The Sandwich Effect: Challenges for Middle-Income Countries

Yong Wang; Shang-Jin Wei

PKU; Columbia

June 2019

"Middle Income Trap"

Source: Heston, Summers, and Aten 2011.

Source: Maddison database.

< ロ > < 同 > < 三 > < 三

- a. The term "middle-income trap" was first defined in Gill, Kharas, and others (2007). "Middle income economies" are defined in accordance with classifications by income group as given in: http://data.worldbank.org/about/country-classifications.
- b. In today's increasingly globalized world, escaping the middle-income trap may be even more difficult (Eeckhout and Jovanovic 2007).

World Income Distribution

Graph (4): the world income distribution for the years 1960 to 2010

 \mathbf{x} is per capita real GDP relative to the US

GDP per capita (PPP) of Latin America as % of US Level

Wang & Wei (PKU; Columbia)

June 2019 4 / 30

- Why did most of middle-income countries fail to converge sufficiently fast to developed countries?
 - What mechanisms drive the diversified growth performance across middle-income countries?
 - To what extent are these mechanisms different from those for low-income countries and high-income countries?
 - What are the policy implications for middle-income countries?

- A three-country dynamic GE model with trade is developed to illustrate how **Sandwich Effects** work.
- We show that:
 - In o chasing effect when the chasing country is sufficiently unproductive
 - The chasing effect works in different dimensions in different scenarios (intensive, extensive, speed, and size).
 - sandwich effects (endogenous intensification of the pressing and chasing effects)
 - Middle-income countries should boost productivity growth to offset chasing effects but enhance variety imitation (innovation) to dampen pressing effect.

• Extend Krugman (1979) to a world with three countries: N, M, S

- Extend Krugman (1979) to a world with three countries: N, M, S
- The populations are L_N , L_M , and L_S , respectively.

- Extend Krugman (1979) to a world with three countries: N, M, S
- The populations are L_N , L_M , and L_S , respectively.
- Each household is endowed with one unit of labor

- Extend Krugman (1979) to a world with three countries: N, M, S
- The populations are L_N , L_M , and L_S , respectively.
- Each household is endowed with one unit of labor
- Utility function:

$$\left[\int_{0}^{n}c(i)^{\theta}di
ight]^{1/ heta}$$
, $heta\in(0,1)$.

• S only knows how to produce $i \in [0, n_S]$,

- S only knows how to produce $i \in [0, n_S]$,
- **2** M only knows how to produce $[0, n_M]$, $n_S < n_M$

- S only knows how to produce $i \in [0, n_S]$,
- **2** M only knows how to produce $[0, n_M]$, $n_S < n_M$
- Solution N knows how to produce all the good [0, n], $n_M < n$

- S only knows how to produce $i \in [0, n_S]$,
- **2** M only knows how to produce $[0, n_M]$, $n_S < n_M$
- 3 N knows how to produce all the good [0, n], $n_M < n_R$
- One unit of labor in country J produces A_J units of good

- S only knows how to produce $i \in [0, n_S]$,
- **2** M only knows how to produce $[0, n_M]$, $n_S < n_M$
- Solution N knows how to produce all the good [0, n], $n_M < n$
- One unit of labor in country J produces A_J units of good
- S All the markets in each country are perfectly competitive

known by S,M,N	kno	wn by M,N	known	by N
0	n _s		n _M	n

-

・ロト ・ 日 ・ ・ ヨ ・ ・

- Free trade
- Suppose $A_N = A_M = A_S = 1$.
- When $w_N > w_M > w_S$, the specialization pattern is as follows:

	produced	by	S	produced	by	М		produced	by	N		
0			n	S			n _M				I	1

Theorem

In the static free trade equilibrium with $A_N = A_M = A_S = 1$, we have

$$\frac{w_N}{w_M} = \left(\frac{n - n_M}{n_M - n_S} \frac{L_M}{L_N}\right)^{1 - \theta}$$

when $w_N > w_M > w_S$, which holds iff

$$\frac{L_N}{n-n_M} < \frac{L_M}{n_M-n_S} < \frac{L_S}{n_S}.$$
 (1)

Country M is more "sandwiched" when n_S increases or *n* increases (or n_M decreases).

$$\frac{w_M}{w_S} = \left(\frac{n_M - n_S}{n_S} \frac{L_S}{L_M}\right)^{1-\theta}; \frac{w_N}{w_S} = \left(\frac{n - n_M}{n_S} \frac{L_S}{L_N}\right)^{1-\theta}$$

