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I. INTRODUCTION 

The introduction of ridesharing services, such as Uber and Lyft, has fundamentally changed how 
many individuals are transported in cities and towns across the United States. While the ability to 
easily hail a ride through a smartphone app has undoubtedly increased convenience for people 
seeking transportation and flexible employment, critics increasingly argue that ridesharing creates 
offsetting negative effects, such as increases in traffic congestion and car-exhaust pollution. Are 
there, in fact, significant externalities that accompany ridesharing? In this paper, we present 
evidence suggesting that such costs exist, are not trivial, and can be measured in human lives—
specifically, in increased rates of major traffic accidents and traffic fatalities. Using the staggered 
introduction of ridesharing across U.S. cities, we show that its introduction in a metropolitan area 
leads to an economically meaningful increase in overall motor vehicle fatalities. This increase is 
consistent with acknowledged macro trends in motor vehicle accidents and pedestrian fatalities, both 
of which had been falling steeply in the United States over the period 1985 to 2010, when ridesharing 
first launched, and have since reversed course (Figure I). 1 

Whether ridesharing (RS from here on) should lead to higher accident rates is not apparent at 
first glance. A naïve view of the effects of RS sees it as removing drivers who would have driven 
themselves with their cars and replacing them with rideshare drivers for the same mileage. Under 
this view, RS substitutes self-drivers with rideshare drivers on a one-to-one basis. Moreover, one 
might also argue that many of the users who are substituting to being driven are often doing so 
because they are (or will be) inebriated or otherwise impaired. This substitution of impaired drivers 
with sober rideshare drivers thus potentially increases the quality of driving, while (in theory) 
holding car utilization fixed. Under this view, there will be no increase in the vehicle miles traveled 
and a possible increase in driver quality, and consequently there should be no increase in accident 
rates—in fact, there might even be a reduction.  

This naïve view, however, ignores some of the subtler effects of substituting driving oneself 
with being driven by a RS driver. First, the advent of RS platforms transforms vehicles into 
productive assets for individuals who now find it lucrative to provide services as drivers. Moreover, 
these RS drivers have riders in their car for only a fraction of the time that they are on the road: they 
must drive from fare to fare, and they drive from location to location in the city seeking better fare 

                                                 
1 Figure I Panel A was created by Dennis Bratland and is reproduced under creative commons license. The figure uses 
NHTSA FARS and CrashStats data to depict total U.S. motor vehicle deaths, deaths per VMT, deaths per capita, VMT 
and population for the period 1920–2017. Figure I Panel B is excerpted from the Governors Highway Safety Association 
(2019) report on 2018 Pedestrian Traffic Fatalities by State and is constructed using data from FARS and State Highway 
Safety Organizations. 
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prospects, as there is not always a fare available. Furthermore, RS companies often subsidize drivers 
to stay on the road, even when utilization is low, to ensure that supply is quickly available.  

The naïve view also assumes that only those who would have otherwise driven themselves are 
now using RS services, which is unlikely. The convenience and lower pricing of RS apps suggest 
that there may be a significant number of additional riders substituting away from other modes of 
transportation, such as subways, buses, biking or walking; persons who would have used these 
modes in the absence of the convenience and low cost of RS. Indeed, surveys report that fewer than 
half of RS rides in nine major metro areas actually substitute for a trip that someone would have 
made in a car (Schaller, 2018). Moreover, a survey conducted by the University of California at 
Davis of over 4,000 residents in seven major metros areas found that only 39% of respondents would 
drive themselves, carpool, or take a taxi if RS had not been available. The rest substitute from rail, 
biking, walking or not traveling at all (Clewlow and Mishra, 2017). 2 This survey evidence runs 
counter to the naïve view’s notion that utilization remains fixed.3  

Here, we take a more nuanced view of the overall effect of RS on road safety. We begin by 
proposing a conceptual framework for considering how ridesharing’s introduction may affect 
accident rates. 4 While the naïve view holds the utilization and supply of drivers constant, our view 
incorporates rational choice theory to drivers’ and riders’ decisions. Our framework models 
accidents as a function of vehicle miles traveled and average driver quality, both of which are in 
turn affected by the introduction of RS technology. The advent of RS makes car travel easier for 
riders, which, in turn, should decrease the marginal cost of making a trip for them, thus spurring 
more rides. In the case of potential drivers, the monetary value assigned to driving via the platform 
also increases the net benefit for individuals with vehicles of heading out to give rides. These two 
forces, combined with the addition of driving from fare to fare, should lead to an overall increase in 
vehicle miles traveled. Depending on the quality of the new RS drivers, as compared to the driving 
quality of former drivers who now become riders, this may also lead to a change in the average 

