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Abstract

We analyze the transition to electric vehicles and recent policy proposals to ban

gasoline vehicles. Our model captures declining electric vehicle damages; declining

electric vehicle production costs due to exogenous changes or to learning by doing;

stock effects; and the introduction of complementary infrastructure such as charging

stations. We derive conditions under which it is socially optimal to ban gasoline vehicle

production in the long run. We derive two classes of solutions. In one, it is optimal to

ban gasoline vehicle production before beginning production of electric vehicles. This

solution obtains if electric vehicles are perfect substitutes for gasoline vehicles. In the

other solution, it is only optimal to ban gasoline vehicle production after beginning the

production of electric vehicles. Simulation results show that the optimal time to ban

gasoline vehicles depends critically on the parameters that describe preferences for the

two types of vehicles.
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1 Introduction

Two changes have dramatically altered markets in personal transportation. First, the in-

troduction of the Tesla Roadster in 2006 marked a modern resurgence in sales of electric

vehicles. In Norway, electric vehicles have surpassed 60% of new vehicle sales and are ex-

pected to exceed 90% by 2024 (Accenture). In the US, sales are currently less than 10%,

but are projected to exceed 90% in California by 2040. This growth has been fueled by

technological advances, for example in batteries, and by substantial public monetary and

non-monetary support.1 Second, the electricity grid has become substantially cleaner. Hol-

land et al. (2018) document dramatic declines in emissions from U.S. power plants and show

that the decline in total emissions has led to a decline in marginal damages in the East of

about 5% per year. Public support for electric vehicles is justified at least in part by their

environmental benefits, which should increase as electricity becomes cleaner.

These two changes raise questions about policies regarding the optimal transition to elec-

tric vehicles. Should electric vehicle subsidies be increasing or decreasing over time? Should

the transition be abrupt or gradual? How should electric vehicle adoption be sequenced with

complementary technologies such as charging infrastructure? Perhaps most importantly, un-

der what conditions would a ban on gasoline vehicles be justified? This last question arises

because a number of countries are considering bans on the sale of new gasoline vehicles

within the next few decades: Norway (proposed date of ban is 2025), India (2030), Britain

(2040), and France (2040).2

In this paper, we address these questions with a theoretical model of the transition from

gasoline to electric vehicles. We construct an optimal control problem for a planner who

determines the production levels for gasoline and electric vehicles over time to maximize

welfare. Welfare includes the utility from using the vehicles, the costs of producing them,

and the pollution damages and other costs associated with their use. We assume that gasoline

vehicles and electric vehicles are not necessarily perfect substitutes, which is a distinguishing

characteristic of our work relative to other papers that have examined the transition from

1See Holland et al (2016) and Yuksel et al (2016) for analyses of the economic implications of electric
vehicles.

2http://money.cnn.com/2017/07/26/autos/countries-that-are-banning-gas-cars-for-electric/index.html.
Accessed 9/1/2017.
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dirty to clean vehicles or from dirty to clean fuels more generally (Chakravorty et al 2012,

Amigues et al 2016, Bahel and Chakravorty 2016, Creti et al 2018).

Our model accounts for a number of important dynamic aspects to the problem. First,

the model allows for declining damages from electric vehicles. Holland et al (2018) docu-

ment an extraordinary decline in air pollution from electricity generation in recent years and

determine the corresponding decline in damages from electric vehicles. Our model assumes

that damages decline exogenously over time. Second, we allow for declining production costs

of electric vehicles. The resurgence of electric vehicles was led by high performance but high

cost Teslas. Prices of other electric vehicles have typically been $20-$30,000 higher than

comparable gasoline vehicles primarily due to the high initial costs of batteries. However,

production costs of electric vehicles have declined dramatically due to improvements e.g., in

battery technology or electric motors. We allow for production costs to decline either exoge-

nously or endogenously due to learning by doing in the manufacturing of electric vehicles.

Third, both gasoline and electric vehicles are durable goods. Stocks of durable goods decay

naturally over time but can be increased through the production of new goods. We model

the stock effects of production and depreciation for both electric and gasoline vehicles. The

final dynamic consideration is the production of complementary infrastructure for electric

vehicles such as charging stations. Complementary infrastructure increases the utility of

electric vehicles, and thus changes the degree of substitutability between the vehicles. In the

most complete version of the model, the planner selects the both the production of vehicles

and the roll out of infrastructure.

We first consider the basic question of whether or not a ban is justified by the economic

fundamentals in the model. We provide a simple condition under which the planner optimally

bans production of gasoline vehicles in the long run. The condition is a function of the

marginal rate of substitution, the long run production costs of the vehicles, and the long

run pollution damages. A numerical calulation based on plausible values for the parameters

of the model for the United States shows that the ban is much more strongly influenced

by percentage changes in production costs than by equal percentage changes in pollution

damages.

Next, we turn to the question of when electric vehicle production should be started and

2



when gasoline vehicle production should be halted (i.e. the point in time in which the ban

takes effect.) We show that there are two types of solutions to the planner’s problem, depend-

ing on the degree of substitutability. In one solution, which we refer to as the gap solution,

the planner optimally bans gasoline vehicle production before production of electric vehicles

starts. The gap solution arises, for example, if electric vehicles are perfect substitutes for

gasoline vehicles. A second solution occurs when electric vehicles are not perfect substitutes

for gasoline vehicles. We call this solution the simultaneous solution because there is a period

of time in which both vehicles are produced. In the simultaneous solution, it is only optimal

to ban gasoline vehicle production after starting production of electric vehicles.

We calibrate the model for the United States and simulate the solution numerically. These

simulations show that the optimal time to implement a ban on gasoline vehicle production in

the Unites States is quite sensitive to the parameters that characterize the substitutability of

electric vehicles for gasoline vehicles. For many values of the parameters, the ban on gasoline

vehicle production occurs well after 2030, if it occurs at all. We also conduct simulations

of the business as usual (BAU) case in which the planner ignores the externalities from air

pollution from both gasoline and electric vehicles. This mimics the market outcome. There

are parameter values for which the market stops producing gasoline vehicles, but the stop

times are generally at least a decade later than the stop times in the planner’s problem.

Finally, we analyze the welfare benefits of several types of subsidies on the purchase of

electric vehicles.

2 Model

Consider a continuous time model in which society benefits from the stock of gasoline and/or

electric vehicles. The benefit per unit of time in dollars is given by U(G,X) where G(t)

denotes the stock of gasoline vehicles and X(t) the stock of electric vehicles at time t.3

Letting UG and UX denote the partial derivatives, we assume U is concave with UG > 0 and

UX > 0.

The stocks of gasoline and electric vehicles evolve over time due to production of new

3For notational convenience, we often suppress writing variables as explicit functions of time.
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vehicles and retirement of vehicles from events such as accidents and mechanical failure. Let

g(t) denote the production of gasoline vehicles at time t and a > 0 denote the retirement

rate. The state equation for the stock of gasoline vehicles is Ġ = −aG + g where Ġ is the

time derivative of G. Likewise, let x(t) denote the production of electric vehicles. The state

equation for the stock of electric vehicles is Ẋ = −aX + x. Note that the expected lifetime of

a vehicle is given by 1
a .

Each vehicle has production costs and usage costs. These costs may include both private

costs and externalities from, for example, emissions of air pollution. Let cg denote the one

time production cost of a gasoline vehicle, and let δg denote the usage costs of driving a

gasoline vehicle per unit of time. In our simulation, gasoline usage costs are equal to the

sum of the operating costs and damages from air pollution from tailpipes. We assume that

both cg and δg are constant over time. Also we assume that UG(0,0) > (a + r)cg + δg so that

it is optimal to have some gasoline cars if there are no electric cars.

We assume electric vehicles initially have greater production costs and/or greater usage

costs than gasoline vehicles, but that these costs are falling over time. Let production costs

of an electric vehicle at time t be cx(t) with ċx < 0 and c̈x ≥ 0.4 Decreases in cx over time

are due to, for example, exogenous improvements in battery technology.5 Let δx(t) denote

the usage cost of driving an electric vehicle per unit of time at time t. In our simulation, the

electric vehicle usage costs equals the sum of operating costs and damages from air pollution

from electric power plants. We assume δ̇x ≤ 0. Decreases in δx over time are due to, for

example, decreases in damages as the electricity grid gets cleaner.6 Define the limits of

production and usage costs for electric vehicles as limt→∞ cx(t) = ĉx and limt→∞ δx(t) = δ̂x.

Several elements of the model deserve additional explanation. First, the stocks of gasoline

and electric vehicles G and X are only differentiated by fuel type. Many other attributes

matter to drivers including the age of the vehicle. Second the benefit function U repre-

sents the benefits to society from optimally allocating the stocks of vehicles to consumers.

Adding an electric vehicle may require the existing stock of vehicles to be reallocated among

4 We assume that Ux(G
ss,0) < (a + r)cx(0) + δx(0) so that no electric vehicles are produced at t = 0.

5Kittner et al (2017). Below we extend the model to include endogenous reductions in costs, for example,
from learning by doing.

6Holland et al 2018.
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consumers. This assumption is consistent with well functioning markets for new and used

vehicles. Third, the usage cost is per vehicle, so the total usage cost is simply the product of

the stock of vehicles and the usage cost per vehicle. We assume the usage cost for a gasoline

vehicle, δg is constant over time. If certain components of the usage cost, e.g., the social cost

of carbon, are increasing over time, then we are implicitly assuming that other components

of the usage cost (e.g., driving or fuel economy) are changing to offset these increases. On

the electric side, we assume usage costs are decreasing due to declines in pollution damages

over time. Note that this does not require us to model the vintages of the electric vehicles

if declines in pollution damages per mile arise due to improvements in the electricity grid,

rather than efficiency improvements to the electric drivetrains. An improvement in the grid

leads to a contemporaneous decrease in damages from the entire fleet of electric vehicles

regardless of the age of the vehicle.