• A_N , A_M , and A_S are not necessarily one

- 2 We focus on what determines $\frac{W_N}{W_M}$:
 - the chasing effect: A_S and n_s (and L_s)

• A_N , A_M , and A_S are not necessarily one

- **2** We focus on what determines $\frac{W_N}{W_M}$:
 - the chasing effect: A_S and n_s (and L_s)
 - the pressing effect: A_N and n_m , n (and L_N)

• A_N , A_M , and A_S are not necessarily one

- **2** We focus on what determines $\frac{W_N}{W_M}$:
 - the chasing effect: A_S and n_s (and L_s)
 - the pressing effect: A_N and n_m , n (and L_N)
 - the sandwich effect: the interaction of chasing and pressing effects

Theorem

Suppose
$$\frac{A_M L_M}{n_M - n_S} > \frac{A_N L_N}{n - n_M}$$
, we have

$$\frac{W_N}{W_M} = \begin{cases} \frac{A_N}{A_M} & \text{if } A_S \in (0, A_0] \\ \left[\frac{A_N L_N}{A_S L_S + A_M L_M} \frac{n_M}{n - n_M}\right]^{\theta - 1} & \frac{A_N}{A_M} & \text{if } A_S \in (A_0, A_1] \\ \left(\frac{n - n_M}{n_M - n_S} \frac{L_M}{L_N}\right)^{1 - \theta} & \frac{A_N^{\theta}}{A_M^{\theta}} & \text{if } A_S \in (A_1, \infty) \end{cases}$$

where

$$A_{0} \equiv \frac{n_{M}A_{N}L_{N} - (n - n_{M})A_{M}L_{M}}{(n - n_{M})L_{S}}; A_{1} \equiv \frac{n_{S}A_{M}L_{M}}{(n_{M} - n_{S})L_{S}}.$$

Wang & Wei (PKU; Columbia)

・ロト ・聞 ト ・ ヨト ・ ヨト

•
$$\frac{w_N}{A_N} = \frac{w_M}{A_M} = \frac{w_S}{A_S}$$
 when $A_S \in (0, A_0]$

・ロト ・ 日 ト ・ 田 ト ・

•
$$\frac{w_N}{A_N} = \frac{w_M}{A_M} = \frac{w_S}{A_S}$$
 when $A_S \in (0, A_0]$
• $\frac{w_N}{A_N} > \frac{w_M}{A_M} = \frac{w_S}{A_S}$ when $A_S \in (A_0, A_1]$

イロト イヨト イヨト イヨ

•
$$\frac{w_N}{A_N} = \frac{w_M}{A_M} = \frac{w_S}{A_S}$$
 when $A_S \in (0, A_0]$
• $\frac{w_N}{A_N} > \frac{w_M}{A_M} = \frac{w_S}{A_S}$ when $A_S \in (A_0, A_1]$
• $\frac{w_N}{A_N} > \frac{w_M}{A_M} > \frac{w_S}{A_S}$ when $A_S \in (A_1, \infty)$

э

・ロト ・回ト ・ヨト・

Sandwich Effect 1

Figure 5. How w_N/w_M Changes with A_S when *n* increases under (??)

Wang & Wei (PKU; Columbia)

Sandwich Effect

June 2019 17 / 30

Sandwich Effect 2

Figure 6. How w_N/w_M Changes with A_S when n_M increases.

Figure 7. How w_N/w_M Changes with A_S when A_M increases under (??)

Dynamic Economy

< ≣ >

• Country N keeps innovating at an exogenous and positive speed α :

$$n = \alpha n.$$
 (2)

 Country M adapts technologies from country N at an exogenous positive speed β:

$$\dot{n}_M = \beta(n - n_M),$$
 (3)

• Country S imitates from country M at a positive imitation speed γ :

$$\dot{n}_S = \gamma(n_M - n_S).$$
 (4)