                                                 
2 Similar numbers emerge from studies conducted by the Boston Metropolitan Area Planning Commission (MAPC, 
2018), the New York Department of Transportation (NYDOT, 2018), and other researchers (Clewlow and Mishra, 2017; 
Henao, 2017; Circella et al., 2018). 
3 From a supply perspective, a local report that examines detailed ridesharing data in New York City suggests that 
ridesharing companies put 2.8 new vehicle miles on the road for each mile of personal driving they eliminated (a 180% 
overall increase). Moreover, the same report suggests that ridesharing has added 5.7 billion miles of annual driving in 
the Boston, Chicago, Los Angeles, Miami, New York, Philadelphia, San Francisco, Seattle, and Washington, D.C., 
metro areas (Schaller, 2018). While pooling services, such as UberPool and LyftLine, can reduce the overall increase 
in vehicle miles, these modes of ridesharing currently represent a relatively small (20%) share of overall rides. 
4 Our theoretical analysis of ridesharing’s effect on safety can be thought of along the lines of the traditional offsetting 
behaviors literature (Peltzman, 1975). 
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quality of drivers on the road. We outline the potential effects of the introduction of RS through 
each of these two components. 

We then turn to an empirical analysis of the effects of RS on accident rates. We define the entry 
of RS into cities using rollout dates obtained directly from Uber and Lyft. We use the launch date 
of the first service to arrive in each city to determine the first quarter of treatment. Our outcome 
measures are a variety of fatal traffic accident-related measures from the Fatal Accident Reporting 
System (FARS) maintained by the National Highway Traffic Safety Administration (NHTSA). This 
data does not distinguish accidents in which a rideshare driver-partner car was involved from those 
where one was not; rather, we examine overall motor vehicle fatalities in a city. From a policy 
perspective, this distinction is not critical, as we wish to explore how the introduction of RS as a 
phenomenon shapes total accident rates.   

We begin our analysis by examining changes in the level of accidents in the treated cities around 
the introduction of ridesharing. Figure II plots the raw quarterly average accidents over event time 
in rideshare cities. At the time of rideshare initiation—time zero—we see a distinct break in the 
trend of accident incidence in the RS cities: accident numbers begin to rise sharply, relative to the 
pre-event time trend. We investigate this increase formally using a difference-in-differences (DD) 
specification with fixed effects for location and time (quarter-year) and location-specific linear and 
quadratic trends. Our DD specification allows us to capture macroeconomic changes, such as the 
Great Recession, fuel costs, and improvements in vehicle technology, as well as city-specific 
conditions such as average weather patterns and city topology. The location specific time trend 
captures location-specific pre-trends in accidents that existed prior to the arrival of rideshare. 
Finally, to capture potential time-and-city varying confounders, such as population changes, 
increases in employment or income, or smartphone adoption levels (the latter of which may lead to 
more distracted driving and for which data are unavailable at the city level), we further control for 
population level and per capita income (which survey data suggest is highly correlated with 
smartphone adoption and usage).5 

Consistent with the raw data plotted in Figure II, the DD specification documents a 2% to 4% 
increase in the number of fatal accidents and fatalities that persists throughout the week, on 
weekends, at night, and on weekend nights. The estimates are robust to the inclusion of a variety of 
additional control variables such as unemployment, population growth, gas prices and gas taxes, as 

                                                 
5 http://www.pewinternet.org/fact-sheet/mobile/ and http://www.pewresearch.org/fact-tank/2017/03/22/digital-divide-
persists-even-as-lower-income-americans-make-gains-in-tech-adoption/    

http://www.pewinternet.org/fact-sheet/mobile/
http://www.pewresearch.org/fact-tank/2017/03/22/digital-divide-persists-even-as-lower-income-americans-make-gains-in-tech-adoption/
http://www.pewresearch.org/fact-tank/2017/03/22/digital-divide-persists-even-as-lower-income-americans-make-gains-in-tech-adoption/
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well as to the inclusion of a location-specific quadratic trend, and are similar for a variety of different 
specifications of the left-hand-side accident measure. 

Having established our primary finding, we proceed to examine differentials in outcomes for 
pooled versus nonpooled services. Despite allowing for more carpools and therefore a potential 
reduction of total vehicle miles traveled, the introduction of UberPool and LyftLine do not reverse 
the documented increase in fatal accidents. Instead, the estimates suggest that either the share of 
pooled rides is insufficiently high relative to single rides, or that any positive effects of pooled 
services in reducing VMT—and accordingly, accidents—may be offset by an increase in overall 
ridership, due to the lower cost of the pool service.  

