methodologically, we run our standard 

model, control for weather conditions and interact DSTid with the weather measures in the column 

headers. Consistent with the absence of changes in exercising (Figure 7a), there is no evidence that 

ambient conditions matter. None of the interaction terms between the four weather measures and 

DSTid is statistically significant. 

A shift in ambient light can also affect traffic accidents (Hicks et al., 1998; Smith, 2016). This 

could potentially explain the significant reduction in admissions due to injuries. However, traffic 

accidents would not be able to explain why we observe reductions in admissions across many 

disease categories that are unrelated to accidents, such as admissions for cardiovascular diseases.  

Another potential confounding factor is crime. Doleac and Sanders (2015) show that robberies 

decrease in the days following the DST transition in spring (when evenings get dark later). They 

find no significant effects on crime rates in fall. If there was a significant robbery effect, robberies 
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would likely increase following the time shift in the fall (because it gets dark sooner), and thus 

have adverse health effects, opposite what we find. It is also unlikely to explain health benefits 

across a wide range of disease categories.7 

The fall DST transition increases the length of the Sunday from 24 to 25 hours. This may affect 

hospital admissions (or survey responses) in ways unrelated to sleep. However, because the day is 

longer, it will result in more admissions, opposite our findings. This mechanism also cannot 

explain the persistent health effects that we find over four days. 

Finally, we estimate placebo regressions. Our first placebo test, using BRFSS, is having 

received a flu shot in the past year as an outcome measure. This outcome is, by construction, 

unrelated to getting additional sleep. As expected, Figure 7b shows no impact on this outcome.  

[Insert Figure 8 about here] 

Our second placebo test uses the hospital data to conduct the following permutation test: We 

start in July of each year and select six-week windows of data as illustrated in Figure 1. Then, we 

run our standard model with aggregated effects at the weekly level, pretending that the fourth week 

was the week of the time shift. Next, we move the six-week window one week further into August 

and repeat the approach. We permute until week six of our selected sample hits the true week of 

the time shift and continue with six-week windows until end of the year.8 As such, we obtain 23 

weekly placebo estimates. Figure 8 plots the distribution of these weekly placebo estimates along 

                                                           
7 While both effect sizes—on robberies and fatalities—are cleanly identified by the studies just cited, they are rather 

small and unlikely to confound our population health estimates. According to Doleac and Sanders (2015), in spring, 

the number of avoided robberies decrease by about 2 per 10 million people. Smith (2016) finds that the spring change 

leads to 30 more deaths for the entire U.S. These numbers certainly would not bias the survey estimates for the US. 

As for the hospital admission data, our “Injury Admissions per 1 Million Population” outcome category should capture 

these effects. 

8 The true DST week is never included in these placebo six week samples. 
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with the true estimate. Clearly, the decrease in admissions following the time shift does not fall 

within the statistical placebo estimate distribution. 

4.5 Quantifying the Economic Benefits of One Additional Hour of Sleep 

When considering policies to tackle the public health issue of sleep-deprivation, it is important 

to quantify the potential benefits of encouraging people to sleep more. In this section, we monetize 

the economic benefits of avoided hospital admissions. We also estimate other benefits based on 

studies that show improved work productivity (Gibson and Schrader, 2018) and avoided traffic 

fatalities (Smith, 2016). These calculations are based on several assumptions, but provide a basic 

framework for such an exercise. 

[Insert Table 3 about here] 

Table 3 shows the estimates. We first monetize the value of avoided hospital admissions from 

the end of DST in the fall. Figure 4a implies 100 fewer admissions per 1 million population over 

four days. Columns (1) to (3) in Table 3 show that the benefits of avoided hospital stays can be 

decomposed into a per person €2,000 for medical costs, €450 for lost labor as well as €550 for lost 

quality of life during hospital stays.  

Next, we assess the value of increases in work productivity when sleep-deprived employees 

gain more sleep. According to Gibson and Schrader (2018), the short-term wage returns for an 

additional hour of sleep equals 1.1% of the wage. Given the average daily wage of $230 in the US, 

this translates into $10 over four days. Assuming that these gains only apply to the ten percent 

chronically sleep deprived full-time employed Americans (Knutson et al. 2010), it would sum to 

$500 thousand per 1 million population (column (4), Table 3). 
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Finally, Smith (2016) quantifies the number of avoided traffic fatalities with 30 for the entire 

U.S. (0.09 per 1 million population). Evaluated at $5 million per life saved (Kniesner et al. 2010), 

we obtain values for saved statistical lives of around $450 thousand per 1 million population 

(column (5), Table 3). 

