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Abstract

Macro-finance theory implies that trend inflation and the equilibrium real interest rate

are fundamental determinants of the yield curve. However, empirical models of the term

structure of interest rates generally assume that these fundamentals are constant. We

show that accounting for time variation in these underlying long-run trends is crucial for

understanding the dynamics of Treasury yields and predicting excess bond returns. We

introduce a new arbitrage-free model that captures the key role that long-run trends play

in determining interest rates. The model also provides new, more plausible estimates of

the term premium and accurate out-of-sample yield forecasts.
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1 Introduction

Researchers have made numerous attempts to connect macroeconomic variables to the term

structure of interest rates using a variety of approaches ranging from reduced-form no-arbitrage

models to fully fledged dynamic macro models.1 Despite both theoretical and empirical

progress, there is no clear consensus about how macroeconomic information should be in-

corporated into yield curve analysis. One important link between the macroeconomy and

the yield curve that has been largely overlooked is the connection between the time-varying

long-run means of macroeconomic series and interest rates, that is, between their stochas-

tic trends. Specifically, macroeconomic data and models can shed light on estimates of the

trend in inflation (π∗t ) and the equilibrium real interest rate (r∗t ), while finance theory—from

the Fisher equation to modern no-arbitrage theory—implies that such macroeconomic trends

must be reflected in interest rates. Of course, the key outstanding issue is whether there is

empirically significant variation in these long-run trends over time. Almost all term structure

analyses in finance assume constant long-run means. Instead, in this paper, we document that

accounting for changes in π∗t and r∗t is essential for modeling the term structure, estimating

bond risk premia, and forecasting yields. We quantify the importance of time-varying macroe-

conomic trends for interest rates in two steps. First, using a variety of empirical proxies for

these shifting endpoints, we establish some stylized facts about macroeconomic and interest

rate trends. One of these stylized facts is the importance of such trends for predicting excess

bond returns. Second, to account for these stylized facts, we introduce a new dynamic term

structure model that embeds a stochastic interest rate trend. This no-arbitrage model pro-

vides new estimates of the long-run stochastic trend in Treasury yields and the term premium

and accurately predicts interest rates out of sample. This analysis bridges an important gap

between macroeconomics and finance by incorporating shifting macro-finance trends.

A simple illustration of the potential importance of macro trends for U.S. interest rates is

provided in Figure 1. The underlying drivers of the apparent secular decline in longer-term

Treasury yields since the early 1980s remain contentious. Standard finance (no-arbitrage)

models of the yield curve assume that interest rates are stationary, i.e., mean-reverting—see

Kim and Wright (2005), Joslin et al. (2011), and Adrian et al. (2013), among many others. This

mean reversion implies that expected short-term rates are invariably close to their historical

average at horizons beyond a few years ahead. That is, the expectations component of long-

term interest rates varies only modestly. Consequently, low-frequency variation in interest

rates must be captured by the term premium, which is the residual difference between a long-

1See, among many others, Ang and Piazzesi (2003), Diebold et al. (2006), Bikbov and Chernov (2010), and
Rudebusch and Swanson (2012). A detailed survey is Gürkaynak and Wright (2012).
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term interest rate and its expectations component (e.g., Wright, 2011). Instead, our analysis

stresses the important role of the time-varying trends underlying interest rates. To illustrate

this role, Figure 1 displays observable proxies of these trends (described further in Section 2).

Trend inflation, π∗t , measured using long-horizon survey forecasts, declined almost 6 percentage

points from the Volcker disinflation of the early 1980s to the late 1990s and then remained

stable around 2 percent. In contrast, the trend or equilibrium real interest rate, r∗t—shown

here as the average of several estimates—changed little early on but declined notably over the

past two decades, likely reflecting structural changes in the global economy. As a result, the

equilibrium nominal short-term interest rate, i∗t = π∗t + r∗t , which reflects movements in both

underlying macro trends, accounts for much of the low-frequency movements in the ten-year

Treasury yield through variation in the expectations component. This suggests that the early

downward trend in π∗t and the more recent decline in r∗t—that is, an environment of falling

stars—played a major role in the secular decline in nominal interest rates. This link between

macro trends and interest rate trends is at the core of our analysis.

Our key contribution is to investigate this link within a new no-arbitrage model that

captures the time-varying trend in interest rates. To motivate this new empirical model, we

first establish two stylized facts about macro-finance trends and yields using empirical proxies

for these trends.2 The first stylized fact is that variation in both the inflation trend and the

equilibrium real interest rate is responsible for the very high persistence of interest rates. It

has long been recognized that nominal interest rates contain a slow-moving trend component,

and Campbell and Shiller (1987) uncover a single common trend, which implies that interest

rates across maturities are cointegrated. We show that this common trend is i∗t and that it

is driven by quantitatively important fluctuations in both underlying macroeconomic trends,

π∗t and r∗t . Accounting only for the inflation trend on its own, as in Kozicki and Tinsley

(2001) and Cieslak and Povala (2015), leaves a highly persistent component of interest rates

unexplained. We show that it is crucial to include movements in r∗t to fully capture the trend

component in interest rates.

Our second stylized fact is that macro stochastic trends are crucial for understanding bond

risk premia. Relative to the canonical predictive regressions for excess bond returns that

forecast future excess bond returns with current yields (Fama and Bliss, 1987; Cochrane and

Piazzesi, 2005), we find that adding π∗t and r∗t as regressors provides notable gains in predictive

power. Our findings provide evidence against the spanning hypothesis implied by most asset

2Along with a survey-based π∗t , we use existing estimates of r∗t from Laubach and Williams (2003, 2016),
Kiley (2015), Holston et al. (2017), Del Negro et al. (2017), and Johannsen and Mertens (2016, 2018). For
robustness, we also consider four r∗t estimates that we create, which range from a simple moving-average of
the real rate to a multivariate estimate.
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pricing models, which posits that the current yield curve contains all the relevant information

for predicting future interest rates (e.g., Duffee, 2013; Bauer and Rudebusch, 2017; Bauer and

Hamilton, 2018). The predictive gains are economically large, so, for example, when interest

rates adjust to a lower trend, long-term bond holders benefit substantially, just as they did

during the adjustment to a lower r∗t following the 2008 financial crisis. Indeed, including the

equilibrium real rate is especially important later in our sample when the inflation trend shows

less variation.3

To account for these two stylized facts, we introduce a new no-arbitrage dynamic term

structure model (DTSM) with a shifting endpoint for interest rates. This novel specification

parsimoniously models the Treasury yield curve using four state variables: three “yield factors”

which are simply linear combinations of yields, and one common stochastic trend, i∗t , which

captures movements in the underlying macroeconomic trends. The existence of a common

trend in interest rates stands in stark contrast to the usual stationary DTSMs in which yield

factors follow a stationary VAR(1). Furthermore, in our model the trend is unspanned, so it

cannot be backed out from the cross section of yields. This specification is consistent with our

evidence showing that accounting for i∗t leads to better predictions of bond returns. In addition,

an unspanned latent i∗t—similar to the trend component in an unobserved components model—

need not follow Treasury yields in lockstep. For robustness, we employ two different estimation

methodologies, which provide similar results. First, we estimate the model using an observed

proxy for i∗t in order to carry out a model-based analysis using the same real-time interest

rate trend we employed in establishing the stylized facts about macro-finance trends. Second,

we use Bayesian estimation of our model to infer i∗t using only Treasury yields, imposing a

certain degree of smoothness on our trend estimate, similar to Del Negro et al. (2017).

We then show that simulated data from these empirical specifications are able to match

the stylized facts that we established about the role of trends for the yield curve. The model-

based estimates of the trend and cycle components of interest rates are consistent with the

cointegration regression results from the actual data. Also, the model accounts for the ad-

ditional predictive power for future bond returns provided by the trend underlying interest

rates as was evident in our historical data sample. Specifically, predictive regressions using

simulated data from our model demonstrate notable increases in R2 when the interest rate

trend is added as a predictor—just as in the actual data.

We also use our shifting-endpoint model to investigate two important applications of

3The improvement we document using trends to predict excess bond returns dovetails with recent re-
search showing predictive gains from including slow-moving averages of past inflation, real output growth, and
consumption growth as predictors (e.g., Cieslak and Povala, 2015; Brooks and Moskowitz, 2017; Garg and
Mazzoleni, 2017; Jorgensen, 2017)—variables that are closely related to π∗t and r∗t .
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DTSMs: (1) decomposing long-term interest rates into an expectations component and a term

premium and (2) forecasting interest rates. For the former, our model provides markedly dif-

ferent decompositions of long-term rates than the usual stationary DTSM. A stationary DTSM

implies a quite stable expectations component and attributes most of the secular decline in

interest rates to the residual term premium, as discussed in critiques by Kim and Orphanides

(2012) and Bauer et al. (2014). Instead, our shifting-endpoint model decomposition attributes

the majority of that secular decline to a fall in i∗t . Consequently, our term premium estimates

exhibit only a modestly decreasing trend and more pronounced cyclical swings, similar to

other risk premia in asset prices (Fama and French, 1989). As for out-of-sample interest rate

forecasting, previous researchers have found it surprisingly difficult to consistently beat the

simple random walk forecast, which predicts that a future yield will equal the current yield.

But we find that forecasts implied by our shifting-endpoint DTSM are generally more accurate

than this martingale benchmark and also better than long-range projections from the Blue

Chip survey of professional forecasters. By contrast, the standard stationary DTSM (corre-

sponding to the special case of our model with a constant i∗) forecasts substantially worse

than the random walk. The improvements in forecast accuracy from allowing a slow-moving

shifting endpoint are both economically and statistically significant, and they are consistent

with yields returning over time to their underlying macro trend.4

Our analysis is related to several different strands of the macro and finance literatures.

Some studies have described a link between the inflation trend and nominal yields (Kozicki

and Tinsley, 2001; van Dijk et al., 2014; Cieslak and Povala, 2015), but this leaves unexplained

the continuing decline in yields over the past 20 years. Time variation in r∗t has so far received

little attention in finance, despite growing evidence of a sizable decline in the equilibrium

real interest rate.5 Our paper comprehensively documents the empirical importance of both

relevant macro trends, π∗t and r∗t , for the dynamics of the yield curve.

No-arbitrage models of the yield curve typically rule out time-varying trends by specifying

that the dynamics of yields are stationary. However, such models are intrinsically ill-suited

to capture the extreme persistence of interest rates, and a variety of remedies have been

4In related work, van Dijk et al. (2014) documented forecast improvements relative to a random walk by
including shifting endpoints based on their proxy of π∗t . We demonstrate how to achieve even greater forecast
gains in an arbitrage-free DTSM framework that accounts for time-varying π∗t and r∗t .

5The economic forces reducing the equilibrium real interest rate likely include lower productivity growth,
changing demographics, a decline in the price of capital goods, and strong precautionary saving flows from
emerging market economies, which have tended to increase global savings, reduce desired investment, and
push down the steady-state real interest rate. Discussions include Summers (2014), Kiley (2015), Rachel and
Smith (2015), Hamilton et al. (2016), Laubach and Williams (2016), Johannsen and Mertens (2016, 2018),
Christensen and Rudebusch (2017), Del Negro et al. (2017), Holston et al. (2017) and Lunsford and West
(2017). In macroeconomics, r∗t is often labeled the neutral or natural rate of interest although, as noted below,
there can be subtle dfferences among various definitions.
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suggested.6 Our results suggest that allowing for shifting long-run trends is a better solution.

The idea of a shifting-endpoint term structure model goes back to Kozicki and Tinsley (2001),

who specified a restrictive two-factor DTSM that imposed the expectations hypothesis and

identified i∗t with a distant-horizon forward rate (with a unit root under both the risk-neutral

and the real-world measure). Some macro-finance models of the yield curve allow for changes

in the inflation trend but still assume a constant equilibrium real rate (Hördahl et al., 2006;

Rudebusch and Wu, 2008). The model of Campbell et al. (2017), which is designed to capture

the changing comovement of stock and bond returns, is an asset pricing model with a time-

varying π∗t and constant r∗. A few no-arbitrage models allow for changes in r∗t , but they

also make strong assumptions about this trend by tightly linking it to π∗t (Dewachter and

Lyrio, 2006) or trend output growth (Dewachter and Iania, 2011). Our model allows both

stochastic macroeconomic trends to affect term structure dynamics. We also depart from

the existing literature by treating i∗t as unspanned, which allows this trend to exhibit some

variation independent of contemporaneous yields.

Three recent papers propose statistical models of interest rates with time-varying long-run

means, and are thus closely related to ours. Del Negro et al. (2017) estimate a Bayesian

common-trend VAR for interest rates and inflation that allows for time variation in π∗t and

r∗. We use their estimates of r∗t , along with others, in our analysis establishing stylized facts.

Johannsen and Mertens (2018) also propose a time series model for yields and a Bayesian

estimation framework that allows for stochastic volatility, and we also include their real-time

r∗t among our trend proxies. Finally, Crump et al. (2018) also allow for shifting macroeconomic

trends in a common-trend VAR for interest rates and inflation with i∗t , r
∗
t , and π∗t pinned down

from surveys of professional forecasters. These three papers provide complementary time series

analyses to our approach. However, our arbitrage-free specification, which jointly captures the

time series and cross section of Treasury yields, allows us to investigate the role of trends for

the yield curve and the term premium and to estimate expected bond returns.

The paper is structured as follows. Section 2 describes key concepts and our initial proxies

for the macroeconomic trends. Section 3 presents stylized facts about the macroeconomic

trends and Treasury yields. Section 4 introduces our no-arbitrage model, shows how it captures

the stylized facts, and presents novel estimates of the term premium as well as out-of-sample

forecast results. Section 5 concludes. An Appendix contains supplementary material.

6Proposed remedies include adding survey information (Kim and Wright, 2005; Kim and Orphanides, 2012),
restricting risk prices (Joslin et al., 2014; Bauer, 2018), correcting for small-sample bias (Bauer et al., 2012,
2014), and using near-integration or long memory processes (Jardet et al., 2013; Goliński and Zaffaroni, 2016).
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2 Interest rate trends: theory and estimates

The role of trends for interest rates can be illustrated with the usual decomposition of any

n-period yield, y
(n)
t , into expectations of short-term rates and a term premium, TP

(n)
t :

y
(n)
t =

1

n

n−1∑
j=0

Etit+j + TP
(n)
t = i∗t +

1

n

n−1∑
j=0

Eti
c
t+j + TP

(n)
t , (1)

where it is the nominal short rate, y
(1)
t .7 The term premium compensates bond investors

for the duration risk in longer-term bonds, though in practice, it also captures liquidity and

financial market frictions. The expectations theory of interest rates assumes that the term

premium is zero (strong form) or constant (weak form), whereas modern finance theories of

interest rates explicitly model the time variation in the term premium, as described in Section

4. The second equality in equation (1) introduces the trend or equilibrium short rate, i∗t , and

the short rate cycle, ict = it− i∗t . We define i∗t as the Beveridge-Nelson trend in the short-term

nominal interest rate,

i∗t ≡ lim
j→∞

Etit+j. (2)

We employ this stochastic trend concept throughout this paper and assume no deterministic

time trends. All nominal yields are affected by changes in i∗t , and if this trend is time-varying,

then yields are nonstationary with a common trend. In this case, Kozicki and Tinsley (2001)

fittingly call i∗t a “shifting endpoint.” The Fisher equation suggests that two macroeconomic

trends determine this endpoint:

it = rt + Etπt+1 ⇒ i∗t = r∗t + π∗t ,

where rt is the real short rate, πt is inflation, and the trends in rt and πt are defined analogously

to i∗t . If inflation or the real interest rate contain long-run trend components, then nominal

interest rates will also be driven by these same macroeconomic trends.

The remainder of this section (with further details in Appendix A) describes the empir-

ical proxies of these trends that we employ to establish stylized facts about macro-finance

trends in interest rates. For the long-run inflation trend, the prevailing consensus in empirical

macroeconomics models inflation as an I(1) process—in order to produce accurate forecasts

and correctly capture the evolution of inflation expectations (Stock and Watson, 2007; Faust

and Wright, 2013). From a macroeconomic perspective, the resulting time-varying π∗t can be

7This intuitive definition of the term premium is common in the macroeconomic literature but ignores the
convexity of bond prices. The model-based term premium estimates in Section 4.5 account for this convexity.
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viewed as the perceived inflation target of the central bank. Empirical proxies for trend infla-

tion have been constructed from surveys, statistical models, or a combination of the two—see,

for example, Stock and Watson (2016) and the references therein. We employ a well-known,

widely used survey-based measure of long-run inflation expectations, the Federal Reserve’s

series on the perceived target rate (PTR) for inflation (e.g., Clark and McCracken, 2013;

Del Negro et al., 2017). Figure 1 shows that, from the beginning of our sample to the late

1990s, this estimate generally mirrored the rise and fall of the ten-year yield.8 Since then,

however, it has remained close to 2 percent, which has been the explicit longer-run inflation

goal of the Federal Reserve since 2012. Given our focus on forecasting, real-time availability is

an important issue, and for most of our sample (since 1979) the PTR estimate was available

in real time from the Survey of Professional Forecasters.

