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ABSTRACT. As has been well documented, the transportation sector is currently undergoing a profound 

transformation in the way that vehicles are powered, owned, and operated (Center for Automotive Research, 

2016; Fagnant and Kockelman 2015; Sperling, 2017; Lovejoy, Handy, and Boarnet, 2013; Arbib and Seba, 

2017). The complex interdependence of these transformations, as well as the fact that we are studying them 

concomitantly with their development, makes them particularly difficult to predict. Recent studies have 

shown preliminary evidence that ride-hailing has shifted travel miles dramatically away from traditional 

forms of transport such as public bus and rail service, biking, and walking, and towards ride hailing services, 

resulting in a significant increase in VMT (Clewlow and Mishra, 2017). At the same time, fleet ownership 

business models may have a significant impact on manufacturing emissions and vehicle efficiency. 

Building upon the model framework developed by Fox-Penner, Gorman, and Hatch, this paper considers 

the greenhouse gas implications of various light-duty transportation business model adoption scenarios, 

including the effects on manufacturing inputs, technology improvements, and total vehicle miles traveled. 

The goal of the paper is to build a more realistic and research based estimate of future transportation 

scenarios and their impact on personal vehicle emissions. 
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1. Introduction  
 

As has been well documented, the transportation sector is currently undergoing a profound 

transformation in the way that vehicles are powered, owned, and operated. Electrification, ride-hailing 

services, and autonomy, the “three revolutions” underway in the transportation sector, will have 

significant impacts on everything from infrastructure to electricity systems, public health, and 

greenhouse gas emissions. (Sperling, Pike, & Chase, 2018) (Fagnant & Kockelman, 2015) (Arbib & 

Seba, 2017) 

 

The complex interdependence of these transformations, as well as the fact that we are studying them 

concomitantly with their development, makes them particularly difficult to predict. In less than a 

decade, ride-hailing companies such as Uber, Lyft, and Ola have gone from rarified taxi replacements 

to companies that have not only upended the cab service but have also caused a significant 

transportation mode shift. Recent studies have shown preliminary evidence that ride-hailing has swung 

travel miles dramatically away from traditional forms of transport such as public bus and rail service, 
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biking, and walking, and towards ride hailing services, resulting in a significant increase in VMT 

(Clewlow & Mishra, 2017). 

 

These services threaten to become even more dominant as autonomous vehicle technology becomes 

market-ready. In just a few years, autonomous vehicles have gone from closely monitored test-drives 

to driving the streets of Arizona. In 2017, the dominant players in ride-hailing in the United States, 

Uber and Lyft, both partnered with automakers to test autonomous vehicle technology in their ride-

hailing model. Having fleets of autonomous vehicles could lower transportation costs causing an even 

greater mode shift away from public transportation as public transportation infrastructure costs increase 

due to necessary upgrades and declining ridership, and autonomous technologies mature (Bauer, 

Greenblatt, & Gerke, 2018).  

 

There is near-universal agreement that motor vehicles will ultimately be fully autonomous or self-

driven. There is, however, a cacophony of opinions as to when and how the autonomy revolution will 

occur and its implications for travel, the economy, and our built environment. Fleets of autonomous 

vehicles will behave differently than the personally owned vehicle model and have different 

implications for travel behavior, transportation emissions, refueling infrastructure, and more. Making 

planning and prediction even more complicated is the question of whether or not these new autonomous 

vehicles will be electric. Many scholars have attempted to quantify aspects of this transformation, 

including estimating increased vehicle miles travelled (VMT), energy (electric) demand, and city 

infrastructure needs (Fox-Penner, Gorman and Hatch, 2019) (Arbib & Seba, 2017), (Bansal & 

Kockelman, 2016),  (Underwood).  

 

Yet perhaps one of the most significant implications of the coming transformations has yet to be 

sufficiently bounded: the effect on GHG emissions as a result of the transformation. The base 

technology of autonomous vehicles will have a dramatic impact on society’s ability to curb greenhouse 

gas emissions. The future of autonomous vehicles is often assumed to be electric; however, current 

autonomous vehicle development has often relied on internal combustion engine (ICE) technology.3 
4Business models for which autonomous vehicles will be used will also affect the total emissions 

attributable to light duty vehicles, as lifetime use of these vehicles extends or contracts. 

 

Building upon the model framework developed by Fox-Penner, Gorman, and Hatch, this paper 

examines the greenhouse gas implications of several potential scenarios for the future of transportation, 

considering varying degrees of adoption of autonomy, ride hailing, and electrification, with hopes of 

building a more realistic and research based estimate of the future for personal vehicle emissions. 