In conclusion, we estimate that the welfare benefits of a nighttime extension by an hour sum 

to about $1.3 million per 1 million population. 

5. CONCLUSION 

This paper exploits the quasi-experimental nature of Daylight Saving Time (DST) to assess 

the health benefits of increasing people’s sleep. We find that people sleep significantly more in the 

short-run when they gain an additional hour at night following the DST “fall back.” Moreover, the 

share of people who unintentionally fall asleep during the day drops significantly for four days. In 

addition, we find that hospital admissions drop sharply for four days as well. For example, 

cardiovascular admissions decrease by ten per one million population. We find no effect for 

placebo outcomes, which have weaker or no theoretical links to sleep, such as drug overdosing or 

having received a flu shot. 

Because exogenous shifters of sleep are very rare in real world settings, our study is one of 

very few causal studies on the health benefits of sleep (one of the exemptions is Giuntella and 

Mazzonna, 2019). To identify effects, we use a large survey from the U.S. and the census of 

hospital admissions from Germany. Properly investigating the impact of the nighttime extension 

on health on a daily level requires powerful and representative data. These are crucial to estimate 

rich econometric specifications that consider weekday effects in addition to general and specific 

seasonal adjusters.  
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Our findings have important implications for public policy. Sleep deprivation is becoming a 

widespread problem in many developed countries—the CDC has recently declared it a “public 

health epidemic” (CDC 2014). Almost a third of Americans report sleeping six or fewer hours, 

significantly less than the CDC-recommended minimum of 7 hours (cf. Sheehan et al. 2019). The 

findings from our study reinforce the need to devise policies to reduce sleep deprivation in the 

population.  

The evidence in this paper is also bolstered by other recent economic studies that identify work 

productivity effects as a result of more sleep (Gibson and Schrader, 2018), decreases in obesity 

(Giuntella and Mazzonna, 2019), better cognitive skills (Giuntella et al. 2017) or fewer traffic 

fatalities (Smith, 2016). In the last part of the paper, we attempt to categorize, standardize, and 

monetize the various benefits that this paper and companion research in economics identifies. 

Under some assumptions, we assess the total societal benefits of gaining one hour of sleep with 

about $1.3 million per 1 million population. The benefits can be decomposed into work 

productivity, hospitalization, and mortality effects.   

The main objective of this paper is to provide evidence of a causal relationship between 

Daylight Saving Time transitions, sleep and health. We do not intend to draw conclusions about 

the overall welfare effects of Daylight Saving Time. We also would like to point to a caveat: our 

reduced-form approach is well-suited for the identification of causal and immediate intent-to-treat 

effects, but less suited to identify long-term effects of sleep. Based on sleep habits, sleep may 

affect mood, cognitive skills and health cumulatively over time in the long-run. Alternatively, it 

is possible that the human body is able to adapt to (adverse) sleeping conditions. Field 

experiments have the power to find answers to these questions (cf. Tepedino at al. 2017). More 
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research is necessary to better understand how improvements in sleep quality may improve living 

quality, education and labor market outcomes as well as life expectancy. 
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Figures and Tables 

 
Figure 1: Sample Selection of Main Models—Extracting 6 Weeks around DST Transition 
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Figure 2: Nonparametric Plot of Sleep Duration in DST Week vs. Before and After  

 
Source: BRFSS, 2013-2016. The gray dashed line plots average sleep duration on the week day 

level in the weeks before and after the transition. The solid blue line plots sleep duration for the 

seven days around the transition in fall. The transition occurs Sunday at 2am, represented by the 

black vertical line. 
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Figure 3a,b: Effects of Nighttime Extension on Sleep and Unintentionally Falling Asleep 

 

 
Source: BRFSS, 2009-2010. Equation (1) is estimated and daily effects plotted.  
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Figure 4a,b: Effects of Nighttime Extension on Total and Cardiovascular Hospital Admissions 

 

 
Source: German Hospital Census, 2000-2008. Equation (1) is estimated and daily effects plotted.  
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Figure 5: Effects of Nighttime Extension on Heart Attacks and Injuries 