As a proxy for r∗t , we use a variety of estimates to avoid reliance on one specific model

or estimation approach. All of these estimates are consistent with our definition of r∗t as the

stochastic trend in the real short rate, analogous to equation (2). The first two r∗t estimates

are the long-run real rate trends from time series models identified with Bayesian methods:

Del Negro, Giannone, Giannoni, and Tambalotti (2017)(DGGT) estimate a linear state space

model with common trends, and Johannsen and Mertens (2016, 2018)(JM) employ a nonlinear

state space model with a shadow rate. Three additional estimates are based on simple New

Keynesian macro models and use the Kalman filter to infer the neutral real interest rate, that

is, the level of the real rate consistent with real output at potential and inflation at target:

Laubach and Williams (2003, 2016) (LW) implemented this concept empirically using the

Rudebusch and Svensson (1999) model; Holston, Laubach, and Williams (2017) (HLW) use a

slight simplification of the LW model; and Kiley (2015) augments the LW model to account

for changes in financial conditions. The implementation of these macro models assumes that

the neutral rate follows a martingale; thus, their r∗t estimates are consistent with the long-run

concept we employ. We also construct three model-based estimates of our own. The first is

based on a simple univariate unobserved components model, and the second uses the same

model augmented with moving averages of real GDP and labor force growth that appear to

be correlated with the real rate trend (Lunsford and West, 2017). The third estimate uses the

observed nominal short rate and inflation in a state-space model with a latent real rate and

r∗t . We estimate these models using Bayesian methods, and like Del Negro et al. (2017) we

employ a prior with a low innovation variance for r∗t . Finally, as a simple, model-free estimate

8Other estimates of the inflation trend, such as the long-range forecasts in the Blue Chip survey, the moving-
average estimate of Cieslak and Povala (2015), or various model-based estimates (Clark and Doh, 2014; Stock
and Watson, 2016) exhibit a similar pattern.
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of r∗t , we include an exponentially-weighted moving average of past real rates.9

Figure 2 summarizes these r∗t estimates. The left panel shows the average and range of

the smoothed (two-sided) estimates, which use the full data sample for inference about the

parameters and state variables.10 These show a relatively stable r∗t until the late 1990s, but

then exhibit a pronounced decline. To better capture what bond market investors could

have known about macro trends contemporaneously, our analysis will focus on filtered (one-

sided) and real-time estimates of r∗t , which are shown in the right panel of Figure 2. Filtered

estimates—from the LW, HLW, and Kiley models—infer latent state variables at time t using

data available up to time t. However, they also use model parameter estimates from the full

sample, which would not have been available to investors in real time.11 Therefore, to avoid the

pitfall of look-ahead bias in our analysis of predictive power, we consider (pseudo) real-time

estimates that only use data through period t to construct r∗t . Such real-time estimates are

available for the JM and DGGT models, our own three models, and the moving-average of past

real rates.12 As shown in Figure 2, the average of these six real-time estimates increased from

about one to two percent early in the sample, moved sideways for about 15 years, and then

around 2000 started a substantial, steady decline until the end of the sample. This pattern

closely follows the movements of the moving-average estimate of r∗t , which has the added

benefit of not relying on a model or estimation technique unavailable to investors historically.

Finally, the average of all nine filtered and real-time r∗t estimates, which is displayed in Figure 1,

also shows a similar pattern.

Substantial estimation and model uncertainty underlie estimates of any long-run trends,

as suggested by the range of estimates in Figure 2. To reduce the uncertainty inherent in

individual estimates, we take averages of r∗-estimates across models. While this approach is

in no way a cure-all for estimation uncertainty and measurement error, model-averaging is

well-known to improve forecast accuracy (Timmermann, 2006).13 Our baseline estimate of i∗t

for the analysis in Section 3 will be the sum of the PTR estimate of π∗t and the average of all

six real-time estimates of r∗t .
14

9Our smoothing parameter of 0.98 follows other research estimating macro trends (Malmendier and Nagel,
2011; Orphanides and Williams, 2005).

10We have seven smoothed estimates—for all models but the HLW model; see Appendix A.
11Still, Laubach and Williams (2016) argue that, for the past decade, truly real-time r∗t estimates are similar

to their filtered estimates.
12These estimated trends all rely on revised inflation data, and the multivariate model also uses revised

output data. Although the use of real-time data vintages can be important for near-term forecasting, it is
arguably less relevant for estimation of long-run trends.

13We discuss the issue of measurement error in the Appendix, arguing that our results are likely a lower
bound for the tightness of the connection between the yield curve and the true underlying macro trends.

14An alternative proxy for i∗t could be obtained from surveys, such as the long-range forecast for the three-
month T-bill rate from the Blue Chip Financial Forecasts. This series, which is only available semiannually
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3 Macro trends and yields: stylized facts

3.1 The common trend in nominal yields

We first investigate whether macroeconomic trends account for the high persistence of interest

rates. We then assess whether accounting for just the inflation trend is sufficient or if a real rate

trend also materially contributes to movements in nominal bond yields. Our proxies for these

macro trends are the PTR survey-based estimate of π∗t and the three alternative estimates of r∗t :

the average of three filtered estimates, the average of the six real-time estimates, and a simple

(exponentially weighted) moving average of past real rates. We proxy for the equilibrium

nominal short rate i∗t with the sum of π∗t and the real-time average estimate of r∗t (but obtain

similar results with the filtered or moving-average measures).

We find that variation in the macro trends accounts for the persistence of interest rates,

and the trend and cycle components of interest rates can be identified using our proxy i∗t .

This is illustrated in Figure 3, which shows the (demeaned) ten-year yield and two detrended

versions of that yield.15 The first detrended yield is the simple difference between the yield

and i∗t , which should be stationary if the yield is indeed driven by this trend and the loading

on i∗t is unity. In comparison to the ten-year yield, this series exhibits much less of a trend, for

example, declining by less than half as much from the early 1980s to the end of our sample.

Still, a notable trend remains in this simple difference, which indicates that the yield trend

component moves more than one-for-one with i∗t . By definition, the expectations component

of yields moves one-for-one with i∗t , so the term premium must contain a trend component

positively related to i∗t . To account for this relationship, the second detrended series is the

residual from a (Dynamic OLS) cointegration regression of the yield on i∗t , discussed below.

This cointegration residual shows no discernible trend, indicating that changes in i∗t , properly

scaled, can fully capture the trend in the ten-year Treasury yield. The fitted value of the

cointegration regression is the trend component of the ten-year yield, for which we also obtain

a model-based estimate in Section 4.3, and the residual—shown in Figure 3—corresponds to

the interest rate cycle.

It has long been known that nominal interest rates are highly persistent.16 Summary

statistics and unit root tests reported in Appendix B.1 confirm that Treasury yields are best

modeled as having a stochastic trend in our sample. We examine whether this persistence

starting in 1986, fluctuates around our baseline estimate of i∗t . We consider survey forecasts in Section 4.6.
15We use end-of-quarter zero-coupon Treasury yields from Gürkaynak et al. (2007) with maturities from one

to 15 years and three-month and six-month Treasury bill rates from the Federal Reserve’s H.15 release, over
the period from 1971:Q4 to 2018:Q2.

16See, for example, Nelson and Plosser (1982), Rose (1988), and King et al. (1991).
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is driven by a common macro trend. Figure 3 suggests a likely cointegration relationship

with a loading on the trend larger than unity. To formally investigate this relationship,

including the individual contributions of π∗t and r∗t , we use cointegration regressions of the

form y
(40)
t = β0 + β′1X

∗
t + ut, where y

(40)
t is the ten-year yield, the vector X∗t contains one or

two macro trend proxies, and ut is a stationary residual under cointegration. We estimate

the coefficients β0 and β1 using the Dynamic OLS estimator of Stock and Watson (1993) by

including four leads and lags of ∆y
(40)
t and ∆X∗t .17

Table 1 shows the results of our cointegration analysis, including coefficient estimates,

Newey-West standard errors (using six lags) and the regression R2. The first regression spec-

ification includes only π∗t , and the results echo those of Cieslak and Povala (2015), who used

simple OLS regressions but a similar inflation trend proxy. The inflation trend coefficient is

somewhat higher than one and strongly significant, and the R2 is very high. However, trend

inflation does not fully account for the trend behavior of yields, as evident from the persistence

of the cointegration residuals ût = y
(40)
t − β̂0 + β̂1π

∗
t . While ût is much less persistent than

the ten-year yield, it is still quite persistent. As shown in the second column, for this series,

unit root tests—the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests—do not

reject the null, and the low-frequency stationary test of Müller and Watson (2013) rejects sta-

tionarity at the 5 percent level.18 The inadequacy of detrending with only π∗t is also supported

by a Johansen (1991) trace test, which does not reject the null of absence of cointegration

among the yield and the inflation trend.19 Finally, an error-correction model, where ∆y
(40)
t

is regressed on ût−1 and four lags each of the first-differenced yield and the inflation trend,

indicates only modest equilibrating forces pushing yields toward the inflation trend.

The missing driver of the level of the yield curve is the real rate trend. The remaining

columns of Table 1 show that there is strong evidence for cointegration once r∗t is added.

For all three r∗ proxies, the estimated coefficients are at or above one and strongly significant.

Adding the real rate trend increases the R2 by 8 to 11 percentage points, and the cointegration

residual now appears to be stationary. For the real-time and moving-average estimates of r∗t ,

the Johansen test indicates a cointegration rank of one, and the error-correction model shows

that yields quickly remedy deviations from trend. The coefficients on the two macro trends

are roughly equal, and the last column of Table 1 shows that i∗t can fully capture the trend

17In Appendix B.1, we report results for the level of the yield curve, which are similar to those for the ten-
year yield. Also, standard OLS as well as the reduced-rank maximum likelihood VAR estimation of Johansen
(1991) lead to the same conclusions as Dynamic OLS (not reported).

18For the unit root tests of cointegration residuals, we omit intercepts in the ADF and PP regressions and
use the critical values provided by Phillips and Ouliaris (1990), which vary with the number of regressors.
Further details are in Appendix B.1.

19The test is based on a VAR representation with four lags, based on information criteria.
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component in the ten-year yield, since the evidence for cointegration is as strong as when

both macro trends are included individually. The cointegration coefficient is 1.67, suggesting

a positive loading of the term premium on i∗t , a result replicated by our model in Section 4.3.

The error-correction coefficient is estimated as -0.45 and is strongly significant. Accordingly,

when the ten-year yield is high relative to i∗t , it tends to revert quickly toward this trend,

with almost half of the equilibrium error on average reversed within one quarter. Therefore,

knowledge of the macro trend appears quite useful when predicting future yields. In sum, these

results indicate that the low-frequency behavior of Treasury yields is explained by movements

in a common underlying macroeconomic trend, i∗t , in which both π∗t and r∗t play important

roles.

3.2 Predicting excess bond returns with macro trends

We now consider whether macroeconomic trends can help predict future excess bond returns.

The one-quarter return on a bond with maturity n in excess of the risk-free rate is

rx
(n)
t+1 ≡ p

(n−1)
t+1 − p(n)t − y

(1)
t = −(n− 1)y

(n−1)
t+1 + ny

(n)
t − y

(1)
t ,

where p
(n)
t denotes the log-price of a zero-coupon bond. Since the findings in Fama and Bliss

(1987) and Campbell and Shiller (1991), it is well-known that the yield curve, particularly

its slope, contains useful information for predicting excess bond returns. The key question

is whether the current yield curve contains all of the information relevant for predicting

future returns, that is, whether the spanning hypothesis holds. Several studies (including

Ludvigson and Ng, 2009; Joslin et al., 2014; Cieslak and Povala, 2015) have documented

apparent violations of the spanning hypothesis using various additional predictors. Bauer and

Hamilton (2018) demonstrated that accounting for the small-sample econometric problems

associated with these highly persistent predictors renders most of them insignificant. However,

they found that the trend inflation proxy of Cieslak and Povala (2015) was a relatively robust

predictor. We investigate, in turn, the gains from including π∗t , r
∗
t , and i∗t in predictive

regressions for excess bond returns. We predict the one-quarter excess return averaged across

maturities from two to 15 years.20

Table 2 reports results for six different predictive regressions. The first column is the usual

baseline specification that includes only a constant and the first three principal components

20We use one-quarter holding periods to avoid the econometric problems resulting from overlapping observa-

tions. The one-quarter returns are calculated with the usual approximation y
(n−1)
t+1 ≈ y(n)t . We have obtained

similar results with annual returns (not reported). In addition, Appendix B.2 provides estimates for individual
bond maturities.
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(PCs) of yields.21 The specification in the second column adds π∗t , and columns three through

five include π∗t as well as one of our three proxies of r∗t in order to capture the effects of both

trends. The final column adds only i∗t instead of two separate macro trends. We report White

standard errors as well as small-sample p-values for the macro trends using the parametric

bootstrap of Bauer and Hamilton (2018) to obtain accurate small-sample tests even though

regressors are persistent and correlated with lagged forecast errors.22 The top panel uses the

full sample of data, while the bottom panel considers a subsample from 1985 to 2018 for

robustness. There is some evidence of a shift in the conduct of U.S. monetary policy in the

mid-1980s, which would likely lead to a change in interest rate dynamics, so such a subsample

is often considered for yield curve analysis (e.g., Rudebusch and Wu, 2007; Joslin et al., 2014).

In the full sample, the inclusion of the inflation trend increases the predictive power sub-

stantially compared with using only yield curve information. Both the inflation trend and the

level of yields (PC1) are highly significant (in addition to the slope, PC2), as in Cieslak and

Povala (2015). However, adding r∗t to the regression leads to further impressive gains in pre-

dictive power. Notably, for the moving-average estimate of r∗t , the R2 jumps, the coefficients

and significance for π∗t and PC1 rise, and the coefficient on r∗t is large and significant.23 Not

surprisingly given Figure 1, the relative predictive power of the two macro trends changes in

the more recent period as variation in r∗t has become more pronounced. In the subsample

starting in 1985, the inflation trend by itself is not statistically significant. Only with the ad-

dition of the equilibrium real rate do both trends matter for bond risk premia: the coefficients

on π∗t and PC1 more than double, the R2 increases substantially, and the coefficients on π∗t

and r∗t are statistically significant. These results imply that the trend in the real interest rate

is as important as, and recently more important than, the trend in inflation.

The inflation and real-rate trends have roughly equal coefficients (as for the cointegration

regression). This suggests they play similar roles for yield dynamics and that their sum,

i∗t , can capture the relevant information. Indeed, as shown in the final column of Table 2,

including just i∗t as a predictor provides the same strong predictive gains. The coefficient

on i∗t is of course negative: If the trend component increases, then interest rates also rise in

response, producing losses for bond holders.24 The coefficient is also larger in magnitude than

21We scale the PCs such that they correspond to common measures of level, slope, and curvature, as in
Joslin et al. (2014). For example, the loadings of yields on PC1 sum to one.

22We simulate 5000 bootstrap samples for yields and predictors under the spanning hypothesis, using sep-
arate (bias-corrected) VAR(1) models for yield factors and predictors. The small-sample p-values are the
fractions of simulated samples in which the t-statistics of the macro trends are at least as large (in absolute
value) as in the actual data.

23Changes in R2 can be difficult to interpret in the presence of highly persistent predictors, so Appendix
B.2 confirms these results using our bootstrap.

24Numerically, an increase in i∗t by 0.1 percentage point predicts a decrease in the next quarter’s excess bond
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the coefficient on the yield curve level (PC1), consistent with the evidence in Sections 3.1 and

4 that the trend component of yields moves more than one-for-one with changes in i∗t .

An earlier literature showed that a high yield curve slope predicts positive excess bond

returns. Cochrane and Piazzesi (2005) also found additional predictive power in other aspects

of the shape of the yield curve—captured in mid-curve forward rates or higher-order PCs. Our

findings, by contrast, document the importance of the level of the yield curve as a powerful

predictor. While in yields-only regressions, such as specification (1) in Table 2, the level

appears irrelevant, it becomes a strong predictor once i∗t is accounted for. This result implies

that the level of interest rates matters for expected future bond returns, but that it needs to be

viewed relative to the underlying yield trend and not a constant historical mean. Furthermore,

accounting for i∗t makes the slope of the yield curve an even more powerful predictor.

In Table 3, we further investigate the importance of viewing interest rates relative to

their stochastic trend by using detrended yields as predictors. The use of such predictors

with low persistence has the added benefit that conventional, large-sample inference is more

reliable. We use the first three PCs of the 17 detrended yields as predictors, where each

detrended yield is obtained as the cointegration residual from a regression of the yield on

macro trends. As before, we consider three types of detrending: using only π∗t , using both π∗t

and (real-time) r∗t , as well as using i∗t . In the full sample, all three detrending methods lead to

substantial predictive gains compared to the baseline regression with just the first three PCs of

the 17 original yields. Notably, the detrended level of the yield curve (PC1) becomes strongly

significant. Detrending with i∗t works particularly well, giving the largest gain of 11 percentage

points. In the post-1985 sample, the R2 does not increase when detrending with only π∗t , but

it increases by 9 and 6 percentage points, respectively, when detrending with either both π∗t

and r∗t or with only i∗t . These estimates provide strong support for the importance of macro

trends in predicting bond returns. Furthermore, the similarity of the original and detrended

results confirm that the predictive gains are indeed due to trend-reversion of interest rates

(i.e., Granger-causation from underlying macro trends to future yields).

