Post-FOMC Announcement Drift in U.S. Bond Markets.

Jordan Brooks¹ Michael Katz ² Hanno Lustig ³

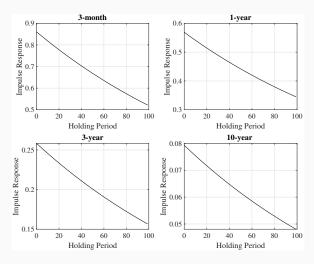
¹AQR

²AQR

³Stanford

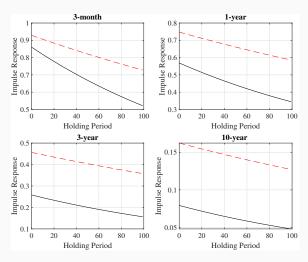
Forecasting Short Rates

 after FOMC announcement, bond investors face forecasting problem:

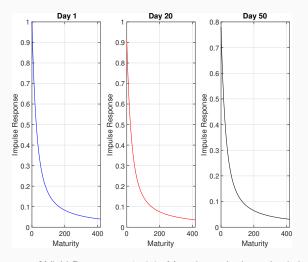

$$y_t^N = \frac{1}{N} \mathbb{E}_t^* \left[\sum_{j=1}^N r_{t+j}^{N-j+1} . \right]$$

where r_t^N denotes the log return on an N-period bond.

 (rational) expectations hypothesis: investors forecast short rates

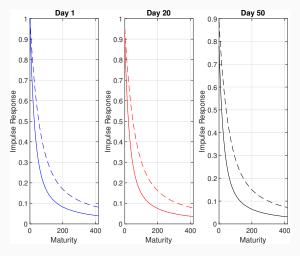

$$y_t^N = \frac{1}{N} \mathbb{E}_t \left[\sum_{j=1}^N r_{t+j-1}^{\$} . \right]$$

- DGP for short rates: $r_{t+1}^{\$} = (1 \phi)\theta + \phi r_t^{\$} + u_{t+1}$
- yield on *N*-period bond: $(y_t^{N,RE} \theta) = \frac{1}{N} \frac{1 \phi^N}{1 \phi} (r_t^{\$} \theta)$.



Response to 1 bps. shock to short rate. Holding period in months. Response for $\phi{=}0.9{:}\ \frac{\Delta y_{t+k}^{N,RE}}{\Delta r_s^{\xi}} = \frac{1}{N} \frac{1-\phi^N}{1-\phi} \phi^k.$

$$\phi = 0.9$$
: $\frac{\Delta y_{t+k}^{N,RE}}{\Delta r_{\star}^{\$}} = \frac{1}{N} \frac{1-\phi^{N}}{1-\phi} \phi^{k}$.



Response to 1 bps. shock to short rate. Response for ϕ =0.9 (full line) and ϕ =0.95 (dotted line). $\frac{\Delta y_{t+k}^{N,RE}}{\Delta r_{t}^{S}} = \frac{1}{N} \frac{1-\phi^{N}}{1-\phi} \phi^{k}$.

Term Structure of Yield Responses. ϕ =0.9. Maturity on horizontal axis in months. $\frac{\Delta y_{t+k}^{N,RE}}{\Delta r_t^k} = \frac{1}{N} \frac{1-\phi^N}{1-\phi} \phi^k.$

$$\frac{\Delta y_{t+k}^{N,RE}}{\Delta r_t^*} = \frac{1}{N} \frac{1-\phi^N}{1-\phi} \phi^k.$$

Term Structure of Yield Responses. ϕ =0.9 (bottom line) and ϕ =0.95 (top line). Maturity on horizontal axis in months. $\frac{\Delta y_{t+k}^{N,RE}}{\Delta r_{s}^{2}} = \frac{1}{N} \frac{1-\phi^{N}}{1-\phi} \phi^{k}.$