  

  
Source: German Hospital Census, 2000-2008. Equation (1) is estimated and daily effects plotted.  
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Figure 6: Effects of Nighttime Extension on Drug Overdosing 

  
Source: German Hospital Census, 2000-2008. Equation (1) is estimated and daily effects plotted.  
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Figure 7a, b: Placebo Tests—Effects on Exercising and Flu Shot in the Past Year 

 

 
Source: BRFSS. Equation (1) is estimated and daily effects plotted.  
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Figure 8: Permutation Test Comparing Placebo Effects to Fall DST Transition Week 

 

 
Source: German Hospital Census, 2000-2008. 
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Table 1: The Effects of Fall DST on Sleep Duration and Tiredness 
 (1) 

Hours of Sleep 

(2) 

Unintentionally fell asleep 

during day at least once in 

past 30 days 

Week of Transition 

(End of DST) 

0.026*** 

(0.010) 

-0.044** 

(0.022) 

   

Controls   

State FE X X 

Halloween X X 

Day of Week * Month FE X X 

Month * Year FE X X 

Linear & quad. time trend X X 

   

Mean of dep. Var. 7.06 0.35 

Observations 174,503 10,833 

Notes: * p<0.1, ** p<0.05, *** p<0.01. The data are from BRFSS. Standard errors in 

parentheses are clustered at the date level. Regressions are probability-weighted. Week 

of Transition is an indicator that equals 1 if the interview is on the Sunday of DST 

transition or one of the subsequent six days. The column headers describe the 

dependent variables used in each column. Each column is one model as in Equation 

(1). The sample period for column (1) is 2013-2016. The sample period for column (2) 

is 2009-2010, as the survey question was experimented by several states at the time 

and discontinued since. This includes six states (Georgia, Hawaii, Illinois, Louisiana, 

Minnesota, and Wyoming) in 2009 and nine states in 2010 (Arkansas, Connecticut, 

Delaware, District of Columbia, Hawaii, Minnesota, Missouri, Nevada, and Oregon). 
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Table 2: The Effects of Fall DST on Hospitalizations by Disease Type 

 

   

All cause 

admission rate 

(1) 

Cardiovascular 

admission Rate  

(2) 

Heart 

attack rate  

(3) 

Injury 

admission rate 

(4) 

Metabolic 

adm. rate 

(5) 

Suicide 

attempt rate 

(7) 

Drug 

Overdosing  

(8) 

 

         

Week of Transition  -4.9556*** -0.7195*** -0.0882*** -2.7121*** -0.1874*** -0.0276** -0.0044  

(End of DST) (1.1139) (0.1589) (0.02611) (0.6869) (0.0385) (0.0128) (0.0055)  

         

Controls         

 County FE X X X X X X X  

 Easter & Vacation FE X X X X X X X  

 Day of Week * Month FE X X X X X X X  

 Month*Year Fixed Effects X X X X X X X  

 Linear & quadr. time trend X X X X X X X  

 Socioeconomic covariates X X X X X X X  

          

 Mean of dep. variable 59.77 9.53 1.59 57.56 0.32 0.09 0.32  

R² 0.8469 0.5675 0.1510 0.2067 0.3095 0.0179 0.0008  

Observations 336,604 336,604 336,604 336,604 336,604 336,604 336,604  

Note: * p<0.1, ** p<0.05, *** p<0.01. Standard errors are in parentheses and two-way clustered at the county and date level. Week of Transition is an 

indicator variable that equals 1 if the interview date is on the DST Sunday or one of the following six days. Table A1 lists the dependent variables for as 

displayed in the column header. Each column is one model as in Equation (1). All admission rates are per 100,000 except for Injuries, Suicides and Drug 

Overdosing (per 1,000,000). 
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Table 3: Decomposing and Monetizing Benefits of Additional Sleep 
 Health Effects Productivity Effects Mortality Effects 

 German Hospital Census 

(Fig 4a; Table 2) 

Gibson and Schrader (2018) Smith (2016) 

 Healthcare 

Costs 

Labor 

Productivity 

QALYs Increase in Work Productivity Avoided Deaths 

      

 €500 per day 

*4 days 

€150 per day 

*4 days 

($100K/365) *0.5 

*4 days 

+1.1% at $230 daily wage  

*4 days 

30 fatalities in U.S. (0.09 per 

1M pop.) 