Presumably, the intensity of rideshare use should be related to the documented increase in 
accident rates. We proxy for the intensity of rideshare driver adoption using the intensity of Google 
searches for terms such as “Uber” and “Lyft” in the treatment cities. When we substitute the 
indicator for city treatment with our Google intensity proxy for adoption of RS services within a 
city, we obtain similar results to those in our main specifications: fatal accidents and fatalities 
increase with the intensity of adoption, as proxied for by the Google Trends measure.   

Next, we separate traffic accidents and fatalities into those of car occupants and non-occupants 
(pedestrians, bicycle riders, etc.). Doing so allows us to examine externalities of RS more directly: 
pedestrians and bike riders represent a population that is neither using a rideshare car nor riding in 
or driving a private vehicle. Here, we find a similar magnitude increase in the number of fatal 
accidents, the number of pedestrians and bike riders involved in these accidents, and the number of 
fatalities in such accidents, suggesting that the introduction of RS imposes a negative externality on 
pedestrians and bike riders, in addition to affecting vehicle occupants.       

Of course, the effects of RS on accident rates may vary with city characteristics. We explore this 
next. We find that the accident increases are concentrated in large cities (high population), and cities 
with higher levels of income inequality (as measured by the Gini coefficient). They are primarily 
concentrated in cities where the ex ante use of public transportation was higher, consistent with 
substitution away from an alternative mode of transportation, and in cities with high ex ante levels 
of vehicle ownership, consistent with the increasing usage of existing vehicles.  

We then turn to examine the quantity and quality mechanisms suggested by our conceptual 
framework. On the quantity side, we document that at the intensive margin, VMT, excess gas 
consumption, and annual hours of delay in traffic all rise following the entry of ridesharing. 
Furthermore, at the extensive margin, we find a 3% increase in new car registrations, consistent with 
RS services creating a new productive use for vehicle ownership. Consistent with our estimates for 
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fatal accident rates, this increase in registrations is more substantial in cities with high ex ante use 
of public transportation, further strengthening the evidence for substitution away from public 
transport.  

While it is difficult to explore driver quality directly, we can indirectly test for the presence of 
quality improvements, even if not for quality reductions. We separate out the fatal accidents that 
involve an impaired driver, as we would expect positive quality effects to primarily be present in 
the reduction of drunk accidents and fatalities. We find that accidents and fatalities related to drunk 
driving also increase post-ridesharing, however, albeit at a smaller magnitude; we do not see a 
decrease that would be consistent with a large quality improvement. Thus, while there may be some 
reduction in drunk diving associated with RS arrival, our results suggest that it is not enough, overall, 
to dominate the quantity effects.  

We note that the documented effects may be short to medium-term, as pooling services such as 
LyftLine and UberPool increase ridership. Furthermore, as rideshare drivers become more 
experienced, both the VMT effects and the driver quality effects may be attenuated. In our sample 
through the end of 2016, however, we observe no such reversion; instead, the estimates appear to 
be increasing with time since rideshare launch, and the persistence is statistically significant. Still, 
many cities only saw the introduction of RS services in the last three years, and pooling services are 
not available in all cities. It may be too soon to tell whether the effect we document is a short-term 
adjustment or a longer-term pattern; our initial evidence suggests that the effect is still present three 
years after the entrance of ridesharing.  

We conclude our study with a back-of-the-envelope discussion of potential costs from an 
increase in fatalities of the magnitude estimated in this paper. Utilizing estimates of the value of a 
statistical life from the Department of Transportation, we estimate a potential cost of just under $10 
billion. We end with a discussion of other potential societal costs suggested by some of our findings, 
which suggest the need for further research. 

Our study offers several contributions to the existing literature. First and foremost, our work 
speaks to the importance of considering externalities—both positive and negative—associated with 
the introduction of new technologies. Often, discussion of externalities of new technologies focuses 
on positive externalities and benefits to society (e.g. Klenow and Rodriguez-Clare, 2005). Here, in 
contrast, we consider that some technologies may also impose negative externalities. When new 
technologies are introduced in markets that account for these externalities, they often induce 
competition with existing products and services that enhance welfare. If these negative externalities 
are not accounted for, even if the private costs are exceeded by the private benefits for the individual 
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user, the social costs may not be. It is the sum of social and private costs as compared to the sum of 
social and private benefits that is key to welfare effects.  