The planner determines the production of gasoline and electric vehicles to maximize

discounted net benefits. If r is the interest rate and the planner starts in an initial steady

state with no electric vehicles, the planner’s problem is

max
g,x

∫
∞
0 e−rt (U(G,X) − cgg − cxx − δgG − δxX)dt

s.t. Ġ = −aG + g ; G(0) = Gss

Ẋ = −aX + x ; X(0) = 0

x ≥ 0 ; g ≥ 0,

where Gss, defined by UG(Gss,0) = (a + r)cg + δg, is the initial steady state stock of gasoline

vehicles. In this optimal control problem, the control variables are the production levels g

and x, and the state variables are G and X, which are assumed to be continuous.7

The derivation of necessary conditions for the planner’s problem are given in Online

Appendix A. These conditions include the state equations for G and X and the corresponding

adjoint equations

α̇ = (a + r)α + δg −UG, (1) eq:adjG

7This rules out using impulse functions for the controls x and g.
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and

β̇ = (a + r)β + δx −UX ,

where α is the adjoint variable forG and β is the adjoint variable forX. Because the objective

and state equations are linear in the controls, and the controls must be non-negative, we

have the following Kuhn-Tucker first order conditions for the controls:

g ≥ 0 α − cg ≤ 0 g(α − cg) = 0

x ≥ 0 β − cx ≤ 0 x(β − cx) = 0.

These equations show that the adjoint variables are bounded above by the production costs

and equal production costs when g or x is interior.

Consider interior production of gasoline vehicles. When g > 0, the first order condition

implies that α = cg and hence because cg is constant over time we have α̇ = 0. The adjoint

equation for G then implies

UG = (a + r)cg + δg. (2) eq:g_int

To interpret this equation, we first define the full marginal cost of the gasoline vehicle as

(a + r)cg + δg, which is the sum of annualized depreciation, investment, and operating costs.

It follows that the marginal benefit of a gasoline vehicle per unit of time equals the full

marginal cost.

Interior production of electric vehicles has a similar interpretation. When x > 0, we have

β = cx. Taking the time derivative gives β̇ = ċx, so the adjoint equation for X implies

UX = (a + r)cx + δx − ċx. (3) eq:x_int

This equation is analogous to (2) except it has an additional cost −ċx > 0, which is the

opportunity cost of producing the electric vehicle at time t instead of waiting until it is

cheaper to produce in the future. In this case the full marginal cost, (a + r)cx + δx − ċx

includes the opportunity cost −ċx. The full marginal cost of the electric vehicle is decreasing

over time.8

8The time derivative of the full marginal cost is (a + r)ċx + δ̇x − c̈x which is negative by assumption.
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In the initial steady state, we have x(0) = 0 and X(0) = 0, so the steady state stock of

gasoline vehicles, Gss, is determined by UG(Gss,0) = (a + r)cg + δg and initial production of

gasoline vehicles is g = aGss. Note that, if gasoline production was simply set to zero, then

the gasoline vehicle stock would asymptote to zero according to G(t) = Gsse−at.

2.1 Banning gasoline vehicle production

To explore whether it is optimal to ban gasoline vehicle production, we first explore the

terminal steady state in which all improvements to electric vehicles and the electricity grid

have been completed, so usage costs have converged to δ̂x and production costs have con-

verged to ĉx. Let g∞ be gasoline vehicle production in the terminal steady state. We say

that gasoline vehicle production is optimally banned in the terminal steady state if g∞ = 0,

or more precisely if there exists some T such that g(t) = 0 for all t > T . Our first proposition

describes parameter combinations that determine whether or not gasoline vehicle production

is banned in the terminal steady state. All proofs are in Online Appendix B.

lrprop Proposition 1. Let X∗ be defined by

UX(0,X∗) = (a + r)ĉx + δ̂x.

Gasoline vehicle production is banned in the terminal steady state, i.e., g∞ = 0 if

UG(0,X
∗) < (a + r)cg + δg.

Conversely, we have g∞ > 0 if UG(0,X∗) > (a + r)cg + δg

In the proposition, X∗ is the number of electric vehicles which would be optimal if there

were no gasoline vehicles in the terminal steady state. The proposition states that gasoline

vehicle production should be banned if the marginal benefit of a gasoline vehicle, when there

are no gasoline vehicles but lots of electric vehicles, is less than the full marginal cost of a

gasoline vehicle, i.e., is less than the sum of the depreciation, interest, and usage costs of

the vehicle. If U is derived from an underlying discrete choice model, the marginal benefit

UG(0,X∗) would be interpreted as the utility gain to the individual with the highest gain in
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valuation from a gasoline vehicle relative to optimally having either no vehicle or an electric

vehicle. The planner would ban gasoline vehicle production if this gain is small, but would

not ban gasoline vehicle production if this gain is large.

Dividing the first two equations in Proposition 1 allows us to derive a condition on

society’s marginal rate of substitution (MRS) between gasoline and electric vehicles. The

proposition implies that gasoline vehicle production should be banned if this MRS is smaller

than the ratio of full marginal costs. If vehicles are perfect substitutes such that the MRS

is one, the result implies that gasoline vehicles should be banned if the full marginal cost

of an electric vehicles is cheaper. Alternatively, if vehicles are not good substitutes, such

that the MRS is not one, then the full marginal cost of electric vehicles would need to be

substantially cheaper in order for a ban to be optimal.

We could also define a gasoline vehicle ban as g(t) = 0 for some interval of time. In

particular, it may be optimal to stop producing gasoline vehicles for a time and draw down

the existing stock of gasoline vehicles even if gasoline vehicles must eventually be produced

in the terminal steady state. We refer to this is a temporary ban. We will explore conditions

under which gasoline vehicles are subject to a temporary ban in future work.

2.2 Transition From Gasoline to Electric Vehicles

We now turn our attention to the transition from gasoline to electric vehicles. By assumption,

g(0) = aGss > 0 but x(0) = 0, i.e., gasoline vehicles are initially produced but electric vehicles

are not. This leads to two key transition times: tg, which is the time when gasoline vehicle

production stops, and te which is when electric vehicle production starts. More precisely tg

is defined such that g(t) > 0 for t ∈ [0, tg] but g(t) = 0 for t > tg.9 If tg = ∞ then gasoline

vehicle production is not banned. Similarly, te is defined such that x(t) = 0 for all t ∈ [0, te)

but x(t) > 0 for all t ∈ [te,∞).

For these transition times, there are two possible solutions to the planner’s problem.

If te < tg, then there is a period of time in which gasoline and electric vehicles are both

produced. We can this the simultaneous solution. If tg < te, then there is a period of time

in which neither gasoline nor electric vehicles are produced. We call this the gap solution

9In the case of a temporary ban, g(t) need not equal zero for all t > tg.

8



due to the gap in vehicle production. Surprisingly, this solution obtains for reasonable

parameterizations of the model. We first characterize the transition times in the simultaneous

solution and then in the gap solution.

2.2.1 The simultaneous solution

The simultaneous solution is characterized first by production of gasoline vehicles only, then

by production of both gasoline and electric vehicles, and finally by production of electric

vehicles only. Before te, the solution has g = aGss > 0 but no electric vehicle production.

Electric vehicle production begins at te. Over the interval [te, tg], both gasoline and electric

vehicles are produced so both (2) and (3) must hold and the vehicle stocks (and hence

production) are determined by these equations. Note that the costs of electric vehicles are

falling so more vehicles are produced and Ẋ > 0. Because the right-hand-side of (2) is

constant over time, it follows that Ġ < 0 over this interval. If tg < ∞, then gasoline vehicle

production ceases at tg and the stock of gasoline vehicles simply depreciates thereafter, i.e.,

G(t) = G(tg)e−a(t−tg) for every t > tg. As the gasoline vehicle stock is depreciating, electric

vehicle production is determined by (3), generally increasing toward a terminal steady state.

Characterizing te in the simultaneous solution is relatively simple because G(te) = Gss

and X(te) = 0. Substituting these values for vehicles stocks into (3) yields UX(Gss,0) =

(a + r)cx(te) + δx(te) − ċx(te) which can then be solved for te. The characterization of tg

is trickier since it involves solving a differential equation. Details are in the proof of the

following proposition which characterizes the transition times:

prop:simul Proposition 2. In the simultaneous solution, the transition time te is the solution to

UX(Gss,0) = (a + r)cx(t
e) + δx(t

e) − ċx(t
e). (4) eq:simul_te

If tg <∞, the transition time tg is the solution to

cg = ∫
∞

tg
e−(a+r)(τ−t

g) [UG(Gno(τ),Xno(τ)) − δg]dτ (5) eq:simul_tg

where Gno(t) = G(tg)e−a(t−tg) and Xno(t) satisfies UX(Gno(t),Xno(t)) = (a+r)cx+δx− ċx for
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all t > tg.

The characterization of te in (4) shows that electric vehicle production should begin when

the full marginal cost of the electric vehicle falls such that it exactly equals the marginal

benefit of an electric vehicle given a zero stock of electric vehicles. Because gasoline vehicles

are in steady state at te, equation (4) can also be written in terms of the MRS:

UX(Gss,0)

UG(Gss,0)
=

(a + r)cx(te) + δx(te) − ċx(te)

(a + r)cg + δg
.

