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Abstract

Communication facilitates cooperation by ensuring that deviators are collectively

punished. We explore how players might misuse equilibrium messages to threaten one

another, and we identify conditions under which communication improves cooperation

despite such threats. In our model, a principal plays trust games with a sequence of

short-run agents who communicate with each other. A shirking agent can demand pay

by threatening to report that the principal deviated. We show how these threats can

destroy cooperation. However, some cooperation is restored if players observe public

signals of e�orts or transfers, or if the principal has a bilateral relationship with each

agent.
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1 Introduction

Productive relationships thrive on the enthusiastic cooperation of their participants. In many

organizations and markets, however, cooperation is not automatic: participants typically re-

frain from opportunistic behavior only because they expect such behavior to be punished

(Malcomson (2013)). Communication plays an essential role in coordinating these punish-

ments by allowing news of misbehavior to spread far beyond those who directly observe that

misbehavior. So, for example, workers use the threat of collective punishments to make sure

that managers pay promised rewards (Levin (2002)); guilds and industry associations en-

courage fair dealing between both members and nonmembers by threatening boycotts (Greif

et al. (1994); Bernstein (2015)); communities protect public resources by threatening non-

contributors with communal sanctions (Ostrom (1990)); and online marketplaces publicize

buyer reviews so that poor service will hurt future sales (Hörner and Lambert (2018)).

Communication is powerful in these settings because it can be used to coordinate pun-

ishments of those who have reneged on their promises. But individuals armed with this

power also face a grave temptation, since they can demand concessions from their partners

by threatening to falsely spread word of misbehavior. We will show that these threats have

the potential to undermine coordinated punishments and destroy cooperation. Despite their

prevalence and potentially dire consequences, however, the constraints that these threats

impose on cooperative relationships remain understudied.

In this paper, we explore how rent-seeking individuals can misuse messages that are

designed to encourage cooperation, and we identify remedies that facilitate cooperation in

the face of such misuse. We develop a principal-agents model in which cooperation depends

on communication among the agents. This model allows each agent to shirk and threaten to

make false reports unless the principal takes a desired action, a deviation that we will call

extortion. We �rst prove a stark impossibility result: the possibility of extortion totally

undermines cooperation, since any attempt to coordinate punishments simply becomes an

opportunity for agents to extract surplus without exerting e�ort. We then build on this
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impossibility result to identify ways that coordinated punishments can improve cooperation

despite these threats. Collectively, our results suggest that coordinated punishments are

susceptible to misuse, but they also identify organizational designs that limit that misuse

and so restore cooperation.

To illustrate this kind of misuse, consider the relationship between a manager (of, say,

a manufacturing plant) and her workers. These relationships are rarely governed by formal

contracts alone; instead, workers are willing to strive for excellent performance only if they

trust the manager to reward their e�orts (Gibbons and Henderson (2013)). In this context,

an institution that allows workers to collectively punish a misbehaving manager � whether

that institution is a traditional union (Freeman and Medo� (1979)) or an online job review

platform like Glassdoor.com � can encourage cooperation between the manager and workers

and so enable highly productive outcomes. However, if such institutions are not carefully

designed, then workers may face the temptation to subvert them in pursuit of private gain.

In some cases, this subversion is shockingly overt, as in the recent conviction of an Illinois

union o�cial who extorted personal bribes from businesses by threatening to initiate labor

unrest (Meisner and Ruthhart (2017)). Subtler forms of subversion can also have serious

consequences. For example, Glass and Lang�tt (2015) records how manipulative grievances,

�led not in accord with the union's wishes but instead by individual workers hoping to gain

leverage over management, led to very low productivity at General Motor's Fremont plant

in the 1980s.1

The use of coordinated punishments, and their potential for misuse, extend far beyond

the factory �oor. Firms use industry associations like the Financial Industry Regulatory

Authority (FINRA) to share information about employees who provide de�cient e�ort or

1Glass and Lang�tt (2015) reports that some workers used this leverage to protect themselves from being
punished for �shirking� behaviors, including absenteeism and drug use, which were decidedly not condoned
by the union as a whole. The Fremont plant eventually closed as a result of low productivity, although
Toyota later stepped in to reopen it as part of a joint venture with GM. After reopening, Toyota retained
almost all of the same unionized workforce but achieved much higher productivity. Consistent with this
example, sections 4 and 5 suggest ways to design institutions like unions so that they improve productivity
to the bene�t of both managers and workers.
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engage in unethical behavior. In 2016, however, former employees of Wells Fargo alleged

that after they raised concerns about the unfolding scandal at their company, it falsi�ed

reports to FINRA in order to have them essentially blacklisted within the �nancial services

industry (Arnold and Smith (2016)). Similar threats are a real concern in online marketplaces

and review aggregators. For instance, Klein et al. (2016) shows that extortion was prevalent

in the early days of eBay: sellers would extort positive reviews by threatening to leave

negative reviews of any buyer that complained, leading to less seller e�ort and lower buyer

satisfaction. To combat similar problems, TripAdvisor explicitly forbids buyers from using

the threat of negative reviews to extort �rms.2

In these examples, messages can both be used to facilitate cooperation and misused to

make extortionary threats. We explore the resulting tension using a model of a long-run

principal who interacts with a sequence of short-run agents. Each agent exerts costly e�ort

to bene�t the principal, who can then pay a transfer to that agent. Agents observe only

their own interaction with the principal but can communicate with other agents at no cost.

To capture the idea that extortion entails action-contingent threats � i.e., �pay me or else I

will punish you� � we allow each agent to choose a communication protocol at the start

of his interaction with the principal. This protocol, which is observed by the principal but

not by other agents, associates a message to each possible transfer to that agent. Agents are

then committed to communicate according to their protocols.3

Agents are willing to exert e�ort only if they are compensated for doing so, while the

principal is willing to compensate an agent only if she would otherwise be punished. Com-

munication is therefore essential for inducing e�ort, since short-run agents cannot directly

punish the principal for reneging. Once armed with messages that can trigger punishments

by other agents, however, an agent can shirk and then demand pay using the same threats

as an agent who exerted e�ort. This deviation � an agent shirking and then threatening to

2The speci�c TripAdvisor policy is at https://www.tripadvisor.com/TripAdvisorInsights/w592.
3See Wolitzky (2012) and Chassang and Padro i Miquel (2018), which make similar commitment assump-

tions to study other kinds of action-contingent promises or threats.
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say that the principal deviated unless she pays him � is our notion of extortion. Since these

threats are enough to induce the principal to compensate an agent for his e�ort, they are

also enough to induce the principal to pay a shirking agent. Consequently, an agent can

force the principal to pay him regardless of his e�ort, which eliminates his incentive to work

hard. Section 3 shows that the resulting unique equilibrium outcome entails zero e�ort.

This impossibility result follows from the observation that a shirking agent can make

the same threats, and hence demand essentially the same transfer, as one who works hard.

Consequently, anything that drives a wedge between the threats available to a hard-working

agent and those available to a shirking agent could lead to positive equilibrium e�ort. The

second half of the paper illustrates this idea with two remedies that create exactly this kind

of wedge: public signals and bilateral relationships. These remedies represent concrete ways

for organizations to implement coordinated punishments without inviting extortion.

In section 4, we consider public signals of either the agents' e�orts or the transfers they

receive. We interpret these signals as investigations, such as when a union investigates the

grievances �led by its members. Public signals allow future agents to condition punishments

on more than just previous agents' messages and so tie the threats that an agent can make

to his actual interaction with the principal. We show how these types of signals can mitigate

extortion and lead to positive equilibrium e�ort. However, this remedy is not a panacea: if

signals are noisy, then the possibility of extortion still reduces equilibrium cooperation.

Section 4.1 considers signals of e�ort, which can ensure that agents are able to trigger

punishments only if they actually exert e�ort. Perfect e�ort signals are enough to completely

eliminate extortion. Noisy signals, on the other hand, still allow agents to earn some rent by

extorting the principal. Hence, agents prefer noisy signals of e�ort � ��awed investigatory

processes� � over perfect signals in order to maximize their rents. Noisy signals also lead to

lower equilibrium e�ort, since the principal is less willing to pay a large transfer today if she

anticipates paying rents to future agents. Section 4.2 considers signals of transfers, which in

some cases can be used to make the principal indi�erent between paying a transfer or not,
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so that she is willing to both pay an agent who works hard and not pay an agent who shirks.

The downside of this remedy is that it is both fragile (in that it requires the principal to

be exactly indi�erent) and ine�cient (in that the principal is occasionally punished in the

resulting equilibrium).

In many applications, agents have multiple opportunities to interact with the principal.

Section 5 studies how these future bilateral relationships between the principal and each

agent can deter extortion and encourage e�ort. We model these relationships in a reduced-

form way by allowing each agent to play a coordination game with the principal at the end

of their interaction.4 As is familiar from the literature on relational contracts (e.g., Levin

(2003)), bilateral relationships can be used to directly punish both an agent who shirks and

the principal who reneges on a hard-working agent. In addition to these two familiar uses,

we show that bilateral relationships can also make extortion less attractive by rewarding

the principal for refusing to give in to attempted extortion. That is, bilateral relationships

complement coordinated punishments: strong bilateral relationships render extortion less

attractive, while weak bilateral relationships lead to potentially lucrative extortionary threats

and thus ine�ective coordinated punishments.

Without the assumption that agents commit to their communication protocols, we could

always select an equilibrium in which agents do not follow through on extortionary threats.

Therefore, commitment, or something like it, is a necessary assumption to study the extor-

tionary threats in our applications. In Section 6, we show that the communication protocol

can be reinterpreted as an equilibrium re�nment in the game without commitment. In other

words, we can always �nd equilibria of the game without commitment such that agents are

willing to follow through on their extortionary threats. In this sense, commitment allows

agents to specify how they plan to respond to the principal but does not force them to send

messages that are ex post suboptimal. We also show that with the exception of our analysis

of bilateral relationships, our results still hold if we replace commitment with the assumption

4Appendix B complements this analysis by studying a setting with truly long-run agents who play a
repeated game with the principal.
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that agents have a mild intrinsic preference for following their communication protocols.

Related Literature

Our analysis builds on the classic studies that show how institutions can facilitate communi-

cation and coordinate punishments (Milgrom et al. (1990), Greif et al. (1994), Dixit (2003)).

Much of this literature focuses on networks of players and has as its goal the identi�cation of

network structures or equilibrium strategies that are particularly conducive to cooperation

(Lippert and Spagnolo (2011), Wolitzky (2013), Ali and Miller (2013, 2016), Ali et al. (2017),

Ali and Liu (2018)). Within this literature, our paper is closely related to Ali and Miller

(2016), which shows that players might not report deviations if doing so reveals that they

are more willing to renege on their own promises. We focus on a di�erent but complemen-

tary challenge to coordinated punishments � extortion. More distantly related papers that

study communication in repeated games include Awaya and Krishna (2018), which identi�es

settings in which cooperation requires communication; and Compte (1998) and Kandori and

Matsushima (1998), which prove folk theorems in games with private monitoring.

This literature has devoted less attention to how coordinated punishments might be

misused. An exception is Bowen et al. (2013), which studies how a community might allow

pairs of agents to act on local information. While that paper's setting and analysis both di�er

from ours, it shares the feature that players might misuse sanctions. In that paper, misuse

can be eliminated by delaying communication to the end of each interaction, a remedy that

would not work in our setting for two reasons. First, unlike Bowen et al. (2013), our agents

communicate about past actions rather than a payo�-relevant state, so our communication

already occurs at the end of each interaction. Second, extortion is action-contingent � �pay

me or else I will lie� � in a way that Bowen et al. (2013)'s misuse is not. The communication

protocol is what allows our agents to make these kinds of action-contingent threats.