 

To provide these estimates, we first conduct an extensive literature review of parameters affecting the 

GHG emissions from the light duty vehicle (LDV) sector, including impacts from autonomous 

vehicles. This review includes an assessment of the LCA literature to incorporate upstream emissions, 

as well as a discussion of potential autonomous vehicle business models. Then, we develop a modelling 

framework that incorporates LCA parameters, vehicle adoption projections, stock modeling, efficiency 

improvements, and vehicle mile demand projections. From this modelling framework, we design the 

key scenarios that can be used to predict a range of outcomes for greenhouse gas emissions from 

autonomous vehicles.  
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2. Foundational Work 

 
In the model elaborated by Fox-Penner, Gorman and Hatch, the authors took a modeling approach based 

on the kaya identity framework (Fox-Penner, Gorman and Hatch, 2018). The original paper starts with a 

baseline in which none of the aforementioned transportation disruptions occur, and then factor in 

additional disruptions in a series of layers of calculations, as illustrated in figure 1. 

Figure 1: Original Model Concept 

 
Source: Fox-Penner, Gorman, and Hatch 2018 

 

While we use this original framework to structure our analysis, our new analysis has two significant 

methodological improvements: first, we incorporate manufacturing and disposal emissions, in order to 

account for the higher initial emissions of electric vehicles; and second, we incorporate the effect of 

different business models on lifetime vehicle emissions. We also incorporate some updates to impacts 

that have been recorded in the literature since publication. 

3. Model Improvements 
 

3.1. Improvements to baseline GHG estimations 

3.1.1 LCA/Manufacturing Emissions 

Numerous papers have been written on the lifetime emissions of electric versus internal combustion 

engine vehicles. The increased attention to life cycle analyses of hybrid and battery-electric vehicles is 

well summarized by Ellingsen, who writes, “in order to avoid problem shifting, a life cycle perspective 

should be applied in the environmental assessment of traction batteries.”  (Ellingsen, et al., 2013)   

Samaras and Meisterling assessed the lifetime vehicle emissions of plug-in hybrid electric vehicles, and 

found that the models available at the time provided insignificant benefit over traditional hybrids, but did 

pose a significant benefit over internal combustion engine vehicles  (Samaras & Meisterling, 2008). 

Writing for the California Air Resources Board in 2012, Aguirre et al. use the GREET model developed 
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by Argonne National Laboratory to determine that battery electric vehicles have the smallest 

environmental impact of models of light-duty vehicles  (Aguirre, et al., 2012).  

Peters, et al. produce an extraordinarily comprehensive mapping of the data sources for electric vehicle 

LCAs conducted over the past two decades, as seen in figure 2. The map demonstrates that although the 

literature is quite robust on this subject, there are only a handful of studies from which the data arises. 

Figure 2: LCA Data Sources 

 

Source: Peters, et al. 2017 

For our analysis, we rely on the work of Ellingsen, Singh, and Stromman to incorporate manufacturing 

and disposal emissions. Given the available studies, we chose this paper for its analysis of both electric 

and ICE vehicles in order to maintain internal consistency, and for its attention to electric grid efficiency 

improvements   (Ellingsen, Singh, & Stromman, The Size and Range Effect: lifecycle greenhouse gas 

emissions of electric vehicles, 2016). 

3.2. Transportation Demand 

3.2.1 Pooling, Sharing and Seamless Mobility Networks 

The impact of ride-hailing companies on vehicle miles traveled has, until recently, been difficult to 

quantify. The hypothetical forces from demand ride sharing (DRS) were thought to have both VMT-

increasing and VMT-decreasing effects. (Rodier, Alemi, and Smith, 2016). The national academy of 

sciences similarly concluded as late as 2015 that it is “too early to determine which of these competing 

forces will dominate” (TRB, 2015). 

Since that time, several researchers have managed to demonstrate that as of now, the impact of ride-

hailing on vehicle miles traveled is almost certainly VMT increasing. Clewlow and Mishra find that 62% 

of ride-hailing rides would have been taken via walking, biking, or public transit, or would not have been 

taken at all (Clewlow and Mishra, 2017). Henao and Marshall find an increase in VMT of 83.5% when 
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accounting for “deadheading”, induced travel, and ride substitution (Henao and Marshall, 2018). These 

increases are significantly greater than originally assumed, leading to an increase in our estimation of the 

VMT increases of ride hailing and autonomy. These ride-hailing studies can generally be thought to 

portend behavior of autonomous vehicle fleets. Caroline Rodier of UC Davis conducted an extraordinarily 

comprehensive analysis of the impacts of ride hailing services and includes the two papers mentioned 

above as well as many of the papers reviewed previously in Fox-Penner, Gorman, and Hatch (2018). 