If gasoline and electric vehicles are close substitutes, this MRS should be close to one, and

electric vehicle production should begin when full marginal costs of the electric and gasoline

vehicles are approximately equal. If, however, there are individuals who highly value electric

vehicles, the MRS when X = 0 could be quite large. In this case it might be optimal

to produce electric vehicles even if their full marginal costs substantially exceed the full

marginal costs of a gasoline vehicle. Conversely, if electric vehicles are seen as inferior even

by the individuals with the highest relative valuations (perhaps due to range anxiety), then

the full marginal costs would need to fall below the full marginal costs of a gasoline vehicle

before electric vehicles should be produced.

The characterization of tg in (5) shows that gasoline vehicle production should stop when

the cost of producing a gasoline vehicle equals the present value of the lifetime benefit of

driving a gasoline vehicle net of usage costs from that time on. Two points are worth noting

about (5). First, the discount factor e−(a+r)(τ−tg) reflects both the time cost of money, r, and

the depreciation cost, a, of the vehicle. Second, the path of the gasoline vehicle stock after

tg, given by Gno(t) = G(tg)e−a(t−tg), is simply the stock decaying because no new gasoline

vehicles are produced after tg. However, G(tg) is not equal to Gss because during the interval

[te, tg] both gasoline and electric vehicles are produced so the stocks evolve to satisfy both

(2) and (3).

2.2.2 Gap Solution

The gap solution is characterized first by gasoline vehicle production, then by no vehicle

production (the gap) and finally by electric vehicle production. During [0, tg], gasoline
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vehicles are produced in steady state with gasoline stock equal to Gss and interior gasoline

production g = aGss > 0. At time tg, production of gasoline vehicles stops and from then on,

the stock of gasoline vehicles decays exponentially so G(t) = Gsse−a(t−tg) for all t > tg. At

time te, production of electric vehicles starts with interior x determined so that X satisfies

(3) with G(t) = Gsse−a(t−tg). Let Xgap(t) denote this stock of electric vehicles during the

period [te,∞].

We can now characterize the transition times te and tg in the gap solution. In this case,

the transition times must be solved for jointly.

gapprop Proposition 3. In the gap solution, the transition times te and tg are the solutions to the

system of equations described by

UX(Gsse−a(t
e−tg),0) = (a + r)cx(t

e) + δx(t
e) − ċx(t

e) (6) gapone

and

cg = ∫
te

tg
e−(a+r)(τ−t

g)(UG(Gsse−a(τ−t
g),0)−δg)dτ+∫

∞

te
e−(a+r)(τ−t

g) [UG(Gsse−a(τ−t
g),Xgap(τ)) − δg]dτ.

(7) gaptwo

Equation (6) shows that electric vehicle production should begin when the full marginal

cost of the electric vehicle falls to the marginal benefit of an electric vehicle. However

because of the gap in production, the stock of gasoline vehicles has depreciated and the

marginal benefit of an electric vehicle is higher than in the initial steady state value. Thus

the gap in production increases the marginal benefit of an electric vehicle and causes their

production to begin earlier. Notice that (6) is a function of both te and tg so the marginal

benefit depends on the stock of gasoline vehicles, which in turn depends on how long it has

been since production of these vehicles was stopped. Equation (7) shows that at time tg,

the production cost of the vehicle should equal the discounted net benefits of an additional

gasoline vehicle at each time in the future. This equation is similar to (5) except that it

depends on te because the production paths and hence the marginal benefit of a gasoline

vehicle change when electric vehicle production begins. Thus equations (6) and (7) each

depend on both tg and te.
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The gap solution has a period of time in which no vehicles are produced. Because this

is counterintuitive, it is useful to point out that the gap solution can occur for reasonable

parameterizations of the model. The next proposition shows that we obtain the gap solu-

tion in the rather important special case in which gasoline and electric vehicles are perfect

substitutes.

nobothg Proposition 4. If the benefit function is U(G,X) = u(G + ηX) with u concave, then the

solution to the planner’s problem has tg < te.

The perfect substitutes case thus provides a useful benchmark for the analysis of the transi-

tion from gasoline to electric vehicles. The planner accounts for the decreasing damages and

production costs of electric vehicles when determining the optimal time to introduce them.

If electric vehicles are perfect substitutes for gasoline vehicles, there is no loss in benefit from

banning gasoline vehicle production if they are replaced by electric vehicles. In this case, the

planner bans production of gasoline vehicles before beginning production of electric vehicles

because gasoline vehicles produced today will remain in the fleet for some time, and they

will cause more damages than the increasingly clean electric vehicles. In addition, banning

production of gasoline vehicles increases the marginal benefit of an electric vehicle, thus

leading to an earlier introduction of electric vehicles.

We have seen that perfect substitutes leads to the gap solution. With more general pref-

erences, either the gap or simultaneous solution may occur. Loosely speaking, if electric cars

are good substitutes for gasoline vehicles, then the gap solution occurs. If, however, the vehi-

cles are not good substitutes, then the planner accounts for this by extending the production

lifetime of gasoline vehicles past the point at which electric vehicles are introduced.

2.3 Extensions

In this section we extend the model to investment in charging infrastructure and learning by

doing. Investment in charging infrastructure can increase the benefit of an electric vehicle by

facilitating intercity driving and reducing range anxiety. To model charging infrastructure,

let the state variable W (t) be the stock of charging infrastructure and the control variable

w(t) be the additional charging infrastructure (e.g., number of stations) produced at time
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t which costs cw per unit. Assuming charging infrastructure does not depreciate, the state

equation for the stock of charging infrastructure is Ẇ = w. The benefit of driving an electric

vehicle depends on the charging infrastructure. Charging infrastructure increases the utility

of electric vehicles because, for example, it is easier to take long trips. We can write the

aggregate benefit function as U(G,X,W ) with UW > 0 and UXW > 0. We also assume that

UW (G,0,W ) = 0, i.e., there is no benefit to charging stations when there are no electric

vehicles.

Charging infrastructure investment is subject to the “chicken and egg” problem of two-

sided externalities. The planner in our framework avoids this externality, and the following

proposition delineates conditions under which investment in charging infrastructure should

begin before or after the production of electric vehicles.

prop-chargef Proposition 5. Let tw1 be the time at which production of charging infrastructure begins. If

w at tw1 is interior and r > 0, then tw1 > te. Conversely, if r = 0, then tw1 ≤ te.

The condition that w is interior essentially means that any upper bound on the production

of charging infrastructure must be large enough so that it is not binding. If the interest rate

is positive, the planner does not invest in charging infrastructure until there is a sufficient

stock of electric vehicles to raise its marginal benefit above its marginal cost. Alternatively,

if the interest rate is zero, then the planner wants to build out charging stations in advance

because they do not depreciate and interest payments are zero.

The second extension introduces learning by doing in the production of electric vehi-

cles. With learning by doing, the marginal cost of producing electric vehicles decreases

in cumulative electric vehicle production which is denoted by the state variable Z(t) with

state equation Ż = x. The marginal cost of producing electric vehicles is given by a function

cx = f(Z, t) with fZ < 0 and ḟ < 0.

These extensions allow for a more general analysis of policy in the simulation section. A

detailed discussion of the solution to the planner’s problem with the extensions is given in

Online Appendix C. The qualitative features of the solutions described above are generally

robust to the extensions. For example, with learning by doing, Proposition 4 still holds and

the equations for the transition times te and tg have a similar structure as in Proposition 3.
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2.4 Second Best Subsidies

In a market economy, of course, a planner does not make decisions to produce gasoline and

electric vehicles. Rather these decisions are decentralized to firms and consumers through

prices. Government policy can nudge the consumer toward a lower polluting technology by

subsidizing its purchase. Without pricing all externalities, the outcome is not efficient but

can be second best. Langer and Lemoine (2017) consider a problem that is similar in spirit

but analyzes adoption of residential solar units in California.

In theory, the optimal second best subsidy can be determined in the following manner.

Given an arbitrary price path for electric vehicles, consumers determine the purchases of

vehicles in each instant of time to maximize utility net of operating costs but ignoring any

externalities. The solution to this consumer’s problem describes the choices of g and x, and

thus X and G, as a function of the price path for electric vehicles. Using this solution, the

planner can select the price path of electric vehicles (i.e., uses a tax or subsidy to manipulate

the market price as desired) to maximize welfare.

In practice, it difficult to determine an analytical solution to the general second best

problem. See Holland et al (2019) for a discussion and solution in a special case in which

electric vehicles are perfect substitutes for gasoline vehicles. Simpler subsidies, for example,

a constant subsidy or a subsidy which declines exponentially in time, can be readily analyzed

in our framework. For a given functional form for the subsidies, we can select the parameters

that maximize welfare. The resulting subsidies need not be second best but may provide a

guide to policy nonetheless.

3 Model Calibration

In this section we describe the components of the simulation exercise and the calibration of

parameters for these components. The starting year is 2005. We value any terminal stocks

using production costs and assume a sufficiently distant terminal time T such that the results

are not affected by the terminal conditions. Baseline values are shown in Table 1. We now

describe how we determine these values.
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Table 1: Baseline parameter values
tab-baseline

Parameter Value Description
T 70 Terminal time
a 0.067 Stock decay
δg 295.9 + 2726 Usage costs of gasoline vehicles: (externality) + operating
δx 632e(−0.05∗t) + 1535 Usage costs of electric vehicles: (externality) + operating
cg 36113 Production costs of gasoline vehicles
cx cg+ 21961e−0.06t Production costs of electric vehicles: 60 kWh battery
Gss 110 million Initial steady state stock of gas passenger vehicles
r 0.05 Interest rate

3.1 Usage costs for gasoline vehicles: δg

In the theoretical model, we assume that δg is constant over time. To put this assumption in

context, consider the externality component of usage costs. To determine how air pollution

damages from gasoline vehicles evolved over time, we calculate a historical time series of

tail pipe emission regulations, fleet MPG, and sulphur content in gasoline. Using data from

Argonne National Laboratory’s GREET model,10 we can calculate emissions in grams per

mile for 5 pollutants (VOC, CO2, SO2, PM2.5, and NOx) during the years 1975-2015 (see

Online Appendix D for details.) To determine damages from these emissions, we follow the

methodology of Holland et al (2016). We combine the emissions in grams per mile with

the estimates of damage valuations in dollars per gram by county using the AP2 integrate

assessment model, the EPA social cost of carbon, and VMT by county.

