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Abstract

We define a sentiment indicator based on option prices, valuation ratios

and interest rates. The indicator can be interpreted as a lower bound on

the expected growth in fundamentals that a rational investor would have

to perceive in order to be happy to hold the market. The lower bound was

unusually high in the late 1990s, reflecting dividend growth expectations

that in our view were unreasonably optimistic. We show that our measure

is a leading indicator of detrended volume and of analysts’ long-term earn-

ings growth expectations. Our approach depends on two key ingredients.

First, we derive a new valuation-ratio decomposition that is related to the

Campbell and Shiller (1988) loglinearization, but which resembles the Gor-

don growth model more closely and has certain other advantages. Second,

we introduce a volatility index that provides a lower bound on the market’s

expected log return.
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In this paper, we introduce a market sentiment indicator that exploits two

contrasting views of market predictability. One of our aims is to find a useful way

of measuring the “bubbliness” of the market. If valuation ratios—think P/D—are

high, then one starts to worry. But valuation ratios can be high for good reasons

if interest rates are low, or if risk premia are low (and are widely understood to

be low), or both.

A vast literature has studied the extent to which signals based on valuation

ratios are able to forecast market returns and/or measures of dividend growth;

early papers include Keim and Stambaugh (1986), Campbell and Shiller (1988),

and Fama and French (1988). More recently, Martin (2017) argued that indexes of

implied volatility based on option prices can serve as forecasts of expected excess

returns; and noted that the two classes of predictor variables made opposing

forecasts in the late 1990s, with valuation ratios pointing to low long-run returns

and option prices pointing to high short-run returns.

We play off the two views of the world against one other. Consider the classic

Gordon growth model, which relates the market’s dividend yield to its expected

return minus expected dividend growth: D/P = E(R − G). Roughly speaking,

the idea behind the paper is to use option prices to measure ER, and then to

calculate the expected growth in fundamentals implicit in market valuations—our

sentiment measure—as the difference between the option price index and dividend

yield, EG = ER− E(R−G).

Putting this thought into practice is not as easy as it might seem, however. The

Gordon growth model relies on assumptions that expected returns and expected

dividend growth are constant over time. The loglinearized identity of Campbell

and Shiller (1988) generalizes the Gordon growth model to the empirically relevant

case in which these quantities are time-varying. Their identity relates the price-

dividend ratio of an asset to its expected future log dividend growth and expected

log returns. It is often characterized as saying that high valuation ratios signal

high expected dividend growth or low expected returns (or both).

But expected returns are not the same as expected log returns. We show

that high valuations—and low expected log returns—may be consistent with high

expected simple returns if log returns are highly volatile, right-skewed, or fat-

tailed. Plausibly, all of these conditions were satisfied in the late 1990s. As they

are all potential explanations for the rise in valuation ratios at that time, we will
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need to be careful about the distinction between log returns and simple returns.

Furthermore, we show that while the Campbell–Shiller identity is highly ac-

curate on average, the linearization is most problematic at times when the price-

dividend ratio is far above its long-run mean. At such times—the late 1990s being

a leading example—a researcher who uses the Campbell–Shiller loglinearization

will conclude that long-run expected returns are even lower, and/or long-run ex-

pected dividend growth is even higher, than is actually the case. Thus the lin-

earization may “cry bubble” too soon.

We therefore propose a new linearization that does not have this feature, but

which also relates a measure of dividend yield to expected log returns and dividend

growth. Our approach exploits a measure of dividend yield yt = log (1 +Dt/Pt)

that has the advantage of being in “natural” units, unlike the quantity dpt =

logDt/Pt that features in the Campbell–Shiller approach. As a further bonus,

the resulting identity bears an even closer resemblance to the traditional Gordon

growth model—which it generalizes to allow for time-varying expected returns

and dividend growth—than does the Campbell–Shiller loglinearization.

The second ingredient of our paper is a lower bound on expected log returns

that plays the role of ER in the loose description above. The lower bound re-

lies on an assumption on the form of the stochastic discount factor (SDF). This

assumption, the modified negative correlation condition (mNCC), is satisfied, for

example, if one takes the perspective of an unconstrained agent who maximizes

expected utility over next-period wealth, who chooses to invest his or her wealth

fully in the market, and whose relative risk aversion is at least one. An attractive

feature of this approach is that it allows the investor in question to coexist with

other agents who may or may not be rational. Under the mNCC, our lower bound

on expected log returns can be computed directly from index option prices so is,

broadly speaking, a measure of implied volatility.

The paper is organized as follows. Section 2 discusses the link between val-

uation ratios, returns, and dividend growth; it analyzes the properties of the

Campbell–Shiller loglinearization, introduces our alternative loglinearization, and

studies the predictive relationship between dividend yields and future log returns

and log dividend growth. Section 3 derives the lower bound on expected returns.

Section 4 combines the preceding sections to introduce the sentiment indicator.

Section 5 documents the fact that our measure is a leading indicator of detrended
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volume, and of a long-term earnings growth forecast index that has been con-

structed by Nagel and Xu (2019); and explores its relationship with various other

measures of financial conditions. Section 6 concludes.

1 Framework

Our approach has two ingredients. The first is the predictive relationship between

valuation ratios, returns, and fundamentals that has been explored in the vast

predictability literature that started from Keim and Stambaugh (1986), Campbell

and Shiller (1988), and Fama and French (1988), among others. We introduce a

novel loglinearization

Et (rt+1 − gt+1) =
1

1− ρ
yt −

ρ

1− ρ
Et yt+1, (1)

where rt+1 is the log return on the market, gt+1 is log dividend growth, yt is the

market dividend yield, and ρ ≈ 0.97 is a loglinearization constant. If, say, the

dividend yield follows an AR(1) process,1 then equation (1) implies that

Et (rt+1 − gt+1) = a0 + a1yt (2)

for some constants a0 and a1. (We derive these and related results in Section 2.)

The second exploits the information in option prices via a strategy introduced

by Martin (2017). We assume that the inequality

covt (Mt+1Rt+1, logRt+1) ≤ 0 (3)

holds; as this is closely related to the negative correlation condition (NCC) of Mar-

tin (2017), we refer to it as the modified negative correlation condition (mNCC).

Here Mt+1 denotes a stochastic discount factor (SDF) which prices payoffs deliv-

ered at time t+ 1 from the perspective of time t, and Rt+1 is the gross return on

the market.

1Our approach could easily accommodate, say, a vector autoregression for yt; the key is that
one has an empirical procedure that generates a sensible measure of Et yt+1 to be used in (1).
Below, we also consider the case in which yt follows an AR(2) or AR(3).
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If one thinks from the perspective of an investor whose beliefs and risk pref-

erences are consistent with (2) (or with the alternatives mentioned in footnote 1)

and (3), then the mNCC holds if this investor—whom we refer to as a rep-

resentative investor—maximizes utility Et u(Wt+1), with relative risk aversion

−Wu′′(W )/u′(W ) (which need not be constant) at least one, and chooses to invest

his or her wealth fully in the market. This setup allows for the possibility that

other investors are irrational and/or face trading constraints; but we emphasize

that our representative investor is assumed to be unconstrained, and, in particu-

lar, to be able to trade in option markets, so that he or she is marginal for option

prices. Thus we are ruling out extreme forms of market segmentation by assump-

tion. (A representative investor in this sense is sufficient, but not necessary, for

the mNCC to hold. We discuss more general conditions under which the mNCC

holds in Section 3.)

We show, in Section 3, that this representative investor’s beliefs must then

respect the following lower bound on the expected log return on the market,

which can be computed directly from option prices:

Et rt+1 − rf,t+1 ≥
1

Pt

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
. (4)

Starting from the decomposition

Et gt+1 = rf,t+1 − Et (rt+1 − gt+1) + Et (rt+1 − rf,t+1) , (5)

we have a lower bound on the representative investor’s expected dividend growth,

Et gt+1 ≥ rf,t+1 − (a0 + a1yt) +
1

Pt

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
,

from (2), (4), and (5).

To implement this, we replace the population coefficients a0 and a1 by their

sample counterparts â0 and â1, which we estimate by OLS.2 We end up with the

2We discuss the issue of estimation uncertainty in Section 4.2.1.
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sentiment indicator

Bt = rf,t+1 − (â0 + â1yt) +
1

Pt

[∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

]
.

2 Fundamentals

We seek to exploit the information in valuation ratios, following Campbell and

Shiller (1988). We write Pt+1, Dt+1 and Rt+1 for the level, dividend, and gross

return of the market, respectively: thus

Rt+1 =
Dt+1 + Pt+1

Pt
. (6)

It follows from (6) that

rt+1 − gt+1 = pdt+1 − pdt + log
(
1 + edpt+1

)
, (7)

where we write dpt+1 = dt+1− pt+1 = logDt+1− logPt+1, pdt+1 = pt+1− dt+1, and

gt+1 = dt+1 − dt. Campbell and Shiller (1988) linearized the final term in (7) to

derive a decomposition of the (log) price-dividend ratio,

pdt =
k

1− ρ
+
∞∑
i=0

ρi Et (gt+1+i − rt+1+i) , (8)

where the constants k and ρ are determined by

ρ =
µ

1 + µ
and

k

1− ρ
= (1 + µ) log(1 + µ)− µ log µ , where µ = epd.

We follow the convention in the literature in writing approximations such as (8)

with equals signs. (A number of our results below are in fact exact. We emphasize

these as they occur.) We also assume throughout the paper that there are no

rational bubbles, as is standard in the literature. Thus, for example, in deriving

(8) we are assuming that limT→∞ ρ
TpdT = 0.

The approximation (8) is often loosely summarized by saying that high val-

uation ratios signal high expected dividend growth or low expected returns (or
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both). But expected log returns are not the same as expected returns:3 we have

Et rt+1+i = logEtRt+1+i −
1

2
vart rt+1+i −

∞∑
n=3

κ
(n)
t (rt+1+i)

n!
,

where κ
(n)
t (rt+1+i) is the nth conditional cumulant of the log return. (If returns

are conditionally lognormal, then the higher cumulants κ
(n)
t (rt+1+i) are zero for

n ≥ 3.) Thus high valuations—and low expected log returns—may be consistent

with high expected arithmetic returns if log returns are highly volatile, right-

skewed, or fat-tailed. Plausibly, all of these conditions were satisfied in the late

1990s. As they are all potential explanations for the rise in valuation ratios at

that time,4 we will need to be careful about the distinction between log returns

and simple returns.

Furthermore, the Campbell–Shiller first-order approximation is least accurate

when the valuation ratio is far from its mean, as we now show.