After reviewing these studies she concludes that induced VMT from ride-hailing services is in the range 

of 8%-22%. In addition, new studies indicate that network vehicle travel without passengers can increase 

VMT anywhere from 10% to 60%. 

We therefore revise our total estimate of VMT due to lower time cost for drivers, increased access, mode 

shift, and travel without passengers to 35% in a low-range estimate and 60% in a mid-range estimate, 

assuming that transportation policymakers will `address some of the most egregious impacts of ride-

hailing by midcentury and aiming for a target estimate somewhere in the middle of the current literature 

on the subject. 

3.2.2 Business Model Impacts 

Many automotive, TNC, and software development companies have either explicitly or implicitly pointed 

to a variety of business models that are arising from the convergence of ride hailing and autonomy. A 

2016 report from the Boston Consulting Group taxonomizes these business models by elaborating four 

“potential future scenarios” for the city of the future. These scenarios include fast and slow adoption of 

self-driving vehicles, a scenario of “robo-taxis”, and a new ride-sharing and public transit model 

incorporating autonomous technology (Boston Consulting Group, 2016). Similarly, in their discussion of 

AV transportation access, Dutta-Koehler and Hatch elaborate three models of potential autonomous 

vehicle penetration, including individually owned, taxi fleet, and ride-sharing (Dutta-Koehler and Hatch, 

in press). Because the energy use implications for individual vehicles are so different than in a ride-

sharing/public transportation model, we limit our analysis to examining the taxi/fleet model and the 

individual ownership model. 

For the individual ownership model, we maintain all the assumptions of previous layers of analysis, 

assuming that the VMT and energy intensity effects will remain consistent in both frameworks. We 

further break this model into two distinct scenarios: first, a scenario in which vehicles maintain similar 

useful lifespans in terms of years and vehicle miles to current vehicles in use today; and second, a 

scenario in which, much like the adoption of other technologies such as computers and cellphones, 

planned technological obsolescence reduces vehicle life spans by half.  

 

In the fleet model simulation we replace 6.7 individually owned vehicles with 1 fleet vehicle. Many 

researchers have found that an autonomous taxi fleet would significantly reduce the number of vehicles 

in a subject area. For example, Fournier et al. found that a taxi fleet in Berlin that would serve 

passengers with a <1 minute wait time could decrease the vehicle population of Berlin by 89% 

(Fournier et al., 2017).  While these studies shine light on the potential operation of AV fleets, for the 

purposes of this analysis we find a calculation of VMT replacement by existing taxi fleets most 

compelling. In order to do this calculation, we take the existing estimated lifetime VMT of a NYC cab 

(500,000 miles) and the estimated lifespan (6.6 years) in order to replace 6.7 individual vehicles during 

that time period, who each individually would have driven roughly 74,000 miles in that time (NYC 

Taxi Commission 2017).  
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3.3 Bounding the Study Area 

The effects of ride hailing, ride sharing, and autonomy will almost certainly play out differently in 

different land use development scenarios. We are certain, however, that due to connectivity, distance, 

and other constraints, our particular modeling approach for autonomous taxi fleets does not apply to 

the proportion of VMT driven in rural areas in the United States – about 30% of VMT annually 

(NHWTA 2017). In modeling an autonomous taxi fleet, we therefore only apply the vehicle reduction 

from fleets to 70% of the total U.S. vehicle population.   

 

It is open for debate whether the model will truly apply to sub- or peri- urban areas included in the 

NHWTA survey of urban VMT, but parsing these specifics is beyond the scope of this study. While 

there are significant limitations to such a broad approach to modeling vehicle adoption environments 

throughout the United States, we feel confident that our results are accurate enough to guide policy 

efforts going forward.  
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4. Scenarios 
 

We use the two vehicle adoption cases elaborated in Fox-Penner et al., comprising an energy intense case 

and a policy case as elaborated in figure 3. As noted above, some of the numbers in these scenarios were 

updated based on the most recent literature. We also examine two electric grid emissions scenarios as the 

basis for our modeling efforts – one in which we use the EIA estimate of emissions intensity for the grid 

out to 2050, and another in which we apply a 95% linear decarbonization of the grid by 2050.  