To illustrate this data, we conduct an experiment in which we assume the 2015 fleet of

vehicles has the polluting characteristics of, say, 1975 vintage passenger vehicles. Repeating

this for each year in our historical time series gives the results shown in Figure 1. In this

figure, the damage valuations of pollutants are kept constant. The only thing that is changing

is the emissions rates of the vehicles. The major improvements in emission reductions occur

in the late 1970’s and the 1990’s. Although there has been less improvement in the last

decade, the compound annual growth rate over this time period is negative two percent

per year. To calibrate the model, we us 2015 vintage vehicles as baseline. This gives the

externality component of usage costs to be 1.97 cents per mile and hence $295.9 dollars

10https://greet.es.anl.gov/
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per year per vehicle (assuming 15,000 miles per year).11 The operating costs of $2726 are

determined by data from the American Automobile Association (see Online Appendix F).

We assume that usage costs are constant over time for gasoline vehicles. However, usage

costs depend on the social cost of carbon, which increases over time. We are implicitly

assuming that that reductions in emissions from gas cars over time just balance out increasing

damage valuations for carbon and other pollutants. In particular, each new production

cohort must improve enough such that the externality from the entire stock of vehicles stays

constant. This is perhaps overly optimistic about the rate of improvements from gasoline

technology.

Figure 1: Damages from Emissions of Gasoline Vehicles over Timegascarhist

3.2 Usage costs for electric vehicles: δx

For the externality component of electric vehicle usage costs, Holland et al (2018) determine

the marginal damages from a unit of electricity for the three electricity interconnections

in the United States from 2010-2017. Marginal damages are decreasing at approximately

5 percent per year in the Eastern interconnection and we use this result in our baseline

11All dollar amounts are delineated in year 2017 dollars.
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specification. The operating costs for electric vehicles are determined by data from the

American Automobile Association (see Online Appendix F) and are assumed to stay constant

over time at a value of $1535.

The estimates in Holland et al (2018) do account for increasing damage valuations over

time. But similar to what we discussed for gasoline vehicles, it is likely that our usage cost

assumptions are overly optimistic about the rate of improvements from electric technology.

First, Holland et al (2018) point out that the time period in their analysis is characterized

by unusually rapid decreases in emissions. Second, our equation for usage costs assumes the

externality from electric vehicles decreases to zero in the terminal steady state.

3.3 Benefit Function and Other parameters

Calibration of the model requires a functional form for the benefit function U(G,X). The

functional form must satisfy our concavity assumption and should ideally be parsimonious

with parameters which we can identify from estimates in the literature. In addition, our

focus on the banning of gasoline vehicle production requires the functional form to admit

corner solutions with only gasoline or only electric vehicles.12 For tractability, we assume a

benefit function given by

U(G,X) = A ln(G + ηX + γηGX), (8) eq-utility

where A, γ, and η are parameters. There are several things to note about this functional form

assumption. First, the functional form nests linear indifference curves (if γ = 0) and one-to-

one perfect substitutes (if γ = 0 and η = 1). We can interpret η as the relative preference for

electric vehicles, and γ as the degree of substitutability. When the parameter γ is zero, we

have perfect substitutes and η describes the slope of the linear indifference curves. When

γ is greater than zero we have convex indifference curves, reflecting a social preference for

balanced consumption of the two types of vehicles. Second, the ln function implies a unitary

demand elasticity if G = 0 or X = 0. Third, the cross derivative UGX can be either positive

12This requirement rules out the simplest versions of widely used functional forms such as Cobb-Douglas
or constant elastiticity of substitution (CES).
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or negative.13 Finally, the parameter A is a demand shift parameter and can be determined

from the initial steady state.14

Data from the Department of Transportation and the Bureau of Economic Analysis

enables us to determine a = 0.067 (see Online Appendix G). For the production cost of

gasoline vehicles, cg, we use average sales price of light duty vehicles. This is consistent with

perfect competition in which vehicles are priced at marginal cost. For the production cost

of electric vehicles, we assume that most of the changes in cost will be due to decreased cost

for the batteries. We assume an electric car has a 60 kWh battery. Online Appendix E

contains time series data on costs of lithium ion batteries. Using this data, we determine

an exponential model to predict the decrease in electric vehicle production costs over time.

The resulting function approaches the gasoline vehicle production cost over time.

Our calibration shows that the initial annual usage costs of electric vehicles, $2167, is

less than the usage cost for the gasoline vehicle, $3022. However, the production cost of

the electric vehicle is higher. Full marginal costs are initially higher for the electric vehicle

(about $9000) but fall to about $6000 in the limit. Because full marginal costs for the

gasoline vehicle are about $7000, it is optimal to initially produced gasoline vehicles and

transition to electric vehicles as they become cheaper.

4 Simulation Results

4.1 Terminal Steady State: Banning gasoline vehicle production

We first analyze the conditions under which gasoline vehicle production is optimally banned

as implied by Proposition 1. Our calibration assumes that the terminal steady state pro-

duction cost of electric vehicles is equal to the production cost of gasoline vehicles (so that

ĉx = cg.) We also assume that in the terminal steady state, the emissions from electric power

generation are equal to zero, so that δ̂x consists of operating costs only. Under these assump-

tions, the critical value for the marginal rate of substitution, [(a+ r)ĉx + δ̂x]/[(a+ r)cg + δg],

13UGX can be positive when X = 0 or G = 0 and can be negative when both G and X are large.
14 The equation for the initial steady state is UG(G

ss,0) = (a+ r)cg + δg. Using the values in Table 1 gives
A = 797,184.
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that determines whether or not gasoline vehicles are banned in the terminal steady state

depends on four underlying parameters: gasoline global damages (due to CO2, evaluated at

the social cost of carbon), gasoline local damages (due to VOC, SO2, PM2.5, NOx), gasoline

operating costs, and electric operating costs.

Figure 2 shows the sensitivity of the critical value of the marginal rate of substitution to

changes in these four parameters. Consider the red line. Holding the other three parameters

at their baseline value, the red line shows the relationship between the critical value and

different values of the electric operating costs, expressed as a percentage of its baseline

value. As electric operating costs increase, the critical value that leads to a ban on gasoline

vehicle production in the long run increases. An increase in the costs of operating electric

vehicles makes electric vehicles less desirable, hence the marginal rate of substitution must

increase if the ban on gasoline vehicle production is to be justified. The other three variables

have a negative relationship with the critical value. For example, the blue line shows that as

the social cost of carbon increases, gasoline vehicles impose greater external costs, and hence

the marginal rate of substitution required to justify a ban decreases. The general message

from Figure 2 is that the critical value is much more sensitive to operating expenses than it

is to externalities.

For the specific functional form of the utility function (8), we have

MRS(0,X∗) =
UX(0,X∗)
UG(0,X∗)

=
η

1 +X∗γη
.

It follows that in the special case in which γ = 0, the MRS is equal to the relative preference for

electric vehicles η. This gives a simpler interpretation of the lines in Figure 2. An increase in

the costs of operating electric vehicles must be offset by an increase in the relative preference

for electric vehicles if the ban on gasoline vehicle production is to be justified.

4.2 Transition from gasoline to electric vehicles

Next we turn to analyzing the transition from gasoline to electric vehicles, focusing in par-

ticular on the benefit function in (8). We begin by illustrating the production and stocks for

η = 0.85 and three different values of the parameter γ. Panels (a) and (b) in Figure 3 have
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Figure 2: Parameter Combinations Implying a Ban on Gasoline Vehicle Productionfig-prop1

γ = 0, indicating that electric vehicles are perfect substitutes for gasoline vehicles. Panel (a)

shows that, as expected from Proposition 4, there is a gap in production of vehicles around

the year 2040, although it is quite short. Panel (b) shows that during the gap, the total

stock of vehicles (green line) decreases, but then rebounds when electric production (blue

line) begins. Panels (c) and (d) increase γ to 0.0005. This parameter combination implies a

simultaneous solution in which gasoline vehicle production is still banned eventually. Electric

vehicle production begins around 2035, and there is a period of about five years in which

both electric and gasoline vehicles are produced. Gasoline vehicle production ends about five

years later, despite the fact that electric vehicles are not perfect substitutes. When electric

vehicle production begins and when gasoline production ends, there are jumps in vehicle

production, but the overall stock of vehicles increases smoothly. Panels (e) and (f) increase

the value of γ to 0.0006. This case illustrates the simultaneous solution in which gasoline

vehicle production is never banned. There is a large jump in gasoline vehicle production

when electric vehicle production begins, but the overall stock of vehicles increases smoothly.