Result 1 (Campbell–Shiller revisited). The log price-dividend ratio pdt obeys the

following exact decomposition:

pdt =
k

1− ρ
+
∞∑
i=0

ρi (gt+1+i − rt+1+i)+
1

2

∞∑
i=0

ρiψt+1+i(1−ψt+1+i)
(
pdt+1+i − pd

)2
,

(9)

where the constants k and ρ are defined as above, and the quantities ψt+1+i lie

between ρ and 1/(1 + edpt+1+i).

Equation (9) becomes a second-order Taylor approximation if ψt is assumed

equal to ρ for all t,

pdt =
k

1− ρ
+
∞∑
i=0

ρi (gt+1+i − rt+1+i) +
ρ(1− ρ)

2

∞∑
i=0

ρi
(
pdt+1+i − pd

)2
, (10)

and reduces to the Campbell–Shiller loglinearization (8) if the final term on the

right-hand side of (9) is neglected entirely.

3And expected log dividend growth is not the same as expected dividend growth. This
distinction is less important, however, as the log dividend growth series is less volatile than the
log return series.

4See, for example, Pástor and Veronesi (2003, 2006).
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Proof. Taylor’s theorem, with the Lagrange form of the remainder, states that

(for any sufficiently well-behaved function f , and for x ∈ R and a ∈ R)

f(x) = f(a)+(x−a)f ′(a)+
1

2
(x− a)2 f ′′(ξ) , for some ξ between a and x. (11)

We apply this result with f(x) = log (1 + ex), x = dpt+1, and a = dp = E dpt
equal to the mean log dividend yield. Equation (11) becomes

log
(
1 + edpt+1

)
= k + (1− ρ)dpt+1 +

1

2
ψt+1(1− ψt+1)

(
dpt+1 − dp

)2
,

where ψt+1 = 1/(1 + eξ) must lie between 1/(1 + edp) = ρ and 1/(1 + edpt+1).

Substituting into expression (7), we have the exact relationship

rt+1 − gt+1 = k − pdt + ρpdt+1 +
1

2
ψt+1(1− ψt+1)

(
pdt+1 − pd

)2
which can be solved forward to give (9). The approximation (10) follows.

Result 1 expresses the price-dividend ratio in terms of future log dividend

growth and future log returns—as in the Campbell–Shiller approximation—plus

a convexity correction.

This convexity correction is small on average. Take the unconditional expec-

tation of second-order approximation (10):

E pdt =
k

1− ρ
+

E (gt − rt)
1− ρ

+
ρ

2
var pdt ,

assuming that pdt, rt, and gt are stationary so that their unconditional means

and variances are well defined. Using CRSP data from 1947 to 2019, the sample

average of pdt is 3.469 (so that ρ is 0.969) and the sample standard deviation

is 0.434. Thus the unconditional average convexity correction ρ
2

var pdt is about

0.0913, that is, about 2.63% of the size of E pdt.
The convexity correction can sometimes be large, however. We have

pdt =
k

1− ρ
+
∞∑
i=0

ρi Et (gt+1+i − rt+1+i) +
ρ(1− ρ)

2

∞∑
i=0

ρi Et
(
pdt+1+i − pd

)2
,
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and the final term may be quantitatively important if the valuation ratio is far

from its mean and persistent, so that it is expected to remain far from its mean

for a significant length of time.

For the sake of argument, suppose the log price-dividend ratio follows an

AR(1), pdt+1 − pd = φ(pdt − pd) + εt+1, where vart εt+1 = σ2 so that var pdt =

σ2/(1−φ2); and set σ = 0.167 and φ = 0.923 to match the sample standard devi-

ation and autocorrelation in CRSP data from 1947–2019. The above expression

becomes

pdt =
k

1− ρ
+
∞∑
i=0

ρi Et (gt+1+i − rt+1+i) +
ρ(1− ρ)φ2

2(1− ρφ2)

[(
pdt − pd

)2
+

σ2

(1− ρ)φ2

]
︸ ︷︷ ︸

convexity correction

.

At its peak during the boom of the late 1990s, pdt was 2.2 standard deviations

above its mean. The convexity term then equals 0.145: this is the amount by

which a researcher using the Campbell–Shiller approximation would overstate∑∞
i=0 ρ

i Et (gt+1+i − rt+1+i). With ρ = 0.969, this is equivalent to overstating

Et gt+1+i− rt+1+i by 14.5 percentage points for one year, 3.1 percentage points for

five years, or 1.0 percentage points for 20 years.5

The Campbell–Shiller approximation does not apply if dpt follows a random

walk (i.e., Et dpt+1 = dpt). But in that case we can linearize (7) around the

conditional mean Et dpt+1 to find6

Et (rt+1 − gt+1) = log
(
1 + edpt

)
= log

(
1 +

Dt

Pt

)
. (12)

Motivated by this fact,7 we define yt = log (1 +Dt/Pt). An appealing property

5The numbers are more dramatic if we use the long sample from 1871–2015 available on
Robert Shiller’s website. We find ρ = 0.960, σ = 0.136, and φ = 0.942 in the long sample, so
that the convexity correction is 0.0596 when pdt is at its mean, and 0.253 at the peak (which
was 3.2 standard deviations above the mean). This last number corresponds to overstating
Et gt+1+i − rt+1+i by 25.3 percentage points for one year, 5.5 percentage points for five years,
1.8 percentage points for 20 years, or 1.0 percentage points for ever.

6Campbell (2008, 2018) derives the same result via a different route, but makes further
assumptions (that the driving shocks are homoskedastic and conditionally Normal) that we do
not require.

7Further motivation is provided in Martin (2013), where it is shown that this measure of
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of this definition—and one that dpt does not possess—is that yt = log(1+Dt/Pt) ≈
Dt/Pt. We can then rewrite the definition of the log return (7) as the (exact)

relationship

rt+1 − gt+1 = yt + log
(
1− e−yt

)
− log

(
1− e−yt+1

)
. (13)

In these terms, equation (12) states that

yt = Et (rt+1 − gt+1) , (14)

which is valid, as a first-order approximation, if dpt (or yt) follows a random walk.

Alternatively, if yt is stationary (as is almost always assumed in the literature)

we have the following result. We write unconditional means as y = E yt, r = E rt
and g = E gt.

Result 2 (A variant of the Gordon growth model). Suppose yt is stationary. Then

we have the loglinearization

yt = (1− ρ)
∞∑
i=0

ρi (rt+1+i − gt+1+i) , (15)

where8 ρ = e−y. As there is no constant in (15), and as (1− ρ)
∑∞

i=0 ρ
i = 1, this

is a variant of the Gordon growth model: y is a weighted average of future r − g.

To second order, we have the approximation

yt = (1− ρ)
∞∑
i=0

ρi (rt+1+i − gt+1+i)−
1

2

ρ

1− ρ

∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt+i − y)2

]
.

(16)

We also have the exact relationship

y = r − g, (17)

which does not rely on any approximation.

dividend yield emerges naturally in i.i.d. models with power utility or Epstein–Zin preferences.

8This differs slightly from the definition of ρ in Result 1, though they are extremely close in
practice.
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Proof. Using Taylor’s theorem to second order in equation (13), we have the

second-order approximation

rt+1 − gt+1 =
1

1− ρ
yt −

ρ

1− ρ
yt+1 +

1

2

ρ

(1− ρ)2
[
(yt+1 − y)2 − (yt − y)2

]
which can be rewritten

yt = (1− ρ)(rt+1 − gt+1) + ρyt+1 −
1

2

ρ

1− ρ
[
(yt+1 − y)2 − (yt − y)2

]
,

and then solved forward, giving (15) and (16). Equation (17) follows by taking ex-

pectations of the identity (13) and noting that E log (1− e−yt) = E log (1− e−yt+1)

by stationarity of yt.

We note in passing that equation (17) implies that the inequality r > g, which

is discussed extensively by Piketty (2014), holds in any model in which y > 0.

Piketty (2015) writes that “the inequality r > g holds true in the steady-state

equilibrium of the most common economic models, including representative-agent

models where each individual owns an equal share of the capital stock.” Our

result shows that the inequality applies much more generally. It does not rely on

equilibrium logic and is not in itself particularly interesting or significant.

Given our focus on bubbles, we are particularly interested in the accuracy

of these loglinearizations9 at times when valuation ratios are unusually high or,

equivalently, when dpt and yt are unusually low. This motivates the following

definition and result.

Definition 1. We say that yt is far from its mean (at time t) if

Et
[
(yt+1+i − y)2

]
≤ (yt − y)2 for all i ≥ 0. (18)

Example.—If yt follows an AR(1), then a direct calculation shows that yt is far

from its mean if and only if it is at least one standard deviation from its mean.

9In a different direction, motivation for doing so is provided by Pohl, Schmedders and Wilms
(2018), who show that loglinearizations can induce quantitatively important approximation
errors in long-run risk models.
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Result 3 (Signing the approximation errors). We can sign the approximation

error in the Campbell–Shiller loglinearization (8):

dpt < −
k

1− ρ
+
∞∑
i=0

ρi Et (rt+1+i − gt+1+i) . (19)

The first-order approximation (15) is exact on average. That is,

E yt = (1− ρ)
∞∑
i=0

ρi E (rt+1+i − gt+1+i) (20)

holds exactly, without any approximation. But if yt is far from its mean then (up

to a second-order approximation)

yt ≥ (1− ρ)
∞∑
i=0

ρi Et (rt+1+i − gt+1+i) . (21)

Proof. The inequality (19) follows immediately from (9) and equation (20) follows

directly from equation (17). To establish the inequality (21), rewrite

∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt+i − y)2

]
= − (yt − y)2 + (1− ρ)

∞∑
i=0

ρi (yt+1+i − y)2

= (1− ρ)
∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt − y)2

]
.

(22)

The inequality then follows from (16), (18), and (22).

Dividend yields, whether measured by dpt or by yt, were unusually low around

the turn of the millennium, indicating some combination of low future returns

and high future dividend growth. Result 3 shows that an econometrician who

uses the Campbell–Shiller approximation (8) at such a time—that is, who treats

the inequality (19) as an equality—will overstate how low future returns, or how

high future dividend growth, must be: and therefore may be too quick to con-

clude that the market is “bubbly.” In contrast, an econometrician who uses the

approximation (15) will understate how low future returns, or how high future
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dividend growth, must be. Thus yt is a conservative diagnostic for bubbles.

To place more structure on the relationship between valuation ratios and r

and g, we will make an assumption about the evolution of dpt and yt over time.

For now we will rely on an AR(1) assumption to keep things simple; in Section

4.1, we report the corresponding results assuming AR(2) or AR(3) processes.