Dynamic Sandwich Effect

Theorem

Suppose $\frac{\alpha+\gamma}{\beta} > \frac{A_N L_N}{A_M L_M}$, the following is true on the Balanced Growth Path:

$$\frac{w_{N}}{w_{M}} = \begin{cases} \frac{A_{N}}{A_{M}} & \text{if } A_{S} \in (0, \widetilde{A_{0}}] \\ \left[\frac{A_{S}L_{S} + A_{M}L_{M}}{A_{N}L_{N}} \frac{\alpha}{\beta}\right]^{1-\theta} \frac{A_{N}}{A_{M}} & \text{if } A_{S} \in (\widetilde{A_{0}}, \widetilde{A_{1}}] \\ \left(\frac{\alpha+\gamma}{\beta} \frac{L_{M}}{L_{N}}\right)^{1-\theta} \frac{A_{N}^{\theta}}{A_{M}^{\theta}} & \text{if } A_{S} \in (\widetilde{A_{1}}, \infty) \end{cases}$$

where

$$\widetilde{A_0} \equiv \frac{A_N L_N}{L_S} \frac{\beta}{\alpha} - \frac{A_M L_M}{L_S}; \widetilde{A_1} \equiv \frac{\gamma A_M L_M}{\alpha L_S}$$

A special case $(A_N = A_M = A_s = 1 \text{ and } A_S \in (A_1, \infty))$:

$$\frac{w_N}{w_M} = \left(\frac{\alpha + \gamma}{\beta} \frac{L_M}{L_N}\right)^{1-\epsilon}$$

Wang & Wei (PKU; Columbia)

(▲ 문 ▶ | ▲ 문 ▶ | - ' 문

Optimal Policies of Country M

Define
$$g_i \equiv \frac{A_i}{A_i}$$
 for $i \in \{N, M, S\}$.

• g_N and g_S are exogenous

Optimal Policies of Country M

Define
$$g_i \equiv \frac{A_i}{A_i}$$
 for $i \in \{N, M, S\}$.

- g_N and g_S are exogenous
- g_M is endogenous: μ (endogenous employment share in the R&D sector in M).

$$\begin{split} \dot{n}_M &= \beta(n-n_M) \left[\mu L_M + 1\right]^{\zeta} \\ \dot{A}_M &= \phi(A_N - A_M) \left[(1-\mu)L_M + 1\right]^{\eta} \end{split}$$

Wang & Wei (PKU; Columbia)

Optimal Policies of Country M

Define
$$g_i \equiv \frac{A_i}{A_i}$$
 for $i \in \{N, M, S\}$.

- g_N and g_S are exogenous
- g_M is endogenous: μ (endogenous employment share in the R&D sector in M).

$$\begin{split} \dot{n}_M &= \beta(n-n_M) \left[\mu L_M + 1\right]^{\zeta} \\ \dot{A}_M &= \phi(A_N - A_M) \left[(1-\mu)L_M + 1\right]^{\eta} \end{split}$$

• Trade off: $\dot{n}_M vs A_M$

Theorem

When $g_N = g_S = g > 0$ and $A_S \in (A_0, A_1]$ hold on the BGP, the following is true:

$$\begin{array}{lll} g^{g}_{M} & = & g;\\ \frac{\partial \mu^{*}}{\partial A_{S}} & < & 0; \\ \frac{\partial \mu^{*}}{\partial L_{S}} & < & 0; \\ \frac{\partial \mu^{*}}{\partial A} & = & \frac{\partial \mu^{*}}{\partial \beta} = \frac{\partial \mu^{*}}{\partial L_{N}} = 0; \end{array}$$

Major implications for country M:

- \bullet should increase productivity growth (reduce $\mu^*)$ to offset chasing effect
- ullet should increase variety imitation (raise μ^*) to offset pressing effect

Theorem

When $g_N = g_S = g > 0$ and $A_S \in (A_0, A_1]$ hold on the BGP, the following is true:

$$\frac{\partial \left(\frac{w_N}{w_M}\right)}{\partial \phi} < 0; \frac{\partial \left(\frac{w_N}{w_M}\right)}{\partial \xi} < 0; \frac{\partial \left(\frac{w_N}{w_M}\right)}{\partial \eta} < 0, \\ \frac{\partial \left(\frac{w_N}{w_M}\right)}{\partial L_S} > 0; \frac{\partial \left(\frac{w_N}{w_M}\right)}{\partial L_N} < 0; \frac{\partial \left(\frac{w_N}{w_M}\right)}{\partial L_M} < 0; \frac{\partial \left(\frac{w_N}{w_M}\right)}{\partial g} > 0.$$

Major implications for country M:

- better institutions (ϕ, ξ, η) help convergence
- larger chaser (L_S) and smaller presser (L_N) impose stronger sandwich effects
- a larger size (L_M) helps convergence
- faster world productivity growth (g) hampers convergence

Conclusion

- We develop a three-country model of trade and growth to illustrate how middle-income countries can be sandwiched by poorer countries that chase from behind and richer countries that press from front.
- We show that:
 - In o chasing effect when the chasing country is sufficiently unproductive
 - The chasing effect works in different dimensions in different scenarios (intensive, extensive, speed, and size).
 - sandwich effects (endogenous intensification of the pressing and chasing effects)
 - Middle-income countries should boost productivity growth to offset chasing effects but enhance variety imitation (innovation) to dampen pressing effect.
- Preliminary empirical evidence supports the model mechanism (in progress).

Combining both Theorems, we have

$$\frac{w_{N}}{w_{M}} = \begin{cases} \frac{A_{N}}{A_{M}} & \text{if } A_{S} \in (0, A_{0}] \text{ or } (4) \text{ violate} \\ \left(\frac{A_{S}L_{S}}{A_{M}L_{N}} + 1\right)^{1-\theta} \left(\frac{n-n_{M}}{n_{M}}\frac{L_{M}}{L_{N}}\right)^{1-\theta} \frac{A_{N}^{\theta}}{A_{M}^{\theta}} & \text{if } A_{S} \in (A_{0}, A_{1}] \& (4) \\ \left(\frac{n_{M}}{n_{M}-n_{S}}\right)^{1-\theta} \left(\frac{n-n_{M}}{n_{M}}\frac{L_{M}}{L_{N}}\right)^{1-\theta} \frac{A_{N}^{\theta}}{A_{M}^{\theta}} & \text{if } A_{S} \in (A_{1}, \infty) \& (4) \end{cases}$$

where

$$A_{0} \equiv \frac{n_{M}A_{N}L_{N} - (n - n_{M})A_{M}L_{M}}{(n - n_{M})L_{S}}; A_{1} \equiv \frac{n_{S}A_{M}L_{M}}{(n_{M} - n_{S})L_{S}}.$$

Preliminary Empirical Test

$$D_1 = \begin{cases} 1, & \text{if } A_S \in (A_0, A_1] \text{ and } (4) \text{ holds} \\ 0, & o/w \end{cases};$$

$$D_2 = \begin{cases} 1, & \text{if } A_S > A_1 \text{ and } (4) \text{ holds} \\ 0, & o/w \end{cases};$$

Regression specification:

$$\begin{split} \log \frac{w_N}{w_M} &= \beta_0 + \beta_1 \log \frac{A_N}{A_M} + \beta_2 D_1 \log (\frac{A_S L_S}{A_M L_N} + 1) + \beta_3 D_2 \log \frac{n_M}{n_M - n_S} \\ &+ \beta_4 (D_1 + D_2) \log \left[\frac{L_M}{L_N} \frac{(n - n_M)}{n_M} \right] + B' X + \varepsilon \end{split}$$

Wang & Wei (PKU; Columbia)

 n, n_M, n_S are computed by using revealed comparative advantage (RCA) by Balassa (1965):

$$\textit{RCA}_{j}^{\textit{A}} = rac{x_{j}^{\textit{A}}/x^{\textit{A}}}{x_{j}^{\textit{W}}/x^{\textit{W}}}$$

- NBER-UN world trade flow data (Feenstra et al 2005), *j* is SITC Rev.2 at 4-digit level from 1962 to 2000.
- w_i and A_i for $i \in \{N, M, S\}$, from Penn World Table

	$\log \frac{W_N}{W_M}$
log $\frac{A_N}{N}$	0.738
$\log \frac{1}{A_M}$	$(51.62)^{**}$
$D_{1}\log(\frac{A_{S}L_{S}}{1}+1)$	0.739
$D_1 \log(A_M L_N + 1)$	$(10.54)^{**}$
$D_{2}\log - \frac{n_{M}}{m_{M}}$	0.145
$D_2 \log \frac{1}{n_M - n_S}$	$(18.22)^{**}$
$(D + D) \log \left[L_M (n-n_M) \right]$	0.027
$(D_1 + D_2) \log \left[\frac{1}{L_N} - \frac{1}{n_M} \right]$	$(8.26)^{**}$
constant	0.369
constant.	$(22.33)^{**}$
R^2	0.78
N	1,012
*p<0.05 **p<0.01	