We next analyze the transition times for a broader range of values for γ and η. We focus

on parameter values such that g(∞) = 0 in the terminal steady state. Essentially, we repeat
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(a) Production γ = 0 (b) Stocks γ = 0

(c) Production γ = 0.0005 (d) Stocks γ = 0.0005

(e) Production γ = 0.0006 (f) Stocks γ = 0.0006

Figure 3: Production and Stocks for various values of γ holding η = 0.85fig-gamma0
Notes: Red is gasoline vehicles, blue is electric vehicles, and green is total vehicles.
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the analyses shown in Figure 3 for different parameter values and then catalog the resulting

transition times. These results are shown in Figure 4. The red and blue curves show the

values for tg and te corresponding to the baseline value of η = 0.85. There are three different

regions represented as a function γ. For small values of γ we have the gap solution. Here

tg < te, although for practical purposes the period of time in which there is no production is

essentially zero. As γ increases, this at first leads to slightly earlier transition times within

the gap solution. But eventually we cross a threshold in which we move from the gap solution

to the simultaneous solution (the red curve moves above the blue curve.) Here increases in γ

lead to much later transition times for gasoline vehicles, and in fact only a small increase in γ

is needed for the the transition time for gasoline vehicles tg to increase dramatically. Finally,

we reach the final region in which gasoline vehicles are never banned. The threshold of this

region is indicated by the point at which the blue and red curves stop. For all values of γ,

the point at which electric vehicle production begins is around 2040 (approximately 35 years

from the starting year). Also shown in Figure 4 is an alternative set of results for two other

values of η. As η increases, the intensity of preferences for electric vehicles increases, and

hence the value of te decreases and electric vehicles are produced earlier, even before 2020

in some cases. The sensitivity of the transition times to γ is quite similar for the different

values of η.

Our framework also allows us to analyze the business as usual (BAU) time path of electric

vehicle adoption. This time path corresponds to how market forces ignoring the externality

would respond to changes in vehicle costs. To determine this, we simply eliminate the

externalities from the planner’s problem and solve the resulting problem for the optimal

production over time. As before, we first look at the production and vehicle stocks for a

given set of parameters and then look at a figure that catalogs the transition times for many

parameter values.

Figure 5 compares the first-best and BAU vehicle production and stocks for η = 0.85 and

γ = 0.0005. In panel (a), the blue and red curves simply reproduce the first-best results from

panel (c) in Figure 3. Relative to first best, the BAU production of electric vehicles (purple

curve) starts about five years later and has lower production. Also notice that the BAU

solution does not lead to zero production of gasoline vehicles (black curve) in the terminal
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Figure 4: Transition times as a function of utility parametersfig-graph-prop4-aggregate

steady state. Even with these differences in production, the stocks of vehicles are similar, as

shown in Panel (b). Notice that the BAU solution has a greater initial steady state stock of

gasoline vehicles than first best. This is because the BAU solution ignores the externalities

from gasoline vehicles. In contrast, the BAU solution has a smaller stock of total vehicles

the terminal steady state. This is because the BAU solution has a mixture of gasoline and

electric vehicles in the terminal steady state. Therefore the usage cost of the fleet is a mixture

of the usage cost of gasoline and electric vehicles. In the first best solution, the usage cost

of the fleet is simply the usage cost of the electric vehicles. Thus the fleet usage cost is lower

than in BAU, so there are more vehicles in the first best terminal steady state than in the

BAU steady state.

First best and BAU transition times are compared in Figure 6 for a variety of values

for γ and with η = 0.85. The BAU curves are in the upper left of the figure, and the

first best curves (reproduced from Figure 4) are on the right below. We see that for small

values of γ (less than 0.0002), the market would eventually adopt electric vehicles and reduce

production of gasoline vehicles to zero, although about 15 years later than in the first best

solution. Next, there are parameter combinations (around γ = 0.0002) in which the market
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(a) Production (b) Stocks

Figure 5: First Best vs. BAU: Production and Stocksfig-bau
Notes: Red (gasoline vehicles), blue (electric vehicles), and green (total vehicles) are identical to the curves

in Figure 3 panels (c) and (d). The other colors are BAU.

has a simultaneous solution but the first best has a gap solution. For these parameter

combinations, the market would keep gasoline vehicles in production for several decades

more than the first best solution. Next, there are parameter combinations (γ from about

0.0002 to 0.0005) in which the market would never eliminate gasoline production but the

first best solution would. And finally there are parameter combinations (γ above 0.0005) in

which neither solution eliminates gasoline vehicle production.

4.3 Extensions: Learning by doing and charging infrastructure

Next we consider the effects of learning by doing in the production of electric vehicles. The

specification of the learning by doing function is described in Online Appendix E. 15 Once

again we consider the case in which η = 0.85 and γ = 0.0005. The blue and red curves in panel

(a) are the original solution without learning by doing. Adding learning by doing leads to

the production of electric vehicles about a decade earlier. The production of electric vehicles

with learning by doing (purple line) has a large spike at te. This spike helps drive down costs

on subsequent production. Also notice that the learning by doing solution features a gap in

production, whereas the original solution has simultaneous production of both vehicles.

The next set of results analyzes investment in charging infrastructure. We assume that

charging infrastructure makes electric vehicles better substitutes for gasoline vehicles by

15The function is cx = cg+60∗351.95e−0.0641t−0.160 lnZ where Z is cumulative production of electric vehicles.
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(a) Production (b) Stocks

Figure 7: Effect of adding Learning by Doingfig-lbd
Notes: Red (gasoline vehicles), blue (electric vehicles), and green (total vehicles) are identical to the curves

in Figure 3 panels (c) and (d). The other colors add learning by doing.
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increasing η from 0.85 to 1 while holding γ = 0. Thus the effect of charging stations is to

increase the relative preference for electric vehicles. Details of this specification are given in

Online Appendix H. In this calibration, the interest rate is positive and the upper bound

on production of charging stations is not binding, so Proposition 5 implies that charging

stations should only be built after production of electric vehicles has started. The results

are shown in Figure 8 for high, medium, and low costs of charging infrastructure. When

charging infrastructure is very expensive, as shown in panels (a) and (b), its cost outweighs

the increased benefits of electric vehicles and hence no stations are built. As the costs

decrease, more are built. In Panel (c) and (d), the transition time for electric vehicles

te occurs well before the first charging station is built. And, when charging stations do

start to be constructed, there is a spike in the production of electric vehicles. As charging

stations become even more inexpensive, as shown in panel (e) and (f), charging stations are

introduced closer to te and the electric vehicle production spike becomes more pronounced.

4.4 Subsidies

We conclude the results section by analyzing electric vehicle purchase subsidies. In the

absence of Pigouvian taxation of all externalities, subsidizing electric vehicle purchases can

improve welfare. In our base calibration the production cost (and hence price path) of an

electric vehicle is cx = cg + 21961e−0.06t. If consumers ignore externalities in their driving, a

subsidy could modify this price path to potentially improve welfare. For example, a constant

subsidy ψ would make the new price path c̃x = cg − ψ + 21961e−0.06t. Whether this subsidy

would increase or decrease welfare depends on the level of the subsidy ψ. However, we

can choose the subsidy ψ optimally to maximize the welfare gain from this simple subsidy.

In fact, for any price path, c̃x, which depends on a few parameters we can follow a similar

procedure to optimize the price path conditional on the functional form. The implied subsidy

would then be the difference between cx and c̃x. In the limit, with sufficient parameters and

functional form flexibility, we could approximate the second-best subsidy with this procedure.

Table 2 shows the optimized parameters, deadweight loss, and transition times for five

optimized price paths with different implied subsidies. The first row shows the BAU market

outcome, i.e., zero subsidy. Relative to first best, BAU has deadweight loss of $29.3 billion
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(a) High Cost Stations: Production (b) High Cost Stations: Stocks

(c) Med. Cost Stations: Production (d) Med. Cost Stations: Stocks

(e) Low Cost Stations: Production (f) Low Cost Stations: Stocks

Figure 8: Production and Stocks with Charging Infrastructure Investmentsfig-charge
Notes: Red is gasoline vehicles, blue is electric vehicles, green is total vehicles, and brown is charging

infrastructure.
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Table 2: Deadweight Loss and Transition Times for Optimized Purchase Subsidies
tab-subsidy

Price Path Deadweight Transition
Subsidy Formula Optimal Loss Time
Type for c̃x Parameter ($ billions) te

BAU cg + 21961e−0.06t n.a. 29.256 49.75
Constant cg − ψ + 21961e−0.06t ψ∗ = 1482 14.387 35.51
Initial Price cg + ψe−0.06t ψ∗ = 9600 14.118 35.05
Decay Rate cg + 21961e−ψt ψ∗ = 0.084 14.140 35.14
Two Parameter cg + ψ1e−ψ2t ψ∗1 = 8027 ψ∗2 = 0.055 14.114 35.04

Notes: Benefit function assumes γ = 0 and η = 0.85.