The Campbell–Shiller approximation over one period states that rt+1− gt+1 =

k+dpt−ρ dpt+1. If dpt follows an AR(1) with autocorrelation φ then Et dpt+1−dp =

φ
(
dpt − dp

)
, so

Et (rt+1 − gt+1) = c+ (1− ρφ)dpt, (23)

where we have absorbed constant terms into c.

Conversely, the first-order approximation underlying Result 2 implies that

Et (rt+1 − gt+1) =
1

1− ρ
yt −

ρ

1− ρ
Et yt+1. (24)

If yt follows an AR(1) with autocorrelation φy then this reduces to

Et (rt+1 − gt+1) = c+
1− ρφy
1− ρ

yt, (25)

where again we absorb constants into the intercept c. In view of (17), this can

also be written without an intercept as

Et (rt+1 − gt+1)− (r − g) =
1− ρφy
1− ρ

(yt − y) ,

so that the deviation of yt from its long-run mean is proportional to the deviation

of conditionally expected rt+1− gt+1 from its long-run mean. A further advantage

of yt over dpt is that the expression (25) is also meaningful if yt follows a random

walk: in this case, the coefficient on yt equals one and the intercept is zero, by

equation (14).

Equations (23) and (25) motivate regressions of realized rt+1 − gt+1 onto dpt

and a constant, or onto yt and a constant. The results are shown in Table 1, where

we also report the results of regressing rt+1 and −gt+1 separately onto yt and onto

dpt. We use end-of-year observations of the price level and accumulated dividends
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RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.073 [0.048] 3.541 [1.302] 8.33%

−0.023 [0.048] 3.82 [1.194] 11.13%

−0.05 [0.027] −0.279 [0.802] 0.29%

0.43 [0.144] 0.111 [0.041] 8.23%

0.511 [0.136] 0.117 [0.04] 10.58%

−0.081 [0.084] −0.006 [0.024] 0.16%

Table 1: Full-sample regressions for S&P 500, annual data, cash reinvestment,
1947–2019.

of the S&P 500 index from CRSP.10 The table reports regression results in the

form11

LHSt+1 = a0 + a1 × RHSt + εt+1,

with Hansen–Hodrick standard errors shown in brackets. (Under the AR(1) as-

sumption, we could also use (23) or (25) as estimates of Et(rt+1 − gt+1). This

approach turns out to give very similar results, as we show in Table 9 of the

appendix.)

The variables yt and dpt have similar predictive performance and, consistent

with the prior literature, we find, in the post-1947 sample, that valuation ratios

help to forecast returns but have limited forecasting power for dividend growth.

Table 2 reports results using cash reinvested dividends in the full CRSP post-1926

sample. Tables 3 and 4 report results using market reinvested dividends in the

10We calculate the monthly dividend by multiplying the difference between monthly cum-
dividend and ex-dividend returns by the lagged ex-dividend price: Dt = (Rcum,t − Rex,t)Pt−1.
As we aggregate the dividends paid out over the year, to address seasonality issues, we reinvest
dividends month-by-month until the end of the year, using the CRSP 30-day T-bill rate as our
risk-free rate. In the appendix, we report similar results with dividends reinvested at the cum-
dividend market return rather than at a risk-free rate; if anything, these results are somewhat
more favorable to our yt variable than to dpt.

11Stambaugh bias has little effect on these numbers. In our main sample, implementing the
correction given in equation (18) of Stambaugh (1999) changes the predictive coefficient from
3.54 to 3.35 in the data since 1947, or from 5.12 to 5.11 in the data since 1926. We therefore
report simple OLS coefficients for simplicity. The analysis of Section 4.2.2 can also be interpreted
as a conservative response to the possibility of Stambaugh bias.
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post-1926 period. Tables 5–7 use the price and dividend data of Goyal and Welch

(2008) (updated to 2018 and taken from Amit Goyal’s webpage): this gives us

a longer sample, as it incorporates Robert Shiller’s data which goes back as far

as 1871. The predictability of r relative to g is to some extent a feature of the

post-war period. In the long sample, returns are substantially less predictable

and dividends substantially more predictable, perhaps because of the post-war

tendency of corporations to smooth dividends (Lintner, 1956). Encouragingly,

though, we find that the predictive relationship between yt (or dpt) and the dif-

ference rt+1 − gt+1 is fairly stable across sample periods and data sources.

3 A lower bound on expected log returns

High valuation ratios are sometimes cited as direct evidence of a bubble. But

valuation ratios can be high for good reasons if interest rates or rationally expected

risk premia are low. In other words, if we use yt to measure Et (rt+1 − gt+1) as

suggested above, we may find that yt is low simply because Et rt+1 is very low,

which could reflect low interest rates rf,t+1, low (log) risk premia Et rt+1 − rf,t+1,

or both.

While interest rates are directly observable, risk premia are harder to measure.

We start from the following identity, which generalizes an identity introduced by

Martin (2017) in the case Xt+1 = Rt+1:

EtXt+1 =
1

Rf,t+1

E∗t (Rt+1Xt+1)− covt (Mt+1Rt+1, Xt+1) .

We have written E∗t for the time-t conditional risk-neutral expectation operator,

defined by the property that 1
Rf,t+1

E∗t Xt+1 = Et (Mt+1Xt+1), where Mt+1 denotes

a stochastic discount factor that prices any tradable payoff Xt+1 received at time

t+1. Assuming the absence of arbitrage, such an SDF must exist, and the identity

above holds for any gross return Rt+1 such that the payoff Rt+1Xt+1 is tradable.

Henceforth, however, Rt+1 will always denote the gross return on the market.

We are interested in expected log returns, Xt+1 = logRt+1, in which case the
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identity becomes

Et logRt+1 =
1

Rf,t+1

E∗t (Rt+1 logRt+1)− covt (Mt+1Rt+1, logRt+1) . (26)

The first of the two terms on the right-hand side, as a risk-neutral expectation,

is directly observable from asset prices, as it represents the price of a contract that

pays Rt+1 logRt+1 at time t+ 1. (Neuberger (2012) has studied this contract in a

different context.) The second term can be controlled: we will argue below that

it is reasonable to impose an assumption that it is negative. Thus (26) implies

a lower bound on expected log returns in terms of a quantity that is directly

observable from asset prices.

To make further progress, we make two assumptions throughout the paper.

As we will see below, we will use option prices to bound the first term on the

right-hand side of the identity (26). Our first assumption addresses the minor12

technical issue that we observe options on the ex-dividend value of the index, Pt+1,

rather than on Pt+1 +Dt+1.

Assumption 1. If we define the dispersion measure Ψ(Xt+1) ≡ E∗t f(Xt+1) −
f(E∗t Xt+1), where f(x) = x log x is a convex function, then the dispersion of Rt+1

is at least as large as that of Pt+1/Pt:

Ψ (Rt+1) ≥ Ψ (Pt+1/Pt) . (27)

This condition is very mild. Expanding f(x) = x log x as a Taylor series to

second order around x = 1, f(x) ≈ (x2−1)/2. Thus, to second order, Assumption

1 is equivalent to var∗t Rt+1 ≥ var∗t (Pt+1/Pt), or equivalently var∗t (Pt+1 +Dt+1) ≥
var∗t Pt+1. A sufficient, though not necessary, condition for this to hold is that

the price Pt+1 and dividend Dt+1 are weakly positively correlated under the risk-

neutral measure.

Our second assumption is more substantive.

12In fact, it is so minor that the distinction between options on Pt+1 and options on Pt+1 +
Dt+1 is often neglected entirely in the literature. For example, Neuberger (2012) “avoid[s]
irrelevant complications with interest rates and dividends” by treating options on forward prices
as observable, as do Schneider and Trojani (2018), and (essentially equivalently) Carr and Wu
(2009) use options on stocks as proxies for options on stock futures. These authors effectively
assume that our inequality (27) holds with equality.
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Assumption 2. The modified negative correlation condition (mNCC) holds:

covt (Mt+1Rt+1, logRt+1) ≤ 0 . (28)

Martin (2017) imposed the closely related negative correlation condition (NCC)

that covt (Mt+1Rt+1, Rt+1) ≤ 0. The two conditions are plausible for similar rea-

sons: in any reasonable model, Mt+1 will be negatively correlated with the return

on the market, Rt+1, and we know from the bound of Hansen and Jagannathan

(1991), coupled with the empirical fact that high Sharpe ratios are available, that

Mt+1 is highly volatile.

In fact, the two conditions are equivalent in the lognormal case. Suppose

that the SDF Mt+1 and return Rt+1 are conditionally jointly lognormal and write

rf,t+1 = logRf,t+1, µt = logEtRt+1, and σ2
t = vart logRt+1. Then the mNCC and

NCC are both equivalent to the assumption that the conditional Sharpe ratio of

the asset, λt ≡ (µt − rf,t+1)/σt, exceeds its conditional volatility, σt.
13

The Sharpe ratio of the market is typically thought of as being on the order

of 30–50%, while the volatility of the market is on the order of 16–20%. Thus the

mNCC holds in the calibrated models of Campbell and Cochrane (1999), Bansal

and Yaron (2004), Bansal et al. (2014) and Campbell et al. (2016), among many

others. But Martin (2017) argues that option prices are inconsistent with the

lognormality assumption. This motivates the following result, which provides a

sufficient condition for the mNCC to hold without requiring lognormality.

Result 4. Suppose that an investor’s SDF takes the form

Mt+1 = β
VW (Wt+1, zt+1)

VW (Wt, zt)
,

where VW is the investor’s marginal value of wealth, and zt is a vector of state

variables, with signs chosen so that VW is weakly decreasing in each (just as it

is decreasing in Wt+1). We allow time t + 1 wealth, Wt+1, to be invested in the

13By Stein’s lemma, covt (Mt+1Rt+1, logRt+1) = covt (logMt+1 + logRt+1, logRt+1). By
lognormality of Mt+1 and Rt+1, the fact that Et (Mt+1Rt+1) = 1 is equivalent to
logEtMt+1 + logEtRt+1 = − covt (logMt+1, logRt+1). It follows from these two facts that
covt (Mt+1Rt+1, logRt+1) ≤ 0 if and only if vart logRt+1 ≤ logEtRt+1 − rf,t+1: that is, if and
only if λt ≥ σt. Under lognormality, this condition is equivalent to covt(Mt+1Rt+1, Rt+1) ≤ 0,
as shown by Martin (2017).
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market and in some other asset or portfolio of assets with gross return R̃t+1:

Wt+1 = αt(Wt − Ct)Rt+1︸ ︷︷ ︸
market wealth, Wm,t+1

+ (1− αt)(Wt − Ct)R̃t+1︸ ︷︷ ︸
non-market wealth

, where αt ∈ (0, 1].