Computing Impulse Responses of Yields to Mon. Surprises

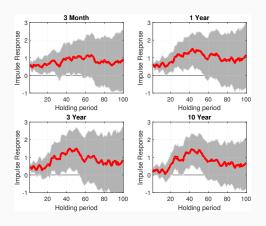
- y_t^k : the par bond yield on Treasury bond with maturity k.
- ullet regression of cumulative yield changes between t-1 and t+j-1 on the monetary policy surprise at t:

$$y_{\tau_i+j-1}^k - y_{\tau_i-1} = a_{k,j} + b_{k,j} \left(-\Delta r_{\tau_i}^u \right) + \varepsilon_{\tau_i+j}^{k,j}, j = 1, 2, \dots$$

where $\tau_i \in \tau$ is the date of one of the regularly scheduled FOMC meetings.

 news about FFR: innovation in FF futures (nearest contract) on announcement days

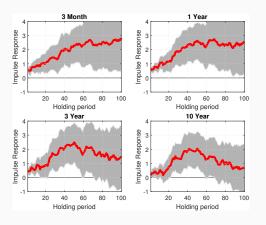
$$\Delta r_t^u = \left(f_t^0 - f_{t-1}^0\right) \frac{m}{m-t}.$$


Surprises on Scheduled FOMC Meeting Days: Lumpy FFR News

$$\Delta r_t^u = (f_t^0 - f_{t-1}^0) \frac{m}{m-t}.$$

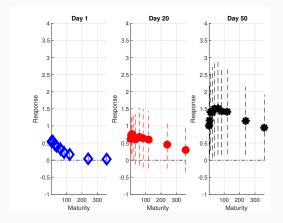
	All	FOMC
		Scheduled
Obs	6760	157
Mean(abs)	0.164	3.906
Std	1.849	6.786
		Target Changes
Obs	6760	59
Mean(abs)	0.164	6.456
Std	1.849	9.587
		No Target Changes
Obs	6760	98
Mean(abs)	0.164	2.371
Std	1.849	4.302

Full sample contains 157 regularly scheduled FOMC meetings between 2-Nov-1988 and 29-Oct-2008.


Impulse Response of U.S. Treasuries

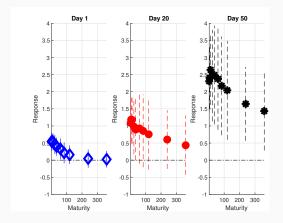
Response in bps. of U.S. Treasuries with Constant Maturity to 1 basis points (Kuttner) surprise in FFR after k days. Sample consists of all 157 regularly scheduled FOMC meetings between 2-Nov-1988 and 29-Oct-2008. We plot 2-standard-error bands around the IR.

$$y_{\tau_i+j-1}^k - y_{\tau_i-1} = a_{k,j} + b_{k,j} \left(-\Delta r_{\tau_i}^u \right) + \varepsilon_{\tau_i+j}^{k,j}, j = 1, 2, \dots$$


Impulse Response of U.S. Treasuries: Target Changes

Response in bps. of U.S. Treasuries with Constant Maturity to 1 basis points (Kuttner) surprise in FFR after k days. Sample consists of all 59 target changes on regularly scheduled FOMC meetings between 2-Nov-1988 and 29-Oct-2008. We plot 2-standard-error bands around the IR.

$$y_{\tau_i+j-1}^k - y_{\tau_i-1} = \mathsf{a}_{k,j} + \mathsf{b}_{k,j} \left(-\Delta r_{\tau_i}^u \right) + \varepsilon_{\tau_i+j}^{k,j}, j = 1,2,\ldots.$$


Term Structure of U.S. Treasury Responses

Response of U.S. Treasuries with Constant Maturity to 1 basis points (Kuttner) surprise in FFR after k days. Sample consists of all 157 regularly scheduled FOMC meetings between 2-Nov-1988 and and 29-Oct-2008.