In our setting, an agent essentially threatens the principal with a bad �outside option�

unless she pays him. Our paper is therefore connected to the literature on bargaining in
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repeated games. Several papers assume that players bargain over either a per-period surplus

or continuation play (Baker et al. (2002), Halac (2012, 2015), Goldlucke and Kranz (2017)).

The closest papers within this literature are Miller and Watson (2013) and Miller et al.

(2018), which de�ne and analyze an equilibrium re�nement that essentially allows players

to bargain over continuation equilibria. By focusing on communication across agents, our

paper analyzes a di�erent friction. In our paper, the principal's �outside option� depends on

how messages a�ect future agents' actions in equilibrium.

More broadly, our framework builds on the relational contracting literature. Much of this

literature considers interactions between one principal and one agent (Bull (1987), MacLeod

and Malcomson (1989), Baker et al. (1994), Levin (2003)), while we focus on communication

across agents. Levin (2002), which studies relational contracts between a principal and

multiple agents, is the seminal paper on coordinated punishments within this literature.

However, that paper does not consider extortion.

Recent papers have explored relational contracts in the presence of limited transfers

(Fong and Li (2017), Barron et al. (2018)), asymmetric information (Halac (2012), Mal-

comson (2016)), or both (Li et al. (2017), Lipnowski and Ramos (2017), Guo and Hörner

(2018)). We focus on a monitoring friction � agents do not observe one another's relation-

ships � which implies that cooperation must rely on communication. Other papers that

study relational contracts with bilateral monitoring (including Board (2011), Andrews and

Barron (2016), and Barron and Powell (2018)) do not allow agents to communicate. We

complement these papers by identifying a reason why communication might be relatively

ine�ective at sustaining cooperation.

Our assumption that agents commit to messages bears a super�cial resemblance to the

commitment assumption in the persuasion literature (Rayo and Segal (2010), Kamenica and

Gentzkow (2011), Lipnowski et al. (2018), Guo and Shmaya (2018)). However, commitment

plays a di�erent role in our setting, since it allows agents to make threats rather than reveal

information about a payo�-relevant state. As a result, and in contrast to the persuasion lit-
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erature, commitment re�nes the equilibrium set in our model. Our commitment assumption

is more closely related to Chassang and Padro i Miquel (2018), which studies how retaliatory

threats deter whistleblowing behavior. Unlike that paper, we study how messages themselves

can be used to make threats. As in our model, Wolitzky (2012) considers a setting in which

one side of the interaction can commit to action-contingent messages, but in the context of a

�rm that can reward its workers by reporting in�ated performance measures to the market.

In our model, players rely on communication to coordinate sanctions, rather than using it

to reveal a payo�-relevant state.

2 Model

We prove our impossibility result for the following extortion game. A long-run prin-

cipal (�she�) interacts with a sequence of short-run agents (each �he�). In each period

t ∈ {0, 1, 2, ...}, the principal and agent t play a favor-trading game: agent t exerts e�ort,

the principal observes that e�ort, and the two parties pay one another. This interaction is

observed only by the principal and agent t; however, agent t can send a public message at

the end of period t. Our key assumption is that before transfers are paid, agent t chooses a

communication protocol, which is a mapping from the transfer he receives to the message he

sends. This communication protocol, which only the principal observes, determines agent

t's message as a function of the realized transfer.

Formally, the stage game in period t is:

1. Agent t chooses his e�ort et ∈ R+ and a communication protocol µt : R → M , where

M is a large, �nite message space.5 Both et and µt are observed by the principal but

not by any other agent.

2. The principal and agent t simultaneously pay nonnegative transfers to one another,

5The assumption that M is �nite simpli�es the proofs (by ensuring that various maxima and minima
exist) but is not essential for the results.
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with the net transfer to agent t denoted by st ∈ R.6 Transfers are observed by these

two players but not by any other agent.

3. The message mt = µt(st) is realized and observed by all players.7

The principal's period-t payo� and agent t's utility are (et−st) and (st− c(et)), respectively,

where c(·) is twice continuously di�erentiable, strictly increasing, and strictly convex, and

satis�es c(0) = c′(0) = 0. We assume that there exists a unique �rst-best e�ort level, eFB,

that solves c′(eFB) = 1. The principal has discount factor δ ∈ [0, 1), with corresponding

normalized discounted payo�s Πt = (1 − δ)
∑∞

t′=t δ
t′−t(et′ − st′). Players observe a public

randomization device (notation for which is suppressed) in every step of the stage game.

The principal observes everything in this model, while agents observe only their own

interactions with the principal and all public messages. Our solution concept is a Perfect

Bayesian Equilibrium (Watson (2016)).8 Some of our results focus on principal-optimal

equilibria, which maximize the principal's ex ante expected payo� E[Π0] among all equilibria.

The key ingredient of this model is that agents can commit to their communication

protocols, which is what allows a shirking agent to extort the principal. The communication

protocol is a transparent way to show that agents have the incentive to extort the principal

and explore how extortion a�ects equilibrium cooperation. Section 6 shows that we can

interpret it as an equilibrium re�nement of the game without commitment.

Online appendices C and D explore variants of the extortion game in which the principal

can communicate or the players can exchange up-front transfers, respectively. We defer

further discussion of these variant models until after our impossibility result in Section 3.

If we interpret the principal as a manager and the agents as her workers, then this model

lets us analyze how workers might use communication � whether grievances �led with a union

6With the exception of section 5, agents have no incentive to pay the principal, so st ≥ 0 in every period
t of any equilibrium.

7Allowing µt to condition on et would not change any of our results.
8We consider a Perfect Bayesian Equilibrium in order to specify how agents form beliefs over histories,

but since those beliefs do not play an important role in our arguments, our results would extend to various
restrictions on o�-path beliefs.
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or negative reviews on a website � to extort concessions from their manager. Of course, the

real world is richer than our model: unions typically investigate grievances before acting on

them, and individual workers have long-term relationships with the manager. In sections 4

and 5, we show that either of these enrichments can lead to positive e�ort in equilibrium.

Crucially, however, the possibility of extortion still limits equilibrium e�ort.

3 Threats Undermine Equilibrium Cooperation

In this section, we show how agents use their communication protocols to extort the principal.

The main result of the paper is Proposition 2, which shows that extortion leads cooperation

to completely unravel: all agents shirk in every equilibrium.

Cooperation requires that agents communicate among themselves, since without commu-

nication an agent would have no way to punish the principal for deviating. We �rst establish

a benchmark result: if agents cannot engage in extortion, then communication can indeed

sustain cooperation. To make this point, we consider a no-extortion game in which each

agent t chooses mt at the end of period t rather than being committed to µt.

Proposition 1 In the no-extortion game, et = e∗ and st = c(e∗) in each t ≥ 0 of every

principal-optimal equilibrium, where e∗ equals the minimum of eFB and the positive root of

c(e) = δe.

Proof: We �rst argue that total equilibrium surplus is at most e∗− c(e∗). By de�nition of

eFB, equilibrium surplus is at most eFB − c(eFB). If c(eFB) ≤ δeFB, then e∗ = eFB and the

result follows. If c(eFB) > δeFB, then let Π̄ be the principal's maximum ex ante equilibrium

payo�. In any period t ≥ 0 of any equilibrium, (1− δ)st ≤ δΠ̄ and st − c(et) ≥ 0 must hold,

since otherwise the principal or agent t could pro�tably deviate from st or et, respectively.

Therefore, (1 − δ)c(e) ≤ δΠ̄. Let ē be the e�ort that maximizes e − c(e) among any e�ort

that is attained in any period of any equilibrium. Then (1− δ)c(ē) ≤ δΠ̄ ≤ δ(ē− c(ē)) and

so c(ē) ≤ δē. We conclude that ē ≤ e∗ < eFB, so equilibrium surplus is at most e∗ − c(e∗).
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Consider the following strategy pro�le for each period t ≥ 0: if mt′ = C for all t′ < t,

then et = e∗; st = c(e∗) if et = e∗ and st = 0 otherwise; and mt = C if neither player deviates

and mt = D otherwise. If mt′ 6= C for at least one t′ < t, then et = st = 0 and mt = D.

If mt′ 6= C for some t′ < t, play is as in the one-shot equilibrium and so players cannot

pro�tably deviate. If mt′ = C for all t′ < t, then agent t has no pro�table deviation because

he earns 0 on-path and no more than 0 from deviating. The principal has no pro�table

deviation because (1 − δ)c(e∗) ≤ δ(e∗ − c(e∗)) since c(e∗) ≤ δe∗. This strategy is therefore

an equilibrium. It is principal-optimal because it generates total surplus e∗− c(e∗), which is

the maximum equilibrium surplus, and it holds agents at their min-max payo�s. Moreover,

every principal-optimal equilibrium gives the principal a payo� of e∗ − c(e∗) and so must

entail et = e∗ in every period. �

Proposition 1 shows how communication can be used to induce the principal to pay

a hard-working agent. On the equilibrium path, each agent sends the message C if the

principal pays him and D otherwise. Future agents min-max the principal if they observe

the message D. The principal would rather pay a transfer than be punished, and each agent

would rather exert e�ort than shirk and forgo the transfer, so this construction is enough

to sustain positive e�ort. If an agent shirks, then his message is independent of the transfer

and so the principal pays him nothing. In particular, a shirking agent cannot threaten to

send C if the principal pays him and D otherwise. In contrast, we will show that agents

make exactly this type of threat in the extortion game.

Next, we present our impossibility result. Consider the mapping from messages to con-

tinuation play described in the proof of Proposition 1. In the extortion game, agent t can

always choose µt so that mt = C if the principal pays him and mt = D otherwise. That is,

the threat that agent t can make, and hence the compensation he can demand, is essentially

independent of his e�ort. Agents are therefore unwilling to exert e�ort in equilibrium.

Proposition 2 In the extortion game, every equilibrium entails et = st = 0 in every t ≥ 0.
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Proof: De�ne mt−1 = (m0,m1, ...,mt−1), and let

Π̄ = max
m∈M

{
E
[
Πt+1|mt−1,mt = m

]}
be the principal's maximum continuation surplus in period t+1 onwards, with corresponding

message m̄. Let Π be the similarly-de�ned minimum continuation payo�, with corresponding

message m. Agent t is willing to choose et = e∗ only if st = s∗ ≥ c(e∗); the principal is willing

to pay this transfer only if

−(1− δ)s∗ + δΠ̄ ≥ δΠ. (1)

For small ε > 0, consider the following deviation by agent t: et = 0 and

µt(s) =


m̄ s = s∗ − ε

m otherwise.

(2)

If e∗ > 0, then s∗ − ε > s∗ − c(e∗) ≥ 0 for ε > 0 su�ciently small. Since (1) holds weakly at

st = s∗, it holds strictly for st = s∗ − ε and so the principal's unique best response to this

deviation is to pay st = s∗ − ε. Hence, agent t can pro�tably deviate from any et = e∗ > 0.

Every equilibrium therefore has et = 0 for all t ≥ 0, in which case Π̄ = Π = 0 and so st = 0.

�

If st > 0 on the equilibrium path, then agent t can shirk and threaten to send a message

that punishes the principal unless she pays him slightly less than st. Since the principal was

weakly willing to pay st when faced with the same punishment, she strictly prefers to pay a

smaller amount. An agent can therefore shirk and still guarantee nearly the same transfer

as if he had exerted e�ort. But then each agent shirks, since the transfer he can demand is

essentially independent of his e�ort.

The proof of Proposition 2 relies on the assumption that communication protocols are not

publicly observed. Therefore, one might imagine that allowing the principal to communicate

13



to future agents might improve cooperation by making information about these protocols

public. But this turns out not to be true, as online appendix C.1 shows: Proposition 2

continues to hold even if the principal can send a public message at the end of each period.