In sum, the key to predicting bond returns and estimating bond risk premia is to account

for the long-run trend in interest rates. Both underlying macro trends have strong incremental

predictive power for bond returns relative to the observed yield curve. That is, the long-run

trend cannot be inferred from the cross-section of yields alone, so our results contradict the

spanning hypothesis. An alternative method to uncover their predictive power is to detrend

interest rates, but it is crucial to use i∗t instead of π∗t for that detrending.

return by 0.45 percentage point. Appendix B.2 shows that this coefficient rises with bond maturity.
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4 A no-arbitrage model with a stochastic trend

To account for the stylized facts establishing an important low-frequency macro-finance in-

terplay, we introduce and estimate a new DTSM. While existing DTSMs generally assume

stationarity, our new formulation incorporates a shifting endpoint for interest rates, i∗t , as a

common stochastic trend for yields. This novel specification allows us to explain the stylized

facts, provide new estimates of the term premium, and more accurately forecast interest rates.

4.1 Model specification

The state variables of our model of yield dynamics include N linear combinations of yields

in the vector Pt, and we use N = 3 such yield factors.25 The key feature of our model is

the presence of a single stochastic trend τt common to the three factors. The common trends

representation of the dynamic system is:

Pt = P̄ + γτt + P̃t, τt = τt−1 + ηt, P̃t = ΦP̃t−1 + ũt, (3)

where γ is an N -vector with the loadings on the common trend, ηt is iid normal with variance

σ2
η, P̃t are the N cycle components that have iid normal innovations ũt with covariance matrix

Ω̃, and Φ is a mean-reversion matrix that has eigenvalues with modulus less than one so that

P̃t is stationary. Accordingly, the state variables Zt = (τ, P ′t)
′ are cointegrated, and Appendix

C.1 gives more details and alternative representations of the dynamic system.26 We assume

that innovations to trend and cycle are orthogonal, E(ηtũt) = 0, as is commonly done with

unobserved components models (Watson, 1986; Del Negro et al., 2017). Our assumptions

imply that the long-run trend components of Pt are

P ∗t ≡ lim
j→∞

EtPt+j = P̄ + γτt. (4)

The short-term interest rate is taken to be an affine function of Pt:

it = δ0 + δ′1Pt. (5)

Finally, we assume absence of arbitrage opportunities so that there exists a “risk-neutral”

probability measure, denoted by Q, which prices all financial assets (Harrison and Kreps,

25Let the vector Yt contain J model-implied yields. Then Pt = WYt, where W is an N×J coefficient matrix.
26Innovations to Pt are Pt − Et−1Pt ≡ ut = γηt + ũt with covariance matrix Ω = γγ′σ2

η + Ω̃.
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1979). The risk-neutral dynamics are specified as

Pt = µQ + ΦQPt−1 + uQt , (6)

where the innovations uQt are iid normal (under Q) with covariance matrix Ω. We assume that

Pt is stationary under Q by imposing that ΦQ has eigenvalues less than one in absolute value,

thus forward rates, yields and bond convexity remain finite in the limit as maturity increases.

Appendix C.2 provides additional details, including the stochastic discount factor and prices of

risk that are implied by equations (3)–(6), and explains how stationarity under the real-world

measure is reconciled with a unit root under the risk-neutral measure. Equations (5) and (6)

imply that yields are affine functions of the yield factors Pt, Yt = A+BPt. The loadings in A

and B are determined by the risk-neutral parameters and given in Appendix C.3.

Two types of normalizations are required for the state variables and parameters to be

identified. The first set of normalizations, required in any affine term structure model, uniquely

pins down the yield factors Pt. In their absence, an affine transformation of Pt would leave

implied interest rates Yt unchanged (Dai and Singleton, 2000). We use the normalization

of Joslin et al. (2011), which imposes restrictions only on the Q-dynamics and is ideally

suited for the use of linear combinations of yields as yield factors. In this normalization,

only four parameters determine the Q-dynamics: a scalar kQ and an N -vector λQ containing

the eigenvalues of ΦQ which we assume to be real, distinct, and less than one. These four

parameters and Ω fully determine the yield loadings A and B. Details are in Appendix C.4.

The second normalization is needed to identify the unobserved trend τt. Without it, an

affine transformation of τt would leave the yield factors Pt unchanged. For identification, we

require one linear constraint on each of the vectors P̄ (to fix the level) and γ (to fix the scale).27

We choose to identify τt as the long-run mean of the short rate, τt = i∗t = δ0 + δ′1P
∗
t , so that

in light of (4) our normalizations are δ0 + δ′1P̄ = 0 and δ′1γ = 1. In total, the parameters of

the model are kQ, λQ, γ, P̄ ,Φ,Ω, σ2
η, and σ2

e , where γ and P̄ have two degrees of freedom.

The key innovation of this model relative to existing affine DTSMs is that the equilibrium

nominal interest rate i∗t is allowed to be time-varying. This implies that bond yields have a

common stochastic trend and are I(1). Imposing a unit root in this fashion is a convenient

way to account for a very persistent process in a dynamic model, and it crystalizes the ar-

guments regarding slow-moving interest rate trends. Taken literally, a unit root specification

for interest rates is unlikely because nominal interest rates appear to have remained bounded

over the centuries. However, in finite samples, a persistent stationary process can always be

27For further discussion of identification requirements in multivariate unobserved components (common
trends) models, see, for example, Harvey (1990).
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approximated arbitrarily well by a unit root process, and it is well-known that doing so can

often be beneficial for forecasting (e.g., Campbell and Perron, 1991).28 To illustrate the im-

portance of the time-varying trend in interest rates, we will compare our model, which we refer

to as the “shifting endpoint” (SE ) model, to a conventional DTSM with stationary dynamics,

a “fixed endpoint” (FE ) model. The latter specification corresponds to a restricted special

case of our model where i∗t = i∗, i.e., σ2
η = 0, which is equivalent to the popular three-factor

affine DTSM of Joslin et al. (2011).

Another important aspect of our model is that the long-run trend is unspanned by the yield

curve, meaning that the cross section of interest rates at time t is not deterministically related

to i∗t . By contrast, essentially all asset pricing models imply spanning as agents can generally

back out all relevant state variables from the yield curve (Duffee, 2013). Such inference is

not possible in our model because the trend does not directly affect yields: Conditional on Pt,

yields do not load on i∗t . Therefore, the model can match the evidence against the spanning

hypothesis documented in Section 3.2, as we demonstrate below.29 Another important ratio-

nale for an unspanned trend is to allow it to be unobserved. To incorporate an unobserved

components specification within a dynamic term structure model, it is necessary for the trend

component to be unspanned; otherwise, i∗t would be completely determined by the time-t

yield curve and thus observed. A trend hardwired to current interest rates would also result

in excessively volatile trend estimates.30

Our parsimonious specification can accurately fit the cross section of yields, is consistent

with absence of arbitrage and time-varying risk premia, and includes a stochastic trend in

line with much evidence showing that nominal interest rates are effectively I(1). Importantly,

changes in i∗t may affect expectations of future short rates as well as the term premium, and

our estimates below will assess the empirical importance of a trend in the term premium.

While our DTSM framework is quite flexible, it is kept deliberately simple by focusing on

the nominal yield curve instead of separately modeling inflation and real yields. Such a

separation, in the spirit of Christensen et al. (2010), would be a useful future extension that

could differentiate r∗t and π∗t , but it is unnecessary for our purposes of estimating nominal risk

premia and forecasting nominal Treasury yields.

28For example, a unit root in inflation may not be literally true, but assuming so often improves forecast
performance (Faust and Wright, 2013).

29Sufficiently flexible spanned DTSM, in which yields depend on all risk factors, can typically match the
data equally well as the corresponding unspanned DTSM. However, such spanned models require many more
parameters and are more difficult to estimate (Bauer and Rudebusch, 2017). Furthermore, this result applies
only to models in which the unspanned factors are observed, as in Joslin et al. (2014), whereas we allow for
the possibility that the trend is unobserved.

30We have estimated term structure models with spanned trend factors and obtained implausibly volatile
trend estimates, as movements in long-term yields are tightly linked to movements in the trend factor.
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4.2 Model estimation

The shifting trend model can be cast in state-space form for estimation. The measurement

equation is Y o
t = A + BPt + et, with et

iid∼ N(0, σ2
eIJ). For our data set, Y o

t includes J = 17

yields. The state equation is the VAR representation for the state variables Zt, as given in

Appendix C.1.

The common trend in our DTSM is both unspanned and unobservable, unlike the observed

unspanned factors in models like Joslin et al. (2014). Our specification is therefore effectively

an unobserved components model. While this is desirable for matching the stylized facts of

trends in interest rates, we face the usual estimation problem that empirically uncovering

long-run trends using limited sample sizes is intrinsically difficult (Watson, 1986). For a

very persistent time series with relatively infrequent business cycle fluctuations, even several

decades of data typically contain limited information that can pin down the underlying trend.

Simply estimating an unobserved components model with maximum likelihood and no external

additional information is problematic and unreliable.31 Therefore, in the literature, two broad

approaches have been used to facilitate estimation of unobserved trends from time series

data: the first includes additional data or proxies for the trend, the second incorporates prior

information about properties of the trend such as its smoothness. For robustness, we consider

each of these two methods for estimating our stochastic trend DTSM.

The first method adds data that can directly help pin down the trend estimate. For

example, long-run survey expectations of inflation are often used to inform estimates of π∗t

(Kozicki and Tinsley, 2012; Del Negro et al., 2017). Similarly, Crump et al. (2018) use surveys

of professional forecasters to estimate i∗t in a factor model for the yield curve. In this spirit, we

use the empirical proxy for i∗t equal to the sum of the PTR estimate of π∗t and our real-time

estimate of r∗t . Section 3 showed that this trend proxy captures low-frequency movements of

yields and predicts excess bond returns. Because we can now treat both i∗t and Pt as observed,

estimation is greatly simplified.32 We denote the resulting estimates as the “observed shifting

endpoint” (OSE ) model. To guard against the problems that the zero lower bound (ZLB)

on nominal interest rates poses for the estimation of affine yield curve models (Bauer and

Rudebusch, 2016), we estimate the parameters of the OSE model using a sample that ends

in 2007:Q4, before the height of the financial crisis and the ZLB period. Once the parameter

31The likelihood is essentially flat in some dimensions of the parameter space, and numerical optimization
leads to local optima with very different trend estimates, depending on starting values.

32Details are in Appendix C.7. Taking i∗t as observed is justified because maximum likelihood estimation
of a state-space model with an additional measurement equation for i∗t results in a noise variance equal to
essentially zero. Taking the yield factors Pt as observed was proposed and justified by Joslin et al. (2011). If
estimation with the state-space model is desired, excellent starting values for the model’s parameters can be
obtained from a first-step estimation with observed state variables.
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estimates are obtained, we proceed to use the model over the entire sample period.33 We find

that the OSE model fits observed yields well, with a root mean-squared error of 8 basis points

over the full sample. The Q-dynamics are highly persistent, with the largest eigenvalue of

ΦQ equal to 0.997. For the real-world dynamics, the mean reversion to the common trend is

relatively quick, with the largest eigenvalue of Φ equal to 0.933. More details on the estimation

are given in Appendix C.7.

Our second estimation method of the long-run trend model uses only Treasury yield data

while making use of prior information in a Bayesian framework. In this regard, an effective

approach to estimating unobserved trends imposes a tight prior distribution for the variance

of the trend innovations. Such priors are commonly used in a variety of macroeconomic

contexts to produce smooth trend estimates, consistent with the underlying macroeconomics

that such trends are determined by gradual variation in structural factors such as demographic

change. For interest rates, Del Negro et al. (2017) used such a smoothness prior for estimation

of r∗t . Similarly, we specify a tight inverse-gamma prior for σ2
η with a mean of 0.062/400,

implying that the standard deviation of the change in i∗t over a century is six percent. In

light of the observed variation in interest rates and our trend proxies, we view this as a

conservative choice in the sense that it limits the amount of yield variation that can be

attributed to the long-run trend. Also, we follow Del Negro et al. (2017) by combining this prior

with the stationary version of a Minnessota VAR-prior for the cycle components P̃t with the

distribution for the diagonal elements of Φ centered around zero. We call this representation

the “estimated shifting endpoint” (ESE ) model. We use a Markov chain Monte Carlo (MCMC)

algorithm to simulate draws from the joint posterior distribution of the latent state variables

and parameters. The remaining parameters have standard and mostly uninformative priors

that are described in Appendix C.8 along with the MCMC algorithm and further details.

To account for the ZLB, we treat short-term yields as missing observations when they were

constrained.34

Figure 4 plots the resulting ESE model estimate of i∗t—specifically, the posterior mean

and 95 percent credibility intervals. The ESE model i∗t rose until the early 1980s to over eight

percent and then gradually declined over the following decades to just below three percent at

the end of our sample. For comparison, the ten-year Treasury yield and the real-time proxy

33An extension of our model to explicitly account for the zero lower bound, for example with a shadow-rate
specification as in Kim and Singleton (2012) and Bauer and Rudebusch (2016), is conceptually straightforward
but beyond the scope of this paper.

34Specifically, three- and six-month yields are assumed to be missing from 2008:Q4 to 2015:Q3, the one-year
yield is omitted from 2011:Q4 to 2014:Q3, and the two-year yield is omitted from 2012:Q4 to 2013:Q1. The
start dates of these periods are based on results in Swanson and Williams (2014) while the end dates are when
the yields lifted off from the ZLB.
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estimate of i∗t are also plotted. The ESE model estimate matches the proxy fairly closely

and can account for much of the low-frequency variation in the ten-year yield. As usual for

unobserved trend models, the uncertainty around the estimated trend is quite large. From

2008 to 2015, the estimation intervals widen a bit as uncertainty increases because the yield

curve is partially constrained by the ZLB and is less informative about the underlying trend.

4.3 Implications for trend components of yields

Section 3.1 showed that proxies for i∗t were important drivers of yields, particularly in terms

of cointegration. Now we interpret this evidence in the context of our model.

First, note that our shifting-endpoint DTSM can decompose yields into trend and cycle

components:

Yt = Y ∗t + Ỹt = A+BP̄ +Bγi∗t +BP̃t, Y ∗t ≡ lim
j→∞

EtYt+j. (7)

Figure 5 shows the (actual and model-fitted) ten-year yield and its trend and cycle components.

The trend component accounts for most of the low-frequency movements in the yield, while

the cycle component—the model-based analog of the regression-based interest rate cycles

discussed in Section 3.1—exhibits clear mean reversion around zero and little to no apparent

trend. This confirms that our model accounts for the long-run trend in interest rates.

Second, we can compare the model-implied coefficients of yields on i∗t to the empirical

results we obtained from the cointegration regressions of yields on proxies of i∗t in Section

3.1. In the model, the trend i∗t is unspanned and only indirectly affects yields through its

relationship with Pt. Equation (7) shows that the implied loadings of yields on i∗t are Bγ.

Figure 6 plots these coefficients, which gradually rise from unity at the short end—since i∗ is by

definition the trend component of the short rate—to around 1.8. In the data, the coefficients

(shown with their 95 percent confidence intervals) are relatively flat around 1.6-1.9, with

a slight hump around two years and a gradual decline thereafter. Note that the estimated

coefficient for the ten-year yield corresponds to the value reported in the last column of the top

panel of Table 1. To gauge whether the model is consistent with the estimated cointegration

coefficients we need to account for sampling uncertainty, hence we simulate 5,000 artificial

samples of the trend and yields with the same size as the actual data, and estimate the

cointegration regressions in each simulated sample. The 95 percent Monte Carlo intervals of

the coefficient estimates, shown as dashed lines in Figure 6, comfortably contain the values

obtained with the actual data.35

35Because innovations to the trend and cycles components of yields are orthogonal in the model, the estimates
are unbiased, so that the mean of the Monte Carlo coefficient distributions equals the model-implied loadings
Bγ, up to simulation error.
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Our results here and in Section 3.1 show that the trend in Treasury yields does not move

one-for-one with changes in i∗t , since the relevant coefficients are larger than one. Because

expectations of future short rates by definition load with a unit coefficient on i∗t , coefficients

above one indicate that the term premium positively responds to changes in i∗t . For a yield of

maturity n, the term premium loading on i∗t is B′nγ− 1. That is, our cointegration regressions

and the model-based loadings suggest that the term premium responds to the trend component

as well. In Section 4.5, we will show the resulting term premium estimates and quantify the

relative importance of the trend in short-rate expectations and in the term premium. Our

model has similar implications for the trend behavior of the slope of the yield curve. The

slope, if measured as the simple difference between a long-term yield and the short rate, in

fact has the exact same trend component and loading on i∗t as the term premium in that

long-term yield. While some macroeconomic time series models, such as DGGT, assume that

separate trends drive short rates and the slope, in our no-arbitrage model the slope contains

a trend due to the risk in i∗t .