In the case of RS, whether there were associated negative externalities was not clear to 
economists ex ante. In a 2014 University of Chicago Initiatives on Global Markets (IGM) survey of 
a panel of 43 top academic economists,6 all the panelists either agreed or strongly agreed with the 
statement “Letting car services such as Uber or Lyft compete with taxi firms on equal footing 
regarding genuine safety and insurance requirements, but without restrictions on prices or routes, 
raises consumer welfare.” Many commented on the contribution of competition to consumer 
welfare; none suggested any potential negative externalities (one Nobel Prize winner noted 
specifically that he did not see any externalities involved). The comments were consistent with the 
panelists considering private welfare, rather than social welfare. Here, we shed light on the potential 
social costs of ridesharing. Our results speak to a growing literature on the social and economic 
impacts of digitization (Brynjolfsson and McAfee, 2014). In this spirit, our paper joins 
contemporaneous work by Hasan and Kumar (2018), who also explore social costs of technology 
adoption, but in the setting of online school ratings and their effects on educational inequality.  

Second, our study contributes to a growing literature exploring the ridesharing industry and its 
workers. Hall and Krueger (2018) and Chen et al. (2018) explore the importance of flexibility to RS 
drivers. Cook et al. (2018) examine the gender earnings gap for Uber drivers, which they find can 
be fully explained by experience and preferences. Liu et al. examine the extent to which ridesharing 
reduces driver moral hazard relative to taxis, while Cramer and Krueger (2016) explore the 
efficiency gains and lower transaction costs associated with Uber’s matching algorithm.  Other work 
in this category has focused on ridesharing’s effect on other modes of transportation, finding mixed 
evidence. Nie (2017) finds Uber has reduced taxi ridership, Hall et. al. (2018) finds ridesharing 
complements public transit, while Cramer (2016) finds that the wages of taxi drivers and chauffeurs 
have not decreased. Finally, using Uber’s individual-level data and its unique use of surge pricing, 
Cohen et al. (2016) estimate that UberX created $6.8 billion of consumer surplus in 2015. 

Our paper is not the first to attempt to examine the effects of ridesharing’s introduction on traffic 
accidents. A number of recent papers have explored this issue, primarily through the lens the 
potential for reduction in drunk driving as a result of the availability of RS (see e.g., Brazil and Kirk, 
2016; Martin-Buck, 2016; Greenwood and Wattal, 2016). These studies are primarily focused on 
measures of alcohol-related fatal accidents, fatalities, and citations for driving while under the 
influence of alcohol (DUIs). They typically use the introduction of UberX as their measure of 

                                                 
6 http://www.igmchicago.org/surveys/taxi-competition  

http://www.igmchicago.org/surveys/taxi-competition
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treatment and find either a reduction or no significant change in drunk accidents/fatalities and DUIs. 
(In the Online Appendix, we show that drunk driving fatality results are sensitive to accounting for 
pre-existing trends in accident rates, as well as to accounting for an important change in how FARS 
classified “drunk accidents” that took place in 2007.) In contrast to these prior studies, we do not 
place our focus solely on fatalities resulting from drunk driving or alcohol consumption. Rather, we 
focus on total fatal accidents, using a broad sample, and utilizing the introduction of both Uber and 
Lyft, including the different types of Uber and Lyft service.7 While RS may indeed displace some 
drunk drivers, our estimates suggest that drunk accidents increase post-RS introduction, though by 
less than nondrunk accidents. More importantly, overall accident rates and fatalities increase in the 
wake of rideshare introduction, despite the possible benefits from limiting impaired driving.  

An examination of ridesharing’s effects on accident rates is particularly useful in providing 
insights into changes in motor vehicle fatality trends. Prior to 2011 and for the preceding 20+ years, 
motor vehicle accident fatalities, in total, per population, and per VMT, had been falling. The 2010s 
saw a reversal of these trends. If this reversal relates partly to increased vehicle miles on the road, 
due to the introduction of ridesharing, this may have implications for policy discussions around 
decreasing motor vehicle accident rates.  