Benefit for 

individual 
=€2000 =€450 =€550 =$10 *$5M per VSL 

 *100 *(100/3) *100 *10% sleep deprived employees: 

(0.1*161M)/320M  

 

Per 1M 

pop. 
=€200K =€15K = €55K =$500K =$450K 
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Appendix A 

Figure A1: The Effects of Fall DST Transition on Total Admissions, Full Sample 

  
Source: German Hospital Census, 2000-2008. Equation (1) is estimated and daily effects plotted.  
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Table A1: Descriptive Statistics 

 Mean Std.Dev Min. Max. Obs. 

BRFSS      

Hours of sleep  7.06 1.46 1 24 174,503 

Unintentionally fell asleep at least once in past 

30 days 
0.346 0.476 0 1 10,833 

      

German Hospital Census      

Dependent Variables      

Total admission rate per 100,000 59.7681 25.7333 N/A N/A 336,604 

Cardiovascular admission rate per 100,000 9.5339 4.9525 N/A N/A 336,604 

Heart attack admission rate per 100,000 1.5909 1.4035 N/A N/A 336,604 

Injury admission rate per 1 million 56.5571 26.6603 N/A N/A 336,604 

Respiratory admission rate per 100,000 3.9595 2.5850 N/A N/A 336,604 

Metabolic admission rate per 100,000 1.7351 1.5909 N/A N/A 336,604 

Neoplastic admission rate per 100,000 6.5951 5.0857 N/A N/A 336,604 

Infectious admission rate per 100,000 1.4069 1.1953 N/A N/A 336,604 

Suicide attempt rate per 1 million 0.3219 1.6754 N/A N/A 336,604 

Drug overdosing rate per 1 million 0.0892 0.8594 N/A N/A 336,604 

 

Socio-Demographic Individual Controls 
  

  
 

Female 0.5420 0.0671 0 1 336,604 

Surgery needed 0.3715 0.1478 0 1 336,604 

Died in hospital 0.0249 0.0230 0 0.5 336,604 

Private hospital 0.1177 0.1813 0 1 336,604 

Age Group 0-2 years 0.0619 0.0416 0 0.5556 336,604 

…. … … …. … 336,604 

Age Group 65-74 years 0.0161 0.0182 0 0.3333 336,604 

>74 years 0.0034 0.0082 0 0.5 336,604 

      

Annual County-Level Controls      

Hospital per county 4.8196 5.4690 0 76 336,604 

Hospital beds per 10,000 1204.02 1574.54 0 24,170 336,604 

Unemployment rate in county 10.37 5.29 1.6 29.3 336,604 

Physicians per 10,000 153.96 53.18 69 394 336,604 

GPD per resident (in Euro) 25,235 10,219 11,282 86,728 336,604 

      

Seasonal Controls      

Holy Thursday, Good Friday, Easter Sunday, 

Easter Monday (each) 
0.0103 0.1011 

0 1 
336,604 

Easter Vacation 0.1210 0.3262 0 1 336,604 

Fall Vacation 0.0977 0.2969 0 1 336,604 

Week Begin DST 0.0862 0.2807 0 1 336,604 

Week End DST 0.0862 0. 2807 0 1 336,604 
Source: Sleep variables are obtained from the Behavioral Risk Factor Surveillance System (BRFSS). Hours of sleep is 

obtained from 2013-2016, and unintentionally fallen asleep is obtained from 2009-2010 due to limited data availability. 

The hospital admission data are from the German Hospital Census 2000-2008, Federal Institute for Research on Building, 

Urban Affairs and Spatial Development (2012). The hospital admission data are aggregated at the county-day level and 

normalized per 100,000 population. Note that both nominator and denominator refer to the county of residence. The data 

excludes military hospitals and hospitals in prisons. Note that German data protection laws prohibit us from reporting min. 

and max. values. The socio-demographic individual controls are also aggregated at the county-day level. The seasonal 

controls only vary between days, not across counties. The annual county-level controls vary between the counties and over 

years, but not within years. Between 2000 and 2008, Germany had up to 468 different counties. Mostly, due to mergers 

and reforms of the administrative boundaries, the number of counties varies across years.  
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Linking Hospital with Official Weather Data 

Weather Data. The weather data are provided by the German Meteorological Service 

(Deutscher Wetterdienst (DWD)). The DWD is a publicly funded federal institution and collects 

information from hundreds of ambient weather stations which are distributed all over Germany. 