4.4 Model-based explanation of excess return predictability

A key stylized fact from Section 3 is that various measures of the long-run trends in interest

rates have substantial predictive power for excess bond returns, and this additional information

is not spanned by the first three principal components of yields. To explain this result with

our shifting endpoint DTSMs, we first simulate 5,000 artificial samples from each of our three

models: the FE model with stationary yields, the OSE model with an observed trend proxy,

and the ESE model with an estimated trend.36 We then run excess return regressions using the

simulated data sets from the three models in order to replicate and understand the regression

results from the historical data.

Table 4 presents the R2 results from the actual and simulated data. The top row reports

the R2 for the predictive regressions of excess bond returns using actual data with and without

i∗t as an additional predictor, as described in Section 3.2 (corresponding to the estimates in the

first and last column of the top panel of Table 4). The reported ∆R2 shows the substantial

predictive gains from including the macro trend proxy.

The remaining three rows provide results using data simulated from the FE, OSE, and ESE

models. For the FE model, there are essentially no predictive gains on average from adding

i∗t to the yield principal components, with a median ∆R2 of 1 percentage point. This is not

surprising because this model imposes the null hypothesis that i∗t truly has no predictive power.

Given the persistent nature of yields and the trend and the econometric issues described by

36For the FE model, we separately simulate i∗t from a random walk process using the OSE parameters.
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Bauer and Hamilton (2018), the FE model’s 95 percent Monte Carlo interval for ∆R2 is not

centered around zero. However, it remains the case that the upper bound of this interval (4

percentage points) is much lower than the actual improvement in R2 from adding trends in

the data (12 percentage points), consistent with our rejections of the spanning hypothesis in

Section 3.2 using the bootstrap, which also simulated data under the null hypothesis.

For the OSE model, the predictive gains from adding i∗t are large: the median gain of 9

percentage points is close to the ∆R2 of 12 percentage points in the actual data. Importantly,

the Monte Carlo interval comfortably contains the value found in the data. For the ESE

model, the results are similar, with large model-implied predictive gains from including the

trend as an additional predictor. Overall, the shifting-endpoint models accurately replicate

the actual predictive gains from adding i∗t in regressions for excess bond returns.

In our shifting-endpoint model, shifts in i∗t are unspanned by the yield curve by construc-

tion. Why are changes in the trend unspanned in the data? The intuitive reason is the

following: Shifts in the level of the yield curve can occur because of either changes in the

underlying trend (see the loadings in Figure 6) or because of high-frequency movements in

interest rates relative to the trend. These two drivers have opposite implications for expec-

tations of future bond returns, and investors cannot distinguish between them.37 Therefore,

yields and macro trends contain important separate pieces of information for predicting future

interest rates.

To better understand the predictability of excess bond returns through the lens of our

model, we examine model-implied expected excess bond returns analytically. Leaving aside

constant terms that are irrelevant for predictability, bond risk premia are

Etrx
(n)
t+1 = B′n−1

(
EtPt+1 − EQt Pt+1

)
= B′n−1

(
(IN − ΦQ)γi∗t + (Φ− ΦQ)P̃t

)
, (8)

where Bn contains the affine loadings of the log bond price p
(n)
t on the risk factors Pt. The

derivation is given in Appendix C.3. The first expression shows the well-known result that time

variation in bond risk premia is due to differences in expectations of future yields under the

physical and risk-neutral probability measures. In the presence of a trend in yields, as in our

model, physical-measure (real-world) expectations depend not only on current yields (Pt) but

also on the shifting endpoint i∗t (see equation (3) or the VAR representation in Appendix C.1).

Hence, ignoring the trend misses an important part of the variation in EtPt+1 and understates

the predictability of bond returns. The second expression in equation (8) shows the separate

37Even in a term structure model with a spanned trend, the cross-sectional loadings of yields on i∗t would
differ only slightly from the loadings of the level factor in detrended yields, and small measurement errors
would make them effectively indistinguishable (Jorgensen, 2017).
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roles of trends and cycles for bond risk premia. The first term involves i∗t , which demonstrates

that bond risk premia—expected excess returns and, by extension, term premia—generally

contain a trend component.38 The second term demonstrates the important role of the cyclical

factors P̃t = WỸt, which are just linear combinations of detrended yields. Our results in Section

3.2 show that detrended yields capture essentially all of the predictability of excess returns,

which indicates that the second term in the final expression of equation (8) is the more relevant

one in practice and that the trend component in bond risk premia is small.

4.5 The term premium in long-term yields

Another perspective on the pricing of risk in Treasury bonds is given by the term premium

in long-term interest rates.39 As evident from the definition in equation (1), estimating the

term premium requires long-horizon projections of future short-term rates, which will depend

crucially on the nature of the long-run trend in interest rates. Furthermore, because the term

premium is the average of expected future excess bond returns, TP
(n)
t = n−1

∑n−2
j=0 Etrx

(n−j)
t+j+1,

our results about the importance of a trend in interest rates for predictions of excess bond

returns suggest that this trend should matter for the estimation of term premia as well.

Our baseline for comparison is the FE model in which the state variables follow a stationary

VAR. This special case of our no-arbitrage model with a constant endpoint i∗t is representative

of the conventional DTSM in the literature. The left panel of Figure 7 shows the five-to-ten-

year forward rate as well as its expectations component, i.e., the “risk-neutral rate,” and the

term premium as estimated from the FE model.40 The expectations component is estimated to

be very stable, and it remains near the unconditional mean of the short rate, the fixed endpoint

i∗. Therefore, the term premium, the residual, has to account for the trend in the long-term

interest rate since the 1980s. As argued by Kim and Orphanides (2012) and Bauer et al. (2012),

among others, such behavior by the expectations component and the term premium appears at

odds with observed trends in survey-based expectations (Kozicki and Tinsley, 2001) and with

the cyclical behavior of risk premia in asset prices (Fama and French, 1989). By allowing for

a long-run trend in interest rates, we avoid such counterfactual decompositions of long-term

rates into expectations and term premium. The right panel of Figure 7 shows the estimates

for the risk-neutral rate and the term premium from our no-arbitrage OSE and ESE models.

We also show (Bayesian) 95 percent credibility intervals for the risk-neutral rate obtained from

our ESE model, which account for the estimation uncertainty for both the parameters and

38Indeed, only if the model also contained a unit root under Q is it possible for the trend to drop out from
risk premia.

39Appendix C.6 provides details on the model-implied term premium.
40Results for the ten-year yield are qualitatively similar.
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the unobserved trend. Short-rate expectations are anchored at i∗t , and the cycle components

P̃t mean-revert relatively quickly; hence, the expectations component of the five-to-ten-year

forward rate closely mirrors this trend. For both shifting-endpoint models, movements in

the expectations component account for the majority of the low-frequency variation in the

observed interest rate. In particular, the estimates exhibit a pronounced downward trend

since the 1980s due to the decline in i∗t .

The forward term premium estimated from the shifting-endpoint models also exhibits

some moderate low-frequency swings, declining from around 4-5 percent in the early 1980s to

about 0-1 percent at the end of the sample. Because long-term interest rates exhibited more

pronounced secular movements than the estimates of the long-run trend i∗t , the estimated term

premium also contains a trend component. As discussed above in Section 4.3, yields load on i∗t

with coefficients larger than unity, and the term premium consequently has a positive loading

on this trend. Our estimates show that changes in the trend carry a positive risk premium.

From a macro-finance perspective, some downward trend in the term premium since the 1980s

is plausible. Notably, inflation risk declined substantially over this period as average inflation

declined, and the term premium includes compensation for this risk (Wright, 2011).41 But

the decline in the term premium is smaller and more plausible with a shifting rather than a

fixed endpoint. Our shifting-endpoint models attribute a majority of the secular decline in

interest rates not to the term premium but instead to the decline in long-run expectations of

future short-term rates. The drop in the forward rate from its average during 1980-1982 to its

average during 2015-2017 was close to 10 percentage points. According to the stationary FE

model, the estimated term premium accounts for 75 percent of this decline. In contrast, the

shifting-endpoint models attribute only 35 percent (OSE ) and 37 percent (ESE ) to the term

premium, while attributing the majority to a falling expectations component, in line with

the substantial downward shift in the underlying macro trends. Furthermore, the estimated

term premium with a shifting endpoint exhibits more pronounced cyclical variation, in line

with the notion that risk premia are countercyclical (Fama and French, 1993; Cochrane and

Piazzesi, 2005). This stark difference demonstrates how accounting for the slow-moving trend

component in interest rates fundamentally alters our understanding of the driving forces of

long-term interest rates, and bridges the gap between the secular trends in macroeconomics

and no-arbitrage models for the yield curve.

Using a shifting-endpoint model with a slow-moving trend component solves the knife-edge

41Furthermore, in theory, a decline in the term premium is consistent with the fall in the covariance between
nominal bond returns and stock returns since the 1980s, as emphasized by Campbell et al. (2017). A decline
in real risk premia would also be implied by a change in business cycle dynamics that increased persistent risk
relative to transitory risk, as described by Campbell (1986) and Beeler et al. (2012).
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problem of Cochrane (2007), who pointed out that assuming either stationarity or a random

walk for the level of interest rates leads to drastically different implications for expectations

and term premia, in both cases at odds with widely held views about interest rates. Imposing

a random walk for the level is known to forecast well but leads to the implausible implication

that the expectations component accounts for essentially all variation in yields. Imposing

stationarity, as shown in the left panel of Figure 7, leads to the implausible implication that

the term premium component accounts for all of the low-frequency variation in yields. Our

approach of assuming that interest rates contain a slow-moving common trend avoids both

extremes. It also delivers term premium estimates that are in line with the common macro-

finance priors and produces interest rate forecasts that outperform the random walk, as we

will show below.

In recent work, Crump et al. (2018) also estimate the term premium from a statistical

model with shifting endpoints and find a somewhat more variable term premium than we do.

Based on their estimates, the term premium accounts for just over half of the variance of

long-term interest rates, whereas it accounts for about one-third according to our estimates.42

While we use an arbitrage-free term structure specification, the different results largely reflect

how the shifting endpoint is identified. Crump et al. use survey data, and their i∗t closely

mirrors long-run survey expectations of the three-month T-bill rate. This estimate of i∗t is

fairly stable and implies a somewhat more limited role for trends and long-run expectations

and greater variability in the residual term premium.

Finally, we note that when interpreting model-based estimates of the term premium, it is

important to keep in mind that they assume rational expectations, which may not represent

the expectations of investors at each point in time. As shown by Piazzesi et al. (2015) and

Cieslak (2018), statistical estimates of risk premia are affected by persistent forecast errors

by investors, i.e., deviations from rational expectations.43 While this caveat also applies to

our estimates, models like ours that allow for shifting endpoints are better suited to capture

changes in long-run investor expectations that can result from learning about macroeconomic

trends and policies. Estimates of such models are also much less sensitive to the choice of

sample period than stationary DTSMs, which require inference about the unconditional mean

of the short-term interest rate, assumed to be constant (Orphanides and Wei, 2012). For

42Specifically, we calculated the same decomposition of the sample variance of forward rates as in Table 2
of Crump et al. (2018). For the variances of levels, they find that 53 to 56 percent is explained by the forward
term premium at maturities of five years and beyond. By contrast, over their sample period, we find that only
35 percent of the variance is explained by the term premium.

43While some might conclude that estimates of term premia should therefore rely exclusively on survey
expectations, there is no guarantee that expectations from surveys of professional forecasters are any closer to
the true subjective expectations of bond traders than statistical models.
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these reasons, our shifting-endpoint model is likely to be better able to recover true historical

investor expectations and bond risk premia.

4.6 Out-of-sample forecasts of interest rates

We now turn to out-of-sample (OOS) forecasts of long-term interest rates using our new

shifting-endpoint DTSM. Despite many advances in yield curve modeling, the random walk

model has proven very hard to beat when forecasting bond yields, due to the extreme persis-

tence of interest rates (Duffee, 2013). But our results so far suggest that one might be able to

obtain more accurate forecasts by accounting for the interest rate trend.

We construct out-of-sample forecasts using the OSE model, which proxies for i∗t with

the sum of the PTR estimate for π∗t and the real-time estimate of r∗t described in Section

2. We will compare these forecasts to those from the FE model and from a driftless random

walk.44 The models are recursively estimated—that is, using an expanding estimation window

using all data available up to each forecast date—starting in 1976:Q1 when five years of data

are available.45 We focus on forecasts of the ten-year yield; we have found results for other

maturities to be qualitatively similar. We forecast at horizons of 4, 10, 20, 30, and 40 quarters,

and because our data end in 2018:Q2 the last forecast date is 2008:Q2, for a total of 127

(overlapping) forecasts.46 The top panel of Table 5 reports the root mean-squared errors in

percentage points. We also calculate p-values for tests of equal finite-sample forecast accuracy

using the approach of Diebold and Mariano (1995) (DM).47 We calculate the DM p-values

using standard normal critical values for one-sided tests of the null hypothesis that the OSE

model does not improve upon the RW or FE forecasts. We find that the forecasts from

our common-trend model OSE are substantially and statistically significantly more accurate

than the FE model. For example, when forecasting 10 years ahead, model OSE lowers the

RMSE by about 40 percent relative to the FE model. The improvements relative to the

44We do not include estimates from the ESE model because the estimation of this model using our MCMC
sampler takes a significant amount of time, which renders recursive estimation with each additional available
observation period as required for out-of-sample forecasting computationally too burdensome.

45A rolling scheme, which uses only a fixed number of observations for parameter estimation, allows for
an easier asymptotic justification of tests for predictive ability (Giacomini and White, 2006) but requires a
specific choice of the window length. We have also obtained forecasts with such a scheme, using a variety of
different window lengths, and found qualitatively similar results as when using a recursive scheme.

46The last date for which we re-estimate the models is 2007:Q4, consistent with Section 4.2.
47Following common use, we construct the DM test with a rectangular window for the long-run variance

and the small-sample adjustment of Harvey et al. (1997). Monte Carlo evidence in Clark and McCracken
(2013) indicates that this test has good size in finite samples. However, for very long forecast horizons, the
long-run variance is estimated with considerable uncertainty because there are only a few such non-overlapping
observations in our sample.
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RW are smaller but still statistically significant.48 These results document that, relative to

conventional stationary models, more accurate Treasury yields forecasts can be obtained by

allowing for an underlying common trend in interest rates. Gains are even possible relative to

the random walk benchmark. In contrast to the random walk forecast, which simply assumes

all changes are permanent, accounting for i∗t , the underlying source of the highly persistent

changes in interest rates, improves forecast accuracy.49

Finally, we compare the accuracy of our statistical models to that of professional forecast-

ers. Since 1988, the Blue Chip Financial Forecasts (BC ) survey has asked its respondents

for long-range forecasts of interest rates twice a year. The respondents provide their average

expectations of the target variable for each of the upcoming five calendar years and for the

subsequent five-year period—we will focus on the five annual forecast horizons. We match the

available information sets by using only data up to the quarter preceding the survey date for

our model-based forecasts, and we exactly match the forecast horizons with the BC forecasts

by taking averages of model-based forecasts over the relevant calendar years. The sample

includes 48 forecast dates from March 1988 to December 2011. The bottom panel of Table

5 shows the RMSEs of the survey forecasts and the three model-based forecasts. Shifting-

endpoint forecasts based on i∗t improve over the RW forecasts in this sample as well, which

are better than the BC forecasts. Because of the smaller sample size and substantial overlap,

the gains of the OSE model are not as strongly significant, and for some horizons they are

insignificant. The gains relative to the FE model are again strongly significant. The reason for

the poor performance of the survey forecasts is that they consistently overpredict future yields,

in particular at long horizons (results not shown). Other studies have documented the poor

performance of survey forecasts of interest rates (e.g., van Dijk et al., 2014), which contrasts

with the very good performance of survey-based inflation forecasts (Ang et al., 2007; Faust

and Wright, 2013). Our results suggest that the underlying reason for this poor performance

is that professional forecasters have not sufficiently accounted for the shifting long-run trend

component in interest rates.

48We have found in additional, unreported analysis—using plots of differences in cumulative sums of forecast
errors over time—that the forecast gains of OSE are not driven by certain unusual subperiods but instead are
a consistent pattern over most of our sample period.

49Earlier research by van Dijk et al. (2014) found that, when forecasting interest rates, it is beneficial to link
long-run projections of interest rates to long-run expectations of inflation, but their forecasts do not account
for time variation in r∗t and are not based on an arbitrage-free model.
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5 Conclusion

In this paper, we have bridged the gap between macroeconomics and finance concerning the

role of long-run trends. We have provided compelling new evidence from a variety of perspec-

tives that interest rates and bond risk premia are substantially driven by time variation in the

perceived trend in inflation and the equilibrium real rate of interest. Our results demonstrate

that the links between macroeconomic trends and the yield curve are quantitatively important,

and that accounting for these time-varying trend components is important for understanding

and forecasting long-term interest rates and bond returns. Recent variation in the equilibrium

real rate is even more consequential than variation in the inflation trend. Our analysis first

established the links between macroeconomic trends and yields by taking as data various esti-

mates of the trends from surveys and models. However, to understand these results, we then

formulated and estimated a new no-arbitrage dynamic term structure model. In particular,

when estimated with just yield curve data, this model provides a new finance-based measure

of the trend in nominal interest rates that complements related estimates in the macroeco-

nomics literature. It also provides for the first time an internally consistent formulation of

that equilibrium trend and bond risk premia.