Accordingly, our findings also contribute to the current discussion regarding cities’ response to 
the rapid growth of ridesharing. While much of the resistance to ridesharing has been presented as 
a case of entrenched incumbents (taxis) seeking rents, our findings suggest that other societal costs 
are also at play. In ridesharing’s case, delays in the diffusion of this new technology may be optimal, 
if we consider offsetting costs such as increased accident rates or pollution or the need for learning-
by-doing on the part of users. Introduction of new technology can have unintended effects: it may 
impose externalities not priced into the cost for the individual user. Overall, whether ridesharing is 
welfare-enhancing or -decreasing depends on the value of the increase in convenience and other 
consumer surplus effects versus the offsetting costs in time, material, and human life. As a result, 
our findings do not on their own advocate for a specific policy recommendation. To do so requires 
equating all social benefits from the technology to total social costs, and then comparing the 
resulting changes derived from various policy recommendations. These related issues require 
careful consideration but fall outside the scope of the present work. 

                                                 
7 When we do not account for location-specific trends in our sample, we too observe a negative coefficient for alcohol-
related accident measures. However, the inclusion of the location-specific trend aligns our results for these measures 
with those we obtain for all other accident measures: an increase in overall accidents and fatalities for vehicle occupants 
and pedestrians. 



 8 

The paper proceeds as follows. Section 2 provides an overview of RS services and outlines our 
conceptual framework. Section 3 describes our data and sample. Section 4 presents our main results. 
Section 5 explores the quantity mechanism described in our conceptual framework. Section 6 
presents an estimate of costs and discusses welfare considerations. Section 7 concludes.  

II. RIDESHARING AND CONCEPTUAL FRAMEWORK 

Before the advent of RS, the primary forms of private for-hire transportation were traditional 
taxis, limousines, and larger vehicles, such as bus and van services. Of these, only traditional taxis 
did not need to be reserved in advance, all came at fairly substantial costs, and the number of cars 
available varied widely from city to city. Most municipalities heavily regulate the traditional taxi 
industry, placing restrictions on the number of vehicles, prices charged, and the licensing and 
insurance requirements for drivers and cars. Quantity restrictions, in particular, were thought to lead 
to shortages of taxis during periods of high demand and inconveniences for riders.   

Uber was the first RS firm in the United States, launching in San Francisco in May 2010, and 
was followed two years later by Lyft and Sidecar. RS then expanded rapidly across the country. By 
the end of 2014, RS firms operated in 80% of U.S. cities with a population of 100,000 or more. 
Much of the spread in RS was driven by the convenience for users, stemming from new technology 
easing the matching of riders and drivers and enabling seamless payment through an app. RS firms’ 
exemptions from (or willful disregard for) taxi and livery restrictions allowed them to expand supply 
during periods of high demand and adjust prices to encourage more riders and drivers to participate 
in the market. 8 This has in turn engendered backlash from advocacy groups and policymakers 
concerned with the effects of RS technology in their cities.9  

II.A. Conceptual Model 

To better understand the expected effects of RS on accident rates, we develop a simple 
conceptual model in which accident rates are a function of two elements that are impacted by the 
introduction of RS technology: the number of vehicle miles traveled (VMT) on roads and the 

                                                 
8 Many major ridesharing companies adjust pricing in real time to better match supply and demand, charging higher 
“surge pricing” fares during periods with high demand. 
9 In many ways, ridesharing has become the modern poster child for the classic battle between what are argued to be 
outdated regulations, supported by rent-seeking incumbents, and the introduction of a welfare-enhancing technology. 
Many new technologies face frictions that slow diffusion (Grubler, 1991). Parente and Prescott (1994) argue that one 
such friction is resistance on the part of sectoral interests. Indeed, emphasizing barriers to technology adoption, 
economic historians, such as Rosenberg and Birdzell (1986), argue that the reason why the West grew rich before the 
rest of the world was that active resistance to technology adoption was weaker there. Most economic histories of 
technological adoptions provide cases in which adoption was met with fierce resistance (Mokyr 1990). 
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average quality of drivers. For notational purposes, we denote the accident rate for city 𝑖𝑖 in period 

𝑡𝑡 as 𝐴𝐴𝑖𝑖,𝑡𝑡 and the new technology (ridesharing) as 𝜃𝜃. Accident rates can then be thought of as:  

  𝐴𝐴𝑖𝑖,𝑡𝑡 =  𝑓𝑓(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝜃𝜃);  𝑄𝑄𝑖𝑖,𝑡𝑡(𝜃𝜃)), 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖(𝜃𝜃) is the number of vehicle miles traveled on the road in city 𝑖𝑖 in period 𝑡𝑡 (potentially 

a function of whether RS is available) and 𝑄𝑄𝑖𝑖,𝑡𝑡(𝜃𝜃) is the quality of the average driver on the road in 

city 𝑖𝑖 in period 𝑡𝑡. 
The number of VMTs can further be broken down into three sub-categories: (i) the number of 