Intuitively, if the principal could lessen her punishment by reporting extortion, then she

would always do so regardless of whether or not an agent actually deviated. Online appendix

C.2 then shows that cooperation is possible if the principal can commit to messages as a

function of each agent's e�ort, provided that she commits to messages weakly before each

agent chooses his communication protocol. This positive result should be interpreted with

skepticism, however, since unlike the agents, the principal sometimes has a strict incentive

to deviate from her committed message.9

Proposition 2 remains true even if the principal has multiple opportunities to exchange

transfers with each agent. In online appendix D.1, we show that our impossibility result

continues to hold even if the principal and each agent exchange transfers at both the start

and the end of their interactions. Online appendix D.2 then allows each agent to make

ex ante demands in exchange for refraining from later extortion. Our impossibility result

continues to hold even with these ex ante demands.

Proposition 2 illustrates a signi�cant roadblock that unions and other organizations must

overcome to facilitate cooperation. Even if those organizations coordinate punishments,

those punishments face the risk of simply becoming opportunities for the communicating

parties to extort their partners. Of course, Proposition 2 is a stark result, and the next two

sections explore how cooperation might be sustained even if agents can extort the principal.

Nevertheless, by identifying how agents can misuse coordinated punishments and how this

misuse undermines cooperation, Proposition 2 forms the (pessimistic) foundation for the rest

of our analysis.

9That is, unlike its role for agents, commitment forces the principal to send messages that are ex post

suboptimal. Hence, Proposition 8 would not hold in this alternative game: allowing the principal to commit
does not re�ne the equilibrium set of the game without commitment.
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4 First Remedy: Investigations

This section introduces a public signal of either the e�ort or the transfer. Depending on the

setting, these signals might either arise naturally from an interaction, or be the results of

an investigation into each agent's message (by the union, community, association, or online

marketplace). We show that these signals limit extortion by tying the threats that an agent

can make to his actual interaction with the principal. However, we also show that if these

signals are noisy, then extortion continues to constrain equilibrium e�ort.

4.1 Public Signals of E�ort

This subsection studies public signals of each agent's e�ort. We �rst prove that if these signals

are perfect, then they completely eliminate extortion in equilibrium. Then we present our

main result for this section, Proposition 6, which analyzes how even noisy e�ort signals can

support some e�ort in equilibrium.

Formally, the extortion game with e�ort signals is similar to the extortion game

except that after the transfer st is paid in each period t, a public signal zt ∼ G(·|et), zt ∈ R,

is realized. Agent t's communication protocol can be any mapping from the transfer and this

signal to a message, so that (with an abuse of notation) µt : R2 → M and mt = µt(st, zt).
10

Payo�s are the same as in the extortion game. We focus on two simple signal structures: zt

is perfect if zt = et; or zt is noisy if zt ∈ {0, 1} with Pr{zt = 1|et} = γ(et) for γ(·) strictly

increasing and twice continuously di�erentiable.

Future agents can condition their actions on the public signal zt and thereby stochastically

condition their actions on et. In the no-extortion game, however, this additional signal would

not improve cooperation at all: Proposition 1 holds when there is a signal of e�ort just as it

does without one. The reason is that the proof of Proposition 1 constructs an equilibrium in

which agents do not engage in extortion and messages make any deviation by the principal

10Allowing µt to condition on zt simpli�es our arguments, but the basic intuition would survive if µt

depended only on st.
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public knowledge. The e�ort e∗ in a principal-optimal equilibrium is therefore pinned down

by the principal's on-path continuation payo�, which means that e�ort signals are redundant.

In contrast, we show that e�ort signals substantially increase equilibrium e�ort in the

extortion game by limiting the types of threats that a shirking agent can make and thereby

restoring informative communication among the agents. Indeed, perfect e�ort signals com-

pletely eliminate extortion.

Proposition 3 De�ne e∗ as in Proposition 1. In the extortion game with perfect e�ort

signals, et = e∗ and st = c(e∗) in every t ≥ 0 of any principal-optimal equilibrium.

Proof: See appendix A.

To see the proof of Proposition 3, consider a strategy pro�le with et = e∗ and st = c(e∗)

in each period t. To deter deviations, suppose that future agents punish the principal only if

an agent reports a deviation and the signal reveals that he chose e�ort e∗. Consequently, if

agent t chooses et 6= e∗, then his message cannot trigger a punishment, so he cannot extort

the principal at all. If he chooses et = e∗, then the principal's punishment can be made just

severe enough that she is willing to pay st = c(e∗) but no more. The resulting equilibrium

implements e�ort e∗ and gives all of the resulting surplus to the principal.

Proposition 3 illustrates how e�ort signals can restore cooperation under the extreme

assumption that signals are perfect. If the signal is noisy, then a shirking agent might go

undetected by future agents. However, the amount that an agent can extort can still be tied

to his e�ort in expectation, which means that positive e�ort can be sustained in equilibrium.

We also show that agents earn rent that is increasing in their equilibrium e�ort.

Proposition 4 Suppose γ(et) is weakly concave in the extortion game with noisy e�ort

signals. Then:

1. There exists a strictly increasing function ū : R+ → R+ with ū(0) = 0 such that if

agent t chooses et on the equilibrium path, then his payo� is at least ū(et).
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2. There exists an equilibrium in which et = e∗ in each t ≥ 0 if and only if

c′(e∗) ≤ γ′(e∗)
δ

1− δ
(e∗ − c(e∗)− ū(e∗)). (3)

3. There exists δ̄ < 1 such that if δ ≥ δ̄, the e�ort in each t ≥ 0 of any principal-optimal

equilibrium equals

e∗ ∈ arg max
e
{e− c(e)− ū(e)} < eFB.

Proof: See appendix A.

The proof of Proposition 4 exhibits a close connection between equilibrium play in the

extortion game with noisy e�ort signals and a static contracting problem with limited liabil-

ity. Let Π̄(zt) and Π(zt) be the largest and smallest principal continuation payo�s following

signal realization zt in period t. De�ne

ŝ(et) ≡
δ

1− δ
E
[
Π̄(zt)− Π(zt)|et

]
≥ 0.

The principal is willing to pay st only if st ≤ ŝ(et), since otherwise she would rather renege

and earn continuation payo� E [Π(zt)|et]. However, agent t can use a communication protocol

similar to (2) in order to extort any st < ŝ(et). Agent t therefore chooses et to maximize

ŝ(et)− c(et). Letting R(zt) ≡ Π̄(zt)− Π(zt), agent t chooses et in equilibrium only if

et ∈ arg max
e
{E [R(z)|e]− c(e)} . (4)

Since R(·) ≥ 0, this incentive constraint is similar to that of a static contracting problem

with limited liability. It follows that agent t earns a rent ū(et) that is increasing in his

equilibrium e�ort et.

As in the static contracting problem, agent t's e�ort incentives are strongest if R(0) = 0.

If et = e∗ in each period t, then R(1) ≤ e∗ − c(e∗) − ū(e∗). Setting R(0) = 0 and R(1) =
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e∗−c(e∗)− ū(e∗) in the �rst-order condition of (4) yields (3). Since R(·) depends only on the

di�erence Π̄(·)−Π(·), we can increase Π̄(·) without changing either agent t's incentives or his

payo�. Therefore, principal-optimal equilibria always entail principal-optimal continuation

play and hence stationary e�ort on the equilibrium path. In those equilibria, e�ort is strictly

lower than �rst-best because a slight decrease in e�ort at eFB entails a second-order loss in

total surplus but a �rst-order decrease in agent t's rent.

The fact that agents earn rent means that the principal has less to lose from reneging on

any given agent, since she earns only a fraction of the value created in future interactions.

She is therefore less willing to pay agents, who in turn are less willing to exert e�ort. Con-

sequently, ū(e∗) enters negatively on the right-hand side of (3), leading to a lower maximum

e�ort than in the no-extortion game. This distortion, which resembles a distortion in Propo-

sition 5 of Levin (2002), implies that an agent's rent-seeking behavior imposes a negative

externality on other agents by making the principal's promises to those agents less credible.

In practice, the players might have some sway over the signal distribution, as, for instance,

when a union decides how to investigate grievances. While both agents and the principal

prefer some kind of investigation to none, Propositions 3 and 4 suggest that these parties

have di�erent preferences over the precision of that investigation. In a principal-optimal

equilibrium, both total surplus and the principal's payo� are maximized if signals are perfect.

The agents, however, earn rent only if the signal is noisy, so they might collectively prefer

to implement less precise investigations.

4.2 Public Signals of Transfers

We now turn to public signals of the transfer. As in section 4.1, we �rst show how perfect

signals can eliminate extortion, then we analyze equilibrium e�ort if signals are noisy.

The extortion game with transfer signals is identical to the extortion game except

that a public signal xt ∼ F (·|st), xt ∈ R, is realized after st in each t and observed by all

players. Agent t's communication protocol maps each (st, xt) to a message mt, so µt : R2 →
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M with µt(st, xt) = mt. We focus on either perfect transfer signals, xt = st; or noisy

transfer signals, xt ∈ {0, 1} with Pr{xt = 1|st} = φ(st) for some strictly increasing and

twice continuously di�erentiable φ(·).

As with a signal of et, a public signal of st does not change the set of equilibrium outcomes

at all in the no-extortion game. However, once we allow agents to extort the principal, this

signal can lead to more cooperation in equilibrium. Indeed, we show that a perfect transfer

signal is enough to recover the equilibrium e�ort level from Proposition 1.

Proposition 5 De�ne e∗ as in Proposition 1. In the extortion game with perfect transfer

signals, et = e∗ and st = c(e∗) in every t ≥ 0 of any principal-optimal equilibrium.

Proof: See appendix A.

The statement of Proposition 5 is nearly identical to that of Proposition 3, but the

underlying intuition is quite di�erent. Since xt does not directly reveal anything about

agent t's actions, it cannot be used to tie the amount he can extort to his e�ort. We show

that xt can instead be used to make the principal indi�erent between paying an agent or

not, so that she is both willing to pay c(e∗) if et = e∗ and willing to pay nothing if et 6= e∗.

In particular, suppose future agents punish the principal unless mt = C and xt = c(e∗). If

agent t shirks, then he can try to extort st = c(e∗) but no less, since any smaller transfer

triggers punishment regardless of the message. If the punishment is such that the principal is

exactly indi�erent between paying st = c(e∗) and st = 0, then she is willing to pay st = c(e∗)

if et = e∗, and st = 0 otherwise. But then agent t cannot earn more than zero by deviating,

so he is willing to choose et = e∗.

This equilibrium construction hinges on two features: (i) the principal is indi�erent

between paying st = c(e∗) and st = 0, and (ii) she cannot be forced to pay any other

amount. These two conditions are relatively easy to satisfy with perfect signals. With noisy

signals, however, they dramatically restrict the e�orts and transfers that can be supported

in equilibrium. Our next result formalizes these restrictions as a set of necessary conditions
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for equilibrium.

Lemma 1 Suppose xt is a noisy signal of st. If et > 0 on-path in an equilibrium, then there

must exist s∗ > 0 and ŝ ∈ [0, s∗) such that (i) c(et) ≤ s∗ − ŝ, (ii) φ′′(s∗) ≤ 0, and (iii)

φ′(s∗) =
φ(s∗)− φ(ŝ)

s∗ − ŝ
. (5)

Proof: See appendix A.

Suppose that Π̄(xt) and Π(xt) are the principal's largest and smallest equilibrium con-

tinuation payo�s following signal xt. De�ne

πD = max
st≥0
{−(1− δ)st + δE[Π(xt)|st]}

as the principal's equilibrium min-max payo� from period t onwards, including her disutility

from paying st. The principal is willing to pay st only if

−(1− δ)st + δE
[
Π̄(xt)|st

]
≥ πD. (6)

If agent t shirks, then he can extort any transfer st that strictly satis�es (6). Let ŝ be the

supremum of the set of transfers that can be extorted.