(about $400 million per year) and te = 49.75, which is 2055. The second row shows the

optimized constant subsidy. The optimal constant subsidy of $1482 reduces the deadweight

loss to about $14.4 billion (cuts the deadweight loss in half) and decreases the transition

time to 35.51. This transition time is only slightly later than the first best transition time

of 35.10. The third through fifth rows have time varying subsidies. In the third row, “Initial

Price”, the subsidy starts at 21961 − ψ and exponentially decays to zero over time. The

optimal value of ψ is $9600, which implies that the initial subsidy is $12,361, much higher

than the constant subsidy of $1482. This falling subsidy reduces deadweight loss further

to $14.1 billion, again about half the BAU deadweight loss, and has a transition time close

to the first best. The fourth row considers a subsidy that declines at the different rate

than the baseline decline in cx, and the last row optimizes over both the initial price and

the decay rate. All of the optimized subsidies reduce the deadweight loss by about 50%

relative to BAU and lead to electric vehicle adoption times very close to the first best time

of 2040. Interestingly, adding a second degree of freedom leads to only a trivial decrease

in the deadweight loss suggesting that there may not be substantial efficiency gains from

introducing additional flexibility into the subsidy.
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5 Conclusion

The small parameter ranges for which the simultaneous solution exists illustrates a funda-

mental tension in the decision to ban gasoline vehicle production. If such a ban is ever

justified in the long run, then it must be the case that electric vehicles are fairly good substi-

tutes for gasoline vehicles. But, if they are indeed good substitutes, then this suggests that

the gap solution is likely to occur. Hence gasoline vehicles are banned quite early, before

production of electric vehicles commences! There is only a narrow range for parameters that

yields the much more intuitively appealing simultaneous solution. In this solution, gaso-

line and electric vehicles are both produced for a period of time before gasoline vehicles are

banned.

Within the simultaneous solution, the optimal time to ban gasoline vehicles is quite

sensitive to the consumer preferences for the two types of vehicles. A small decrease in the

substitutability of electric vehicles can increase the optimal time to ban gasoline vehicles by a

decade or more. A similar dynamic occurs in the BAU outcome, although the BAU outcome

generally leads to the termination of gasoline production much later than in the first best

solution. This suggests that optimal policy will depend critically on accurate assessment of

consumer preferences for electric vehicles.
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Online Appendices

A Planners Problem
planprob

Consider a finite horizon version of the planner’s problem with terminal time T . We will

take the limit as T goes to infinity as needed to determine the features of the infinite horizon

problem. The salvage value of a gasoline or electric vehicle at terminal time is cg or ĉx (in

current value.) The planner’s problem is

max
g,x

cge−rTG(T ) + ĉxe−rTX(T ) + ∫
T

0 e−rt (U(G,X) − cgg − cxx − δgG − δxX)dt

s.t. Ġ = −aG + g ; G(0) = Gss

Ẋ = −aX + x ; X(0) = 0

g ≥ 0,

x ≥ 0

where Gss is the initial steady state stock of gasoline vehicles.

Let α̃ and β̃ be the adjoint variables corresponding to the system equations for G and

X. The Hamiltonian is

H = α̃(−aG + g) + β̃(−aX + x) + e−rt (U(G,X) − cgg − cxx − δgG − δxX) .

From the Maximum Principle16 the necessary conditions for the optimal control are the state

equations, the initial conditions, and

− ˙̃α + α̃a − e−rt (UG − δg) = 0 (adjoint equations)

−
˙̃β + β̃a − e−rt (UX − δx) = 0

α̃(T ) = cge−rT (adjoint final conditions)

β̃(T ) = ĉxe−rT ,

In addition, the controls g and xmust maximize the Hamiltonian subject to the nonnegativity

constraints. Because the Hamiltonian is linear in the controls, we use the Kuhn-Tucker

16See for example Kamien and Schwartz (2012).
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necessary conditions for the controls:

g ≥ 0 α̃ − e−rtcg ≤ 0 (α̃ − e−rtcg)g = 0 (necessary condition for g)

x ≥ 0 β̃ − e−rtcx ≤ 0 (β̃ − e−rtcx)x = 0 (necessary condition for x)

If the control g satisfies g > 0, then it must be the case that α̃ − e−rtcg = 0. Conversely, if

α̃ − e−rtcg < 0, it must be that g = 0. If α̃ − e−rtcg = 0 then any g such that g ≥ 0 maximizes

the Hamiltonian.

Using the change of variables α = ertα̃ and β = ertβ̃ (i.e. current values instead of present

values) the adjoint equations become

α̇ = (a + r)α −UG + δg ;α(T ) = cg.

β̇ = (a + r)β −UX + δx ;β(T ) = cx

The necessary conditions for interior g and x become

g ≥ 0 α − cg ≤ 0 (α − cg)g = 0 (necessary condition for g)

x ≥ 0 β − cx ≤ 0 (β − cx)x = 0 (necessary condition for x)

B Proofs
proofss

Proof of Lemma 1

Before proving the propositions, we state the following lemma, which allows us to solve for

the adjoint variable for gasoline vehicles from the adjoint equation:

lemmaDEq Lemma 1. The adjoint equation (1) for gasoline vehicles is solved by the function

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τ [δg −UG(G(τ),X(τ)]dτ +K] (A-1) eq:DEqSol

for an arbitrary constant K.
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With an initial condition α(t0) = α0, the adjoint equation is solved by

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τ [δg −UG(G(τ),X(τ))]dτ + α0e

−(a+r)t0] (A-2) eq:alphaInit

With a terminal condition, the adjoint equation is solved by

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(G(τ),X(τ)) − δg]dτ. (A-3) eq:alphaTerm

Proof. The adjoint equation (1) is a first-order differential equation of the form

α̇ − (a + r)α = f(t)

where f(t) = δg −UG(G(t),X(t)) is a function of t. Using the integrating factor method, the

solution to a differential equation of this form, which can be easily verified, is

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τf(τ)dτ +K] ,

where K is an arbitrary constant.

If α(t0) = α0, we set (A-1) equal to α0 and solve for K, which implies K = α0e−(a+r)t0 .

Substitution in (A-1) yields (A-2).

For the terminal condition, instead of using the transversality conditions, we use the

terminal condition α(T ) = α1 with an arbitrary end period T . We then determine the

constant KT with this arbitrary end period and take the limit of KT as T →∞. With this

terminal condition in (A-1) we can solve for KT which yields

KT = α1e
−(a+r)T − ∫

T

t0
e−(a+r)τ [δg −UG(G(τ),X(τ))]dτ.

We then take the limit as T →∞ of KT and substitute the result into (A-1) which gives

α(t) = e(a+r)t [∫
t

t0
e−(a+r)τ [δg −UG(G(τ),X(τ)]dτ − ∫

∞

t0
e−(a+r)τ [δg −UG(G(τ),X(τ))]dτ]
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which simplifies to (A-3). Note that the solution does not depend on the arbitrary constant

α1.

Proof of Proposition 1

Proof. To prove the condition for banning gasoline vehicles, we show that the solution sat-

isfies the first order conditions with g∞ = 0. As t → ∞, if g = 0 and x is such that (3) is

satisfied, then for some T1 we have (G,X) ≈ (0,X∗). We can then evaluate the adjoint

variable using (A-3) from Lemma 1, which shows that for t > T1

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(G(τ),X(τ)) − δg]dτ.

≈ e(a+r)t∫
∞

t
e−(a+r)τ [UG(0,X∗) − δg]dτ.

= (UG(0,X
∗) − δg)/(a + r) < cg

which implies α(t) < cg. Together with g = 0, the remaining first order condition is satisfied.

A proof by contradiction demonstrates the condition under which gasoline vehicles are not

banned. Suppose g∞ = 0 which implies that g(t) = 0 for all t > T1 for some T1. But this implies

that for some T2 with t > T2 > T1 we have G ≈ 0 and X ≈ X∗ so that UG(G,X) ≈ UG(0,X∗)

where ≈ means “arbitrarily close to”, i.e., within an ε-ball. Again using (A-3) from Lemma 1,

we have that for t > T2

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(G(τ),X(τ)) − δg]dτ.

≈ e(a+r)t∫
∞

t
e−(a+r)τ [UG(0,X∗) − δg]dτ.

= (UG(0,X
∗) − δg)/(a + r) > cg

which contradicts the first order condition α ≤ cg.
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Proof of Proposition 2

Proof. To characterize te note that x > 0 over the interval [te, tg] so (3) must hold including

at te. But at te we have G(te) = Gss and X(te) = 0. Substituting these into (3) UX(Gss,0) =

(a+ r)cx(te)+ δx(te)+ ċx(te) which can then be solved for te and characterizes te. (4) follows

directly.

To characterize tg, we focus on the adjoint variable α. During [te, tg], we have g interior,

so that α = cg. After tg, α evolves according to the adjoint equation (1) which we can solve

using (A-3) from Lemma 1 to have

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [UG(Gno(τ),Xno(τ)) − δg]dτ. (A-4) eq:alpha

But at tg, we have α(tg) = cg which implies the result

cg = ∫
∞

tg
e−(a+r)(τ−t

g)(UG(Gno(τ),Xno(τ)) − δg)dτ.

Proof of Proposition 3

Proof. After tg, the gasoline vehicle stock is simply G(t) = Gsse−a(t−tg). So at te we have

UX(Gsse−a(t
e−tg),0) = (a + r)cx(t

e) + δx(t
e) − ċx(t

e)

This equation is a function of both te and tg, so we need another equation to pin down the

transition times.

The other equation comes from the continuity of α(t). For t ∈ [0, tg], we have α(t) = cg.

For t ∈ [tg, te] and for t ∈ [te,∞], α(t) evolves according to two different differential equations,

which we can solve using Lemma 1. Continuity at te gives the additional equation.

For the interval [tg, te], the adjoint equation can be solved using (A-2) from Lemma 1
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with the initial condition α(tg) = cg as

α(t) = e(a+r)t [∫
t

tg
e−(a+r)τ [δg −UG(Gsse−a(τ−t

g),0)]dτ + cge−(a+r)t
g

] (A-5) eq:Gap1

for the interval [tg, te]

For the interval [te,∞), the adjoint equation can be solved using (A-3) from Lemma 1 as

α(t) = e(a+r)t [∫
∞

t
e−(a+r)τ [UG(Gsse−a(τ−t

g),Xgap(τ)) − δg]dτ] (A-6) eq:Gap2

for t ≥ te. Since (A-5) and (A-6) must both hold at te, we have the result

cg = ∫
te

tg
e−(a+r)(τ−t

g)(UG(Gsse−a(τ−t
g),0)−δg)dτ+∫

∞

te
e−(a+r)(τ−t

g) [UG(Gsse−a(τ−t
g),Xgap(τ)) − δg]dτ

Proof of Proposition 4.