$$y_{\tau_i+j-1}^k - y_{\tau_i-1} = \mathsf{a}_{k,j} + \mathsf{b}_{k,j} \left(-\Delta r_{\tau_i}^u \right) + \varepsilon_{\tau_i+j}^{k,j}, j = 1, 2, \ldots.$$

Term Structure of U.S. Treasury Responses: Target Changes

Response of U.S. Treasuries with Constant Maturity to 1 basis points (Kuttner) surprise in FFR after k days. Sample consists of all 59 regularly scheduled FOMC meetings between 2-Nov-1988 and and 29-Oct-2008.

$$y_{\tau_i+j-1}^k - y_{\tau_i-1} = \mathsf{a}_{k,j} + \mathsf{b}_{k,j} \left(-\Delta r_{\tau_i}^u \right) + \varepsilon_{\tau_i+j}^{k,j}, j = 1, 2, \ldots.$$

Summary

- expectations hypothesis roughly holds on FOMC announcement day
- puzzling post-announcement drift in yields after FOMC announcements, especially at long end; contributes to
 - failure of expectations hypothesis
 - excess volatility of long bonds (CS, 1988)
 - excess sensitivity of long rates (GSS, 2005; CP, 2002; HS 2015; GK, 2017)
 - time-series momentum in fixed income (MOP, 2012)
- robust to controlling for
 - 1. Δ in expectations about future path \checkmark $y_{\tau_{i}+j-1}^{k} y_{\tau_{i}-1} = a_{k,j} + \beta_{k,j} \left(-\Delta r_{\tau_{i}}^{u} \right) + \gamma_{4,j} (f_{\tau_{i}}^{4} f_{\tau_{i}-1}^{4}) + \gamma_{8,j} (f_{\tau_{i}}^{8} f_{\tau_{i}-1}^{8}) + \varepsilon_{\tau_{i}+j}^{k,j}, j = 1, 2, \dots$
 - 2. Δ in expectations of macro fundamentals \checkmark
 - 3. lagged FOMC announcements in window ✓

Summary

- puzzling post-announcement drift in yields after FOMC announcements, especially at long end; contributes to
 - failure of expectations hypothesis
 - excess sensitivity of long rates
 - time-series momentum in fixed income
- robust to controlling for
 - 1. Δ in expectations about future path \checkmark
 - 2. Δ in expectations of macro fundamentals \checkmark

$$\begin{aligned} y_{\tau_{i}+j-1}^{k} - y_{\tau_{i}-1} &= \\ a_{k,j} + \beta_{k,j} \left(-\Delta r_{\tau_{i}}^{u} \right) + \sum_{l} \gamma_{k,j}^{l} \Delta \mathbb{F}_{\tau_{i}}^{l}(x) + \varepsilon_{\tau_{i}+j}^{k,j}, j = 1, 2, \dots \end{aligned}$$

- 3. lagged FOMC announcements in window \checkmark
- not robust to including unscheduled FF Target changes
 - (bad) news is revealed about macro-fundamentals

Mechanism: Mutual Fund Flows

Mechanism: Mutual Fund Investors help the Fed

- less sophisticated capital: pay attention to fixed income performance and sell (buy) only after FF rate change
 - persistent, large flows out of fixed income MFs after surprise Fed Funds rate increases; larger rate increases induce larger outflows
 - MF investors subject to sticky and extrapolative expectations
 - MF managers forced to sell Treasurys
 - evidence of flow-induced price pressure in Treasury markets
- slow-moving sophisticated capital: arbitrage capital is not leaning against the wind
 - \bullet rate changes \sim Treasury supply shocks (similar to evidence from index additions/deletions and Treasury auctions)