Our results provide strong support for using yield curve models that allow for slow-moving

changes in the long-run means of nominal and real interest rates instead of the stationary

dynamic specifications with constant means that are ubiquitous. We have developed a new

common-trend dynamic term structure model, but much future research remains to be done

in jointly estimating macro trends and yield curve dynamics. Three future research avenues

seem particularly promising: First, a joint model of real yields, nominal yields, and infla-

tion expectations that includes shifting endpoints could provide new separate estimates of π∗t

and r∗t . Second, combining our shifting-endpoint DTSM specification with the shadow-rate

paradigm (Bauer and Rudebusch, 2016) would allow for a sophisticated treatment of the ZLB,

which may provide additional insights into the behavior of macro trends over the ZLB pe-

riod. Third, one could consider changes over time in the variability of the trends by adding

stochastic volatility (as in Stock and Watson, 2007) in order to assess how our (mostly uncon-

ditional) results about the relative importance of trends are affected by taking a conditional

perspective.
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Appendix

A Trend estimates

A.1 Overview of trend estimates

Table A.1 provides an overview of all of the trend estimates used in our analysis. The first
five estimates of r∗t are obtained from models in published studies, and these are described
below in Appendix A.2 and shown in Figure A.1. Our own four estimates of r∗t are described
in Appendix A.3 and shown in Figure A.2. In Section 3, we use a “filtered” estimate and a
“real-time” estimate of r∗t , which are averages of the three filtered and six real-time estimates,
respectively. The real-time estimate of i∗t is the sum of the PTR estimate of π∗t and the real-
time estimate of r∗t . The ESE model estimate of i∗t is described in Section 4.2, with details in
Appendix C.8.

Table A.1: Overview of trend estimates

Trend Source Real-time Filtered Smoothed

r∗ Del Negro et al. (2017) (DGGT) Yes Yes
Johannsen and Mertens (2016) (JM) Yes Yes
Laubach and Williams (2016) (LW) Yes Yes
Holston et al. (2017) (HLW) Yes
Kiley (2015) Yes Yes

r∗ UC Yes Yes
Proxies Yes Yes
SSM Yes Yes
MA Yes

π∗t PTR Yes

i∗ Real-time Yes
ESE Yes

Overview of trend estimates used in the paper: five external sources of r∗, our own four estimates of r∗, the
PTR estimate of π∗, and two i∗ estimates. “Real-time” indicates (pseudo) real-time estimation of the trend
proxy, “filtered” indicates estimates from a (one-sided) Kalman filter using full-sample parameter estimates,
and “smoothed” indicates (two-sided) Kalman smoother or full-sample Bayesian estimate of the trend. All
trend estimates are quarterly from 1971:Q4 to 2018:Q1.

Our proxy estimate of the inflation trend π∗t is the Fed’s PTR measure, the perceived
target rate (PTR) of inflation. PTR measures expectations for inflation in the price index of
personal consumption expenditures (PCE). Consistent with this definition, our estimates of
r∗t are based on real interest rates relative to PCE inflation. Since 1979, PTR corresponds to
long-run inflation expectations from the Survey of Professional Forecasters (SPF). Before 1979,
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it is based on estimates from a learning model for expected inflation. For details see Brayton
and Tinsley (1996). Data are available at https://www.federalreserve.gov/econresdata/
frbus/us-models-package.htm.

The estimates of r∗t are described in the following. All of these estimates are based on the
assumption that the real rate contains a stochastic trend, i.e., a stochastic endpoint.

A.2 External estimates of r∗t

Del Negro et al. (2017) (DGGT) propose a number of Bayesian common-trend VARs to esti-
mate r∗t and its possible drivers. We focus on their baseline model in which three stochastic
trends, including r∗t and π∗t , are estimated from five data series: (1) observed PCE inflation,
(2) long-run inflation expectations from the PTR series, (3) the 3-month T-bill rate, (4) the
20-year Treasury yield and (5) long-run expectations of the 3-month yield. For details about
the data and model specification see their section II.A. We estimate their model using data
up to 2018:Q1 and replicate their published results. The trends are smoothed (two-sided)
estimates, as they are the posterior medians of the (MCMC) sampled trend series conditional
on the full data set. In addition, we recursively estimate their model starting in 1971:Q4,
expanding the data by adding one quarter at a time. The smoothed estimate of r∗t is shown in
the left panel of Figure A.1, and the recursive, real-time estimate is shown in the right panel.

Johannsen and Mertens (2016, 2018) (JM) propose a time series model for interest rates
with explicit treatment of the zero lower bound and stochastic volatility. For the version of
their model reported in Johannsen and Mertens (2016), they generously provided us with
updated estimates including both full-sample (smoothed/two-sided) and real-time estimated
series of r∗t . These are shown in Figure A.1.

While the two estimation approaches above use the long-run definition of r∗t that is the
relevant one for the trend in nominal interest rates (see Section 2), the following three ex-
ternal estimates use a different definition and estimation approach. The prominent model
of Laubach and Williams (2003, 2016)(LM), the slightly modified version of this model by
Holston, Laubach, and Williams (2017)(HLW), and the version by Kiley (2015) all use a sim-
ple linearized New Keynesian macro model—essentially the Rudebusch and Svensson (1999)
model—in which r∗t is estimated as the neutral real interest rate at which monetary policy is
neither expansionary nor contractionary.50 But despite this difference with long-run r∗t , these
estimates are still worth considering in our context for several reasons. First, in practice, their
“definition takes a ‘longer-run’ perspective, in that it refers to the level of real interest rates
expected to prevail, say, five to ten years in the future, after the economy has emerged from
any cyclical fluctuations and is expanding at its trend rate” (Laubach and Williams, 2016,
p. 57), so the definitions are effectively quite close. Second, in all three of these models the
neutral rate is a martingale, so at least as implemented within the models, the neutral real
rate is also the long-run trend in the real rate. Third, these are among the most widely used
estimates of r∗t both in the academic literature and in practice. Accordingly, these estimates
are useful additions to our analysis. A shortcoming of these estimates is that they are not

50Compared to the LW model, the HLW model excludes relative price shocks from the Phillips curve, uses
a simpler proxy for inflation expectations, and assumes a one-for-one effect of trend output growth on r∗t . In
Kiley’s model, the IS curve is augmented with credit spreads.
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available in real time. Of course, it would in principle be possible to recursively estimate these
models—and for a limited time period towards the end of our sample Laubach and Williams
(2016) have done this. But these macro-based estimates are by their nature very sensitive
to the macroeconomic data, in particular real GDP, so that real-time data issues become a
serious concern. We therefore only have filtered/one-sided estimates based on the full-sample
parameter estimates, and smoothed/two-sided estimates, which are shown in the middle and
right panels of Figure A.1.

We exclude two other prominent estimates of r∗t . Lubik and Matthes (2015) estimate r∗t as
the five-year forecast of the real rate from a time-varying parameter VAR model. This horizon
is too short to be comparable with our long-run trend, and their implementation leads to a
highly volatile estimate of r∗t . Christensen and Rudebusch (2017) estimate r∗t from yields on
Treasury inflation-protected Securities (TIPS) using a dynamic term structure model that
accounts for liquidity premia, but their sample only starts in 1998 with the introduction of
TIPS.

Figure A.1: External estimates of r∗t
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Estimates of r∗t from existing models. Left panel: smoothed/two-sided estimates. Middle panel: filtered/one-
sided estimates. Right panel: (pseudo) real-time estimates. The sample period is from 1971:Q4 to 2018:Q1.
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A.3 Details on our estimates of r∗t

Our first estimate is based on a univariate unobserved components (UC) model for the real
short-term interest rate, similar to Watson (1986). Recently, Fiorentini et al. (2018) have
argued that such univariate models can infer r∗t with greater precision than the LW model. We
use an ex-ante real interest rate calculated as the difference between the three-month Treasury
bill rate and core PCE inflation, that is, the four-quarter percent change in the price index
for personal consumption expenditures excluding food and energy items. (Inflation over the
past year serves as a proxy estimate for expectations of inflation over the next quarter.) The
real rate is decomposed into a random walk trend (r∗t ) and a stationary component (the real
rate gap, specified as an AR(1) process with zero mean), which are the two state variables of
the state-space model. The prior distributions for the parameters are uninformative, with the
exception of the variance for the innovations to the random walk component, i.e., for changes
in r∗t . We use a tight prior around a low value for this variance, similar to DGGT. Specifically,
the prior distribution for this variance is inverse-gamma, IG(α/2, δ/2), with α = 100 and
δ = 0.01(α+ 2). This implies that the mode is 0.01, and the variance of the change in r∗t over
100 years is 4, i.e., the standard deviation is 2 (percent). This is a slightly higher mode than
used by DGGT (their mode implies a standard deviation over 100 years of one percent). In
our MCMC sampler, we draw the unobserved state variables using the simulation smoother
of Durbin and Koopman (2002) and the parameters using standard Gibbs steps. For this
model and for the following two models below, we use random starting values to initialize
our MCMC chain, and we carefully monitor convergence of the MCMC sampler. For the
full-sample estimation we use 100,000 MCMC draws. For our recursive estimation, we start
in 1971:Q4 with 100,000 draws, and every time we add another observation, we obtain 20,000
more draws.

The second estimate (labeled “proxies”) is from a multivariate model, which augments the
UC model by two additional measurement equations relating r∗t to two proxies that recent
work has shown to be important correlates of the real rate trend. The first proxy is a ten-year
moving average of quarterly real GDP growth, and the second proxy is a ten-year moving
average of the quarterly growth rate in the total number of hours worked in the business
sector, i.e., labor force hours. The choice of these proxies is motivated by the results in
Lunsford and West (2017), who document strong low-frequency correlations between these
series and the real rate over a post-war sample. While these macroeconomic data are subject
to data revisions, in particular real GDP, the long moving averages and the use of these series
in extracting the long-run trend in the real rate lessens concerns that data revisions would
materially affect our real-time trend estimate. In the additional measurement equations, the
proxies are scaled by a parameter to be estimated and the measurement error is allowed to
be serially correlated. The model has four state variables: r∗t , the real-rate gap, and the
two measurement errors (AR(1) processes with non-zero means). The prior distributions are
uninformative, except again for the trend innovation variance, where the prior is the same as in
the UC model. We design a hybrid MCMC sampler: The scaling parameters are drawn using
random-walk Metropolis-Hastings steps with the state variables integrated out (i.e., using the
Kalman filter to obtain the likelihood for calculation of the acceptance probability). Then,
the state variables are sampled with the simulation smoother and the remaining parameters
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are drawn using Gibbs steps.
Our third estimate is from a state-space model (SSM) that is similar to the specification

by DGGT in that it includes both inflation and the nominal short rate, and it estimates
both r∗t and π∗t . The main differences are that we include neither survey expectations nor
long-run yields, and that our measurement equations are somewhat more standard. Our three
observation series are quarterly PCE inflation, the 3-month T-bill rate, and the PTR series
for long-run inflation expectations. In addition to the trends, the two other state variables are
the real-rate gap, rgt and the inflation gap, πgt , which follow a bivariate VAR with four lags.
The measurement equations are

πt = π∗t + πgt + eπt ,

PTRt = π∗t + ePTRt ,

y
(3m)
t = π∗t + Etπ

g
t+1 + r∗t + rgt + eyt ,

where eπt , ePTRt , and eyt are iid measurement errors, and Etπ
g
t+1 is implied by the VAR. The

priors are generally uninformative, and for the VAR we use the same Minnessota prior as
DGGT. For the variance of the innovations to both r∗t and π∗t we use smoothness prior similar
to the previous two models and the same prior modes for the variances as in DGGT (equivalent
to one percent and two percent standard deviation, respectively, for changes in trends over 100
years). The MCMC sampler simply combines the simulation smoother for the state variables
and Gibbs steps for the other parameters.

Finally, we also calculate a simple moving-average (MA) estimate of r∗t . The observed
real-rate series is the same as in the first two models above. Denoting this series by rt, we
calculate an exponentially-weighted moving average using the recursion r∗t = αr∗t−1+(1−α)rt,
which we start ten years before the beginning of our sample, in 1961:Q4, with r∗t = rt. We
use α = 0.98, a value in line with earlier work estimating macro trends.

A.4 Measurement error in macro trends

In establishing some stylized facts about a low-frequency macro-finance connection in Section
3, we treat the estimated macro trends as data. However, there is substantial model and
estimation uncertainty attached to the various point estimates of r∗t . Similarly, our survey-
based measure of the long-run inflation trend, π∗t , is also imprecise. How concerned should we
be about measurement error?

Our results show that measures of macro trends are closely connected to the yield curve and
that they contain important information for predicting future yields and returns. The effect
of measurement error in the trend estimates on our results depends on the structure of that
error. One possibility is that the trends are subject to classical measurement error, an error
that is orthogonal to the unobserved trend. In this case, it is well known that the coefficients
in our regressions would be both less precise and biased toward zero. An alternative possibility
is that the measurement error is orthogonal to the estimate of the trend, which may be more
plausible since our trend proxies are estimates of the underlying trend based on the available
information set (Mankiw and Shapiro, 1986). This type of measurement error would make our
estimates noisy though not necessarily biased (Hyslop and Imbens, 2001). For either type of
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Figure A.2: Our estimates of r∗t
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Our own four estimates of r∗t . Left panel: smoothed/two-sided estimates. Right panel: (pseudo) real-time
estimates. The sample period is from 1971:Q4 to 2018:Q1.

measurement error, the use of a noisy trend would likely lead to weaker estimated relationships
than the use of the true underlying trend. Hence, accounting for measurement error suggests
that our results should be viewed as a lower bound for the tightness of the connection between
the yield curve and the true macro trends.

Finally, we note that our trend measures were not created on purpose to match the evolu-
tion of Treasury yields. Therefore, the connections we find could well be stronger if the trend
estimates were optimized to exhibit a tight connection with or predictive power for long-term
yields.

B Additional results for Section 3

B.1 Persistence and common trends (Section 3.1)

Table B.1 documents the extremely high persistence of various measures of nominal Treasury
yields. It reports summary statistics for the two-year yield, y

(8)
t , the ten-year yield, y

(40)
t , and

the level of the yield curve, Lt, measured as the first principal component of yields (scaled
so that the loadings add up to one). Summary statistics are also reported for our macro
trends, including the inflation trend, our three estimates of the real rate trend—the filtered
estimate, r∗,Ft , the real-time estimate, r∗,RTt , and the moving-average estimate, r∗,MA

t —and
our real-time proxy for the equilibrium nominal short rate, i∗t = π∗t + r∗,RTt . To assess whether
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a simple difference between yields and trends can remove the extreme persistence and make
yields stationary we also report summary statistics for yields detrended in this way. Along
with standard deviations, the table reports two measures of persistence: the estimated first-
order autocorrelation coefficient, ρ̂, and the half-life, which indicates the number of quarters
until half of a given shock has died out and is calculated as ln(0.5)/ ln(ρ̂). It also includes two
tests for a unit root, the Augmented Dickey-Fuller (ADF) t-statistic and the non-parametric
Phillips-Perron (PP) Zα statistic. For the ADF test, we include a constant and k lagged
difference in the test regression, where k is determined using the general-to-specific procedure
suggested by Ng and Perron (1995), starting from four lags. For the PP test, we use a
Newey-West estimator of the long-run variance with four lags. In the last column, we report
the p-value for the null hypothesis of stationarity using the low-frequency stationarity test
(LFST) of Müller and Watson (2013).

The yields are highly persistent, with a first-order autocorrelation coefficient of 0.97 and a
half-life of around 22-27 quarters. Neither the ADF or PP tests reject a unit root, while the
LFST p-values reject stationarity for each series. This evidence suggests that nominal yields
can be effectively modeled as I(1) processes.

The macro trends are even more persistent. For example, our real-time estimate of r∗t
has an autocorrelation coefficient of 0.98 and a half-life of about 36 quarters. The inflation
trend and i∗t have autocorrelation coefficients of 0.99 and half-lives of 85 and 60 quarters,
respectively. Unsurprisingly, these macro trend proxies exhibit pronounced trend behavior,
that is, they also behave like I(1) processes.

The naive detrending method of subtracting trend proxies from yields leads to time series
with much lower persistence. If only the inflation trend is subtracted, the resulting series is
less persistent but still sufficiently trending that the evidence from all three tests favors a unit
root. When a real rate trend—r∗,Ft , r∗,RTt , or r∗,MA

t —is also subtracted off together with π∗t ,
the persistence drops further, and the evidence sometimes favors stationarity, depending on
the specific interest rate, real rate trend proxy, and unit root test. This extremely simple
detrending method, which makes the strong assumption that coefficients in the cointegration
vector of yields and macro trends are all one (in absolute value), has some success, but only
if both macro trends are accounted for. The evidence in Section 3.1 finds an even stronger
macro-finance link when the cointegration coefficients are slightly larger than one.

Table B.2 shows the results for a cointegration analysis similar to the one carried out in
Section 3.1, here applied to the level of the yield curve. The results are qualitatively similar
to those we reported in Table 1 for the ten-year yield.