If (i) Rt+1, R̃t+1 and the elements of zt+1 are associated random variables,14 (ii)

the investor ensures that the share of wealth in the market, Wm,t+1/Wt+1, is at

least θ ∈ (0, 1], some fixed constant, and (iii) the investor’s relative risk aversion

−WVWW/VW (which need not be constant) is at least 1/θ, then the mNCC holds.

Proof. We must show that covt(−Rt+1VW (Wt+1, zt+1), logRt+1) ≥ 0. That is, we

must prove that the covariance of two functions of Rt+1, R̃t+1, and zt+1 is positive.

The two functions are

f(Rt+1, R̃t+1, zt+1) = −Rt+1VW

(
αt(Wt − Ct)Rt+1 + (1− αt)(Wt − Ct)R̃t+1, zt+1

)
and

g(Rt+1, R̃t+1, zt+1) = logRt+1 .

(As the covariance is conditional on time t information, we can treat αt and

Wt − Ct as known constants.) As the random variables are associated, the result

follows if f and g are each weakly increasing functions of their arguments. The

assumptions above ensure that this is the case. For example, differentiating f with

respect to Rt+1, we need −VW (Wt+1, zt+1)−αt(Wt−Ct)Rt+1VWW (Wt+1, zt+1) ≥ 0

or, rearranging,

−Wt+1VWW (Wt+1, zt+1)

VW (Wt+1, zt+1

≥ Wt+1

Wm,t+1

.

But this holds, by assumptions (ii) and (iii):

−Wt+1VWW (Wt+1, zt+1)

VW (Wt+1, zt+1

(iii)

≥ 1

θ

(ii)

≥ Wt+1

Wm,t+1

.

It is immediate that f and g are weakly increasing in their other arguments.

14The concept of associated random variables (Esary, Proschan and Walkup, 1967) extends
the concept of nonnegative correlation in a manner that can be extended to the multivariate
setting. Jointly Normal random variables are associated if and only if they are nonnegatively
correlated (Pitt, 1982), and increasing functions of associated random variables are associated.
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Result 4 provides a flexible set of conditions under which the mNCC holds.

Example 1. Suppose that there is a representative investor who maximizes utility

over next-period wealth and who chooses to invest her wealth fully in the stock

market. Then by Result 4, the mNCC holds so long as her relative risk aversion

(which need not be constant) is at least one at all levels of wealth. Furthermore,

if the representative investor has log utility then the mNCC is tight—that is, the

inequality holds with equality—because Mt+1Rt+1 = 1 is a constant.

Example 2. Alternatively, if the investor keeps at least (say) a third of her wealth

in the market, then her relative risk aversion must be at least three. We also

require that the market and non-market returns are associated; in the lognormal

case, this holds if they are nonnegatively correlated.15

These examples make no assumption about the beliefs of other investors in

the economy. We can therefore think from the perspective of a rational investor

surrounded by other investors, some of whom are potentially irrational. We think

that the assumption that the investor chooses to invest fully in the stock market

represents a natural benchmark in such cases; but the possibility arises that the

lower bound might be violated—say in the late 1990s—because no rational investor

would want to hold the market. We discuss this possibility after introducing the

sentiment measure in Section 4. We also provide further examples of situations

in which the mNCC holds in Appendix E.

We can now state our lower bound on expected log returns.

Result 5. Suppose Assumptions 1 and 2 hold. Write callt(K) and putt(K) for

the time t prices of call and put options on Pt+1 with strike K, and Ft for the time

t forward price of the index for settlement at time t+ 1. Then we have

Et rt+1 − rf,t+1 ≥
1

Pt

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
︸ ︷︷ ︸

LVIXt

. (29)

15This follows from Footnote 14, after noting that lognormal random variables are nonnega-
tively correlated if and only if their logs are nonnegatively correlated.
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Proof. As E∗t Rt+1 = Rf,t+1 and E∗t Pt+1 = Ft, the inequality (27) can be rear-

ranged as

1

Rf,t+1

E∗t Rt+1 logRt+1 − logRf,t+1 ≥
1

Rf,t+1

[
E∗t
(
Pt+1

Pt
log

Pt+1

Pt

)
− Ft
Pt

log
Ft
Pt

]
.

(30)

The right-hand side of this inequality can be measured directly from option

prices using a result of Breeden and Litzenberger (1978) that can be rewritten, fol-

lowing Carr and Madan (2001), to give, for any sufficiently well behaved function

g(·),

1

Rf,t+1

[E∗t g(Pt+1)− g(E∗t Pt+1)] =

∫ Ft

0

g′′(K) putt(K) dK+

∫ ∞
Ft

g′′(K) callt(K) dK.

Setting g(x) = x
Pt

log x
Pt

, we have g′′(x) = 1/(Ptx). Thus

1

Rf,t+1

[
E∗t
(
Pt+1

Pt
log

Pt+1

Pt

)
− Ft
Pt

log
Ft
Pt

]
=

1

Pt

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
.

(31)

The result follows on combining the identity (26), the inequalities (28) and

(30), and equation (31).

We refer to the right-hand side of equation (29) as LVIX because it is reminis-

cent of the definition of the VIX index which, in our notation, is

VIX2
t = 2Rf,t+1

{∫ Ft

0

putt(K)

K2
dK +

∫ ∞
Ft

callt(K)

K2
dK

}
,

and of the SVIX index introduced by Martin (2017),

SVIX2
t =

2

Rf,t+1P 2
t

{∫ Ft

0

putt(K) dK +

∫ ∞
Ft

callt(K) dK

}
.

We do not annualize our definition (29), so to avoid unnecessary clutter we have

also not annualized the definitions of VIX and SVIX above. We will typically

choose the period length from t to t+ 1 to be 12 months. The forecasting horizon

dictates the maturity of the options, so we use options expiring in 12 months to

measure expectations of 12-month log returns.
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Figure 1: The LVIX index, which provides a lower bound on the market’s expected
excess log return Et rt+1 − rf,t+1, by Result 5.

VIX, SVIX, and LVIX place differing weights on option prices. VIX has a

weighting function 1/K2 on the prices of options with strike K; LVIX has weight-

ing function 1/K; and SVIX has a constant weighting function. In this sense

we can think of LVIX as lying half way between VIX and SVIX. (We could also

introduce a factor of two into the definition of LVIX to make the indices look even

more similar to one another, but have chosen not to.)

We calculate LVIX using end-of-month interest rates and S&P 500 index option

(mid) prices from OptionMetrics. In practice, we do not observe option prices at

all strikes between zero and infinity, so we have to truncate the integral on the

right-hand side of (29) (as does the CBOE in its calculation of the VIX index).

In doing so, we understate the idealized value of the integral. That is, our lower

bound would be even higher if given perfect data: it is therefore conservative.

Figure 1 plots LVIXt, at the end of each month, over our sample period from

January 1996 to June 2019. Under our maintained assumptions, the large spikes

visible during in 2008–9, for example, indicate that expected excess log returns

were very high in the depths of the subprime crisis, consistent with the results of

Martin (2017). Of greater relevance for this paper, expected excess log returns

were also relatively high around the turn of the millennium, despite the high

valuation ratios that prevailed at the time.

One might worry that option markets were illiquid, or segmented from the

broader stock market, during the late 1990s. Lamont and Thaler (2003) present
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evidence that this was indeed the case for certain individual stocks (most famously

for options on Palm), and ascribe the anomalous behavior of prices of these stocks,

and of options on the stocks, to the difficulty or impossibility of shorting the stocks.

As short-selling the broader stock market was possible at low cost throughout this

period (for example via the futures market) we do not expect this to be an issue

for our approach. But to address the more general concern that option markets

may have exhibited extreme bid-ask spreads at the time, we recompute the LVIX

index using bid prices as opposed to mid prices. (We use bid rather than ask

prices to be conservative, as this will drive our sentiment indicator down.) As

shown in Figure 11 of the appendix, doing so has very little effect on our results.

3.1 Empirical evidence on the modified NCC

We motivated the inequality of Result 5 via a theoretical argument that the mNCC

should hold. We can also assess the inequality empirically by examining the

realized forecast errors rt+1 − rf,t+1 − LVIXt. To do so, we carry out a one-sided

t-test of the hypothesis that the inequality (29) fails. Using a block bootstrap,16

we find a p-value of 0.097. Thus despite our relatively short sample period—

which is imposed on us by the availability of option price data—we can reject the

hypothesis with moderate confidence. This supports our approach.

More optimistically, it is natural to wonder whether the inequality (29) might

approximately hold with equality (though we emphasize that this does not need

to be the case for our approach to make sense). For this to be the case, we would

need both (27) and (28) to hold with approximate equality. As the conditional

volatility of dividends is substantially lower than that of prices, it is reasonable

to think that this is indeed the case for (27), and as noted in footnote 12, much

of the literature implicitly makes that assumption. Meanwhile the mNCC (28)

would hold with equality if (but not only if) one thinks from the perspective

of an investor with log utility who chooses to hold the market, as is clear from

the proof provided in Example 2 above. The perspective of such an investor has

been shown to provide a useful benchmark for forecasting returns on the stock

16As our sample is 276 months long, we use a block length of seven months, following the
T 1/3 rule of thumb for block length for a sample of length T . For comparison, the corresponding
p-value using naive OLS standard errors would be 0.001.
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market (Martin, 2017), on individual stocks (Martin and Wagner, 2019), and on

currencies (Kremens and Martin, 2019).

Table 8 in the Appendix reports the results of running the regression

rt+1 − rf,t+1 = α + β × LVIXt + εt+1 (32)

at horizons of 3, 6, 9, and 12 months. Returns are computed by compounding

the CRSP monthly gross return of the S&P 500. We report Hansen–Hodrick

standard errors to allow for heteroskedasticity and for autocorrelation that arises

due to overlapping observations. If the inequality (29) holds with equality, we

should find α = 0 and β = 1. We do not reject this hypothesis at any horizon;

and at the six- and nine-month horizons we can reject the hypothesis that β = 0

at conventional significance levels.

4 A sentiment indicator

We now adopt the perspective of a hypothetical investor whose expectations and

stochastic discount factor satisfy the mNCC so that the lower bound (29) of

Section 3 applies. We will also assume that this hypothetical investor’s beliefs are

consistent with the predictive relationship (25) between valuation ratios, returns,

and dividend growth, as studied in Section 2. We do so to force the investor’s

beliefs to be consistent with the historical evidence, in order to prevent him or her

from “explaining” asset prices simply by concluding that “this time is different”

(in the words of Reinhart and Rogoff, 2009).