Proof. First we show that both g and x cannot be interior during the same time interval.

For U(G,X) = u(G + ηX), we have UG = u′ and UX = u′η If g is interior, (2) can be written

u′ = (a + r)cg + δg. Similarly, if x is interior, (3) can be written u′η = (a + r)cx + δx − ċx.

Combining these implies

η[(a + r)cg + δg] = (a + r)cx(t) + δx(t) − ċx(t).

Since the left side of this equation is constant but the right side is decreasing, both g and x

cannot be interior over an open interval, which implies tg ≤ te.

We now show that tg < te. Suppose that tg = te. Because g is interior, α = cg on the

interval [0, tg]. In particular, α(tg) = cg. However, using (A-3) from Lemma 1, we have

α(t) = e(a+r)t∫
∞

t
e−(a+r)τ [u′(G(τ) + ηX(τ)) − δg]dτ

when we substitute in UG = u′. Because u′η = (a + r)cx + δx − ċx after te, we have that u′ is
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decreasing after te. This implies that

α(tg) = e(a+r)t
g

∫

∞

tg
e−(a+r)τ [u′(G(τ) + ηX(τ)) − δg]dτ

< e(a+r)t
g

∫

∞

tg
e−(a+r)τ [u′(G(tg)) − δg]dτ

= e(a+r)t
g

[u′(G(tg)) − δg]∫
∞

tg
e−(a+r)τdτ

= e(a+r)t
g

[(a + r)cg]e
−(a+r)tg/(a + r) = cg

which is a contradiction.

C Extensions
extend

Here we introduce learning by doing and investment in charging infrastructure. To account

for charging infrastructure, the aggregate utility function becomes U(G,X,W ) where W

is the stock of charging infrastructure and UW > 0. Charging infrastructure grows based

on investment, w, which costs cw per unit and increases the stock according to the state

equation Ẇ = w. To account for learning by doing, we assume the cost for producing an

electric vehicle depends on the cumulative number of electric vehicles produced, Z, which

follows the state equation Ż = x. The cost per electric vehicle then becomes

cx = f(Z),

where f ′(Z) ≤ 0 and f(∞) = ĉx.
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The planner’s problem with terminal time T is

max
g,x,w

cge−rTG(T ) + f(Z(T ))e−rTX(T ) + ∫
T

0 e−rt (U(G,X,W ) − cgg − f(Z)x − cww − δgG − δxX)dt

s.t. Ġ = −aG + g ; G(0) = Gss

Ẋ = −aX + x ; X(0) = 0

Ẇ = w ; W (0) = 0

Ż = x ; Z(0) = 0

ḡ ≥ g ≥ 0

x̄ ≥ x ≥ 0

w̄ ≥ w ≥ 0.

Let α̃, β̃, and φ̃, and λ̃, be the adjoint variables corresponding to the system equations

for G,X,W and Z. The Hamiltonian is

H = α̃(−aG+g)+ β̃(−aX +x)+ φ̃w+ λ̃x+e−rt (U(G,X,W ) − cgg − f(Z)x − cww − δgG − δxX) .

From the Maximum Principle the necessary conditions for the optimal control are the state

equations, the initial conditions, and

− ˙̃α + α̃a − e−rt (UG − δg) = 0 (adjoint equations)

−
˙̃β + β̃a − e−rt (UX − δx) = 0

−
˙̃φ − e−rtUW = 0

−
˙̃λ − e−rt (−f ′(Z)x) = 0

α̃(T ) = cge−rT (adjoint final conditions)

β̃(T ) = f(Z(T ))e−rT

φ̃(T ) = 0,

λ̃(T ) = f ′(Z(T ))X(T )e−rT

and, in addition, the controls g, x, and w maximize the Hamiltonian subject to the feasibility

constraints. Because the Hamiltonian is linear in the controls, we use the Kuhn-Tucker
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necessary conditions:

g ≥ 0 α̃ − e−rtcg ≤ 0 (α̃ − e−rtcg)g = 0 (necessary condition for g)

x ≥ 0 λ̃ + β̃ − e−rtf(Z) ≤ 0 (λ̃ + β̃ − e−rtf(Z))x = 0 (necessary condition for x)

w ≥ 0 φ̃ − e−rtcw ≤ 0 (φ̃ − e−rtcw)w = 0 (necessary condition for w)

In other words, if the control g satisfies ḡ > g > 0, then it must be the case that α̃ −

e−rt (cg) = 0. We also have the boundary conditions. For example, if α̃− e−rtcg < 0 then g = 0

and if α̃ − e−rtcg > 0 then g = ḡ. Finally, we note that if α̃ − e−rtcg = 0 then any g such that

ḡ ≥ g ≥ 0 maximizes the Hamiltonian.

Assume in what follows that T is long enough (and/or Z(T ) is big enough) so that

f(Z(T )) = ĉx and f ′(Z(T )) = 0. Using the change of variables α = ertα̃, β = ertβ̃, φ = ertφ̃,

and λ = ertλ̃ (i.e. current values instead of present values) the adjoint equations become

α̇ = (a + r)α −UG + δg ;α(T ) = cg

β̇ = (a + r)β −UX + δx ;β(T ) = ĉx

φ̇ = rφ −UW ; φ(T ) = 0.

λ̇ = rλ + f ′(Z)x ;λ(T ) = 0

The necessary conditions for g, x, and w become

g ≥ 0 α − cg ≤ 0 (α − cg)g = 0 (necessary condition for g)

x ≥ 0 λ + β − f(Z) ≤ 0 (λ + β − f(Z))x = 0 (necessary condition for x)

w ≥ 0 φ − cw ≤ 0 (φ − cw)w = 0 (necessary condition for w)

Next we show a few facts about the adjoint variables.

lem-pos Lemma 2. 1. For all t ∈ [0, T ] we have λ ≥ 0 and φ ≥ 0.

2. If x is interior, then β̇ = −rλ.

3. If x is zero for t ∈ [0, ts) and interior for t ∈ [ts, T ] for some ts, then β(ts) < f(0) and
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β ≥ cg for t ∈ [ts, T ].

Proof. Suppose that at some point in time λ < 0. Because f ′(Z)x ≤ 0, it follows from the

adjoint equation for λ that λ̇ < 0. Thus λ must continue to fall for the rest of the time

period. But this is a contradiction with λ(T ) = 0. The proof for φ is similar.

Next suppose that x is interior. Take the time derivative of (C). This gives

λ̇ + β̇ = f ′(Z)x.

Using the adjoint equation for λ this implies

rλ + f ′(Z)x + β̇ = f ′(Z)x.

Simplifying gives the desired result that

β̇ = −rλ.

The fact that β(ts) < f(0) follows directly from (C) and the fact that λ ≥ 0. To prove

that β ≥ cg, we combine

β̇ = −rλ ≤ 0.

with β(T ) = cg.

Learning By Doing

In this section, we focus learning by doing and ignore charging infrastructure. Furthermore,

we assume that we have the representative consumer model so that aggregate utility is given

by U(G + ηX). In the main text, we showed that such a utility function leads to the gap

solution. The next proposition shows this result is robust to the having the cost of electric

vehicles be determined by learning by doing.

Proposition 6. Consider the model with learning by doing. Suppose that aggregate utility

is given by U(G + ηX). Then the solution to the planner’s problem has tg < te.
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Proof. First we show that both g and x cannot be interior during the same time interval.

Suppose both g and x are interior during some time interval. Because g is interior we have

α = cg. Thus α̇ = 0 and from the adjoint equation for α we have

δg + (a + r)cg = U
′.

Because x is interior we have λ + β = f(Z). Taking the time derivative gives

λ̇ + β̇ = f ′(Z)x.

Substituting in from the adjoint equations for λ and β gives

rλ + f ′(Z)x + (a + r)β −U ′η + δx = f ′(Z)x.

Simplifying gives

r(λ + β) + aβ + δx = U
′η. (A-7) keyforx

Substituting the value for U ′ from above and using (C) gives

rf(Z) + aβ + δx = (δg + (a + r)cg)η.

Taking the time derivative gives

rf ′(Z)x + aβ̇ + δ̇x = 0 (A-8) fstep

From Lemma 2 we know that

β̇ = −rλ.

So we have

rf ′(Z)x + δ̇x = arλ.

The first expression on the left-hand-side is non-positive and the second expression is nega-

tive. This implies that λ is negative, which contradicts Lemma 2.
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So far we have shown that tg ≤ te. So we must rule out the case that tg = te. Suppose

that tg does indeed equal te. In steady state with g interior, we have α = cg, thus α̇ = 0, and

hence U ′ − (a + r)cg − δg = 0. These equations hold at t = tg. Because tg = te, we are also

producing electric vehicles with interior x. From (A-7) and (C) we have

r(f(Z)) + aβ + δx = U
′η. (A-9) interxu

Taking the time derivative gives

ηU̇ ′ = rf ′(Z)x + aβ̇ + δ̇x.

Every term on the right hand side is negative, hence U̇ ′ is negative. Thus marginal utility is

decreasing over time.

Now consider some point in time t̃ = tg + ε. Because α̇ = 0 at tg, we have α = cg at t̃. So

at t̃, the adjoint equation for α is

α̇ = −(U ′ − (a + r)cg − δg).