B.2 Predicting excess returns (Section 3.2)

For assessing the predictive power of macro trends for excess bond returns, the main text
focuses on returns that are averaged across bond maturities from two to 15 years. Table
B.3 shows (full-sample) estimates for individual maturites. It compares the usual yields-only
specification to the specification that also includes our estimate of the long-run nominal short
rate i∗t . For all maturities, the addition of i∗t (i) substantially raises R2, (ii) makes both the
level (PC1) and slope (PC2) strongly significant predictors, and (iii) leads to a large and
strongly significant coefficient on i∗t itself. This trend coefficient has the opposite sign and
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Table B.1: Persistence of interest rates, macroeconomic trends, and differences

Series SD ρ̂ Half-life ADF PP LFST

y
(8)
t 3.54 0.97 21.9 -1.25 -4.59 0.00

y
(8)
t − π∗t 2.26 0.93 9.1 -2.07 -11.09 0.00

y
(8)
t − π∗t − r

∗,F
t 1.61 0.87 4.9 -3.21** -22.58*** 0.11

y
(8)
t − π∗t − r

∗,RT
t 2.00 0.92 7.8 -2.24 -13.23* 0.00

y
(8)
t − π∗t − r

∗,MA
t 2.05 0.91 7.8 -2.35 -13.83* 0.01

y
(40)
t 2.94 0.97 26.4 -1.13 -3.11 0.00

y
(40)
t − π∗t 1.67 0.93 9.4 -2.32 -9.72 0.01

y
(40)
t − π∗t − r

∗,F
t 1.17 0.87 5.0 -3.61*** -22.87*** 0.23

y
(40)
t − π∗t − r

∗,RT
t 1.33 0.90 6.7 -2.51 -15.16** 0.00

y
(40)
t − π∗t − r

∗,MA
t 1.36 0.90 6.8 -3.04** -16.01** 0.01

Lt 3.13 0.97 26.6 -1.20 -3.42 0.00
Lt − π∗t 1.84 0.93 9.8 -1.91 -9.69 0.00

Lt − π∗t − r
∗,F
t 1.24 0.87 4.8 -2.99** -23.03*** 0.20

Lt − π∗t − r
∗,RT
t 1.54 0.91 7.7 -2.19 -13.05* 0.00

Lt − π∗t − r
∗,MA
t 1.58 0.91 7.6 -2.36 -13.90* 0.01

π∗t 1.60 0.99 85.4 -0.62 -1.16 0.00

r∗,Ft 1.03 0.97 27.2 -0.67 -1.16 0.00

r∗,RTt 0.59 0.98 36.2 -0.77 -1.04 0.03

r∗,MA
t 0.70 0.98 43.4 -0.75 1.31 0.03

i∗t = π∗t + r∗,RTt 1.72 0.99 59.7 -0.30 -0.28 0.00

Standard deviation (SD); first-order autocorrelation coefficient (ρ̂); half-life (ln(0.5)/ ln(ρ̂)); Augmented
Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root test statistics (with ∗,∗∗ and ∗∗∗ indicating signif-
icance at 10%, 5%, and 1% level) and p-values for Mueller-Watson low-frequency stationary test (LFST), for

the two-year yield, y
(8)
t , the ten-year yield, y

(40)
t , the level of the yield curve (the first principal component

of yields), Lt, the detrended yields, and macro trends. The r∗-estimates are the filtered (“F”), real-time
(“RT”) and moving-average (“MA”) estimates described in Section 2. The data are quarterly from 1971:Q4
to 2018:Q1.
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Table B.2: Cointegration regressions and tests for the level of the yield curve

Level (1) (2) (3) (4) (5)

constant 6.48 -0.23 -1.17 -2.59 -0.84 -3.06
(0.55) (0.62) (0.35) (0.44) (0.42) (0.37)

π∗t 1.76 1.31 1.56 1.45
(0.13) (0.11) (0.08) (0.09)

r∗t 1.13 1.90 1.11
(0.15) (0.16) (0.12)

i∗t 1.75
(0.07)

R2 0.83 0.93 0.96 0.97 0.94
Memo: r∗ filtered real-time mov. avg. real-time
SD 2.94 1.39 1.10 0.85 1.10 0.81
ρ̂ 0.97 0.87 0.82 0.72 0.81 0.67
Half-life 26.4 5.1 3.5 2.1 3.3 1.8
ADF -1.13 -2.68 -3.44 -3.92** -3.44 -4.26**
PP -3.11 -20.07* -31.16** -51.73*** -32.57** -61.30***
LFST 0.00 0.04 0.28 0.37 0.10 0.84
Johansen r = 0 10.10 29.31 43.26*** 38.11** 21.19**
Johansen r = 1 0.90 5.96 11.13 10.22 0.71
ECM α̂ -0.10 -0.16 -0.29 -0.33 -0.32

(0.03) (0.05) (0.07) (0.09) (0.07)

Dynamic OLS regressions for the level of the yield curve, Lt, (the first principal component of yields) on
macroeconomic trends, including four leads and lags of ∆Lt and differenced trend variables. Newey-West
standard errors using six lags are in parentheses. The r∗ estimates are described in Section 2, and the long-run
nominal short rate i∗t is the sum of π∗t and the real-time estimate of r∗t . For the cointegration residuals (and,
in the first column, for the yield level itself), the second panel reports standard deviations (SD), first-order
autocorrelation coefficients (ρ̂), half-lives (ln(0.5)/ ln(ρ̂)), Augmented Dickey-Fuller (ADF) and Phillips-Perron
(PP) unit root test statistics, and p-values for Mueller-Watson low-frequency stationary test (LFST). The table
also reports the Johansen trace statistic which tests whether the cointegration rank (r) among the Lt and the
macro trends is zero/one against the alternative that it exceeds zero/one, using four lags in the VAR. For
ADF, PP and Johansen tests ∗,∗∗ and ∗∗∗ indicate significance at 10%, 5%, and 1% level. Estimates of the
coefficient α (with White standard errors) on the cointegration residual in the error-correction model (ECM)
for ∆Lt that also includes an intercept, four lags of ∆Lt, and four lags of differenced macro trends. The data
are quarterly from 1971:Q4 to 2018:Q1.
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Table B.3: Excess return regressions for individual maturities

Yields only Yields and i∗

PC1 PC2 PC3 R2 PC1 PC2 PC3 i∗ R2

2y 0.06 0.05 -0.65 0.05 0.70 0.12 -0.26 -1.19 0.15
(0.06) (0.06) (0.50) (0.22) (0.05) (0.52) (0.37) [0.02]

5y 0.08 0.22 -1.72 0.08 1.53 0.38 -0.80 -2.74 0.18
(0.11) (0.12) (0.87) (0.41) (0.10) (0.89) (0.70) [0.00]

7y 0.08 0.34 -2.19 0.08 2.06 0.56 -0.94 -3.74 0.19
(0.14) (0.15) (1.11) (0.53) (0.13) (1.14) (0.90) [0.00]

10y 0.09 0.51 -2.74 0.09 2.90 0.83 -0.96 -5.31 0.20
(0.20) (0.20) (1.56) (0.71) (0.18) (1.57) (1.23) [0.00]

15y 0.08 0.83 -3.70 0.09 4.13 1.28 -1.15 -7.64 0.21
(0.28) (0.29) (2.20) (0.99) (0.26) (2.17) (1.72) [0.00]

Predictive regressions for quarterly excess returns on bonds with maturities 2, 5, 7, 10 and 15 years. The
predictors are the first three principal components of yields (PC1, PC2, PC3) and, in the second specification,
the long-run nominal short rate i∗t , the sum of π∗t and the real-time estimate of r∗t (see Section 2). Numbers
in parentheses are White standard errors and in squared brackets are small-sample p-values for the spanning
hypothesis (that the coefficient on i∗t is zero) obtained with the bootstrap method of Bauer and Hamilton
(2018). The data are quarterly from 1971:Q4 to 2018:Q1.

a somewhat larger magnitude than the coefficient on the level. These findings all closely
parallel those in reported in Table 2. In addition, the results show that the coefficients on
both yield predictors and i∗t rise with maturity, due to the fact that return volatility scales
with bond maturity. Finally, it is noteworthy that for the two-year maturity, excess returns
appear unpredictable with yield information alone, but become strongly predictable once our
trend proxy is added.

In the presence of persistent predictors, it is generally difficult to interpret the magnitude of
R2 as a measure of predictive accuracy, because persistent predictors that are truly irrelevant
in population can substantially increase R2 in small samples (Bauer and Hamilton, 2018). To
be able to better interpret the R2 we use our bootstrap to generate small-sample distributions
of R2 under the spanning hypothesis (that is, under the null that the three PCs of yields
contain all the relevant information for predicting returns). We then compare the statistics
obtained in the actual data to the quantiles of these bootstrap distributions. If the level or
change of a regression R2 is outside of the 95%-bootstrap interval then the regression results
are inconsistent with the spanning hypothesis and suggest that additional predictors beyond
yields alone are statistically significant.

The top panel of Table B.4 reports this comparison for the specifications with (i) only
yields, (ii) yields and π∗t , (iii) yields, π∗t and the real-time estimate of r∗t , and (iv) yields and
i∗t . Adding π∗t to the regression increases R2 by 7 percentage points, while the 95%-bootstrap
interval indicates that under the null hypothesis it would be uncommon to observe an increase
in R2 of more than 5 percentage points. Adding the real-time r∗t estimate increases R2 to
21%, and the increase relative to the yields-only specification is 12 percentage points, while
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Table B.4: Predictive power: R2 with small-sample bootstrap intervals

Full sample: 1971:Q4–2018:Q1 Subsample: 1985:Q1–2018:Q1

Predictors R2 ∆R2 R2 ∆R2

Yields only 0.09 0.08
[0.03, 0.19] [0.03, 0.18]

Yields and π∗t 0.16 0.07 0.10 0.02
[0.04, 0.20] [0.00, 0.05] [0.04, 0.19] [0.00, 0.05]

Yields, π∗t and r∗t 0.21 0.12 0.19 0.10
[0.05, 0.21] [0.00, 0.07] [0.05, 0.20] [0.00, 0.07]

Yields and i∗t 0.21 0.12 0.16 0.07
[0.04, 0.20] [0.00, 0.04] [0.04, 0.19] [0.00, 0.04]

Yields detrended by π∗t 0.15 0.07 0.08 -0.00
[0.03, 0.19] [-0.03, 0.04] [0.03, 0.18] [-0.03, 0.04]

Yields detrended by π∗t and r∗t 0.18 0.09 0.17 0.09
[0.04, 0.19] [-0.04, 0.05] [0.03, 0.18] [-0.04, 0.05]

Yields detrended by i∗t 0.20 0.12 0.14 0.06
[0.03, 0.19] [-0.03, 0.03] [0.03, 0.18] [-0.03, 0.03]

Predictive power of regressions for quarterly excess bond returns, averaged across two- to 15-year maturities.
The predictors are three principal components (PCs) of yields, the PTR estimate of the inflation trend π∗t ,
our real-time estimate of the equilibrium real rate r∗t , and the equilibrium nominal short rate i∗t taken as
the sum of these inflation and real-rate trend estimates. The last three specifications use detrended yields,
that is, three PCs of the yield residuals in regressions on (i) π∗t , (ii) π∗t and r∗t , or (iii) i∗t . Increase in R2

(∆R2) is reported relative to the first specification with only PCs of yields. Numbers in square brackets are
95%-bootstrap intervals obtained by calculating the same regressions statistics in 5,000 bootstrap data sets
generated under the (spanning) null hypothesis that only yields have predictive power for bond returns, using
the bootstrap method of Bauer and Hamilton (2018).

the bootstrap suggests an increase of at most 7 percentage points would be plausible under the
null. Adding just i∗t also increases R2 by 12 percentage points—much more than is plausible
under the null. In the post-1985 subsample, the increase in R2 from only adding π∗t is not
statistically significant, whereas the increases from adding either both macro trends or only
i∗t are significant.

C Details on dynamic term structure model

C.1 Dynamic system

The evolution of the state variables under the real-world (or physical) probability measure,
denoted as the P-measure, is given by equation (3), the common trends representation of the
dynamic system (Stock and Watson, 1988). The state variables Zt = (τ, P ′t)

′ are cointegrated:
β′Zt ∼ I(0), with β = (−γ, IN)′ an obvious choice for the N cointegration vectors. Yields are
also cointegrated with a single common trend, as evident from equation (7).
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To derive the VAR representation of the dynamic system, substitute for P̃t and P̃t−1 in the
VAR equation, using P̃t = Pt − P̄ − γτt. This yields

Pt = (IN − Φ)P̄ + ΦPt−1 + γτt − Φγτt−1 + ũt

= (IN − Φ)P̄ + (IN − Φ)γτt−1 + ΦPt−1 + ut,

where the last equation defines the innovations to Pt, ut = γηt + ũt, which have covariance
matrix Ω = E(utu

′
t) = γγ′σ2

η + Ω̃. Thus, the VAR representation for Zt is

Zt = µZ + ΦZZt−1 + vt, vt = (ηt, u
′
t)
′, (C.1)

with

µZ =

(
0

(In − Φ)P̄

)
,

ΦZ =

(
1 01×N

(IN − Φ)γ Φ

)
,

and innovation covariance matrix

Ωv = E(vtv
′
t) =

(
σ2
η γ′σ2

η

γσ2
η Ω

)
.

This is obviously a cointegrated VAR with one common trend and N cointegration vectors
since ΦZ has exactly one eigenvalue equal to unity.

The vector-error-correction (VEC) representation is

∆Zt = µZ + αβ′Zt−1 + vt, α =

(
0

Φ− IN

)
, β =

(
−γ′
IN

)
,

where ΦZ − IN+1 = αβ′. Since the intercept can be written as µZ = −αβ′(0, P̄ ′)′, the coin-
tegration residual is β′

(
Zt−1 − (0, P̄ ′)′

)
= P̃t−1. It Granger-causes the yield factors according

to the last N equations of the VEC representation, which can be written as

∆Pt = (Φ− IN)P̃t−1 + ut.

That is, deviations of the time-t yield factors from their equilibrium, Pt = P̄ +γτt, are reduced
over time by future changes in yields.

C.2 Risk-neutral dynamics and stochastic discount factor

The dynamic system under the risk-neutral measureQ is given in equation (6). We assume that
under Q the yield factors follow a stationary VAR. This specification avoids the counterfactual
implication of a unit root under Q that yields and forward rates diverge to minus infinity with
maturity—in that case the conditional variance of future short rates, and hence the convexity
in yields, would be unbounded, as discussed below in C.3.

From the short rate equation (5) and the Q-dynamics (6) it follows that the long-run mean
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of the short rate under Q is constant and given by

EQ(it) = δ0 + δ′1E
Q(Pt) = δ0 + δ′1(IN − ΦQ)−1µQ.

It further follows from our specification that the trend τt is unspanned by yields, meaning
that there is no deterministic mapping from Pt (or model-implied yields) to τt. Formally, the
requirement for τt to be an unspanned risk factor is

EQ(it+h|Pt, τt) = EQ(it+h|Pt), for all h,

see Joslin et al. (2014). Since neither the short rate it (see equation 5) nor expectations of
future yield factors Pt+h (see equation 6) depend on τt once we condition on Pt, this requirement
is trivially satisfied. Note that the Q-dynamics of τt are not identified because yields and bond
prices are not sensitive to movements in τt. If we had allowed for unit eigenvalue of ΦQ, so
that the long-run risk-neutral mean of the short rate would be time-varying, this Q-endpoint
would be spanned by Pt and not deterministically related to τt.

Two key features of our risk-neutral distribution for Pt are its stationarity and its in-
dependence of τt. We now explain how these risk-neutral dynamics are reconciled with the
non-stationary unit root dynamics under the real-world probability measure that are central
to our paper. As in Joslin et al. (2014), the stochastic discount factor (SDF) for the bond
market is the projection of the economy-wide SDF on the risk factors driving bond prices, Pt.
Our specification implies that the SDF is exponentially affine:

Mt+1 = exp(−it −
1

2
λ′tλt − λ′tεt+1) (C.2)

with εt = Ω−1/2ut, where Ω1/2 is the Cholesky decomposition of Ω.51 Shocks to τt do not
affect the SDF because these risks are unspanned. The risk prices λt depend on all risk
factors—including τt—according to the affine function

λt = Ω−1/2(λ0 + λ1Zt), (C.3)

where λ0 is a N -vector and λ1 is a N × (N + 1) matrix of risk sensitivities. To see how this
SDF reconciles our real-world and risk-neutral dynamic specifications, and to find λ0 and λ1,
we derive the risk-neutral distribution of Pt+1 conditional on Pt and τt from the real-world
distribution and the SDF, using standard tools (Ang and Piazzesi, 2003; Le et al., 2010;
Bauer, 2018). The conditional Laplace-transform (that is, the conditional moment-generating

51That is, Ω1/2 is lower triangular and satisfies Ω = Ω1/2(Ω1/2)′.
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function) under Q is

EQ(exp(u′Pt+1)|Zt) = E(exp(u′Pt+1 −
1

2
λ′tλt − λ′tεt+1)|Zt)

= E(exp(u′(µP + ΦPZZt + Ω1/2εt+1)−
1

2
λ′tλt − λ′tεt+1)|Zt)

= exp(u′(µP + ΦPZZt) +
1

2
u′Ωu− u′Ω1/2λt)

= exp(u′(µP − λ0 + (ΦPZ − λ1)Zt) +
1

2
u′Ωu).