We can derive a lower bound on such an investor’s subjective expectations

about fundamentals by subtracting Et (rt+1 − gt+1), as revealed by valuation ra-

tios, from Et rt+1, as revealed by interest rates and option prices:

Et gt+1 = rf,t+1 + Et (rt+1 − rf,t+1)− Et (rt+1 − gt+1)

≥ rf,t+1 + LVIXt − Et (rt+1 − gt+1) . (33)

The inequality follows (under our maintained Assumptions 1 and 2) because

Et rt+1 − rf,t+1 ≥ LVIXt, as shown in Result 5.

We use yt to measure Et(rt+1 − gt+1) via the fitted value â0 + â1yt, as in
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Figure 2: The sentiment indicator, computed using the full sample to estimate
the relationship between yt and rt+1 − gt+1 (left) or using an expanding window
(right).

Table 1, giving the sentiment indicator Bt, which is a lower bound on the investor’s

expected log dividend growth:

Bt = rf,t+1 +
1

Pt

[∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

]
− (â0 + â1yt) .

We estimate the coefficients â0 and â1 using an expanding window: at time t they

are estimated using data from 1947 until time t. Thus Bt is observable at time t.

As we have discussed, Bt can be interpreted as a lower bound on expected

dividend growth, Et gt+1. If Et gt+1 itself follows an AR(1)—as in the work of

Bansal and Yaron (2004) and many others—then Bt can also be interpreted, after

rescaling, as a lower bound on long-run dividend expectations. For if Et+1 gt+2 −
g = φg (Et gt+1 − g) + εg,t+1 then we can define a measure of expected long-run

dividend growth, at time t, as

(1− ρ)
∑
i≥0

ρi (Et gt+1+i − g) =
1− ρ

1− ρφg
(Et gt+1 − g) .

(We have introduced a factor 1 − ρ so that long-run expected dividend growth

can be interpreted as a weighted average of all future periods’ expected growth,

as the weights (1− ρ)ρi sum to 1.)
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Figure 2a plots Bt over our sample period using the full sample from 1947 to

2019 to estimate the relationship between yt (or dpt) and rt+1− gt+1. We work at

an annual horizon,17 so that the value of Bt at a given point in time is (subject

to our maintained assumptions) a lower bound on the expected dividend growth

over the subsequent year. Figure 2b shows the corresponding results using using

an expanding window to estimate the relationship, so that the resulting series is

observable in real time. Encouragingly, the indicator behaves stably as we move

from full-sample information to real-time information. Unless otherwise indicated,

we will henceforth work with the series that is observable in real time.

The figures also show modified indicators, Bdp,t, that use dpt rather than yt to

measure Et (rt+1 − gt+1), as in (23). These have the advantage of familiarity—dpt

has been widely used in the literature—but the disadvantage that they may err

on the side of signalling a bubble too soon, as shown in Result 3. Consistent with

this prediction, the two series line up fairly closely, but the Bdp,t series are less

conservative—in that they suggest even higher Et gt+1—during the period in the

late 1990s when valuation ratios were far from their mean.

Note, moreover, that net dividend growth satisfies Et Dt+1

Dt
− 1 > Et gt+1,

because egt+1 − 1 > gt+1. Thus our lower bound on expected log dividend

growth implies still higher expected arithmetic dividend growth. If dividend

growth were conditionally lognormal, for example, we would have logEt Dt+1

Dt
=

Et gt+1 + 1
2

vart gt+1. The variance term is small unconditionally—in our sample

period, var gt+1 ≈ 0.005—but it is plausible that during the late 1990s there was

unusually high uncertainty about log dividend growth.

Figure 3 plots the three components of the sentiment indicator Bt from 1996

to 2019. LVIX and Et(gt+1 − rt+1) moved in opposite directions for most of our

sample period, with high valuation ratios occurring at times of low risk premia.

But all three components were above their sample means during the late 1990s.

In particular, our approach implies that the expected annual log dividend

growth perceived by our hypothetical representative investor rose above 12%

around the turn of the millennium, a degree of optimism that we do not think

was reasonable. If we reject this conclusion, we must reject at least one of the

17We find very similar results at the two-year horizon, as can be seen from Figures IA.1 and
IA.2 of the Internet Appendix.
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Figure 3: The three components of the sentiment indicator.

assumptions that delivered it.

The first possibility is that there is no investor whose preferences and beliefs

are such that the mNCC is satisfied. In particular, this would be a violation of

the equilibrium models and of the various examples discussed in Section 3.

Alternatively, if the mNCC did hold then—for the hypothetical investor to

perceive high expected log returns and, simultaneously, low expected log dividend

growth during the bubble period—he or she must have believed that the historical

forecasting relationship between dividend yield and Et (rt+1 − gt+1) had broken

down, perhaps because of a “paradigm shift” or because the predictive coefficients

estimated using historical data failed to reflect the true population values. (“This

time is different!”) To see this, write Êt(rt+1−gt+1) for the regression-implied time-

t forecast of rt+1 − gt+1, which we now allow to differ from the agent’s forecast

Et (rt+1 − gt+1). Then, from inequality (33), we have

Et gt+1 = rf,t+1 + Et (rt+1 − rf,t+1)− Êt (rt+1 − gt+1) +
[
Êt (rt+1 − gt+1)− Et (rt+1 − gt+1)

]
≥ rf,t+1 + LVIXt − â0 − â1yt︸ ︷︷ ︸

Bt

+
[
Êt (rt+1 − gt+1)− Et (rt+1 − gt+1)

]
.

An agent who believed, in the late 1990s, that Et gt+1 was lower than Bt must

therefore have concluded that Êt (rt+1 − gt+1) < Et (rt+1 − gt+1). By the loglin-

earization (24), this is equivalent to Et yt+1 < Êt yt+1. On this interpretation, our

hypothetical investor’s beliefs were consistent only because she expected yt+1 to
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Figure 4: Sentiment indicators calculated on a full-sample or real-time basis,
assuming yt follows an AR(1), AR(2) or AR(3) process.

remain, in the short run, lower—and valuations higher—than suggested by the

historical evidence. We discuss this possibility further in Section 4.2.1, below.

4.1 Alternative stochastic processes for yt

We have modelled yt as following an AR(1) to avoid overfitting. Aside from

the obvious advantages of parsimony, the partial autocorrelations of yt, shown in

Figure 14 of Appendix C, support this choice: the partial autocorrelations of yt

at lags greater than one are close to zero.

The question of how to model yt is not central to the point of this paper,

however, so we also consider the possibility that yt follows an AR(2) or AR(3). If

yt follows an AR(2) process, then from the linearization (24) we have

rt+1 − gt+1 = α + βyt + γyt−1 + εt+1,

while if yt follows an AR(3) process, then

rt+1 − gt+1 = α + βyt + γyt−1 + δyt−2 + εt+1.

The results of these regressions are reported in Table 10 of Appendix C.

The corresponding lower bounds on Et gt+1 are shown in Figure 4. They are
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Figure 5: Bt with one-sided confidence interval.

very similar to our baseline measure during the late 1990s, but they are lower

during the crisis of 2008–9 and higher in its aftermath. Once again, we note that

the indicator behaves fairly stably as we move from full-sample information to

real-time information. Figure IA.3, in the Internet Appendix, plots the minimum

of the three series computed under AR(1), AR(2) and AR(3) assumptions; this

serves as a conservative lower bound.

4.2 Variations

4.2.1 Estimation uncertainty

The coefficients in the regression of rt+1− gt+1 onto yt (and its lags, in the AR(2)

and AR(3) cases) are estimated with statistical uncertainty. To illustrate, Fig-

ure 5 plots block-bootstrapped one-sided 90% and 95% confidence intervals for

our baseline measure Bt.
18 At the edge of the 90% (95%) confidence intervals, the

18We compute the confidence intervals, at each point in time t, by adding rf,t + LVIXt to
the bottom 5% (or 10%) quantile of the bootstrapped sample of Et[gt+1 − rt+1]. In the case of
the AR(1) model, for example, the bootstrapped sample is created by repeating the following

procedure 10,000 times (i.e., for k = 1, . . . , 10, 000): (i) Estimate âk and b̂k via OLS from the
equation rk,t+1− gk,t+1 = ak + bkyk,t + εk,t+1, where the sample of (rk,t+1, gk,t+1, yk,t) is drawn
in blocks of length T 1/3, with replacement, from the annual data of (rt+1, gt+1, yt) between 1947

and 2019; and (ii) compute −âk − b̂kyt where yt is the monthly series between 1996:01 and
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lower bounds on expected dividend growth peak at 9.3% (7.9%) for the AR(1)

model and at 9.5% (7.8%) for the AR(3) model.

While we think these numbers remain implausibly high, one might perhaps

argue that they were reasonable forecasts of expected dividend growth. We em-

phasize, however, that when using the 90% or 95% percentile as the estimate of

expected dividend growth, the implicit position taken is that the historical rela-

tionship between valuation ratios and rt−gt—as embodied in the point estimates,

the correct central measure—is misleading. Furthermore, a prudent policymaker

should also entertain the symmetric possibility that in the presence of estimation

uncertainty, the true Bt is substantially higher than implied by the central point

estimates of the predictive coefficients.

4.2.2 What if the valuation ratio follows a random walk?

A true believer in the New Economy might have argued that our measure of

Et (rt+1 − gt+1), which is based on an assumption that yt follows an AR(1)—or

AR(2) or AR(3)—had broken down during the late 1990s. Perhaps the most

aggressive possibility our hypothetical investor could reasonably entertain is the

“random walk” view that the price-dividend ratio had entirely ceased to mean-

revert, as considered by Campbell (2008, 2018). Such a perspective might also be

adopted by a cautious central banker to justify inaction on the basis that valuation

ratios could remain very high indefinitely.19

We now show how to accommodate this possibility. If yt follows a random

walk then, from equation (14),

Et gt+1
(14)
= Et rt+1 − yt ≥ LVIXt + rf,t − yt︸ ︷︷ ︸

B̃t

,

where we define a variant on our previous indicator,

B̃t = LVIXt + rf,t − yt , (34)

that has the further benefit of not requiring estimation of any free parameters.

2019:06.

19It can also be interpreted as a conservative approach to dealing with Stambaugh bias.
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Figure 6: The alternative sentiment indicator, B̃t.

More generally, if all one knows is that Et yt+1 ≥ yt—irrespective of the details of

the evolution of yt—then equation (24) implies that we have

Et gt+1 ≥ B̃t .

Figure 6 shows the time series of B̃t. Even if valuation ratios were expected to

follow a random walk in the late 1990s—a dubious proposition in any case—the

implied expectations about cashflow growth appear implausibly high.