We then employ three different scenarios of autonomous vehicle adoption as discussed above – 

moderating the number of vehicles manufactures to supply total VMT for the fleet. Our three model 

scenarios are: a taxi or “sharing” model, where 6.7 vehicles are replaced by one taxi vehicle; traditional 

individual ownership, where the standard total fleet volume applies; and accelerated fleet turnover or 

“lease” model, where vehicles are retired at twice the current rate of traditional vehicles.  

Figure 3: Vehicle Adoption Cases modified from Fox-Penner et al. 

Variable Name Description Stress 

Case 

Policy 

Case 

EV Sales The rate of EV sales, or more completely, the growth of LDV 

EVs in the fleet; 
High EV  

(90% by 2050) 

Energy Intensity The level at which EVs increase their energy efficiency; 0-20% 15-40% 

Cheap EV The extent of the mileage effect from lower EV operating 

costs; 
10% 0% 

CAV Entry Year The year in which commercial fully-autonomous CAV sales 

begin; 
2025 2030 

CAV VMT Effects The overall (net) long-term effect of CAVs on VMT (due to a 

number of effects, each with their own ranges and 

uncertainties), and how in the aggregate this phases; this is 

aggregated with “Cheap EV” for a total high factor of 50% 

60% 35% 

CAV Sales The rate of CAV sales, or more completely, the growth of 

LDV CAVs in the fleet; 
75% by 2050 

CAV EI The overall (net) long-term effect of CAVs on realized kWh 

used per mile from various effects, and how this phases in 

(Sum of effects of traffic smoothing, intersection 

management, faster travel, and platooning) 

-13.5% -21.5% 

Rightsizing/weight 

reduction 

Whether and when CAVs allow a further substantial gain in 

EI due to lightweighting and/or rightsizing, implemented as a 

per-year increase starting in 2040;  

-1% -1.5% 

Pooling/Shared 

VMT Reduction 

Whether Pooling, Sharing, or Seamless Mobility Systems will 

reduce future VMT as well as shift it to higher-density modes; 
0 -2% 

Urban Design Whether redesign of our urban areas reduces VMT;  0 -2% 

Road Pricing The form in which road pricing is adopted over the next 

decade or two; 
$.022 $.024 

Road Pricing 

Addition Through 

2050 

The increase in real road pricing cost by the year 2050 $0 $.024 

Elasticity The sensitivity of driving in EVs and electric CAVs to road 
prices. 

-.2 -.2 
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5. Preliminary Results 
 

The preliminary results of our modeling efforts can be seen in figure 4. As in previous efforts to predict 

the GHG impacts of autonomous vehicles, there is a fairly large range of outcomes, ranging from a 20% 

reduction in GHG emissions by 2050 to an 80% reduction by 2050. 

 

Figure 4: Preliminary modeling results 

      Policy Case    Stress Case  

                    

        
EIA 

Emissions 

Decarb 

Electric 

Sector     
EIA 

Emissions 

Decarb 

Electric 

Sector 

    Year TWh MMT MMT   TWh MMT MMT 

              

    2020  1064 1057   1065 1057 

Sharing   2030  850 808   858 814 

    2040  607 472   641 474 

    2050  401 183   589 197 

              

    2020  1064 1057   1065 1057 

Conventional   2030  851 809   868 822 

    2040  650 500   756 548 

    2050  523 245   711 259 

              

    2020  1064 1057   1065 1057 

Lease   2030  853 811   878 830 

    2040  701 533   891 636 

    2050   666 318     854 332 
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In a worst case scenario, even if we convert to all electric vehicles, the result is only a 20% reduction in 

GHG by 2050, spurred by an appetite for ever-newer technology, a desire for individually owned 

passenger vehicles, and a lack of policies to curb VMT growth. The outsized impact of a desire for new 

vehicle models is illustrated in figure 5, where, even under a policy scenario in which driving impacts are 

curbed, the emissions from AV production are significant enough to nearly double total vehicle 

emissions. 

Figure 5: Emissions under a policy case with EIA projections and an accelerated vehicle leasing model 
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On the other hand, in a best case scenario, we see an 80% reduction in vehicle emissions by 2050. The 

remaining emissions in this scenario are almost entirely from the remaining ICE vehicles in the total 

vehicle fleet, indicating that a policy to require electric vehicles sooner than 2050 could make a 

significant impact in achieving any remaining emissions reductions. 

Figure 6: Emissions under a policy case with decarbonization of the electric grid and a vehicle sharing 

model 

 

Note that current preliminary results do not include consideration of urban vs rural VMT, indicating that 

our “best case” preliminary results may be slightly more optimistic than final results. 
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