U.S. Government Bond Mutual Fund Returns

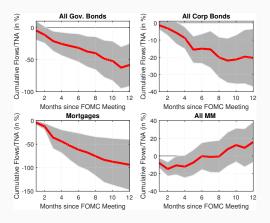
All Scheduled FOMC Meetings								
	1	5	10	20	50	100		
-	-1.48	-5.09	-5.22	-7.10	-12.86	-10.90		
(0.71)	(1.71)	(2.56)	(3.24)	(4.68)	(4.71)		
	0.06	0.12	0.08	0.07	0.12	0.05		
Target Changes								
	1	5	10	20	50	100		
	-1.38	-4.91	-5.82	-7.10	-14.45	-11.55		
(0.76)	(1.98)	(2.41)	(3.45)	(5.05)	(4.76)		
	0.76) 0.08	(1.98) 0.18	(2.41) 0.17	(3.45) 0.11	(5.05) 0.22	(4.76) 0.10		

Response of U.S. gov't bond MF returns in bps to 1 bps surprise in FFR (Target Changes) after k days:

$$r_{\tau_i \to \tau_i + j - 1}^k = \mathsf{a}_{k,j} + \mathsf{b}_{k,j} \left(-\Delta r_{\tau_i}^\mathsf{u} \right) + \varepsilon_{\tau_i + j - 1}^{k,j}, j = 1, 2, \dots$$

- same-day return response is -1.48 bps per bps of surprise
- 5-year duration for MFs: approx. 0.30 bps response of yields, consistent with the response of 6-year Treasury yield
- 50-day return response is 12.86 bps per bps surprise >> 7.55 = 5 × 1.51 bps response implied by 6-year Treasury yield (see CS, 2007)

Predicting U.S. Mutual Fund Returns

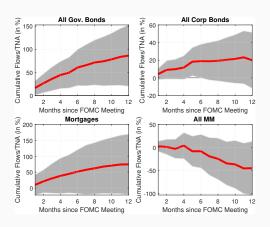

	All Government Bonds								
	1	5	10	20	50	100			
	-0.72	-1.86	-0.83	-2.64	-7.36	-8.10			
	(0.97)	(1.20)	(1.25)	(1.97)	(3.08)	(3.39)			
	0.02	0.11	0.01	0.04	0.15	0.12			
ntern	nediate	Short C	Governm	ent Bon	ds 1yr <	< x < 5yrs			
	1	5	10	20	50	100			
	-0.34	-1.32	-0.68	-2.94	-7.94	-7.92			
	(0.70)	(1.10)	(1.38)	(1.85)	(3.34)	(3.35)			
	0.01	0.07	0.01	0.06	0.17	0.11			
Inte	rmedia	te Gove	rnment	Bonds 5	yrs < x	< 10 <i>yrs</i>			
	1	5	10	20	50	100			
	-0.81	-2.14	-1.16	-6.55	-10.76	-8.13			
	(1.13)	(1.18)	(1.70)	(3.23)	(4.67)	(3.93)			
	0.02	0.11	0.01	0.12	0.15	0.07			

Target Changes only. Forecasting of k-day ahead cumulative log returns.

$$r_{ au_i+1 o au_i+j-1}^k = a_{k,j} + b_{k,j} \left(-\Delta r_{ au_i}^u\right) + \varepsilon_{ au_i+j}^{k,j}, j = 1, 2, \dots$$

- 10 bps surprise: investors realize 73.6 bps in incremental return over 50 days by going long or short in these government bond funds or 3.68% per annum.
- the maximum (annualized) SR increases from buy-and-hold SR of 0.408 to 0.98 at the 50-day horizon $0.98 = \frac{\sqrt{SR_{bah}^2 + \frac{R^2}{k}}}{\sqrt{1-R^2}}$, where $R^2 = 0.15$.
- 50-day window maximizes predictability, in line with time-series momentum

Impulse Response of U.S. Mutual Fund Flows: Target Changes



Response of U.S. mutual fund flows to 100 bps (Kuttner) surprise in FFR after k months. Only target changes. Aggregate Fund flows are divided by aggregate TNA.

total outflow after 12 months as % of TNA in response to 1 std surprise (10 bps):

- 1. 8% of all gov bond MFs (or \$ 128 billion in 2017.Q2)
- 2. up to 2% of corporate bond MFs (or \$ 48 billion in 2017.Q2)
- 3. up to 10% of mortgage MFs

Impulse Response of U.S. Mutual Fund Flows: No Target Changes

Response of U.S. mutual fund flows to 100 basis points (Kuttner) surprise in Federal Funds Rate after k months. No target changes. Aggregate Fund flows are divided by aggregate TNA.