Unlike our preferred indicator, Bt, the random walk version B̃t spiked almost as

high during the subprime crisis as it did around the turn of the millennium. This

reflects the fact that implied volatility, and hence the LVIX index, rose dramat-

ically during the last months of 2008, indicating that log returns were expected

to be very high over the subsequent year (by Result 5). From the perspective

of our notional policymaker who believed that valuation ratios follow a random

walk, these high expected log returns could only have reflected high expected

log dividend growth. This prediction is unreasonable, in our view, because the

random walk assumption is unreasonable. The point is that even a policymaker

who believed valuation ratios followed a random walk would have had to perceive

unusually high expected dividend growth in the late 1990s.

30

Electronic copy available at: https://ssrn.com/abstract=3810730



4.2.3 What if dividend growth is unforecastable?

If dividend growth is unforecastable (in the sense that Et gt+k = g for all k ≥ 1,

as in the work of Campbell and Cochrane (1999) and many others) then valu-

ation ratios reveal long-run expectations of log returns while LVIX reveals the

corresponding short-run expectations.

Specifically, if dividend growth is unforecastable and yt is stationary, then from

equation (15)

yt = (1−ρ)
∞∑
i=0

ρi Et [rt+1+i − gt+1+i] = (1−ρ)Et[rt+1]+(1−ρ)ρ
∞∑
i=0

ρi Et[rt+2+i]−g.

This equation can be rearranged to give

Et rt+1 − (1− ρ)
∑
i≥0

ρi Et rt+2+i =
Et rt+1 − yt − g

ρ
.

Exploiting the inequality Et rt+1− rf,t ≥ LVIXt of Result 5, we can conclude that

Et rt+1︸ ︷︷ ︸
short-run returns

− (1− ρ)
∑
i≥0

ρi Et rt+2+i︸ ︷︷ ︸
long-run returns

≥ LVIXt + rf,t − yt − g
ρ

=
B̃t − g
ρ

.

This inequality provides an alternative interpretation of the indicator B̃t =

LVIXt + rf,t − yt that we defined in equation (34) above, and which is plotted in

Figure 6. If dividend growth is unforecastable, unusually high levels of B̃t indicate

that short-run expected log returns are unusually high relative to subsequent long-

run expected log returns.

4.2.4 Are valuation ratios alone enough?

Valuation ratios alone would make for an even simpler sentiment indicator. Are

they enough? In theory, no: as we have argued, valuation ratios can be high for

good reasons if interest rates are low or if risk premia are low (and are widely un-

derstood to be low) or both, and our measure embraces this fact by incorporating

rf,t and LVIXt.
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Nonetheless, theory aside, we do know, of course, that valuation ratios were

very high during the late 1990s, so it is interesting from a purely empirical per-

spective to see how they compare with Bt. We plot the valuation ratio measures

−yt and pdt on the same axes as Bt over our sample period in Figure 12 in the

appendix. For ease of comparison, we standardize all three series to have zero

mean and unit standard deviation and use the full-sample version of Bt so that

the predictive coefficients do not vary over the time series. The sentiment index

Bt gives a clearer indication of bubbliness in the market at the start of our sam-

ple, from 1996 to 2000, in the sense that it is generally around 0.5 to 1 standard

deviations further above its mean than are the valuation ratio series.

In the opposite direction, valuation ratios have been very high in recent years.

But our measure suggests that this does not represent a bubble, as the high

valuation ratios have reflected unusually low interest rates (and also, for much of

this period, low volatility).

4.2.5 Can the methodology be applied in other markets?

Our approach can be applied to other assets if their returns obey the mNCC. It

is reasonable to expect that this is the case for stock market indices, for example.

Figure 13 illustrates by constructing a sentiment index for the NASDAQ-100. To

do so, we calculate LVIX using the mid prices of NASDAQ-100 options from Op-

tionMetrics and estimate the predictive regression (25) over the period 1983–2019

using NASDAQ-100 dividend yield and price level data from Datastream. (As

the predictive regression is estimated over a shorter time series, we present results

using the full sample rather than using an expanding window.) The sentiment

index for the NASDAQ-100 was substantially higher than that for the S&P 500

around and before the turn of the millennium, consistent with the conventional

view that sentiment was particularly elevated in tech stocks at the time.

For “hedge” assets, such as gold, one would expect the direction of the in-

equality (28) to be reversed. This rules out using our approach to detect bubbles

in such assets. The situation is more promising in the case of individual stocks: it

may be possible to argue that the mNCC holds for stocks with betas sufficiently

close to, or greater than, one, along the lines of Martin and Wagner (2019) and

Kadan and Tang (2019), but we leave this extension for future research.
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Figure 7: Sentiment indicators calculated with linear, quadratic, and cubic spec-
ifications for the relationship between expected rt+1 − gt+1 and yt.

4.2.6 Nonlinearity in the functional form

We can also allow for a nonlinear relationship between rt+1 − gt+1 and yt. In

Appendix D, we report the results of running regressions of the form

rt+1 − gt+1 = a0 + a1yt + a2y
2
t + εt+1

and

rt+1 − gt+1 = a0 + a1yt + a2y
2
t + a3y

3
t + εt+1.

Figure 7a shows that these regressions deliver very similar results to the linear

specification reported above when we use the full sample period to estimate the

coefficients ai. But the coefficient estimates in the higher order specifications are

strikingly unstable when we estimate the regressions in real time using expanding

windows (Figure 7b), even though the regressions are estimated on almost 50

years of data at the start of our sample period, that is, on data from 1947 to 1996.

In the late 1990s, for example, the estimated cubic specification implies a

negative relationship between yt and forecast rt+1−gt+1 around the then prevailing

value of yt. That is, given the then recent association of unusually low dividend

yield with high realized returns, the cubic specification predicts extremely high

returns going forward, as shown in Figure 15a, Appendix D. (It is important that

the low dividend yields at the time were unusual, because the cubic specification
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makes it possible to associate high returns with extremely low yields without

materially altering the long established relationship between low returns and low

yields that prevails over the usual range of yields.)

We view this exercise as a cautionary tale. Given that bubbles occur fairly

rarely, it is particularly important to avoid the possibility that an (over-)elaborate

model achieves superior performance in-sample by overfitting the historical data.

The ingredients of a bubble indicator should behave stably during historically

unusual periods, as our simple linear specification does (Figure 15b, Appendix D).

5 Other indicators of market conditions

We now compare the sentiment indicator to some other indicators of financial

conditions that have been proposed in the literature. We standardize all time

series to have zero mean and unit standard deviation throughout this section, for

ease of comparability and so that correlations can equivalently be interpreted as

betas (noting that corr(X, Y ) = cov(X,Y )
varX

if X and Y have unit standard deviation).

5.1 Volume

We start by exploring the relationship with volume, which has been widely pro-

posed as a signature of bubbles (see, for example, Harrison and Kreps, 1978;

Duffie, Gârleanu and Pedersen, 2002; Cochrane, 2003; Lamont and Thaler, 2003;

Ofek and Richardson, 2003; Scheinkman and Xiong, 2003; Hong, Scheinkman and

Xiong, 2006; Barberis et al., 2018). We construct a daily measure of volume using

Compustat data from January 1983 to December 2017, by summing the product

of shares traded and daily low price over all S&P 500 stocks on each day. (We find

essentially identical results if we use daily high prices to construct the measure.)

As volume trended strongly upward during our sample period, we subtract a lin-

ear trend from log volume. We do so on using an expanding window, so that our

detrended log volume measure, which we call vt, is (like Bt) observable at time t.

The left panel of Figure 8 plots detrended log volume, vt, and Bt over the

sample period, with both series standardized to zero mean and unit variance.

There is a remarkable similarity between the two series, so it is worth emphasizing

that they are each based on entirely different input data. The sentiment index
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is a leading indicator of volume: the right panel shows the correlation between

Bt+k and vt, where k is measured in months. The shaded area indicates a block

bootstrapped20 95% confidence interval. The correlation between the two is higher

than 0.9 when k is around −10 months. Thus Figure 8 shows that Bt−10 is highly

statistically significant as a forecaster of vt (and, to a lesser extent, that vt is a

statistically significant forecaster of Bt+10).

5.2 Survey expectations of long-term earnings growth

We next compare Bt to a quarterly time series of financial analysts’ long-term

earnings growth forecasts (LTG) that has been constructed by Nagel and Xu

(2019). Figure 9 shows the LTG series against Bt, with the latter computed as

in our baseline measure (i.e., using an AR(1) and with an expanding window to

compute predictive coefficients) and with an AR(3) using full sample data. There

is a striking similarity between the two series—particularly when the sentiment

indicator is computed using an AR(3) and full sample estimation of the predictive

regression—but we note that Bt rose more rapidly during the late 1990s.

5.3 The probability of a crash

One expects that the probability of a crash should be higher during a bubble

episode; if not, the episode is perhaps not actually a bubble.21 We use a measure

of the (time t conditional) probability of a crash derived by Martin (2017, Result 2)

that can be computed in terms of option prices:

Pt (Rt+1 < α) = α

[
put′t(αPt)−

putt(αPt)

αPt

]
(35)

where put′t(K) is the first derivative of put price as a function of strike, evaluated

at K. This represents the probability of a market decline perceived by an un-

constrained log investor who chooses to hold the market; we also require that the

20As before, we draw 10,000 bootstrap samples, using block length of T 1/3. We use the same
procedure in the correlation plots shown in Figures 9, 10, 16, 17, and IA.4–IA.10.

21Greenwood, Shleifer and You (2018) document, at the industry level, that sharp increases
in stock prices do indeed signal a heightened probability of a crash.
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Figure 8: The sentiment indicator and detrended log volume (standardized).
Shaded areas in the right panel indicate bootstrapped 95% confidence intervals.
k is measured in months.
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(d) corr(Bt+k,LTGt) (AR(3), full sample).

Figure 9: Bt plotted against the LTG measure of Nagel and Xu (2019). All series
are standardized. As LTG is quarterly, k is measured in quarters.
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investor is marginal in option markets, so that we are ruling out the possibility that

these markets are segmented from the stock market. (In other words, the above

calculation relies on a stronger assumption than the rest of the paper, namely

that the SDF Mt+1 satisfies Mt+1 = 1/Rt+1; this implies that the mNCC holds

with equality.) The probability of a crash (35) is high when out-of-the-money put

prices are highly convex, as a function of strike, at strikes at and below αPt. By

contrast, the measure of volatility (29) that is relevant for our sentiment indicator

is a function of option prices across the full range of strikes of out-of-the-money

puts and calls.

The left panel of Figure 10 plots the crash probability over time. The prob-

ability of a crash was elevated during the late 1990s, consistent with standard

intuition about bubbles. But it was also high in the aftermath of the subprime

crisis, an episode that we would certainly not identify as bubbly. The right panel

shows the correlation between the two series at different leads and lags. The sen-

timent measure is a leading indicator of crash probability at horizons of about

two years.