Since E
[
Π̄(xt)|st

]
is continuous in st, agent t's supremum payo� from a deviation equals

ŝ, which moreover must satisfy (6) with equality. Agent t is willing to choose et > 0 in

equilibrium only if doing so and receiving s∗ is better than shirking and extorting ŝ, that is,

if s∗ − c(et) ≥ ŝ. But (6) must hold with equality at st = s∗, since otherwise ŝ ≥ s∗. The

left-hand side of (6) must also be concave and tangent to the right-hand side at st = s∗, since

otherwise (6) would hold strictly on at least one side of s∗, and thus again ŝ ≥ s∗. Given

that (6) holds with equality at both ŝ and s∗, the average slope of E[Π̄(xt)|st] between ŝ and

s∗ equals that of the line tangent to E
[
Π̄(xt)|st = s∗

]
. Equation (5) represents this equality

for this signal structure.
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Lemma 1 implies that inducing cooperation in the extortion game with noisy transfer

signals requires φ(·) to satisfy several restrictive conditions. Our next result shows that

these conditions are impossible to satisfy if φ(·) is concave, which means that positive e�ort

is possible only if φ(·) has both convex and concave regions. We demonstrate that positive

e�ort is sometimes possible in that case.

Proposition 6 Suppose xt is a noisy signal of st. If φ(·) is strictly concave on R+, then

et = 0 in each t ≥ 0 of every equilibrium.

Suppose that on R+, φ(·) is �rst strictly convex and then strictly concave. Let e∗ > 0,

s∗ > 0, and ŝ ∈ [0, s∗) satisfy the conditions of Lemma 1, with e∗− c(e∗)− ŝ > 0. Then there

exists δ̄ ∈ [0, 1) such that for any δ ≥ δ̄, there exists an equilibrium in which e0 = e∗. Any

such equilibrium is nonstationary.

Proof: See appendix A.

To prove the �rst part of Proposition 6, it is enough to note that the slope of any line

that connects two points on a strictly concave φ(·) cannot coincide with the tangent line

at either of those points, which means that (5) cannot be satis�ed. The second part of

Proposition 6 investigates the simplest possible case that might satisfy the conditions of

Lemma 1: φ(·) is �rst convex and then concave. In that case, if there exist e∗, s∗, and ŝ

that satisfy these conditions, then we can work backwards from the proof of Lemma 1 to

construct an equilibrium that implements e�ort e∗ in the �rst period. This construction

requires the principal to be punished whenever xt = 0, since otherwise E[Π̄(xt)|st] would not

vary with st. The principal must therefore be periodically punished in any equilibrium with

positive e�ort.

Together, sections 4.1 and 4.2 highlight two conditions that must hold for extortion to

lead to zero equilibrium e�ort. First, agents must be able to shirk without being detected

by other agents. Second, after an agent shirks, he must be able to give the principal a

strict incentive to pay nearly the same transfer that she would pay a hard-working agent.
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E�ort signals restore cooperation by tailoring an agent's ability to extort to his e�ort, which

violates the �rst condition. Transfer signals restrict agents' threats as a function of the

transfer, which violates the second condition. However, while either type of investigation

can improve cooperation, each comes with its own weaknesses. E�ort signals typically lead

to agents earning rent in equilibrium, which undermines the principal's willingness to pay

large transfers, while transfer signals require an equilibrium construction that both is fragile

and typically entails on-path punishments.

5 Second Remedy: Bilateral Relationships

In the extortion game, the principal can punish an agent only by withholding pay, while an

agent can punish the principal only by communicating with future agents. In this section, we

explore how future bilateral interactions between the principal and each agent can be used

to support cooperation. As is familiar from the literature on repeated games, these bilateral

interactions can be used to punish an agent for shirking or the principal for reneging on a

hard-working agent, leading to positive equilibrium e�ort. We now emphasize a third e�ect

that is speci�c to our setting: bilateral relationships can be used to punish the principal

for acquiescing to an agent's threats, which makes extortion less tempting to each agent.

Therefore, bilateral relationships enable coordinated punishments.

Consider the extortion game with bilateral relationships, which is identical to

the extortion game except that after agent t sends his message in each period t ≥ 0, the

principal and agent t play a symmetric, simultaneous-move coordination game. The actions

and outcomes of this coordination game are observed by the two participants but not by

any other agent. We suppress notation for actions in this coordination game and instead

denote the resulting (symmetric) payo� by vt, so that the principal's and agent t's payo�s

are et − st + vt and st − c(et) + vt, respectively.

The outcomes of the coordination game are not observed by any future agents and so
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cannot a�ect the principal's continuation value. In equilibrium, vt must therefore correspond

to a Nash equilibrium of the coordination game in each t ≥ 0. De�ne vt = H and vt = L as

the largest and smallest such Nash equilibrium payo�s, respectively. While our result can be

readily extended for general, possibly asymmetric coordination games, the following simple

example su�ces:

h l

h (H,H) (L,L)

l (L,L) (L,L)

.

We show that positive e�ort can be sustained in the extortion game with bilateral re-

lationships. However, equilibrium e�ort is constrained by the strength of each bilateral

relationship, as measured by the di�erence (H − L).

Proposition 7 In the extortion game with bilateral relationships, c(et) ≤ 3(H−L) in every

t ≥ 0 of any equilibrium. If e∗ is the minimum of eFB and the solution to c(e∗) = 3(H −L),

then there exists a δ̄ < 1 such that for any δ ≥ δ̄, et = e∗ in every t ≥ 0 on the equilibrium

path in any principal-optimal equilibrium.

Proof: See appendix A.

The e�ort constraint c(et) ≤ 3(H − L) re�ects the fact that bilateral relationships can

encourage equilibrium e�ort via three di�erent channels. Two of these channels are familiar:

agent t can be punished by (H − L) if he fails to exert the equilibrium e�ort level, and the

principal can be punished by (H − L) if she fails to reward an agent who exerts e�ort. We

show that the coordination game can also be used to reward the principal for refusing to

pay an agent who shirks, so that the principal is willing to pay (H − L) more to an agent

who exerts e�ort relative to one who tries to extort her. Consequently, agents' messages can

in�uence equilibrium continuation play without opening the door to extortion. The proof of

Proposition 7 simply tracks the histories associated with each of these three channels and
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arranges transfers so that the appropriate players are rewarded or punished at each of those

histories. Note that, unlike in the rest of the paper, this proof uses the fact that agents can

pay the principal.

As in the proof of Proposition 2, let us de�ne Π̄ and Π as the principal's largest and

smallest equilibrium continuation payo�s, respectively, in some period t, in which case agent

t's messages can punish the principal by no more than δ(Π̄−Π). Agent t can therefore extort

no more than δ(Π̄−Π)− (1− δ)(H −L) if he shirks, since the principal loses (H −L) from

her bilateral relationship with agent t if she gives in to extortion. That is, agent t cannot

extort the principal at all as long as

δ

1− δ
(
Π̄− Π

)
≤ H − L. (7)

It is in this sense that bilateral relationships enable coordinated punishments: a larger

di�erence (H−L) implies that the coordinated punishment Π̄−Π can be more severe before

it leads to extortionary threats. On the other hand, if (7) is violated, then increasing Π̄−Π

increases both agent t's on-path payment and the amount he can extort, and so could not

increase agent t's equilibrium e�ort.

The coordination game is an abstract way to re�ect the idea that the principal has more

than one interaction with each agent. In reality, these bilateral relationships are typically

long-lived: managers interact repeatedly with each of their employees, community members

have repeated opportunities to contribute to public goods, and most businesses are long-term

members of their associations. We can interpret the coordination-game payo� vt as a simple

representation of the continuation payo� from these future interactions. In appendix B, we

con�rm this interpretation by studying a setting with truly long-run agents who interact

repeatedly with the principal. While the resulting analysis is more involved, it remains true

that bilateral relationships facilitate coordinated punishments.
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6 Interpreting the Communication Protocol

In this section, we interpret the commitment assumption at the heart of our analysis.

Without the communication protocol or a similar modeling device, Proposition 1 shows

that we can always construct equilibria in which agents do not follow through on extortionary

threats. Commitment is a straightforward way to make sure that agents' threats are more

than just cheap talk. Crucially, however, the communication protocol does not force an agent

to send an ex post suboptimal message. Indeed, our next result shows that commitment

re�nes the set of equilibria in each game that we study.

Recall that the no-extortion game is identical to the extortion game, except that each

agent t chooses mt freely at the end of period t rather than being committed to µt.

Proposition 8 For any equilibrium of the extortion game or of the extortion game with

e�ort signals, transfer signals, or bilateral relationships, there exists an equilibrium of the

corresponding no-extortion game that induces the same distribution over (et, st,mt)
∞
t=0.

Proof: See appendix A.

Since agents are indi�erent among messages, they are always willing to follow through

on their communication protocols. If they do, then the resulting mapping from transfer to

message is identical to the corresponding mapping in the extortion game, leading to identical

equilibrium outcomes. The only complication to this argument arises in the extortion game

with bilateral relationships, since an agent's payo� in the coordination game can potentially

respond to his message. However, we can always �nd an equilibrium in which agents are

punished in the bilateral relationship if they deviate from their communication protocols, in

which case agents are willing to follow through on those protocols.

Since agents are indi�erent among their messages in the extortion game, even a small

intrinsic preference for following through on threats is enough to replicate Proposition 2. To

make this point, we consider the game with ε-compliance preferences, which is identical to
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the no-extortion game except that each agent t earns an additional ε > 0 payo� for choosing

mt = µt(st). This small preference for complying with the communication protocol is enough

to lead to the complete collapse of e�ort in equilibrium.

Proposition 9 For any ε > 0, every equilibrium in the game with ε-compliance preferences

has et = st = 0 in every t ≥ 0.

Proof: See appendix A.

Even a small preference for following the communication protocol is enough to break

agents' indi�erence across messages and so replicate our impossibility result. We could apply

a similar argument in the extortion game with either e�ort signals or transfer signals to prove

that equilibrium outcomes are similarly equivalent. In contrast, such an equivalence does

not hold in the extortion game with bilateral relationships, since the bilateral relationship

can be used to deter agents from following their communication protocols if ε > 0 is small.

Proposition 9 assumes that agents prefer to �keep their word� by acting according to

their communication protocol. Other types of intrinsic preferences could lead to di�erent

equilibrium outcomes, including equilibria with strictly positive e�ort. To illustrate this

point, suppose that each agent t instead prefers to �tell the truth,� in the sense that he

receives an extra ε > 0 utility if (i) he sends mt = C and no deviation occurred in period

t, or (ii) he sends mt = D and a deviation did occur. It is straightforward to show that

intrinsic preferences of this sort are enough to restore cooperation to the benchmark level

from Proposition 1. Note, however, that agents who prefer to tell the truth earn lower

utility than those who can extort the principal, since the former must exert e�ort to earn

a transfer while the latter can shirk. Consequently, if an agent could develop a reputation

with the principal (unobserved by other agents), then he would prefer to have a reputation

for extortion rather than for telling the truth. By the same logic, organizations that rely on

coordinated punishments risk attracting exactly those agents who are most willing to make

extortionary threats.
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Propositions 8 and 9 suggest two reasons why commitment is a relatively mild assumption

in our setting: �rst, it simply re�nes the set of equilibria, and second, many of our results

hold even if we replaced commitment with a mild preference for following the communication

protocol. Fundamentally, however, the applications in our introduction are what motivate us

to study the extortion game. The threat of extortion features prominently in each of these

applications, and studying extortion requires a setting in which agents can make action-

contingent threats even after they deviate. The communication protocol, or something like

it, is therefore necessary to study this kind of extortion and identify new ways to encourage

cooperation.