Inelastic Demand for Treasurys

- Fed engineers 'exogenous shock to net supply'
- 10% outflow reduces cumulative log return between 51.9 and 62.1 bps
 - assume duration of 5 years
- 10% outflow increases Treasury yields by 10.38 to 12.42 bps
- the implied semi-elasticity of Treasury yields is

0.089 = 0.001038/0.011

1% increase in supply increases yields by 8.9 bps per annum

A Model of Mutual Fund Investors

1. **sticky expectations**: only fraction $1 - \lambda$ of MF investors updates

$$y_t^{i,N,mf} = \frac{1}{N} \mathbb{E}_{t-l(i)}^i \left[\sum_{j=1}^N r_{t+j-1}^{\$} \right],$$

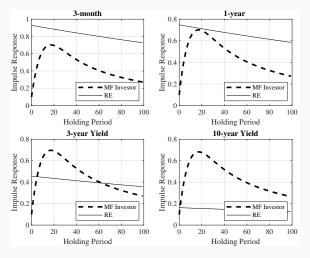
t - I(i) denotes last update of her short rate forecasts. (Mankiw and Reiss, 2002; Coibion and Gorodnichenko, 2015)

extrapolation: MF investors put too much weight on current short rate

$$r_{t+1}^{\$} = (1 - \phi_{mf})\theta + \phi_{mf}r_t^{\$} + u_{t+1}, \ \phi_{mf} > \phi$$

(Cieslak, 2018; BSV, 1998; FLM, 2010)

Sticky and Extrapolative Expectations Hypothesis


 The average 'target' nominal yield desired by MF investors is given by:

$$y_t^{N,mf} - \theta = \frac{1}{N} \sum_{i=0}^{\infty} \frac{(\lambda)^j (1-\lambda) (1-\phi_{mf}^N)}{1-\phi_{mf}} \phi_{mf}^j (r_{t-j}^\$ - \theta).$$

- when $\lambda = 0$, $y_t^{N,RE} \theta = \frac{1}{N} \frac{1 \phi^N}{1 \phi} (r_t^\$ \theta)$
- The impulse response of the average 'target' yield to a short rate shock *k* periods ago is given by:

$$\begin{array}{lcl} \frac{\Delta y_{t+k}^{N,mf}}{\Delta r_t^{\$}} & = & \phi^k \frac{1}{N} \frac{\left(1-\lambda\right) \left(1-\phi_{mf}^N\right) \left(1-\left(\lambda \left(\frac{\phi_{mf}}{\phi}\right)\right)^{k+1}\right)}{\left(1-\phi_{mf}\right) \left(1-\lambda \left(\frac{\phi_{mf}}{\phi}\right)\right)} \\ & > & \\ \frac{\Delta y_{t+k}^{N,RE}}{\Delta r_t^{\$}} & = & \frac{1}{N} \frac{1-\phi^N}{1-\phi} \phi^k. \end{array}$$

Impulse Response of Yields- Sticky Expectations Hypothesis

Response in bps. in REH Model (full line) and Sticky EH Model (dotted line) to a 1 bps shock. $\phi=0.9$ and $\phi_{mf}=0.995$. λ is equal to 0.90 (daily frequencies).

Conclusion

- target rate changes by FOMC induce failure of expectations hypothesis:
 - expectations hypothesis seems to hold on FOMC announcement days
 - substantial post-FOMC-announcement drift in Treasury markets
 - drift contributes to failure of expectations hypothesis: long rates too sensitive to short rates
- less sophisticated investors pay attention to FF rate changes:
 - sticky expectations
 - · extrapolative expectations
- more sophisticated investors do not readily absorb increased supply