The possibility that high valuation ratios, expected log returns, and expected

log dividend growth can coexist with with a high crash probability (in the mind

of our representative investor) is reminiscent of the view of the world colorfully

articulated by former Citigroup chief executive Chuck Prince in a July, 2007,

interview with the Financial Times : “When the music stops, in terms of liquidity,

things will be complicated. But as long as the music is playing, you’ve got to get

up and dance. We’re still dancing.”

5.4 Other measures

The panels of Figures 16 and 17 compare the sentiment index to various other

measures of financial conditions: the excess bond premium (EBP) of Gilchrist

and Zakraǰsek (2012), the National Financial Conditions Index (NFCI), and the

Adjusted National Financial Conditions Index (ANFCI), all of which are generated

on a weekly basis by the Federal Reserve Bank of Chicago. We convert them to

monthly series by taking the last week’s observation in each calendar month.

Lastly, Figures IA.4 through IA.9 (in the Internet Appendix) compare Bt with

various series drawn from quarterly surveys studied by Ben-David, Graham and
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(d) Correlation between Bt+k (AR(3), full-
sample) and crash probability.

Figure 10: The sentiment indicator, volume and crash probability. Shaded areas
in the right-hand panels indicate bootstrapped 95% confidence intervals. k is
measured in months.
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Harvey (2013). ER1yr and ER10yr are, respectively, the cross-sectional average

subjective expectations stock market returns over 1- and 10-year horizons, as re-

ported by survey respondents; EER1yr and EER10yr are the corresponding average

subjective expected excess returns; and ERstd1yr and ERstd10yr are disagreement

measures at the same horizons (that is, are the cross-sectional standard devia-

tions of reported subjective expected returns). Figure IA.10 compares Bt with a

quarterly time series of average subjective expectations of dividend growth that

has been constructed by De la O and Myers (2018). The measures of mean sub-

jective expected returns, and of mean subjective expected dividend growth, are

positively correlated with Bt, while the measures of mean subjective expected

excess returns, and of disagreement, are negatively correlated with Bt. We are

hesitant to draw firm conclusions from this evidence, however, as the comparison

series do not include the period of greatest interest from 1996 to 2000.

6 Conclusion

We have presented a sentiment indicator based on interest rates, index option

prices, and the market valuation ratio. The indicator can be interpreted as a

lower bound on the expected dividend growth that must be perceived by an un-

constrained, rational investor with risk aversion at least one who is happy to invest

his or her wealth fully in the stock market, and whose beliefs are consistent with

the historical evidence on the relationship between valuation ratios, returns, and

dividend growth.

The bound was very high during the late 1990s, reflecting dividend growth

expectations that in our view were unreasonably optimistic—hence our description

of it as a sentiment indicator—and that were not realized ex post. We also show

that it is a leading indicator of detrended volume, of long-term earnings growth

expectations, and of various measures of stress in the financial system.

In simple terms, we characterize the late 1990s as a bubble because valuation

ratios and short-run expected returns—as revealed by interest rates and our LVIX

measure—were simultaneously high. Both aspects are important. We would not

view high valuation ratios at a time of low expected returns, or low valuation ratios

at a time of high expected returns, as indicative of a bubble: on the contrary, the
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latter scenario occurs in the aftermath of the market crash in 2008.

Our measure does not point to an unreasonable level of market sentiment in

recent years, as it interprets high valuation ratios as being justified by the low

levels of interest rates and of implied volatility.

Volatility and valuation ratios have, of course, long been linked to bubbles.

A novel feature of our approach is that we use some theory to motivate our

definitions of volatility and of valuation ratios, and to make the link quantitative.

There are various choices to be made regarding the details of the construction

of the indicator; we have tried to make these choices in a conservative way to

avoid “crying bubble” prematurely, in the hope that the indicator might be useful

to cautious policymakers in practice. Our approach does ultimately require an

appeal to the good judgment of policymakers, as we do not address the hard

question of how to identify whether a given level of expected dividend growth is

reasonable. We do not see a way to avoid some degree of expert judgment in

identifying market-wide bubbles; but we believe that the approach proposed in

this paper would make it easier for such judgment to be applied in a focussed and

disciplined manner.
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A Tables and figures

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.145 [0.053] 5.12 [1.492] 13.4%

0.028 [0.051] 1.775 [1.361] 2.26%

−0.173 [0.05] 3.345 [1.49] 16.29%

0.557 [0.185] 0.152 [0.052] 9.54%

0.33 [0.154] 0.07 [0.045] 2.86%

0.227 [0.161] 0.082 [0.046] 7.85%

Table 2: Predictive regressions for S&P 500, annual data, cash reinvestment,
1926-2019.

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.031 [0.04] 2.29 [1.073] 6.91%

−0.018 [0.049] 3.554 [1.154] 10.43%

−0.013 [0.045] −1.264 [1.228] 2.3%

0.311 [0.123] 0.076 [0.036] 6.92%

0.519 [0.137] 0.12 [0.041] 10.76%

−0.208 [0.135] −0.044 [0.039] 2.51%

Table 3: Predictive regressions for S&P 500, annual data, market reinvestment,
1947-2019.
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RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.063 [0.041] 2.921 [1.123] 8.38%

−0.015 [0.048] 2.875 [1.138] 5.16%

−0.048 [0.04] 0.046 [1.003] 0.0%

0.347 [0.13] 0.089 [0.038] 6.52%

0.411 [0.142] 0.095 [0.042] 4.66%

−0.064 [0.12] −0.005 [0.035] 0.03%

Table 4: Predictive regressions for S&P 500, annual data, market reinvestment,
1926-2019.
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yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.07 [0.048] 3.549 [1.289] 8.26%

−0.02 [0.047] 3.807 [1.182] 10.84%

−0.05 [0.023] −0.257 [0.734] 0.31%

0.435 [0.141] 0.111 [0.04] 8.46%

0.511 [0.134] 0.116 [0.039] 10.54%

−0.076 [0.072] −0.005 [0.02] 0.12%

Table 5: Predictive regressions for S&P500, annual data from Goyal’s website,
1947-2018.
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yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.12 [0.049] 4.47 [1.369] 12.05%

0.033 [0.049] 1.628 [1.343] 2.04%

−0.153 [0.04] 2.842 [1.213] 17.07%

0.5 [0.169] 0.135 [0.048] 8.84%

0.315 [0.153] 0.065 [0.044] 2.67%

0.186 [0.133] 0.069 [0.037] 8.17%

Table 6: Predictive regressions for S&P500, annual data from Goyal’s website,
1926-2018.
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dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.143 [0.041] 4.5 [0.968] 13.03%

0.043 [0.038] 0.992 [0.872] 0.89%

−0.185 [0.03] 3.507 [0.769] 22.91%

0.501 [0.125] 0.14 [0.037] 9.0%

0.217 [0.108] 0.041 [0.033] 1.07%

0.284 [0.093] 0.099 [0.028] 13.09%

Table 7: Predictive regressions for S&P500, annual data from Goyal’s website,
1871-2018.

Horizon α̂ s.e. β̂ s.e. R2

3m 0.009 [0.018] 1.381 [3.629] 0.54%

6m −0.004 [0.021] 3.128 [1.514] 3.67%

9m −0.002 [0.041] 2.948 [1.439] 3.70%

12m 0.006 [0.063] 2.493 [1.613] 2.86%

Table 8: Coefficient estimates for regression (32), 96:01–17:12.
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Figure 11: LVIXt, S&P 500 index, annual horizon, computed using mid prices or
bid prices.
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(a) −yt and Bt, standardized.
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(b) pdt and Bt, standardized.

Figure 12: Standardized series of −yt, pdt and Bt (with Bt calculated using pre-
dictive coefficients from the full sample predictive regression).
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Figure 13: The sentiment index computed for the NASDAQ-100 index (and, for
comparison, the baseline sentiment index for the S&P 500).

B AR(1) vs. linear regression

If yt follows an AR(1) with autocorrelation φ, then the linear approximation (24)

reduces to

Et (rt+1 − gt+1) =
ρ(φ− 1)

1− ρ
y︸ ︷︷ ︸

α

+
1− ρφ
1− ρ︸ ︷︷ ︸
β

yt. (36)

In the body of the paper, we estimate the predictive relationship between

rt+1−gt+1 and the predictor variable yt (and dpt) via linear regression. Under our

AR(1) assumption, we could also estimate the constant term and the coefficient

on yt directly, as in (36), by estimating ρ and the autocorrelation φ. Table 9 shows

that both approaches give similar results.

Method α β R2

OLS −0.07 3.54 8.33%

AR(1) −0.08 3.81 8.51%

Table 9: Comparison of AR(1) parametrization and linear regression. Annual
price and dividend data, 1947–2019, from CRSP (cash reinvestment), as in Table 1.
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C AR(2) and AR(3) specifications

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

Figure 14: Partial autocorrelations of yt. Annual data, 1947–2017, cash-
reinvestment method.

Recall that if yt follows an AR(2) process, then from the linearization (24) we

have

rt+1 − gt+1 = α + βyt + γyt−1 + εt+1,

while if yt follows an AR(3) process, then

rt+1 − gt+1 = α + βyt + γyt−1 + δyt−2 + εt+1.

Table 10 reports the results of these regressions.

â s.e. β̂ s.e. γ̂ s.e. δ̂ s.e. R2

AR(1) −0.067 [0.049] 3.415 [1.317] 7.73%

AR(2) −0.056 [0.053] 6.098 [3.378] −2.991 [3.339] 8.84%

AR(3) −0.040 [0.055] 6.473 [3.313] 0.651 [3.231] −4.457 [2.373] 11.32%

Table 10: Predictive regressions for S&P 500, annual data, cash reinvestment,
1947–2017.
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D Nonlinear specifications

In this section we consider the effect of allowing for quadratic or cubic functional

relationships between rt+1 − gt+1 and yt. We run the regressions

rt+1 − gt+1 = a0 + a1yt + a2y
2
t + εt+1

and

rt+1 − gt+1 = a0 + a1yt + a2y
2
t + a3y

3
t + εt+1.

â0 s.e. â1 s.e. â2 s.e. â3 s.e. R2

linear −0.067 [0.049] 3.415 [1.317] 7.73%

quadratic −0.072 [0.111] 3.740 [6.348] −4.390 [81.25] 7.73%

cubic −0.12 [0.23] 9.35 [20.96] −166.4 [576.0] 1402.8 [4821.3] 7.81%

Table 11: Predictive regressions for S&P 500, annual data, cash reinvestment,
1947–2017.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
yt

-0.2

-0.1

0.1

0.2

0.3

0.4

Et(rt+1-gt+1)

01/96

12/99

12/17

(a) Cubic.