7 Conclusion

In many settings, businesses and individuals cooperate with one another because they expect

partners to spread word of any misbehavior. This paper studies an underexplored obstacle

to using communication as a way to coordinate punishments: agents may misuse messages

intended to report deviations in order to extort the principal instead. Communication is

particularly susceptible to these kinds of extortionary threats for two reasons. First, com-

munication is necessary precisely when players do not observe one another's interactions,

which means that extortionary threats are unlikely to be detected. Second, coordinated

punishments are valuable when bilateral relationships are relatively weak, which means that

the extorted party has little direct recourse to punish the extorter. While extortion poses a

signi�cant challenge to cooperation, our remedies highlight how organizations could mitigate

its negative consequences and restore the use of coordinated punishments.

Our analysis suggests two natural next steps. First, we could delve further into the

assumption that agents commit to their communication protocols. We have argued that this

assumption is both reasonable and (in a sense) necessary to study extortion, which requires

agents to make o�-path, action-contingent threats. We could therefore ask: under what
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circumstances does an agent have the incentive to develop a reputation for following through

on these threats? If other agents know about that reputation, then the extorting agent's

message might simply be ignored in equilibrium. However, if an agent's reputation is known

to the principal but not to other agents, then he has every incentive to build a reputation with

the principal for extortion.11 Exploring agents' incentives to build reputations for extortion

would complement the analysis in this paper and point to other ways that the principal

might mitigate the negative consequences of extortion.

Second, the agents rely on communication to coordinate punishments but the principal

does not. One could study extortionary threats in settings with more symmetric interactions,

as in, for example, a network of relationships (e.g., Ali and Miller (2016)). In contrast to

our setting, in a more symmetric transaction both sides have the opportunity to extort one

another. How do players cooperate in the presence of two-sided extortion? What networks

best facilitate cooperation, and how are rents shared within those networks? How should

business associations, communities, and �rms structure their communication channels to

support strong relational contracts? We hope that our analysis provides a foundation for

analyzing these questions.

11In a sense, the communication protocol allows each agent to act as a �Stackleberg type� in his private
interaction with the principal.
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A Omitted Proofs

A.1 Proof of Proposition 3

The �rst paragraph of the proof of Proposition 1 applies to the extortion game with perfect

e�ort signals as well. Therefore, the equilibrium surplus is at most e∗ − c(e∗). Moreover, if

e∗ < eFB, then the highest equilibrium e�ort is at most e∗.

We now construct an equilibrium in which et = e∗ in every period. The equilibrium starts

in the cooperative phase. In this phase, each agent t chooses et = e∗ and

µt(st, zt) =


C st = c(e∗)

D otherwise.

The principal pays st = c(e∗) if agent t does not deviate, st = 0 if et 6= e∗, and best-responds

to µt if et = e∗ but µt(·) is not the above protocol. If either mt 6= C or zt 6= e∗, play switches

to the punishment phase with probability α ∈ [0, 1] that satis�es

c(e∗) =
δ

1− δ
α (e∗ − c(e∗)) . (8)

In the punishment phase, each agent t chooses et = 0 and the principal chooses st = 0. If

mt = C and zt = e∗, play stays in the cooperative phase.

If agent t chooses et = e∗, then (8) implies that the principal is willing to pay no more

than c(e∗); for any other e�ort, the principal pays st = 0. Agent t therefore has no pro�table

deviation. The equation (8) implies that the principal is indi�erent between st = c(e∗) and

st = 0 if et = e∗. For any et 6= e∗, the principal's continuation payo� is independent of st

and so st = 0 is a best response. Therefore, the principal has no pro�table deviation.

This equilibrium construction maximizes total surplus and gives all of that surplus to

the principal. It is therefore principal-optimal, and any principal-optimal equilibrium must

entail the same e�orts and transfers. �
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A.2 Proof of Proposition 4

Statement 1

Suppose et = e∗ in period t of an equilibrium. Let Π̄(z) and Π(z) be the principal's largest

and smallest continuation payo�s following signal realization z, and let m̄(z) and m(z) be

the corresponding messages. Agent t can always choose et and

µt(s, z) =


m̄(z) st = ŝ

m(z) otherwise.

The principal's unique best response is to pay ŝ so long as

ŝ < ŝ(et) ≡
δ

1− δ
(
γ(et)(Π̄(1)− Π(1)) + (1− γ(et))(Π̄(0)− Π(0)

)
. (9)

Clearly, the principal is willing to pay no more than ŝ(et) following e�ort et. Therefore,

e∗ ∈ arg maxe {ŝ(e)− c(e)}.

Since γ(·) is concave, so is ŝ(·). Since c′(0) = 0, e∗ is characterized by the �rst-order

condition

c′(e∗) = ŝ′(e∗) =
δ

1− δ
γ′(e∗)

(
Π̄(1)− Π(1)−

(
Π̄(0)− Π(0)

))
. (10)

Since Π̄(0) ≥ Π(0),

ŝ(e∗)− c(e∗) ≥ γ(e∗)
c′(e∗)

γ′(e∗)
− c(e∗) ≡ ū(e∗),

where this inequality follows by setting Π̄(0) = Π(0) in (9) and then substituting (δ/(1 −

δ))
(
Π̄(1)− Π(1)−

(
Π̄(0)− Π(0)

))
from (10).

The fact that ū(0) = 0 is immediate from c(0) = c′(0) = 0. Since c(·) is strictly increasing
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and strictly convex and γ(·) is strictly increasing and weakly concave,

ū′(et) = −γ
′′(et)γ(et)

γ′(et)

c′(et)

γ′(et)
+
γ(et)

γ′(et)
c′′(et) > 0,

so ū(·) is strictly increasing. �

Statement 2

In an equilibrium with et = e∗ in each period t, Π̄(z) − Π(z) ≤ e∗ − c(e∗) − ū(e∗) for each

z ∈ {0, 1}. Therefore, (10) requires that

c′(e∗) ≤ δ

1− δ
γ′(e∗) (e∗ − c(e∗)− ū(e∗)) .

So (3) is necessary for et = e∗ in each period.

Now, suppose that (3) holds. Consider the following strategy pro�le. In the cooperative

phase, each agent t chooses et = e∗ and

µt(s, z) =


C s = c(e∗) + ū(e∗)

D otherwise.

The principal pays st = c(e∗) + ū(e∗) if agent t does not deviate, and otherwise chooses the

smallest st that is a best response to µt(s, z) given et. Play stays in the cooperative phase

untilmt = D and zt = 1, at which point it switches to the punishment phase with probability

α ∈ [0, 1]. The punishment phase is absorbing and entails et = st = 0 in each period.

Suppose that α ∈ [0, 1] satis�es

c′(e∗) = γ′(e∗)
δ

1− δ
α (e∗ − c(e∗)− ū(e∗)) .
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Following e�ort et, agent t can earn no more than

δ

1− δ
αγ(et) (e∗ − c(e∗)− ū(e∗)) = γ(et)

c′(e∗)

γ′(e∗)
− c(et).

This expression is concave in et and maximized at et = e∗, so agent t has no pro�table

deviation from his strategy. If agent t does not deviate, then the principal pays c(e∗) + ū(e∗)

so long as

c(e∗) + ū(e∗) ≤ γ(e∗)
δ

1− δ
α(e∗ − c(e∗)− ū(e∗)),

which holds by de�nition of ū(e∗) and α. So the principal has no pro�table deviation. We

conclude that an equilibrium with et = e∗ in each t ≥ 0 exists whenever (3) holds. �

Statement 3

Let Π∗ be the principal's payo� in the principal-optimal equilibrium. Then Π∗ ≤ (1 −

δ) arg maxe≥0 {e− c(e)− ū(e)} + δΠ∗ because agent t earns no less than ū(e) if et = e. So

Π∗ ≤ arg maxe≥0 {e− c(e)− ū(e)}. Let e∗ maximize e− c(e)− ū(e). Statement 2 says that

there exists δ̄ < 1 such that for δ ≥ δ̄, there exists an equilibirum with et = e∗ in each t ≥ 0.

The proof of this statement constructs an equilibrium of this kind in which each agent earns

ū(e∗). The principal therefore earns e∗− c(e∗)− ū(e∗) = Π∗. Moreover, any equilibrium that

attains this payo� must have et = e∗ (with probability 1) in every period on the equilibrium

path. �

A.3 Proof of Proposition 5

The �rst paragraph of the proof for Proposition 1 applies to the extortion game with perfect

transfer signals as well. Therefore, the equilibrium surplus is at most e∗ − c(e∗). Moreover,

if e∗ < eFB, then the highest equilibrium e�ort is at most e∗.

We now construct an equilibrium in which et = e∗ and st = c(e∗) in every t ≥ 0. Play

starts in the cooperative phase: in each t ≥ 0, agent t chooses e∗ and constant µ∗(·). If
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et = e∗, then st = c(e∗); otherwise, st = 0. If xt 6= c(e∗), then play switches to the

punishment phase with probability α and otherwise remains in the cooperative phase. The

punishment phase is absorbing and features et = st = 0 in each t.

Fix α ∈ [0, 1] so that

c(e∗) =
δ

1− δ
α(e∗ − c(e∗)). (11)

Agents have no pro�table deviation because they earn no more than 0 from deviating. By

(11), the principal is willing to pay st = c(e∗) in the cooperative phase. The principal is

also willing to pay st = 0 because (11) holds with equality. Therefore, the principal has

no pro�table deviation either. So this strategy pro�le is an equilibrium with the desired

properties. �

A.4 Proof of Lemma 1

Consider an equilibrium with et = e∗ > 0. De�ne Π̄(x), Π(x) as the largest and smallest

principal continuation payo�s following x, with corresponding messages m̄(x) and m(x).

De�ne

πD = max
s≥0
{−(1− δ)s+ δ (φ(s)Π(1) + (1− φ(s))Π(0))} (12)

as the principal's min-max payo� as a function of the period-t transfer s. Let sA ≥ 0 be the

smallest maximizer of (12). De�ne

sB ≡ sup
{
s ≥ 0| − (1− δ)s+ δ

(
φ(s)Π̄(1) + (1− φ(s))Π̄(0)

)
> πD

}
if this supremum exists. Note that sB > 0 whenever it exists.

If sB exists, then agent t can always deviate by choosing et = 0 and

µt(s, x) =


m̄(x) s = sB − ε

m(x) otherwise.
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Since φ(·) is continuous, the principal's unique best response to this deviation is to pay

st = sB − ε for small enough ε > 0.

Similarly, agent t can always deviate by choosing et = 0 and

µt(s, x) =


m̄(x) s = sA

m(x) s 6= sA.

The principal may have multiple best responses to this deviation. However, all best responses

entail st ≥ sA, since for any s < sA,

−(1− δ)sA + δE[Π̄(x)|sA] ≥ πD > −(1− δ)s+ δE[Π(x)|s],

where the �rst inequality holds because Π̄(·) ≥ Π(·) and the second inequality holds because

sA is the smallest maximizer of (12).

Now, de�ne ŝ = sA if sB does not exist and ŝ = max{sA, sB} otherwise. Agent t

can guarantee a payo� arbitrarily close to ŝ if he deviates, so he chooses et = e∗ only if

s∗ − c(e∗) ≥ ŝ. Moreover,

−(1− δ)s∗ + δ
(
φ(s∗)Π̄(1) + (1− φ(s∗))Π̄(0)

)
=

πD =

−(1− δ)ŝ+ δ
(
φ(ŝ)Π̄(1) + (1− φ(ŝ)Π̄(0)

) (13)

where the �rst equality follows because s∗ > ŝ and the principal must be willing to pay s∗,

while the second equality follows by continuity of φ(·) and the de�nition of ŝ.