The first equality changes the probability measure using our SDF and the fact that for any
t+ 1-measurable random variable Xt+1 we have EQt (Xt+1) = Et(Mt+1Xt+1)/Et(Mt+1).

52 The
second equality plugs in the dynamic process for Pt+1 from equation (C.1), with µP denoting
the last N elements of µZ and ΦPZ denoting the last N rows of ΦZ . The third equality uses
the mean of a log-normal distribution. The fourth and last equality substitutes for Ω1/2λt from
equation (C.3). Since the moment-generating function for a multivariate normal distribution
with mean µ and covariance matrix Σ is exp(u′µ+0.5u′Σ′u) we see that underQ the conditional
distribution of Pt+1 is Gaussian with mean µp − λ0 + (ΦPZ − λ1)Zt and covariance matrix Ω.

That is, EQt Pt+1 = EtPt+1 − λ0 − λ1Zt = EtPt+1 − Ω1/2λt. In light of equations (6) and (C.1)
we conclude that

λ0 = µP − µQ = (In − Φ)P̄ − µQ (C.4)

and
λ1 = ΦPZ −

[
0N×1,Φ

Q
]

=
[
(IN − Φ)γ,Φ− ΦQ

]
. (C.5)

By construction, the trend τt does not affect the risk-neutral conditional expectations of future
Pt+1. Thus, the risk sensitivities for τt (in the first column of λ1) have to exactly equal
the sensitivities of real-world conditional expectations of Pt+1 to τt (in the first column of
ΦPZ). Some authors (e.g. Duffee, 2011; Bauer and Rudebusch, 2017) speak of “knife-edge”
restrictions when constraints lead to such cancellations and render certain factors unspanned.
These restrictions imply that movements in a factor that is unspanned (τt in our case) lead
to changes in term premia that exactly offset the changes in expectations, leaving yields
unchanged. The risk sensitivities for Pt (in the last three columns of λ1) are unconstrained,
except that the implied ΦQ must have eigenvalues less than unity in absolute value.

C.3 Affine loadings

Prices of zero-coupon bonds are exponentially affine. Specifically, if p
(n)
t denotes the log-price

of an n-period bond, p
(n)
t = An + B′nPt, and the coefficients can be found using the pricing

equation exp
(
p
(n+1)
t

)
= EQt exp

(
−itp(n)t+1

)
. They follow the usual recursions (e.g., Ang and

52The density of the risk-neutral measure with respect to the real-world measure, also known as the Radon-
Nikodym derivative, is

dQ

dP
=

Mt+1

Et(Mt+1)
= exp

(
−1

2
λ′tλt − λ′tεt+1

)
.
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Piazzesi, 2003):

An+1 = An + B′nµQ +
1

2
B′nΩBn − δ0 (C.6)

Bn+1 = (ΦQ)′Bn − δ1 (C.7)

with initial conditions A0 = 0 and B0 = 0.53 Yields are affine functions of the factors:

y
(n)
t = An +B′nPt An = − 1

n
An, Bn = − 1

n
Bn.

If we denote the vector of J yields that are included in our model as Yt, we can write Yt =
A+BPt for J-vector A = (An1 , . . . , AnJ

)′, and J ×N matrix B = (Bn1 , . . . , BnJ
)′.

It is often useful to work with forward rates instead of yields, and we use them here
to develop intuition about the role of the trend τt. We consider one-period forward rates
f
(n)
t = p

(n)
t − p

(n+1)
t . Yields are averages of forward rates, y

(n)
t = n−1

∑n−1
j=0 f

(n)
t . Forward rates

depend on the risk factors as follows:

f
(n)
t = An −An+1 + (Bn − Bn+1)

′Pt

= −1

2
B′nΩBn︸ ︷︷ ︸

convexity

+ δ0 − B′nµQ + δ′1(Φ
Q)nPt︸ ︷︷ ︸

expected short rate under Q

= constant + δ′1(Φ
Q)nγτt + δ′1(Φ

Q)nP̃t (C.8)

The first equality simply uses the definition of the forward rate and the affine form for log
bond price. The second equality follows from the recursions (C.6)-(C.7). It shows that forward
rates are equal to a (negative) convexity term plus risk-neutral expected future short rates,
EQt it+n = δ0 + δ′1E

Q
t Pt+n. The last equality substitutes for Pt from (3) to show the loadings

of forward rates on the trend and cycle factors.
The convexity term in the expression for forward rates is −1

2
B′nΩBn. Yield convexity is

the average of forward rate convexity. Since the Q-dynamics are stationary, Bn converges to
a finite limit as n tends to infinity, and so does the convexity in yields and forward rates.
If, by contrast, ΦQ had an eigenvalue on the unit circle, convexity and therefore yields and
forward rates would diverge to minus infinity. This fact, discussed in Campbell et al. (1997,
p. 433), is an important reason why term structure models are usually specified with stationary
risk-neutral dynamics, and we follow this tradition here.

Of particular interest are the loadings of forward rates on the trend, which are δ′1(Φ
Q)nγ.

For the short rate, it = f
(0)
t , this loading is one, since we have normalized δ′1γ = 1 in order

53The closed-form solution for Bn is

Bn = −

n−1∑
j=0

(
ΦQ
)j′ δ1 = −

[(
IN − ΦQ

)−1 (
IN − (ΦQ)n

)]′
δ1, lim

j→∞
Bn = −

[(
IN − ΦQ

)−1]′
δ1,

where the second equality and the existence of the limit rely on our assumption that ΦQ has no eigenvalues
on the unit circle.
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to identify τt as the equilibrium short rate i∗t . Because the Q-dynamics are stationary, these
loadings converge to zero with increasing maturity n, as do all yield and forward rate loadings—
the limiting forward rate/bond yield is a constant. Importantly, for the yield maturities
included in our data, our model estimates imply yield and forward rate loadings on τt that are
above one, due to the effects of the term premium to be discussed below. That is, loadings on
the trend show a pronounced hump shape, increasing from one (for the short rate) to above one
(for the horizons of practical interest), and then gradually decreasing thereafter. Of course, in
practice the largest eigenvalue of ΦQ is below but very close to one, which makes it possible
that even the interest rates with the longest observed maturities can exhibit significant time
variation as well as larger than one-for-one responses to changes in the long-run trend.

C.4 JSZ normalization

We follow Joslin et al. (2014), who also estimate a model with unspanned risk factors, in
imposing the normalization of Joslin et al. (2011)(JSZ) on the yield factors Pt. This normal-
ization is convenient because it imposes all identifying restrictions on the Q-dynamics, so that
the real-world dynamics can be estimated without restrictions.

The JSZ normalization works as follows: First, start with N latent factors Xt and impose
normalizing restrictions on their Q-dynamics. Second, use the affine mapping

Pt = WYt = WAX +WBXXt, (C.9)

where AX and BX are the affine yield loadings on Xt, to obtain the Q-parameters and yield
loadings for Pt in terms of the parameters/loadings of Xt.

The normalizations are (i) it = ι′Xt, (ii) µQX = (kQ, 0, 0)′ and (iii) ΦQX = diag(λQ), with
real, distinct, descending-ordered diagonal elements λQ that are assumed to be less than one
in absolute value.54 The loadings of yields on Pt, A and B, are easily calculated from AX and
BX using the mapping in equation (C.9). Alternatively, one can first calculate the “rotated”
parameters µQ, ΦQ, δ0 and δ1, and then use the recursions (C.6)-(C.7) to calculate the loadings
A and B. Importantly, the yield loadings only depend on the parameters kQ, λQ and Ω. The
normalization ensures the consistency conditions WA = 0 and WB = IN so that we indeed
have WYt = Pt.

C.5 Excess bond returns

Model-implied excess bond returns are

rx
(n)
t+1 = p

(n−1)
t+1 − p(n)t − it = An−1 + B′n−1Pt+1 −An − B′nPt − δ0 − δ′1Pt

= −1

2
B′n−1ΩBn−1 + B′n−1

(
Pt+1 − µQ − ΦQPt

)
= −1

2
B′n−1ΩBn−1 + B′n−1

(
EtPt+1 − EQt Pt+1

)
+ B′n−1ut+1.

54JSZ show that it is possible to allow for repeated and complex eigenvalues.
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where the second line uses the coefficient recursions (C.6)-(C.7) and the third line uses condi-
tional expecations of Pt+1 under the real-world and risk-neutral mesures (from equations C.1
and 6). Expected excess returns, adjusted for the convexity term, are thus

Etrx
(n)
t+1 +

1

2
V artrx

(n)
t+1 = B′n−1Ω1/2λt = B′n−1(λ0 + λ1Zt)

= B′n−1
[
λ0 + (IN − Φ)γτt + (Φ− ΦQ)Pt

]
(C.10)

= B′n−1
[
λ0 + (Φ− ΦQ)P̄ + (IN − ΦQ)γτt + (Φ− ΦQ)P̃t

]
, (C.11)

where the first equality uses the fact that the prices of risk capture the difference between
real-world and risk-neutral conditional expectations, the second line uses the risk sensitivities
given in (C.5), and the third line substitutes for Pt to show the loadings of expected excess
returns on the ternd and cycle factors.

Again, the loadings on the trend τt are most interesting. Equation (C.10) shows that
when holding the yield factors Pt constant, the loadings on τt are B′n−1(IN −Φ)γ. Our model
estimates imply substantially negative values for these loadings, across all n, in line with
the regression estimates in Section 3.2. An increase in the trend ceteris paribus means that
yields will adjust upward causing negative excess returns for bond holders. If instead we hold
the yield cycles P̃t constant, the loadings on τt are B′n−1(IN − ΦQ)γ, as shown by equation
(C.11). These loadings tend to be an order of magnitude smaller, consistent with the findings
in Section 3.2 that predictive regressions including only detrended yields capture most of the
predictability of excess bond returns, and they are positive because risk premia are positively
related to movements in the trend.

C.6 Term premium

The term premium is the difference of a long-term interest rate and that rate’s expectations
component. In equation (1) this expectations component was for simplicity given as the
average of expected future short rates. But in the context of no-arbitrage term structure
models, it is advantageous to instead use “risk-neutral rates” which, like yields, account for
the convexity of bond prices. Specifically, the risk-neutral yield on an n-period bond is

ỹ
(n)
t = − logEt exp

(
−

n−1∑
j=0

it+j

)
/n,

which differs from the average expected future short rate
∑n−1

j=0 Etit+j/n by a Jensen’s in-
equality term. The risk-neutral yields are affine in Zt, and the loadings are calculated using
recursions similar to those in equations (C.6)- (C.7), with µZ and ΦZ replacing µQ and ΦQ,
Ωv replacing Ω, and an N + 1 vector (0, δ′1)

′ replacing δ1. Crucially, risk-neutral yields depend
on both τt and Pt, since τt affects real-world expectations of future short rates. The term
premium on an n-period bond is then defined as

TP
(n)
t = y

(n)
t − ỹ

(n)
t .
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Because the real-world dynamics feature a unit root, risk-neutral rates diverge to minus
infinity (and the term premium to infinity) as maturity increases. This issue is neither of
theoretical nor practical concern: First, no tradeable securities have payoffs tied to these
quantities. Second, at the maturities we focus on, due to the high persistence of the risk-
neutral dynamics, the convexity in actual and risk-neutral yields is quite similar, and estimates
of the term premium are not noticeably affected by convexity.

We again turn to forward rates for intuition. Using the notation p̃
(n)
t = Ãn + B̃nZt for log

risk-neutral bond prices and their loadings, the risk-neutral forward rate is

f̃
(n)
t = p̃

(n)
t − p̃

(n+1)
t = Ãn − Ãn+1 + (B̃n − B̃n+1)

′Zt

= −1

2
B̃′nΩvB̃n + δ0 − B̃′nµZ + (0, δ′1)Φ

n
ZZt

= −1

2
B̃′nΩvB̃n + δ0 + (0, δ′1)EtZt+n

= −1

2
B̃′nΩvB̃n + δ0 + δ′1(P̄ + γτt + EtP̃t+n)

= constant + τt + δ′1Φ
nP̃t, (C.12)

where the second line follows from the recursions for the risk-neutral loadings, the third line
recognizes and replaces the conditional expectations for Zt+n, the fourth line uses the fact
that (0, δ′1)EtZt+n = δ′1EtPt+n and substitutes for EtPt+n, and the last line uses the facts that

δ′1γ = 1 and EtP̃t+n = ΦnP̃t. These derivations clearly show that f̃
(n)
t = Etit+n + convexity,

and that these expectations are of course affected one-for-one by the trend τt = i∗t . Equations
(C.8) and (C.12) imply that the forward term premium is

ftp
(n)
t = f

(n)
t − f̃

(n)
t = constant + δ′1

[
(ΦQ)n − IN

]
γτt + δ′1

[
(ΦQ)n − Φn

]
P̃t.

The loadings on τt have a limit of -1 as n tends to infinity, but for the maturities relevant in
practice our model estimates imply that these loadings are positive. That is, for the interest
rate maturities we focus on (up to 15 years), forward rates have loadings on τt that are above
one, as discussed above in C.3, because forward term premia have loadings on τt that are
above zero. Since yields are just averages of forward rates, the same holds for yields and
the yield term premium: yield loadings on the trend are larger than one, consistent with the
cointegration regressions reported in Section 3.1, and term premia have loadings on the trend
that are positive.

C.7 Estimation with observed shifting endpoint

In this implementation of our shifting-endpoint DTSM, we use an empirical proxy for τt = i∗t
and treat this state variable as observable. Furthermore, Pt is assumed to be observable, in
which case, WY o

t = WYt or Wet = 0. Thus, there are effectively only J − N independent
measurement errors (see Joslin et al., 2011). We use the loadings for the first three principal
components of observed yields to construct the three factors Pt, as is commonly done (e.g.,
Joslin et al., 2011). That is, the rows of W contain the first three eigenvectors of the sample
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covariance matrix of Y o
t .

Because all of the state variables in Zt are observable, estimation is quite simple: Not
only can the model’s likelihood function be evaluated without the Kalman filter, we can also
concentrate out the parameters Φ and σ2

e from the likelihood. That is, for given values of kQ,
λQ, γ, P̄ , Ω, and σ2

η, we can analytically obtain the values of Φ and σ2
e that maximize the

likelihood function. Computationally then, we maximize the log-likelihood over 15 parameters
(kQ, 3 in λQ, 2 in γ, 2 in P̄ , 6 in Ω, and σ2

η) instead of over 25 parameters.
Alternatively, it could be assumed that the state variables are unobservable, which would

require estimation of the state-space form of the model using the Kalman filter. We used
this alternative method to estimate our model and obtained results essentially identical to
those reported for the version with observable state variables. Still, in some applications
the Kalman filter may necessary. For example, it can accommodate missing observations or
include multiple measurement equations to pin down i∗t using several different proxies. Using
the Kalman filter is straightforward but computationally intensive (although excellent starting
values for the model parameters can be obtained from a first-step estimation with observable
state variables.)

C.8 Bayesian estimation with unobserved shifting endpoint

We first describe the prior distributions:

• For the trend innovation variance, σ2
η, we assume an inverse-gamma distribution, specif-

ically, IG(αη/2, δη/2) with αη = 100 and δη = 0.062/400(αη + 2). This parametrization
implies a tight prior distribution around a mode of 0.062/400, which corresponds to
a standard deviation of 6% for change in τt over 100 years. We view this prior as a
conservative choice that is justified in large part by consideration of the slow-moving
macroeconomic drivers underlying π∗t and r∗t and by the circumscribed evolution of the
various available estimates of those macro trends. Our prior for σ2

η is very similar to
DGGT, which also uses their model’s prior to limit “the amount of variation that it
attributes to the trends” (DGGT, p. 249).

• For Φ and Ω̃, we specify a Minnesota-type independent normal/inverse-Wishart. We
use a simple data-based procedure to scale our prior distributions: We regress Pt on the
observable i∗t proxy, and collect the standard deviations of the residuals in a vector s.

The prior for Ω̃ is inverse-Wishart, IW (κ,Ψ) with κ = N + 2 and Ψ = diag(s). The

prior mean for Ω̃ is Ψ/(κ − N − 1) = Ψ, and the prior mode is Ψ/(κ + N + 1). That
is, we use the lowest value of κ for the mean to exist, so that the distribution is very
disperse. The prior for Φ is a Minnessota prior, but centered around a zero matrix. The
prior standard deviation for the diagonal elements is λ while the prior standard deviation
for off-diagonal elements (i, j) is λsi/sj. For the hyperparameter controlling the overall
tightness we use λ = 0.2 like DGGT and others. We also restrict the eigenvalues of Φ
to be inside the unit circle.

• For the measurement error variance σ2
e , we use an inverse-gamma distribution with

αe = 4 and δe = 0.0012(αe + 2), implying a prior mode for the variance of 0.0012 which
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corresponds to a standard deviation of 10 basis points. This prior mode is motivated
by the fact that sufficiently flexible DTSMs can generally achieve a good fit to observed
yields with only about 5-10 basis points root-mean-squared error.

• The priors for the remaining parameters are completely uninformative.