Because marginal utility is decreasing over time, U ′ is less at t̃ than it is at tg. At tg we have

U ′ − (a + r)cg − δg = 0. So at t̃ we have U ′ − (a + r)cg − δg < 0. Hence at t̃ we have α̇ > 0. So

this implies α will become greater than cg in the next time instant. But, from the necessary

conditions, if α > cg then it is optimal for g to be positive (equal to the maximum production

level.) This contradicts the definition of tg.
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Charging Infrastructure

In this section, we focus on charging infrastructure and ignore learning by doing. Aggregate

utility U(G,X,W ) is a function of the stock of electric vehicles, gas vehicles, and charging

stations. As W increases, electric vehicles become better substitutes for gasoline vehicles. We

assume that UW (G,X,W ) = 0, which implies that the marginal utility of charging stations

is zero when there are no electric vehicles. Let tw1 be the time at which the planner begins

production of charging stations.

We now prove Proposition 5 in the main text.

Proof. We prove both statements by contradiction. To prove the first statement, suppose

tw1 ≤ te. By assumption at tw1, we have w interior which implies that φ = cw. It follows that

φ̇ = 0. The adjoint equation then implies that UW (G,X,W ) = rcw at tw1. But since tw1 ≤ te,

we have X(tw1) = 0, so rcw = UW (G(tw1),X(tw1),W (tw1)) = UW (G(tw1),0,W (tw1)) = 0

which is a contradiction because r > 0.

To prove the second statement, suppose tw1 > te. At te, we have w = 0. Thus φ ≤ cw.

Because r = 0, the adjoint equation for φ implies that φ̇ < 0 for all t. But this contradicts

the fact that at tw1 we must have φ ≥ cw.

The next proposition shows that if the planner starts producing charging stations before

electric vehicles, then there is a period of time in which charging stations are produced at

the maximum rate.

lem-char Proposition 7. If tw1 < te, then there is a period of time starting defined by [tw1, tw2], with

tw2 > te, such that charging infrastructure is at the maximum rate (w = w̄) during this period.

Proof. Production of charging infrastructure implies that φ ≥ cw. At tw1, we have X = 0,

and thus UW = 0. It follows from the adjoint equation for φ that φ̇ > 0. Thus there exists a

period of time [tw1, tw2] for some tw2 such that φ > cw and hence w = w̄ in this period.

Next we argue that tw2 > te. If tw2 = T , then this is trivially true. If tw2 < T , then at

tw2 production of charging infrastructure is less than w̄. Thus φ(tw2) ≤ cw. But this implies

that φ̇ has to become negative at some point in [tw1, tw2], and the only way that can happen
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is for UW to be positive, and this requires X > 0. Hence te must be in the interior of this

period.

D Emissions from gasoline vehicles
hisgas

The historical emissions from gasoline vehicles are given in Table C. Many of these values

simply reflect the emissions regulations in place at various points in time. For 1975-2003,

the NOx standard comes from data in Mondt (2000). After 2003 the NOx standard is

average for Tier 2 bins phased in from 2004 to 2009. VOC emissions include tailpipe and

evaporation. For 1975-2003, the tailpipe VOC emissions come from Lee et al (2010) and

after 2003 tailpipe VOC emissions come from Tier 2 Bin 5. Evaporation VOC is fixed at the

value specified in GREET 2013. PM2.5 includes tailpipe emissions (Tier 2 bin 5 standard)

and tire and break wear from GREET 2013. SO2 emissions calculated from GREET 2013

and EPA (1999). Emissions of CO2 are derived from fleet average MPG figures (EPA 2015,

Table 9.1).

E Lithium ion battery prices over time
lithium

Data on prices and production of Lithium ion batteries comes from Kittner, Lill, and Kam-

men (2017) and is shown in Table D. All numbers in this section are expressed in 2015 dollars.

(We convert to 2017 dollars to get the numbers used in the main text.)We assume that the

cost premium of electric vehicles relative to gasoline vehicles is largely driven by battery

prices. The general procedure for specifying cx is to determine an initial cost premium in

conjunction with a decay function that is a function of time and cumulative production. We

assume that electric vehicles have a 60 KWh battery and convert the units of cumulative

production into millions of vehicles (divide MWh by 60,0000) to be consistent with the rest

of the parameters. We then estimate the following model for battery prices

ln(Price) = constant + αYear + β ln(Cumulative Production) + ε.

A.14



Table C: Historical Emissions from Gasoline Vehicles (g/mile)
hisgastab

Model Year CO2 SO2 PM2.5 VOC NOx
1975 658 0.20881 0.0173 1.557 3.1
1976 596 0.18919 0.0173 1.557 3.1
1977 570 0.18071 0.0173 1.557 2
1978 526 0.16680 0.0173 1.557 2
1979 517 0.16390 0.0173 1.557 2
1980 444 0.14095 0.0173 1.557 2
1981 415 0.13173 0.0173 0.467 1
1982 400 0.12698 0.0173 0.467 1
1983 402 0.12756 0.0173 0.467 1
1984 397 0.12585 0.0173 0.467 1
1985 386 0.12257 0.0173 0.467 1
1986 375 0.11895 0.0173 0.467 1
1987 373 0.11845 0.0173 0.467 1
1988 369 0.11697 0.0173 0.467 1
1989 375 0.11895 0.0173 0.467 1
1990 381 0.12099 0.0173 0.467 1
1991 380 0.12047 0.0173 0.467 1
1992 385 0.12203 0.0173 0.467 1
1993 378 0.11996 0.0173 0.467 1
1994 381 0.12099 0.0173 0.307 0.6
1995 380 0.08192 0.0173 0.307 0.6
1996 381 0.08227 0.0173 0.307 0.6
1997 380 0.08192 0.0173 0.307 0.6
1998 380 0.08192 0.0173 0.307 0.6
1999 386 0.08334 0.0173 0.307 0.3
2000 388 0.04924 0.0173 0.307 0.3
2001 386 0.04903 0.0173 0.307 0.3
2002 385 0.04881 0.0173 0.307 0.3
2003 383 0.04860 0.0173 0.307 0.3
2004 385 0.02929 0.0173 0.132 0.07
2005 378 0.02159 0.0173 0.132 0.07
2006 381 0.00726 0.0173 0.132 0.07
2007 369 0.00702 0.0173 0.132 0.07
2008 366 0.00696 0.0173 0.132 0.07
2009 350 0.00666 0.0173 0.132 0.07
2010 344 0.00656 0.0173 0.132 0.07
2011 347 0.00661 0.0173 0.132 0.07
2012 328 0.00624 0.0173 0.132 0.07
2013 319 0.00606 0.0173 0.132 0.07
2014 319 0.00606 0.0173 0.132 0.07
2015 313 0.00596 0.0173 0.132 0.07
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Table D: Price and Cumulative Production of Lithium Ion Batteries
lithprices

Year Price Cumulative Production
(2015 Dollars per KWh) (MWh)

1991 5394.66 0.13
1992 4392.33 1.68
1993 3444.54 14.55
1994 2718.82 50.08
1995 2566.13 121.13
1996 1888.28 547.42
1997 1329.07 1257.9
1998 872.46 2288.09
1999 711.34 3815.63
2000 619.38 5982.59
2001 508.85 8504.79
2002 487.47 12092.71
2003 437.97 17350.26
2004 401.51 24526.11
2005 351.95 33371.58
2006 317.43 44916.87
2007 320.07 58806.74
2008 319.25 75616.08
2009 298.29 94954.08
2010 260.87 119308.1
2011 231.81 149029.1
2012 185.82 183816.1
2013 183.14 226555.1
2014 170.2 276384.1
2015 150 337871.1

Using OLS, we obtain α = −0.0641 (Std. Err. 0.01) and β = −0.160 (Std. Err. 0.02). For the

simulation, we start in year 2005. Under the assumption that costs are a function of time

alone we get

cx = cg + 60 ∗ 351.95e−0.0641t.

Adding learning by doing gives

cx = cg + 60 ∗ 351.95e−0.0641t−0.160 lnZ ,

where Z is the cumulative production of electric vehicles.

F Operating costs for gasoline and electric vehicles
opcosts

The American Automobile Association (AAA) issues an annual report on the cost of driving.

For 2017, the operating costs for the average gasoline vehicle are 18.18 cents per mile, or

$2726 dollars per year (assuming 15000 miles driven per year). For the first time in 2017,

AAA determined operating costs for electric vehicles. The values are 10.23 cents per mile or

A.16



$1535 dollars per year (assuming 15000 mlles driven per year.)

G Stock decay
stockdecay

Over the period from 2012 to 2016, the average production of light duty vehicles is 16.3

million units and the average production of passenger cars (a subset of light duty vehicles)

is 7.4 million.17 The 2015 stock of light duty vehicles is 190 million.18 Approximately 58

percent of all light duty production from 1976 to 2016 is passenger cars. Assuming that

passenger cars and light trucks retired at same rate suggests that the stock of passenger cars

is 110 million. In steady state the decay rate is the annual production divided by the stock.

So we have

a = 7.4/110 = 0.067.

H Charging Infrastructure
charge

We model η and γ as a function of the stock of charging stations W . We have

η = 1 − (1 − ηo)e
−k1W

and

γ = γoe
−k2W .

In this formulation, η is equal to ηo when W = 0 and converges to 1 as W approaches infinity.

Likewise, γ starts at γ0 and approaches 0.

17See “light vehicle production.xlsx”, produced by Bureau of Economics Analysis, 2017.
18 https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national transportation statis-

tics/html/table 01 11.html. Accessed Dec 18, 2017.
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