Rearranging, we have

s∗ − ŝ =
δ

1− δ
(φ(s∗)− φ(ŝ))

(
Π̄(1)− Π̄(0)

)
.
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Given (13),

−(1− δ)s+ δ
(
φ(s)Π̄(1) + (1− φ(s))Π̄(0)

)
must attain a local maximum at s = s∗, since otherwise it would be strictly larger than πD

on at least one side of s = s∗ and so ŝ ≥ s∗. Equilibrium therefore requires

φ′(s∗)
(
Π̄(1)− Π̄(0)

)
=

1− δ
δ

(14)

and φ′′(s∗) ≤ 0, our second necessary condition. Together, (14) and (13) imply (5), our �nal

necessary condition. �

A.5 Proof of Proposition 6

Suppose that φ(·) is strictly concave on R+. Then for any s∗ > ŝ ≥ 0,

φ(s∗)− φ(ŝ) =

∫ s∗

ŝ

φ′(s)ds <

∫ s∗

ŝ

φ′(s∗)ds = φ′(s∗)(s∗ − ŝ),

so (5) cannot hold. Lemma 1 implies that et = 0 in every t of any equilibrium.

Now, suppose that φ(·) is �rst strictly convex and then strictly concave on R+. Consider

the following strategy pro�le. Play begins in the cooperative phase. In each period t of the

cooperative phase: agent t chooses et = e∗ and

µt(s, x) =


C if st = c(e∗) + ŝ

D otherwise.

If agent t has not deviated, the principal pays st = c(e∗) + ŝ. Otherwise, the principal

chooses the minimum st that is a best response to µt. If xt = 1 and mt = C, then stay in

the cooperative phase; if xt = 0 and mt = C, then transition to the punishment phase with

probability αC ; if mt = D, then transition to the punishment phase with probability αD. In

the punishment phase, et′ = st′ = 0 for all t′ ≥ t.
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De�ne s∗ = c(e∗) + ŝ. In the cooperative phase, the principal's expected continuation

payo� at the start of each period, Π∗, satis�es

δ

1− δ
Π∗ =

δ(e∗ − c(e∗)− ŝ)
1− δ (φ(s∗) + (1− φ(s∗))(1− αC))

.

Her continuation payo� after mt = D equals (1− αD)Π∗.

De�ne αC so that

1

φ′(s∗)
= αC

δ

1− δ
Π∗. (15)

De�ne αD so that

s∗ =
δ

1− δ
(φ(s∗)Π∗ + (1− φ(s∗))(1− αC)Π∗ − (1− αD)Π∗) .

For δ su�ciently close to 1, both of these conditions can be satis�ed with αC , αD ∈ [0, 1].

We show that this strategy pro�le is an equilibrium. If agent t has not deviated, the

principal strictly prefers st ∈ {0, s∗} to any other st, and αD is such that the principal is

indi�erent between st = 0 and st = s∗. So the principal has no pro�table deviation from

st = s∗.

If agent t has deviated, then we show that the principal is willing to pay no more than

ŝ. De�ne

ΠE(s) =
δ

1− δ
(φ(s)Π∗ + (1− φ(s))(1− αC)Π∗)

as the principal's continuation payo� if m = C, and note that

Π
′′

E(s) =
δ

1− δ
φ
′′
(s)αCΠ∗.

De�ne

ψ(s) =
δ

1− δ
(φ(s∗)Π∗ + (1− φ(s∗))(1− αC)Π∗) + s− s∗

as the 45-degree line that coincides with ΠE(s) at s∗.
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Condition (15) implies that ΠE(s) is tangent to ψ(s) at s∗; since φ′′(s∗) < 0, we conclude

that s∗ is the only point in the concave region of φ(·) that satis�es ΠE(s) = ψ(s). In the

strictly convex region of φ(·), ΠE(s) is strictly convex, and by the above argument, ΠE(s)

lies below φ(s) at the right endpoint of this convex region. Consequently, ΠE(s) crosses

ψ(s) at most once in the convex region, and this crossing must be from above. Moreover,

ΠE(ŝ) = ψ(ŝ) is the unique crossing in the convex region, since

ψ(ŝ)− ΠE(ŝ) = δ
1−δ (φ(s∗)− φ(ŝ))αCΠ∗ + ŝ− s∗

= φ(s∗)−φ(ŝ)
φ′(s∗)

+ ŝ− s∗

= 0,

where the �rst equality follows from the de�nition of αC and the second equality follows

from (5).

We claim that agent t can deviate to et = 0 and choose µt so that the principal's unique

best response is st = s exactly when ψ(s) < ΠE(s). To see this, note that

ψ(s) = s∗ + (1− αD)Π∗ + s− s∗ = s+ (1− αD)
δ

1− δ
Π∗

by de�nition of αD. Consequently, ψ(s) < ΠE(s) exactly when

s <
δ

1− δ
(φ(s)Π∗ + (1− φ(s))(1− αC)Π∗ − (1− αD)Π∗) .

If this inequality is satis�ed, then agent t can force the principal to pay st = s. Conversely, if

this inequality does not hold, then the principal cannot be induced to pay s, since she earns

no less than δ(1− αD)Π∗ from paying 0 and no more than −(1− δ)s+ δΠE(s) from paying

s.

We have already shown that ψ(s) ≥ ΠE(s) for all s ≥ ŝ, which means agent t earns no

more than ŝ if he chooses et 6= e∗. We conclude that he has no pro�table deviation from

e∗, since c(e∗) ≤ s∗ − ŝ. Consequently, the proposed strategy pro�le is an equilibrium for δ
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su�ciently close to 1. �

A.6 Proof of Proposition 7

Consider period t of an equilibrium. De�ne Π̄ and Π as the principal's largest and smallest

continuation payo�s, respectively, with corresponding messages m̄ andm. Agent t can always

deviate to et = 0 and

µt(s) =


m̄ s = ŝ

m otherwise.

Following this deviation, the principal's unique best response is st = ŝ if

ŝ < L−H +
δ

1− δ
(Π̄− Π). (16)

Similarly, if agent t does not deviate, the principal is willing to pay st = s∗ only if

s∗ ≤ H − L+
δ

1− δ
(Π̄− Π). (17)

Agent t is willing to choose et = e∗ only if s∗− c(e∗) + (H −L) ≥ ŝ for any ŝ satisfying (16).

Given the bound (17) on s∗, we conclude that et = e∗ in equilibrium only if 3(H−L) ≥ c(e∗).

Each agent must earn at least L, so the principal's equilibrium payo� cannot exceed

e∗ − c(e∗) + 2H −L, where e∗ = eFB if c(eFB) ≤ 3(H −L) and e∗ satis�es c(e∗) = 3(H −L)

otherwise. To complete the proof, we construct an equilibrium that attains this bound. Play

starts in the cooperative phase: in each t ≥ 0, agent t chooses et = e∗ and

µt(s) =


C s = c(e∗)

D otherwise.

The transfer equals st = c(e∗)− (H −L) if agent t does not deviate and st = −(H −L) if he

does. If either nobody deviates or agent t deviates from (et, µt) but then nobody deviates
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from st, then at = H; otherwise, at = L. Play continues in the cooperative phase until

mt = D, at which point it transitions to the punishment phase with probability α. In the

punishment phase, et = st = 0 in each period. Let α satisfy

max {0, c(e∗)− 2(H − L)} =
δ

1− δ
α (e∗ − c(e∗) + 2H − L) .

For δ < 1 su�ciently close to 1, α ∈ [0, 1].

The principal earns e∗ − c(e∗) + H + (H − L) surplus in each period of the cooperative

phase. Denote sPt ≥ 0 and sAt ≥ 0 as the principal's and agent t's transfer to each other,

respectively, so that st = sPt − sAt . If agent t deviates in (et, µt), then he earns sPt + L by

paying sAt = (H − L) and sPt − sAt + L from deviating, so he has no pro�table deviation

from sAt . Regardless of µt, the principal has no pro�table deviation from sPt = 0 following a

deviation in (et, µt) if

H − L ≥ δ

1− δ
α(e∗ − c(e∗) + 2H − L) = max {0, c(e∗)− 2(H − L)} ,

which holds because c(e∗) ≤ 3(H−L). On the equilibrium path, if st = c(e∗)− (H−L) ≥ 0,

then the principal has no pro�table deviation because

−c(e∗) + (H−L) +H +
δ

1− δ
(e∗− c(e∗) + 2H−L) ≥ L+

δ

1− δ
(1−α)(e∗− c(e∗) + 2H−L).

This is because, by de�nition of α,

−c(e∗) + 2(H − L) ≥ δ

1− δ
α(e∗ − c(e∗) + 2H − L).

If st = c(e∗) − (H − L) < 0, then agent t has no pro�table deviation from it because

c(e∗)− (H − L) +H ≥ L.

Given these transfers, agent t earns L from choosing the equilibrium (et, µt) and no more
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than L from deviating. So this strategy pro�le is an equilibrium. It is principal-optimal

because it attains the upper bound on the principal's equilibrium payo�. �

A.7 Proof of Proposition 8

In the extortion game, this result follows immediately from the fact that agents are indi�erent

among messages and so are willing to follow their communication protocols. Proposition 2

shows such an equilibrium exists, which completes the proof. In the games with e�ort

signals or transfer signals, agents are again indi�erent over messages and so a nearly identical

argument proves the result.

Consider the extortion game with bilateral relationships. Let σ∗ be an equilibrium, and

consider the following strategy pro�le of the game: in each period t > 0,

1. Agent t chooses et, µt as in σ
∗.

2. The principal chooses st as in σ
∗.

3. Agent t chooses mt = µt(st).

4. If agent t follows this message strategy, at is as in σ
∗; otherwise, at = L.

No player has a pro�table deviation from at because at is always an equilibrium of the

simultaneous move game at the end of the period. By the choice of at following a deviation

in mt, agent t has a weak incentive to follow the speci�ed message strategy mt. But then

the principal and agent t have no pro�table deviation from et, µt, or st, since continuation

play is exactly as in σ∗. So this strategy pro�le is an equilibrium of the no-extortion game,

as desired. �

A.8 Proof of Proposition 9

Fix ε > 0. Consider an equilibrium of the game with ε-compliance preferences. Since agent

t is otherwise indi�erent among messages, he sends mt = µt(st) in every equilibrium. For
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each µt, the equilibrium mapping from st to mt is identical to that of an equilibrium of the

extortion game, from which the result follows. �
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B Online Appendix: Long-run Agents

B.1 A Result with long-run Agents

B.1.1 Model, Result, and Discussion

Consider a repeated game with a single principal and N agents with a shared discount factor

δ ∈ [0, 1). In each period, the following stage game is played:

1. Exactly one agent is publicly selected to be active. For each agent i ∈ {1, ..., N}, let

xi,t ∈ {0, 1} be the indicator function for agent i being selected. Let Pr{xi,t = 1} = ρi,

where
∑

i ρi = 1.

2. The active agent chooses et ∈ R+ and µt : R → M , which are observed only by the

principal and the active agent.

3. The principal and the active agent exchange transfers, with resulting net transfer to

the active agent st ∈ R. These transfers are observed only by the principal and the

active agent.

4. The message mt = µt(st) is realized and publicly observed.

The principal's and agent i's payo�s in each period t are πt = et−st and ui,t = xi,t(st−c(et)),

respectively, with corresponding expected discounted payo�s Πt =
∑∞

t′=t δ
t′−t(1− δ)(et− st)

and Ui,t =
∑∞

t′=t δ
t′−t(1 − δ)xi,t(st − c(ei,t)). Our solution concept is plain Perfect Bayesian

Equilibrium with one additional restriction: at any history ht such that agent i has observed

a deviation, we require that E[Ui,t|ht] > 0. This restriction rules out pathological o�-path

behavior that might arise from the fact that an agent's beliefs about the history are essentially

arbitrary once he observes a deviation.12 We also restrict attention to equilibria in pure

strategies to simplify agents' beliefs on the equilibrium path.