Daily information on the average temperature, rainfall, hours of sunshine and cloudiness from up 

to 1,044 monitors and the years 2000 to 2008 are used. 

We extrapolate the point measures into space using inverse distance weighting. This means 

that the measures for every county and day are the inverse distance weighted average of all ambient 

monitors within a radius of 60 km (37.5 miles) of the county centroid (Hanigan et al. 2006). 

Socioeconomic Background Data. Because the Hospital Admission Census only contains 

gender and age, we link yearly county-level data with the hospital data. We merge in county-level 

information on GDP per resident, the unemployment rate, the number of physicians per 10,000 

pop., the number of hospitals in county as well as the number of hospital beds per 10,000 pop 
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Table A2: Effects of Fall DST Transition on Admissions by Weather Conditions 

 All cause admission rate 

 (1) (2) (3) (4) 

 
Temp. Rainfall Sunshine Cloudiness 

DST * [column header] 
-0.2378 

(0.2329) 

0.0991 

(0.1396) 

-0.2095 

(0.3431) 

0.4458 

(0.5083) 

DST 

(3am → 2am in fall) 

-3.1330* 

(1.8671) 

-5.1829*** 

(1.2059) 

-4.4812*** 

(1.1962) 

-7.6059** 

(3.3876) 

Controls     

Easter, Halloween, Vacation FE X X X X 

Day of Week * Month FE X X X X 

Month * Year FE X X X X 

Linear & quadratic trend X X X X 

Socioecon. covariates X X X X 

Weather and pollution controls X X X X 

    s 

R2 0.8372 0.8372 0.8373 0.8373 

Observations 336,604 336,604 336,604 336,604 

Notes:  *** Significant at 1% level, ** 5%, * 10%. Standard errors in parentheses are two-way 

clustered at the date and county level. DST are indicator variables equal to 1 if the interview is on 

the DST Sunday or one of the following 6 days. The dependent variable is the all cause hospital 

admission rate per 100,000 pop. at the daily county level. Appendix A describes the weather 

measures and how they are linked to the Hospital Census on a daily county-level basis. Each column 

is one model as in Equation (1). 
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Appendix B: Measurement of Outcome Variables  

This paper uses self-reported measures on sleep and tiredness from the BRFSS as well as 

administrative hospital admission data from Germany. Together these represent a broad set of 

measures from different countries to validate our findings.  

First, the BRFSS tiredness measure refers to “in the last 30 days”, which may introduce 

measurement error and a non-straightforward interpretation when used as outcome. Assume that 

there was no recall bias or measurement error and everybody would provide accurate answers. 

Further, assume that DST would affect respondents for four days. Then, those interviewed on the 

day of the DST transition would report their average sleep duration for 29 days prior to DST and 

the first post-DST day; those interviewed on Monday would report their sleep for two post-DST 

days, and so on. Because our standard approach assigns respondents in weeks t+2 and t+3 to the 

control group status (Figure 1), our estimates would be downward biased as the retrospective 30-

day responses would be affected by DST as well. In practice, however, we expect recall biases and 

that respondents overweigh days closer to the interview day. In robustness checks, we assign 

respondents in weeks t+2 and t+3 to the treatment group and the results hold up.  

Second, we use administrative hospitalization data: German geography, combined with the 

institutional setting of the German health care system, makes it very plausible that variations in 

hospitalizations represent serious population health effects. Germany has 82 million residents 

living in an area, which has roughly the size of the U.S. state Montana. Thus, the average German 

population density is seven times higher than the U.S. population density and 231 vs. 32 people 

per km2 (U.S. Census Bureau, 2012; German Federal Statistical Office, 2017). The hospital bed 

density is also much higher. Per 100,000 population, Germany has 824 hospital beds, while the 

U.S. has 304 beds (OECD, 2017). Hence, geographic hospital access barriers, such as travel 

distances, are low in Germany. Moreover, the German uninsurance rate is below 0.5%. The public 
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health care system covers 90% of the population and copayment rates in the public scheme are 

uniform and low. The overwhelming majority of hospitals can be accessed independently of 

insurance status and free choice of providers exist (no provider networks). 