0.01 0.02 0.03 0.04 0.05 0.06 0.07
yt

-0.2

-0.1

0.1

0.2

0.3

0.4

Et(rt+1-gt+1)

01/96

12/99 12/17

(b) Linear.

Figure 15: Forecasting with cubic and linear specifications at the beginning
(01/96) and end (12/17) of our sample, and around the market highs in 12/99.
Lines indicate the estimated functional relationship between Et (rt+1 − gt+1) and
yt, and dots indicate the specific values of yt and Et (rt+1 − gt+1) that happened
to prevail on the relevant dates.
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(a) Bt and EBP.
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(b) corr(Bt+k,EBPt).
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(c) Bt and NFCI.
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(d) corr(Bt+k,NFCIt).
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(e) Bt and ANFCI.
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(f) corr(Bt+k,ANFCIt).

Figure 16: The relationship between Bt and various measures of financial con-
ditions. Shaded areas in the right panels indicate bootstrapped 95% confidence
intervals. k is measured in months.
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(a) Bt and EBP (AR(3), full-sample).
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(b) corr(Bt+k,EBPt) (AR(3), full-
sample).
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(c) Bt (AR(3), full-sample) and NFCI.
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(d) corr(Bt+k,NFCIt) (AR(3), full-
sample).
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(e) Bt (AR(3), full-sample) and ANFCI.
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(f) corr(Bt+k,ANFCIt) (AR(3), full-
sample).

Figure 17: The relationship between Bt (AR(3), full-sample) and various measures
of financial conditions. Shaded areas in the right panels indicate bootstrapped
95% confidence intervals. k is measured in months.
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E Further examples

We provide some other illustrations of situations in which the mNCC holds. These

illustrations are intended as proof-of-concept rather than as fully fleshed out mod-

els, so we have simplified them as far as possible.

Example 3 (Heterogeneous preferences). This example is a simplification of

Longstaff and Wang (2012), except that we will not need to make any assumptions

on the distribution of aggregate consumption growth. Consider a two-period econ-

omy with complete markets and two agents with homogeneous beliefs and power

utility, but with differing coefficients of risk aversion, γ2 > γ1 ≥ 1. Agent i’s

problem is therefore

max
C1−γi
i,t

1− γi
+ β Et

C1−γi
i,t+1

1− γi
.

As markets are complete and beliefs are homogeneous, the stochastic discount fac-

tor is unique, so that β (C1,t+1/C1,t)
−γ1 = β (C2,t+1/C2,t)

−γ2 . Following Longstaff

and Wang (2012) by assuming that γ1 = γ and γ2 = 2γ to ensure a closed form

solution, we therefore have

C1,t+1

C1,t

=

(
C2,t+1

C2,t

)2

. (37)

Writing Yt = C1,t + C2,t for aggregate consumption, this implies that

C2,t+1 =
2

a

(√
1 + aYt+1 − 1

)
,

where the constant a = 4C1,t/C
2
2,t reflects the relative wealth of the two agents.

We wish to check whether the mNCC holds for the return on the market,

i.e., the aggregate consumption claim. To do so, we construct a representative

agent for whom the mNCC holds. (Although agents 1 and 2 are not representative—

neither invests only in the market—they have the same beliefs and SDF as the

representative agent, so it will then follow that the mNCC holds for them too.)

In the usual way, the representative agent consumes Yt+1 and has marginal util-

ity v′(Yt+1) that is proportional to C−2γ2,t+1. Integrating, the representative agent’s
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utility function is

v(Yt+1) =

(√
1 + aYt+1 − 1

)2(1−γ)
2(1− γ)

+

(√
1 + aYt+1 − 1

)1−2γ
1− 2γ

.

The representative agent’s relative risk aversion is therefore low in good times and

high in bad times, and it lies between γ and 2γ:

−Yt+1v
′′(Yt+1)

v′(Yt+1)
= γ +

γ√
1 + aYt+1

→

γ as Yt+1 →∞

2γ as Yt+1 → 0
.

As γ ≥ 1, the mNCC holds.

Example 4 (Heterogeneous beliefs). This example is based on Martin and Pa-

padimitriou (2020). A continuum of investors with log utility over terminal wealth

trade a risky asset in unit supply (“the market”) and a riskless asset in zero net

supply. The net riskless rate is zero. Uncertainty evolves on a binomial tree, so

the risky asset’s return, R, equals Ru at the up-node and Rd at the down-node;

we choose labels so that Ru > Rd. Investors, indexed by h ∈ (0, 1), have hetero-

geneous beliefs: investor h believes that the probability of an up-move is h. On

wealth-weighted average, the investors must hold one unit of the asset to clear

the market. At any node, we can define a representative agent H ∈ (0, 1) who

invests fully in the risky asset with no borrowing or lending. We also define the

risk-neutral probability of an up-move (on which all investors agree) as p∗ ∈ (0, 1).

Optimists (h > H) lever up, while sufficiently pessimistic investors (h < p∗) go

short, as they perceive that the market earns a negative risk premium.

These assumptions imply that the representative agent perceives the market

as growth-optimal, and hence that H
Ru

+ 1−H
Rd

= 1 (as the gross riskless rate is

1). On the other hand—using the fact that the gross riskless rate equals 1 once

again—we must also have p∗Ru + (1− p∗)Rd = 1 by the defining property of the

risk-neutral probability. Combining these two equations,

p∗Ru = H and (1− p∗)Rd = 1−H . (38)

We can now find the covariance cov(h)(MR, logR) from the perspective of an
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arbitrary investor h ∈ (0, 1). We have

cov(h)(MR, logR) = E∗ (R logR)− E(h) logR

= p∗Ru logRu + (1− p∗)Rd logRd − h logRu − (1− h) logRd

= (H − h) log
Ru

Rd

,

where we use (38) in the third line. The mNCC therefore holds when h ≥ H:

that is, for the representative investor and for all more optimistic investors.

Example 5 (Heterogeneous preferences and beliefs). Consider a collection of

investors who maximize next-period utility. Investor i allocates a fraction θi of

wealth to the risky asset, and 1−θi to the riskless asset, so E(i)W 1−γi
i,t+1/(1−γi) where

Wi,t+1 = Wi,tRf + θiWi,t(R − Rf ). Risk aversion γi ≥ 1 may be heterogeneous

across investors. Beliefs are also heterogeneous: we suppose that every investor

i perceives the return on the market as lognormal, logR ∼ N(µi, σ
2
i ), and that

µi−rf+ 1
2
σ2
i = γiσ

2
i where rf = logRf is the log riskless rate. This last assumption

implies (together with the first order condition for optimal θi) that every investor

will set θi = 1, which clears the market. Every investor is therefore representative,

and as γi ≥ 1, the mNCC holds for them all.
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RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.145 0.091 5.12 2.583 13.4%

0.028 0.088 1.775 2.358 2.26%

−0.173 0.087 3.345 2.581 16.29%

0.557 0.32 0.152 0.09 9.54%

0.33 0.267 0.07 0.077 2.86%

0.227 0.28 0.082 0.079 7.85%

Table IA.1: CRSP data, 24 mo dividends, cash reinvestment, annual data, 1926-
2019

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.073 0.084 3.541 2.256 8.33%

−0.023 0.084 3.82 2.069 11.13%

−0.05 0.047 −0.279 1.389 0.29%

0.43 0.25 0.111 0.072 8.23%

0.511 0.235 0.117 0.069 10.58%

−0.081 0.146 −0.006 0.042 0.16%

Table IA.2: CRSP data, 24 mo dividends, cash reinvestment, annual data, 1947-
2019
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Figure IA.1: The sentiment indicator, computed at the two-year horizon using
the full sample to estimate the relationship between yt and rt+1 − gt+1 (left) or
using an expanding window (right), AR(1) model. Note that t and t+ 1 represent
periods rather than years: the time interval between them is two years in this
figure. We report the index in annualized terms (LVIX and the riskless rate are
annualized by construction, and we calculate Et(gt+1 − rt+1) using un-annualized
quantities throughout the estimation, then divide the end result by 2).
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Figure IA.2: The sentiment indicator, computed at the two-year horizon using
the full sample to estimate the relationship between yt and rt+1 − gt+1 (left) or
using an expanding window (right), AR(3) model. Note that t and t+ 1 represent
periods rather than years: the time interval between them is two years in this
figure. We report the index in annualized terms (LVIX and the riskless rate are
annualized by construction, and we calculate Et(gt+1 − rt+1) using un-annualized
quantities throughout the estimation, then divide the end result by 2).
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(a) Real time.
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Figure IA.3: ‘Minimum’ sentiment indicators calculated on a full-sample or real-
time basis, assuming yt follows an AR(1), AR(2) or AR(3) process.
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Figure IA.4: Bt plotted against the expected total return from GH survey. All
series are standardized. k is measured in quarters.
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(a) Bt (AR(3), full-sample) and ER1y,t.
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(b) corr(Bt+k, ER1y,t) (AR(3), full-
sample).
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(c) Bt (AR(3), full-sample) and ER10y,t.
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(d) corr(Bt+k, ER10y,t) (AR(3), full sam-
ple).

Figure IA.5: Bt (AR(3), full sample) plotted against the expected total return
from GH survey. All series are standardized. k is measured in quarters.
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(a) Bt and EER1y,t.

-10 -5 5 10
k

-0.5

0.5

corr(Bt+k, EER1 y,t)

(b) corr(Bt+k, EER1y,t).
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Figure IA.6: Bt plotted against the average expected excess return from GH
survey. All series are standardized. k is measured in quarters.
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(a) Bt (AR(3), full-sample) and EER1y,t.
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(b) corr(Bt+k, EER1y,t) (AR(3), full-
sample).
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(c) Bt (AR(3), full-sample) and EER10y,t.
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Figure IA.7: Bt (AR(3), full sample) plotted against the average expected excess
return from GH survey. All series are standardized. k is measured in quarters.
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(a) Bt and ERstd1y,t.
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(b) corr(Bt+k, ERstd1y,t).
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Figure IA.8: Bt plotted against the disagreement of expected total return from
GH survey. All series are standardized. k is measured in quarters.
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(a) Bt (AR(3), full-sample) and ERstd1y,t.
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(b) corr(Bt+k, ERstd1y,t) (AR(3), full-
sample).
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(c) Bt (AR(3), full-sample) and ERstd10y,t.
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Figure IA.9: Bt (AR(3), full sample) plotted against disagreement of the expected
total return from GH survey. All series are standardized. k is measured in quar-
ters.
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(a) Bt and DM survey.
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(b) corr(Bt+k, DMt).
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(c) Bt (AR(3), full-sample) and DM survey.
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Figure IA.10: Bt plotted against the expected dividend growth measure of DM
survey. All series are standardized. k is measured in quarters.
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