12This condition is trivially satis�ed in any equilibrium that is recursive. It is needed here because this
game has private monitoring, which means that equilibria are not necessarily recursive.
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Proposition 10 Let e∗i be the maximum e�ort attainable in any pure-strategy Perfect Bayesian

equilibrium. Letting s∗i ≡ min{e∗i , eFB} − c(min{e∗i , eFB}), e∗1, e∗2, ..., e∗N must satisfy the sys-

tem of inequalities

(1− δ)c(e∗i ) 6 2δρis
∗
i +

2ρiδ

1− (1− ρi)δ
∑
j 6=i

ρjs
∗
j . (18)

It is instructive to compare the right-hand side of (18) to the condition c(e∗) ≤ 3(H −L)

from Proposition 7. To translate between settings, note that the total surplus created by

the principal's future interactions with agent i equals δρis
∗
i , which corresponds to 2(H − L)

in Proposition 7. In Proposition 7, the principal earns an additional H − L if she refuses to

pay an agent who has shirked. In the game with long-run agents, the principal can be given

the entire continuation surplus from her relationship with agent i, which accounts for the

second δρis
∗
i in the right-hand side of (18).

The second term on the right-hand side of (18) represents a new force for cooperation that

is not present in Proposition 7. Since each agent i chooses a new communication protocol

whenever he is active, he essentially commits to his messages only until he next interacts

with the principal again. An agent might therefore use his future messages to reveal that he

has extorted the principal in equilibrium. However, he cannot do so until the next time that

he is active, so this term shrinks to zero as ρi → 0.

An immediate corollary of Proposition 10 is that, as the probability that an agent inter-

acts with the principal ρi approaches zero, that agent's maximum equilibrium e�ort does too.

This implication is similar to our main takeaway from Proposition 7: the strength of each

agent's bilateral relationship limits the severity of the coordinated punishments available to

him. This result relies on the fact that agents can send messages only when they are active.

We can interpret this assumption as the natural extension of our commitment assumption

to a setting with long-run agents; indeed, a result identical to Proposition 10 would hold if

agents could communicate in every period but whenever an agent is active, he commits to a
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sequence of messages in each period until he is again active.

B.1.2 Proof of Proposition 10

For each agent j ∈ {1, ..., 2}, let e∗j be the maximum e�ort that can be attained in any period

of any equilibrium. Consider a history ht right after agent i is chosen to be the active agent

in period t. De�ne four di�erent expectations of Πt+1 that follow four di�erent outcomes:

1. Π
∗
if no player deviates, with corresponding message m;

2. Π∗ if the principal deviates but the active agent does not, with corresponding message

m;

3. Π
HU

if the active agent deviates and mt = m;

4. ΠHU if the active agent deviates and mt = m.

We identify necessary conditions for e�ort e to be attained in equilibrium.

First, the principal must be willing to pay s∗ if the active agent does not deviate, which

requires

s∗ 6
δ

1− δ

(
Π
∗ − Π∗

)
. (19)

Second, the active agent i must be willing to choose e�ort e and the equilibrium communi-

cation protocol µ. Agent i can always deviate by choosing et = 0 and

µt =


m st < ŝ

m otherwise

for some ŝ > 0. Following this deviation, the principal's unique best response is to pay ŝ so

long as

−ŝ+
δ

1− δ
Π
HU

>
δ

1− δ
ΠHU ,
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since the principal can earn no less than Π
HU

in the continuation game if mt = m and no

more than ΠHU if mt = m. Therefore, agent i has no pro�table deviation of this form only

if

s∗ − c(e) +
δ

1− δ
U
∗
i > max

{
0,

δ

1− δ

(
Π
HU − ΠHU

)}
, (20)

where U
∗
i is the agent's expectations about her continuation payo� at the history that yields

principal payo� Π
∗
i .

Combining (19) and (20) yields the following necessary condition for e�ort e to be part

of equilibrium:

c(e) 6
δ

1− δ

(
U
∗
i + Π

∗ − Π∗
)
−max

{
0,

δ

1− δ

(
Π
HU − ΠHU

)}
(21)

Our next goal is to connect (19) and (20) by studying the relationship between U
∗
i +Π

∗−

Π∗ and Π
HU −ΠHU . We do so by bounding U

∗
i + Π

∗−Π
HU

from above and Π∗−ΠHU from

below.

Fix two histories ht+1 and ĥt+1 at the start of period t+1 such that agent i can distinguish

ht+1 from ĥt+1 but no other agents can. For t′ > t+ 1, we will use the notation ht
′
and ĥt

′
to

represent successor histories to ht+1 and ĥt+1, respectively. At history ĥt+1, the principal

can always play the following strategy:

1. At any history ĥt
′
that the active agent believes is consistent with ht+1, play as in the

corresponding successor history to ht+1;

2. At any other history, choose st = 0.

Under this strategy, each agent j 6= i learns that the history is inconsistent with ht+1 only

when agent i sends a message that is inconsistent with play following ht+1. In a pure-strategy
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equilibrium, all agents learn this fact at the same time. For each t′ > t+ 1, denote

B̂t′ =
{
ĥt
′|Agents j 6= i learn that the history is inconsistent with ht+1 in period t′ − 1,

but not before
}
.

Where B̂∞ denotes the event that agents j 6= i never learn that the history is inconsistent

with ht+1. Note that these events collectively partition the set of histories following ĥt+1.

We can de�ne an analogous collection of sets for the event that agents j 6= i learn that the

history is inconsistent with ĥt+1. We denote this analogous collection Bt′ .

For each agent j ∈ {1, ..., N}, de�ne πj,t = xj,t(et − st) and π−j,t =
∑

k 6=j xk,t(et − st)

as the principal's payo� from agent j and from all other agents, respectively. De�ne Πj,t =∑∞
t′=t δ

t′−t(1 − δ)πj,t′ and Π−j,t =
∑∞

t′=t δ
t′−t(1 − δ)π−j,t′ . Because

{
B̂t̃
}t′
t̃=t+1

partitions the

histories of length t′ following ĥt+1,

E
[
Πt+1|ĥt+1

]
=

∞∑
t′=t+1

(1− δ)δt′−t−1
E

[
πi,t′|ĥt+1

]
+

t′∑
t̃=t+1

E
[
π−i,t′ |ĥt+1, B̂t̃

]
Pr
{
B̂t̃
} .

(22)

The right-hand side of (22) is absolutely convergent, so we can rearrange the order of sum-

mation to yield

E
[
Πt+1|ĥt+1

]
=

∑∞
t′=t+1(1− δ)δt

′−t−1E
[
πi,t′ |ĥt+1

]
+∑∞

t̃=t+1

(∑t̃−1
t′=t+1(1− δ)δt

′−t−1E
[
π−i,t′|B̂t̃

]
+ δt̃−t−1E

[
Π−i,t̃|B̂t̃

])
Pr
{
B̂t̃
}
.

(23)

Under the principal's strategy speci�ed above, the principal and agents j 6= i act identically

until those agents learn of a deviation. Therefore, for any t′ < t̃,

E
[
π−i,t′ |Bt̃

]
Pr
{
Bt̃
}

= E
[
π−i,t′ |B̂t̃

]
Pr
{
B̂t̃
}
.
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Moreover, for any t̃, Pr
{
Bt̃
}

= Pr
{
B̂t̃
}
, since any message that distinguish ht+1 from

ĥt+1 must also distinguish ĥt+1 from ht+1.

Now, E
[
Πt+1|ĥt+1

]
is bounded below by the principal's payo� from the strategy speci�ed

above. Therefore, we can use (23) to bound the di�erence

E [Πt+1|ht+1]− E
[
Πt+1|ĥt+1

]
6∑∞

t′=t+1 δ
t′−t−1(1− δ)

(
E [πi,t′|ht+1]− E

[
πi,t′ |ĥt+1

])
+∑∞

t̃=t+1 δ
t̃−t−1

(
E
[
Π−i,t̃|Bt̃

]
− E

[
Π−i,t̃|B̂t̃

])
Pr
{
Bt̃
} (24)

Under the speci�ed strategy, E
[
Π−i,t̃|B̂t̃

]
> 0 because the principal pays no transfer to an

agent j who knows that the history is inconsistent with ht+1, with E
[
πi,t′|ĥt+1

]
> 0 for a

similar reason. A necessary condition for (24) is therefore

E [Πt+1|ht+1]− E
[
Πt+1|ĥt+1

]
6∑∞

t′=t+1 δ
t′−t−1 ((1− δ)E [πi,t′ |ht+1] + E

[
Π−i,t′|Bt

′]
Pr
{
Bt′
}) (25)

Suppose that ht+1 is the on-path history such that E [Πt+1|ht+1] = Π
∗
. In a pure-strategy

equilibrium, agents correctly infer the true history on the equilibrium path, which means

that they must earn nonnegative utility. Consequently, the principal earns no more than

total continuation surplus, so (25) requires

E
[
Πt+1|ht+1

]
− E

[
Πt+1|ĥt+1

]
6
∑
t′=t+1

δt
′−t−1

(
(1− δ)ρis∗i +

∑
j 6=i

ρjs
∗
jPr

{
Bt′
})

. (26)

Note than an identical bound holds for the expression U
∗
i + Π

∗−Π∗ because agents j 6= i

earn nonnegative continuation utilities on the equilibrium path. If ht+1 is instead the history

such that E [Πt+1|ht+1] = ΠHU , then agents have observed m and so know that play is o�-

path. Our equilibrium restriction requires their utilities to be nonnegative at such a history,

so (26) again holds.

Since s∗j > 0, the right-hand side of (26) is maximized by having the event Bt̃ happen as
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early as possible. The earliest it can occur is the next time that agent i is the active agent,

since agent i can send a message only when he is active. Agent i is active for the �rst time

since period t in period t′ with probability (1− ρi)t
′−t−1ρi, so (26) requires

E [Πt+1|ht+1]− E
[
Πt+1|ĥt+1

]
6

∑
t′=t+1 δ

t′−t−1
(

(1− δ)ρis∗i + (1− ρi)t
′−t−1ρi

∑N
j=1 ρjs

∗
j

)
= ρis

∗
i + ρi

1−(1−ρi)δ
∑

j 6=i ρjs
∗
j .

(27)

As argued above, an identical bound holds for E [Ui,t+1 + Πt+1|ht+1]− E
[
Πt+1|ĥt+1

]
.

From (27), we conclude that

U
∗
i + Π

∗ − Π∗ 6 Π
HU − ΠHU + 2ρis

∗
i +

2ρi
1− (1− ρi)δ

∑
j 6=i

ρjs
∗
j .

A necessary condition for (21) to hold is therefore

c(e) 6

 δ
1−δ

(
Π
HU − ΠHU + 2ρis

∗
i + 2ρi

1−(1−ρi)δ
∑

j 6=i ρjs
∗
j

)
−

max
{

0, δ
1−δ

(
Π
HU − ΠHU

)}
 .

The right-hand side of this condition is maximized by Π
HU − ΠHU = 0, in which case

(1− δ)c(e) 6 2ρis
∗
i +

2ρi
1− (1− ρi)δ

∑
j 6=i

ρjs
∗
j ,

as desired. �

C Online Appendix: Communication by the Principal

C.1 The Principal Can Send Messages

Let Mp be the set of messages for the principal, and mp a typical message. In each period

t ≥ 0, the principal chooses a message mp,t in each period t ≥ 0, and this message is publicly
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observed. We consider two di�erent stage games: the principal might either choosemp,t ∈Mp

before or after agent t chooses mt. If the principal chooses mp,t before mt is realized, we

assume that µt is a function of st only (and so doesn't depend on mp,t).

The principal talks after agent t. Consider some period t. We let π(m,mp) be the

principal's continuation payo� if (m,mp) realizes. Given agent t's message m, the principal

always chooses mp to maximize π(m,mp). We let π(m) := maxmp π(m,mp), so π(m) is the

principal's continuation payo� after agent t's message m. We let Π and Π be the highest and

lowest continuation payo�s that agent t's message can induce. Then, incentive constraints

are identical to the the extortion game (i.e., Proposition 2). The principal's message does

not mitigate extortion at all, so our impossibility result still holds.