With these priors and the block-wise MCMC algorithm described below, it simplifies our
estimation substantially to have the first yield factor in Pt correspond to the short rate. In this
case our normalization of the trend implies that γ1 = 1 and P̄1 = 0, similar to the standard
identification in multivariate unobserved components models (Harvey, 1990). This implies less
prior dependence across parameter blocks than would be the case with principal components
as yield factors. We choose the yield factors to be the three-month yield, the two-year yield,
and the ten-year yield.

We use a state-space formulation in terms of the state variables Z̃t = (τt, P̃
′
t)
′, which is of

course equivalent to using τt and Pt. The measurement equation is

Y o
t = A+BP̄ +Bγτt +BP̃t,

and the state equation is

Z̃t =

(
1 0
0 Φ

)
Z̃t−1 +

(
ηt
ũt

)
.

Our MCMC algorithm is a block-wise Metropolis-Hastings (M-H) sampler (Chib and
Greenberg, 1995). First, note that the log-likelihood is the sum of the cross-sectional log-
likelihood (from the measurement equation) and the “dynamic” log-likelihood (from the tran-
sition equation). The former, called the (log of the) Q-likelihood by Joslin et al. (2011), for
observation t is

log f(Y o
t |Pt, kQ, λQ,Ω, σ2

e) ∝ −
1

2
|Y o
t − A−BPt|/σ2

e ,

where A and B depend on (kQ, λQ,Ω) and | · | denotes the L2 (Euclidean) norm. The latter,
the P-likelihood, for observation t is

log f(Zt|Zt−1, P̄ , γ,Φ,Ω, σ2
η) = −1

2

(
log |Ω̃|+ ũ′tΩ̃

−1ũt + log(σ2
η) + η2t /σ

2
η

)
,

where Ω̃ = Ω− γγ′σ2
η, ũt = P̃t − ΦP̃t−1, P̃t = Pt − γτt − P̄ , and ηt = ∆τt.

The first block is the sampling of the state variables using the simulation smoother of
Durbin and Koopman (2002), and we condition on Zt when drawing the other blocks. The
parameter blocks are (1) (kQ, λQ), (2) Ω, (3) g (which determines γ), (4) p (which determines
P̄ ), (5) σ2

η, (6) Φ, and (7) σ2
e . The sampling of Φ and σ2

e is straightforward: Gibbs steps can
be employed since the full conditional posterior is available. For Φ, the draw is only accepted
if the matrix has all eigenvalues inside the unit circle, to ensure stationarity of P̃t. For blocks
(1)-(5), the conditional posterior distributions cannot be sampled; therefore, we must use M-H
steps. Only the parameters in blocks (1) and (2) affect the loadings A and B and hence the
Q-likelihood. The parameters in blocks (3)-(5) only affect the P-likelihood, which saves on
computational costs. For our M-H steps, we use tailored independence proposal distributions
similar to Chib and Ergashev (2009). Specifically, conditional on all other parameters and the
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state variables, we use numerical optimization to find the mode and Hessian of the conditional
posterior distribution for a given parameter block. Our proposal distribution is then a mul-
tivariate t-distribution (with five degrees of freedom) that is centered around this mode and
has a covariance matrix equal to the inverse of this Hessian. This way of constructing M-H
proposal distributions has the great benefit that no fine-tuning of the proposal distributions is
necessary, and the efficiency of the sampler is generally much better than using random walk
proposals (Chib and Ergashev, 2009).

We run our sampler to obtain five different chains from random starting values (around
the posterior mode that we find numerically), in each case obtaining 100,000 observations
and discarding the first half as burn-in samples. This gives us an MCMC sample of 250,000
iterations for our posterior analysis.
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Table 1: Cointegration regressions and tests

Yield (1) (2) (3) (4) (5)

constant 6.48 0.65 -0.22 -1.82 -0.62 -2.17
(0.55) (0.54) (0.33) (0.43) (0.39) (0.30)

π∗t 1.65 1.26 1.53 1.47
(0.11) (0.08) (0.07) (0.07)

r∗t 0.99 1.76 1.17
(0.15) (0.16) (0.13)

i∗t 1.67
(0.06)

R2 0.85 0.93 0.96 0.96 0.95
Memo: r∗ filtered real-time mov. avg. real-time
SD 2.94 1.31 1.09 0.70 0.87 0.70
ρ̂ 0.97 0.88 0.85 0.65 0.76 0.64
Half-life 26.4 5.6 4.3 1.6 2.5 1.5
ADF -1.13 -2.60 -3.94** -5.32*** -4.32** -5.37***
PP -3.11 -18.32* -26.73** -68.45*** -46.05*** -70.30***
LFST 0.00 0.03 0.16 0.72 0.23 0.71
Johansen r = 0 13.34 33.08* 46.83*** 45.46*** 30.69***
Johansen r = 1 1.29 5.92 11.57 9.11 0.73
ECM α̂ -0.11 -0.18 -0.44 -0.49 -0.45

(0.03) (0.05) (0.08) (0.09) (0.08)

Dynamic OLS regressions of the ten-year yield, y
(40)
t , on macroeconomic trends, including four leads and lags

of ∆y
(40)
t and differenced trend variables. Newey-West standard errors using six lags are in parentheses. The r∗

estimates are described in Section 2, and the long-run nominal short rate i∗t is the sum of π∗t and the real-time
estimate of r∗t . For the cointegration residuals (and, in the first column, for the ten-year yield itself), the second
panel reports standard deviations (SD), first-order autocorrelation coefficients (ρ̂), half-lives (ln(0.5)/ ln(ρ̂)),
Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root test statistics, and p-values for Mueller-
Watson low-frequency stationary test (LFST). The table also reports the Johansen trace statistic which tests
whether the cointegration rank (r) among the yield and the macro trends is zero/one against the alternative
that it exceeds zero/one, using four lags in the VAR. For ADF, PP and Johansen tests ∗,∗∗ and ∗∗∗ indicate
significance at 10%, 5%, and 1% level. Estimates of the coefficient α (with White standard errors) on the

cointegration residual in the error-correction model (ECM) for ∆y
(40)
t that also includes an intercept, four lags

of ∆y
(40)
t , and four lags of differenced macro trends. The data are quarterly from 1971:Q4 to 2018:Q1.
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Table 2: Predictive regressions: yields and macro trends

(1) (2) (3) (4) (5) (6)

Full sample: 1971:Q4–2018:Q1
PC1 0.08 0.98 1.39 2.38 2.04 2.47

(0.17) (0.26) (0.39) (0.67) (0.56) (0.61)
PC2 0.43 0.47 0.43 0.67 0.68 0.70

(0.17) (0.17) (0.17) (0.15) (0.15) (0.15)
PC3 -2.37 -1.79 -1.92 -0.92 -0.90 -0.86

(1.34) (1.27) (1.22) (1.39) (1.43) (1.35)
π∗t -1.95 -2.21 -4.40 -3.88

(0.44) (0.47) (1.10) (0.92)
[0.00] [0.00] [0.00] [0.00]

r∗t -1.19 -3.89 -2.70
(0.59) (1.47) (1.04)
[0.14] [0.07] [0.04]

i∗t -4.50
(1.05)
[0.00]

R2 0.09 0.16 0.18 0.21 0.20 0.21
Memo: r∗ filtered real-time mov. avg. real-time

Subsample: 1985:Q1–2018:Q1
PC1 0.25 0.59 1.67 2.65 2.38 1.93

(0.16) (0.22) (0.47) (0.57) (0.51) (0.47)
PC2 0.41 0.50 0.49 0.53 0.65 0.58

(0.15) (0.16) (0.16) (0.15) (0.15) (0.15)
PC3 -1.09 -0.97 0.14 1.74 2.12 0.56

(1.14) (1.12) (1.30) (1.48) (1.55) (1.19)
π∗t -1.05 -1.95 -3.44 -3.34

(0.73) (0.75) (0.87) (0.83)
[0.38] [0.10] [0.01] [0.01]

r∗t -2.03 -5.80 -4.10
(0.82) (1.54) (1.08)
[0.07] [0.01] [0.01]

i∗t -3.08
(0.91)
[0.02]

R2 0.08 0.10 0.14 0.19 0.18 0.16
Memo: r∗ filtered real-time mov. avg. real-time

Predictive regressions for quarterly excess bond returns, averaged across two- to 15-year maturities. The
predictors are the first three principal components of yields (PC1, PC2, PC3) and estimates of the inflation
trend π∗t , the real-rate trend r∗t , and the long-run nominal short rate i∗t . The long-run nominal short rate
i∗t is the sum of π∗t and the real-time estimate of r∗t . The macro trend estimates are described in Section 2.
Numbers in parentheses are White standard errors and in squared brackets are small-sample p-values obtained
with the bootstrap method of Bauer and Hamilton (2018). The data are quarterly from 1971:Q4 to 2018:Q1.
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Table 3: Predictive regressions: detrended yields

Full sample: 1971–2018 Subsample: 1985–2018

(1) (2) (3) (4) (1) (2) (3) (4)

PC1 0.08 0.98 1.25 1.36 0.33 0.41 1.14 0.81
(0.17) (0.25) (0.51) (0.50) (0.16) (0.22) (0.39) (0.38)

PC2 0.43 0.48 0.76 0.78 0.34 0.44 0.62 0.62
(0.17) (0.17) (0.16) (0.16) (0.14) (0.14) (0.14) (0.14)

PC3 -2.37 -1.77 -0.79 -0.73 -1.04 -0.96 1.53 0.45
(1.34) (1.26) (1.38) (1.33) (1.01) (1.01) (1.32) (1.05)

R2 0.09 0.15 0.18 0.20 0.08 0.08 0.17 0.14

Predictive regressions for quarterly excess bond returns, averaged across two- to 15-year maturities. In spec-
ification (1) the predictors are the first three principal components of observed yields (PC1, PC2, PC3). In
specifications (2), (3), and (4) the predictors are the first three principal components of detrended yields, that
is, of residuals in regressions for yields on π∗t , π∗t and r∗t , or i∗t , respectively. The long-run nominal short rate
i∗t is the sum of π∗t and the real-time estimate of r∗t . The macro trend estimates are described in Section 2.
Numbers in parentheses are White standard errors with six lags. The data are quarterly from 1971:Q4 to
2018:Q1.

Table 4: Model-implied predictability of excess bond returns

R2 PCs only R2 with i∗t ∆R2

Data 0.09 0.21 0.12
FE model 0.09 0.10 0.01

[0.04, 0.17] [0.05, 0.17] [0.00, 0.04]
OSE model 0.10 0.19 0.09

[0.04, 0.18] [0.13, 0.26] [0.02, 0.18]
ESE model 0.07 0.15 0.08

[0.02, 0.13] [0.05, 0.27] [0.00, 0.20]

The R2 of predictive regressions for quarterly excess bond returns, averaged across maturities of 2 to 15 years.
The R2 in the data correspond to the full-sample estimates in Table 2 (first and last columns of top panel).
The model-implied R2 are based on 5,000 simulations of artificial data sets of the same size as the full sample.
The table reports means and 95%-Monte Carlo intervals (in square brackets) of the R2 of predictive regressions
estimated in these simulated data.
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Table 5: Accuracy of out-of-sample forecasts for the ten-year yield

Quarterly sample: 1976:Q3-2008:Q1 Horizon in quarters

(127 quarters) 4 10 20 30 40

Random walk (RW ) 1.33 1.85 2.52 2.60 2.88
Fixed endpoint (FE ) 1.42 2.25 3.28 3.72 4.19
Observed shifting endpoint (OSE ) 1.17 1.76 2.37 2.39 2.60
p-value: OSE ≥ RW 0.05 0.00 0.00 0.03 0.04
p-value: OSE ≥ FE 0.00 0.00 0.01 0.03 0.05

Blue Chip sample: 1988:Q1-2011:Q4 Horizon in years

(48 Blue Chip surveys) 1 2 3 4 5

Blue Chip (BC ) 1.06 1.39 1.59 1.79 1.99
Random walk (RW ) 0.85 1.08 1.21 1.37 1.56
Fixed endpoint (FE ) 1.53 2.08 2.52 2.96 3.34
Observed shifting endpoint (OSE ) 0.87 0.95 1.04 1.18 1.37
p-value: OSE ≥ BC 0.10 0.08 0.15 0.18 0.20
p-value: OSE ≥ RW 0.58 0.05 0.01 0.04 0.08
p-value: OSE ≥ FE 0.00 0.00 0.00 0.00 0.00

Root mean-squared errors for forecasts for the ten-year Treasury yield. Method RW is a driftless random walk,
FE is a common stationary dynamic term structure model (DTSM), which has a fixed endpoint, and OSE is

a model with an observed shifting endpoint that uses the proxy i∗t = π∗t + r∗,RTt . The data are quarterly from
1971:Q4 to 2018:Q1. Top panel: forecasts for horizons from 4 to 40 quarters made each quarter from 1976:Q3
(once five years of data are available) to 2008:Q1 for a total of 127 (overlapping) observations. Bottom panel:
forecasts for horizons from 1 to 5 years (yearly averages of quarterly forecasts) made each quarter preceding
a Blue Chip survey (long-range forecasts in Blue Chip Financial Forecasts) from 1988:Q1 to 2011:Q4 (48
surveys). Models are re-estimated each quarter up to 2007:Q4 (expanding window). Last rows in each panel
report one-sided p-values for testing the null hypothesis of equal forecast accuracy against the alternative
that method OSE is more accurate, using the method of Diebold and Mariano (1995) with a small-sample
correction.
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Figure 1: Ten-year yield and macroeconomic trends
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Ten-year Treasury yield and estimates of trend inflation, π∗t (the mostly survey-based PTR measure from
FRB/US), the equilibrium real rate, r∗t (an average of all filtered and real-time estimates, see Section 2), and
the equilibrium short rate, i∗t = π∗t + r∗t . Shaded areas are NBER recessions. The data are quarterly from
1971:Q4 to 2018:Q1.
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Figure 2: Measures of the equilibrium real interest rate
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Smoothed (two-sided), filtered (one-sided), and real-time estimates of the equilibrium real interest rate, or
long-run r∗t . Left panel: range and average of seven smoothed estimates, including the four estimates by Del
Negro et al. (2010) (DGGT), Johannsen and Mertens (2018) (JM), Laubach and Williams (2016) (LW), and
Kiley (2015), as well as our own three model-based estimates. Right panel: range and average of filtered and
real-time estimates. Filtered estimates are the estimates of LW, Holston et al. (2017), and Kiley. Real-time
estimates are those of DGGT, JM, our own three real-time model-based estimates, and the model-free moving-
average estimate, which is also shown separately. For details, see Section 2 and Appendix A. The data are
quarterly from 1971:Q4 to 2018:Q1.
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Figure 3: Detrending the ten-year yield
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Ten-year Treasury yield and two detrended yield series using as the proxy for the equilibrium interest rate i∗t
the sum of the PTR estimate of π∗t and the real-time estimate of r∗t shown in Figure 2. The first detrended
yield series is the difference between the yield and i∗t . The second detrended series is the residual from the
(Dynamic OLS) cointegration regression of the yield on i∗t , estimates of which are reported in the last column
of Table 1. Shaded areas are NBER recessions. The data are quarterly from 1971:Q4 to 2018:Q1.
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Figure 4: Model-based estimate of equilibrium interest rate
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Bayesian (MCMC) estimate—posterior mean and 95%-posterior credibility intervals—of the equilibrium nom-
inal short rate, i∗, from the “estimated shifting endpoint” (ESE ) dynamic term structure model. Also shown
is a proxy estimate of i∗, the sum of the PTR estimate of π∗ and the real-time macro estimate of r∗. The data
are quarterly from 1971:Q4 to 2018:Q1.
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Figure 5: Trend and cycle components of ten-year yield
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Model-based decomposition of ten-year yield into trend and cycle components. Blue lines show trend and cycle
(posterior means) for the model with estimated shifting endpoint (ESE ), shaded area shows 95%-posterior
credibility intervals for trend component; red lines show trend and cycle for model with observed shifting
endpoint (OSE ). The data are quarterly from 1971:Q4 to 2018:Q1.
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Figure 6: Loadings of yields on the equilibrium interest rate
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Comparison of loadings of Treasury yields on the equilibrium nominal short rate i∗t in the data and in the
shifting-endpoint dynamic term structure model. Data: regression coefficients (with 95%-confidence intervals)
for cointegration regressions of yields on the proxy-estimate of i∗t (the PTR estimate of π∗ plus the real-time
macro estimate of r∗). Model: loadings of yields on i∗t in population and 95%-Monte Carlo intervals for
regression coefficients in small samples simulated from the model with an observed shifting endpoint (OSE ).
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Figure 7: Expectations and term premium components in long-term interest rates
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Five-to-ten-year forward rate with estimated expectations component (risk-neutral rate) and term premium.
Left panel: conventional dynamic term structure model (DTSM) with a fixed endpoint i∗ (Joslin et al., 2011).
Right panel: DTSM with a common stochastic trend, where the shifting endpoint is either estimated (ESE,
estimated shifting endpoint) or taken as observed using a proxy of i∗t (OSE, observed shifting endpoint). The
data are quarterly from 1971:Q4 to 2018:Q1.
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