Proposition 11 Suppose that in each period t the principal sends mp ∈ Mp after agent t

sends m. The principal-optimal equilibrium is outcome-equivalent to that in Proposition 2.

The principal talks before agent t. Consider some period t. De�ne π(mp,m) as the

principal's continuation payo� if mt = m and mp,t = mp. Once the principal chooses st,

she knows mt = µt(st). The principal therefore chooses mp,t to maximize her continuation

payo� given agent t's message.13 The same argument as in the previous case applies, so

every equilibrium involves zero e�ort in each period.

C.2 The Principal Can Commit to a Communication Protocol

In this appendix, we modify the extortion game by allowing the principal to choose a com-

munication protocol at the same time as each agent. We �rst show that Proposition 1 holds

in this game, which means that allowing the principal to commit to messages as a function

13This intuition would not change if agents could commit to a mixture overM , in which case the principal
would choose mp,t to maximize her continuation payo� given the mixture. The key is that agent t can use
her message to implement the same punishment regardless of whether he works or shirks.
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of transfers eliminates extortion. We then give two reasons why this result should be treated

with skepticism.

Formally, suppose that in each t ≥ 0, the principal chooses a communication protocol

νt : R → M at the same time that agent t chooses et and µt. At the end of t, message

mP
t = νt(st) is realized and publicly observed (along with agent t's message mt). We can

adapt the proof of Proposition 1 to show that the principal can earn no more than e∗− c(e∗)

in this game, where e∗ is de�ned as in Proposition 1. It su�ces to construct an equilibrium

in which she earns that payo�.

Consider the following strategy pro�le. Play starts in the cooperation phase. In this

phase,

νt(st) = µt(st) =


C st ≥ c(e∗)

D otherwise

and et = e∗. If neither player deviates, then st = c(e∗); if only agent t deviates, then

st = 0; if the principal or both players deviate, then the principal best-responds given

the communication protocols. The game stays in the cooperative phase if mt = mP
t = C.

Otherwise, it switches to the punishment phase with probability γ ∈ [0, 1]. In the punishment

phase, agents exert no e�ort and the principal pays no transfers.

Choosing γ to solve

c(e∗) =
δ

1− δ
γ (e∗ − c(e∗)) (28)

implies that the principal is willing to pay st = c(e∗) on the equilibrium path. If agent

t deviates, then the principal's continuation payo� cannot exceed e∗ − c(e∗) if she pays

st = c(e∗) and equals (1 − γ)(e∗ − c(e∗)) if she pays any other amount. Condition (28)

implies that she is willing to pay st = 0 in that case. Agent t therefore has no pro�table

deviation from et or µt. The principal has no pro�table deviation from νt, since given µt, she

earns no more than e∗− c(e∗) for paying st = c(e∗) and no more than (1− γ)(e∗− c(e∗)) for

paying any other amount. This strategy pro�le is therefore an equilibrium. It is principal-
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optimal because it maximizes total equilibrium surplus and gives all of that surplus to the

principal.

This argument shows that allowing the principal to commit to a communication protocol

eliminates extortion. Essentially, the principal's and each agent's communication protocols

can be used to �cross-check� one another. If the principal is punished whenever messages

disagree, then agents cannot extort any smaller amount than the amount that the principal

pays a hard-working agent on-path. As in the proof of Proposition 5, the principal can then

be made indi�erent between paying st = c(e∗) and st = 0, so that she is willing to pay a

hard-working agent but not one that shirks.

While allowing the principal to commit to a communication protocol can in principle

restore cooperation, this result should be treated with skepticism for two reasons. First,

while agents are indi�erent across messages, the principal is not. Indeed, appendix C.1

shows that she has a strict incentive to send the message that maximizes her continuation

payo�. Commitment therefore forces the principal to send messages that she strictly prefers

not to send, which stands in contrast to the agents, for whom commitment simply breaks

indi�erence across messages. Consequently, we cannot treat the principal's communication

protocol as an equilibrium re�nement; no analogue to Proposition 8 exists for the game with

principal commitment.

Second, as appendix C.1 illustrates, this result requires the principal to choose νt (weakly)

before agent t chooses µt and et. If agent t chooses µt �rst, then he can shirk and extort

the principal, in which case her unique best-response is to pay that agent and then send a

message that guarantees a high continuation payo�. If the principal chooses νt before agent

t chooses µt, in contrast, then we can slightly modify the equilibrium construction above

to show that a version of Proposition 1 holds. The conclusion that principal commitment

eliminates extortion therefore depends on a particular assumption about when each player

makes threats.
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D Online Appendix: Variants of the Extortion Game

D.1 Up-Front Transfers

The extortion game with up-front transfers is identical to the extortion game except

that at the start of each period t, the principal and agent t exchange nonnegative transfers.

Denote the resulting net wage to agent t by wt ∈ R, so that the principal's and agent

t's payo�s are et − st − wt and st + wt − c(et), respectively. Note that agent t chooses a

communication mechanism µt only after these transfers are paid.

Proposition 12 Any equilibrium of the extortion game with up-front transfers entails et =

st = 0.

Proof of Proposition 12

Borrowing notation from the proof of Proposition 2, st ≤ δ
1−δ (Π̄ − Π) on the equilibrium

path, and any st <
δ

1−δ (Π̄ − Π) can be made a unique best response after agent t deviates.

Therefore, c(et) = 0 in any t of any equilibrium. �

D.2 Ex Ante Extortion

If the principal and each agent can exchange up-front transfers, as they do in appendix D.1,

it is natural to consider equilibria if agents can commit to their communication protocols as

a function of those transfers. In particular, an agent might demand an up-front transfer in

exchange for refraining from later extortionary threats. Of course, once the principal pays

an up-front transfer to an agent, that agent has every incentive to renege on her earlier

promise not to engage in extortion. In this section, we prove that even if agents can commit

to not engage in future extortion in exchange for up-front payments, the unique equilibrium

outcome still entails zero e�ort in each period.

To make this point, consider the follow game. The game with ex ante extortion

is identical to the extortion game with up-front transfers, except that at the start of each
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period t, agent t chooses a communication meta-protocol µ0
t : R2 →M, where

M≡ {µ : R→M}

is the set of communication protocols. This meta-protocol is observed by the principal but

not by other agents. The principal and agent t then exchange up-front transfers, with net

transfer wt, and agent t chooses et ≥ 0. Agent t's communication protocol equals the one

speci�ed by the meta-protocol, given (wt, et):

µ0
t (wt, et)(·).

The rest of the period proceeds with this communication protocol.

While this alternative game might seem cumbersome, it is designed to capture a very

simple intuition. In the extortion game, extortion involves shirking and so is ine�cient.

In principle, an agent could more e�ciently extort the principal by demanding an up-front

transfer in exchange for refraining from further extortion. Clearly, it might be di�cult for

an agent to commit to not make future extortionary threats. Even if he can overcome

this commitment problem, however, ex ante extortion does not facilitate cooperation. In

particular, each agent can use ex ante extortion to demand the entire proceeds from his

e�ort. But then the principal earns nothing in any period, which means that she is unwilling

to compensate any agent for his e�ort. The resulting unique equilibrium outcome entails no

e�ort.

Proposition 13 Every equilibrium of the game with ex ante extortion entails et = 0 in each

t ≥ 0.
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Proof of Proposition 13

De�ne Π∗ ≥ 0 as the principal's maximum equilibrium payo�, and consider an equilibrium

that attains Π∗. If e0 = 0 with probability 1 in this equilibrium, then

Π∗ ≤ δΠ∗

and so Π∗ = 0.

Suppose that e0 > 0 with positive probability in this equilibrium. De�ne Π̄ and Π as

the largest and smallest equilibrium continuation payo�s induced by m0 in this equilibrium,

with corresponding messages C and D, respectively. Let e∗ equal the e�ort that maximizes

total period-0 surplus among all on-path e�orts in period 0. Then e∗ > 0, and moreover, it

must be that

δ

1− δ
(Π̄− Π) ≥ c(e∗) > 0.

Fix some ŵ ≥ 0. For any ε, ξ > 0, consider the following choice of µ0
0 by agent 0:

µ0
0(w0, e0)(·) =


µC(·) if et = e∗ − ε, wt = ŵ

µC(·) if et = 0, wt 6= ŵ

µD(·) otherwise

,

where

µC(s0) =


C s0 = δ

1−δ (Π̄− Π)− ξ

D otherwise

and

µD(s0) = D.

Give this choice, suppose that w0 6= ŵ. If e0 = 0, then the principal's unique best
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response (to µC) is

s0 =
δ

1− δ
(
Π̄− Π

)
− ξ.

If e0 > 0, then the principal's unique best response (to µD) is s0 = 0. Therefore, agent t's

uniquely optimal e�ort is e0 = 0, in which case the principal's payo� is at most

(1− δ)ξ + δΠ.

Suppose instead that w0 = ŵ. If e0 = e∗ − ε, then the principal's unique best response

(to µC) is again

s0 =
δ

1− δ
(Π̄− Π)− ξ.

If e0 6= e∗ − ε, then the principal's unique best response (to µD) is s0 = 0. For any ε > 0,

there exists a su�ciently small ξ > 0 such that

−c(e∗ − ε) +
δ

1− δ
(
Π̄− Π

)
− ξ > 0.

Therefore, e0 = e∗−ε is agent 0's uniquely optimal e�ort, in which case the principal's payo�

is

(1− δ)(ξ + e∗ − ε− ŵ) + δΠ.

We have uniquely pinned down the principal's payo� as a function of ŵ. The principal's

�nds it strictly optimal to pay w0 = ŵ so long as

(1− δ)(ξ + e∗ − ε− ŵ) + δΠ > (1− δ)ξ + δΠ

or

ŵ < e∗ − ε.
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Agent 0 can therefore use this strategy to guarantee a payo� arbitrarily close to

e∗ − ε− c(e∗ − ε) +
δ

1− δ
(Π̄− Π)− ξ. (29)

In equilibrium, agent 0's utility and the principal's payo� cannot exceed

(1− δ)(e∗ − c(e∗)) + δΠ̄.

Subtracting (29) from this surplus and taking ε, ξ → 0, we conclude that the principal's

payo� cannot exceed δΠ. But then

Π∗ ≤ δΠ ≤ δΠ∗,

so again Π∗ = 0.

We have established that the principal's maximum equilibrium payo� equals 0, which is

also her min-max payo�. Therefore, Π̄ = Π = 0, which implies that et = 0 in each t ≥ 0 of

any equilibrium. �

While every equilibrium entails zero e�ort in the game with ex ante extortion, the in-

tuition for this result di�ers from that of Proposition 2. Here, each agent can use the

meta-communication protocol to extract the entire surplus created by his interaction with

the principal. The principal therefore has no reason to actually pay an agent, since her con-

tinuation payo� equals zero regardless of her actions today. Proposition 13 is a particularly

extreme consequence of the negative intertemporal externality from Proposition 4. In this

case, each agent's rent-seeking behavior is so severe that it totally undermines cooperation,

resulting in zero e�ort in equilibrium.

This model assumes that agent t's meta-protocol conditions on both the up-front transfer

and his e�ort. We make this assumption to draw a close connection to the extortion model,

since agents in that model implicitly condition their communication protocols on their e�orts.
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Note that assuming µ0
t can condition on et does not resolve the commitment problem at the

heart of the model, since agent t must still �nd it sequentially optimal to exert e�ort given

his beliefs about st. We could instead assume that µ0
t can condition on wt but not on et,

in which case we can construct equilibria with strictly positive e�ort. These equilibria take

advantage of the fact that once an agent deviates in µ0
t , there might exist a continuation

equilibrium in which he expects st = 0 and so exerts no e�ort. Analogous to Proposition

7, the possibility of ine�cient continuation play within period t limits agent t's ability to

engage in ex ante extortion. The principal can therefore earn a strictly positive equilibrium

payo� if meta-protocols are not contingent on e�ort.
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