VMTs generated by people driving themselves from origin to destination, denoted by 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜; (ii) 
the number of VMTs generated by rideshare drivers carrying passengers from origin to destination, 

denoted by 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅; and (iii) the number of VMTs generated by rideshare drivers while driving in-

between passengers, denoted by 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Thus, 

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 

Note that, even if 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 simply offset as people move from driving themselves 
to being driven in a rideshare vehicle, there is still “between driving” (between fares, waiting for 
fares, going from fare location to fare location) that is introduced by the advent of RS in a city. 
While 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑤𝑤𝑛𝑛 is almost certainly decreased by the introduction of RS, the technology leads to the 

introduction of additional vehicle miles in the form of 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Thus, the effect of 
the introduction of RS in a city on the number of VMTs on the road depends on whether the decrease 

in 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 is more than offset by 𝑉𝑉𝑉𝑉𝑉𝑉𝑅𝑅𝑅𝑅 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 that are introduced with the technology. 
Taking the model naïvely (and ignoring for the moment the UberPool and LyftLine services), each 
person who no longer chooses to drive himself or herself is now driven by a rideshare driver, thus 
precisely offsetting the effect on the overall vehicle miles traveled. But unless there are absolutely 
no between-fare miles driven by a ride-sharing driver, we would expect to see an increase in overall 
VMTs after RS arrives. 

 The limited evidence to date suggests that there is considerable between-fare travel by drivers. 
Henao (2016) reports statistics suggesting RS drivers only have passengers in the car 39% of the 
time and 59% of the miles they drive while active on the app. Schaller (2018), using detailed data 
from New York City, shows that rideshare drivers on average drive 2.8 miles while waiting for a 
fare, 0.7 miles to pick up the fare, and 5.1 miles with a passenger in the car, implying a 59% 
utilization rate. Both Lyft and Uber offer subsidies designed to induce drivers to spend more time 
out on the road active in the app, so as to decrease wait time for passengers. Finally, while not the 
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focus of their study, the analysis of Chen et al. (2018) is consistent with a mismatch between rider 
demand and the supply of drivers.  

More formally, we can write the first-order condition for the effects on accident rate 𝐴𝐴𝑖𝑖 from the 
introduction of RS technology 𝜃𝜃 as:  

∂𝐴𝐴𝑖𝑖
∂𝜃𝜃

=
∂𝐴𝐴𝑖𝑖

∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝜃𝜃

+
∂𝐴𝐴𝑖𝑖
∂𝑄𝑄𝑖𝑖

∂𝑄𝑄𝑖𝑖
∂𝜃𝜃

 

where  

∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝜃𝜃

=  
∂𝑉𝑉𝑉𝑉𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖

∂𝜃𝜃
+  
∂𝑉𝑉𝑉𝑉𝑇𝑇𝑅𝑅𝑅𝑅𝑖𝑖

∂𝜃𝜃
+
∂𝑉𝑉𝑉𝑉𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖

∂𝜃𝜃
. 

Clearly, ∂𝐴𝐴𝑖𝑖
∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖

 is positive, as every additional vehicle mile travelled will increase the likelihood 

of an accident and thus the overall accident rate. ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖
∂𝜃𝜃

 is negative. ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑅𝑅𝑅𝑅

𝑖𝑖
∂𝜃𝜃

, however, will either 

equal or, more likely, due to substitution away from other forms of transport, be larger in absolute 

magnitude than ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖
∂𝜃𝜃

, and ∂𝑉𝑉𝑉𝑉𝑇𝑇
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑖𝑖
∂𝜃𝜃

 is positive. Thus the overall effect ∂𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖
∂𝜃𝜃

 is positive: 

vehicle miles traveled increase with the introduction of RS.  
Of course, in some cities, at later dates, the option to “carpool” in a rideshare was introduced, in 

the form of Uber Pool and Lyft Line. With the introduction of these services, the reduction in own 
drive car hours may not be fully offset by rideshare drive hours, as multiple people may be 
substituting away from driving themselves into a single rideshare car. While Uber and Lyft have 
both heavily invested in promoting their shared services, Uber reports that UberPool accounts for 
only 20% of trips in cities where it is offered, and Lyft reports that 37% of users in cities with 
LyftLine request a Line trip, and many trips are not matched, thus leaving a single rider (Schaller, 
2018). Pooled rides are also cheaper, potentially inducing more substitution from other modes of 

transport. It is not clear what fraction of rides must be pooled to counteract 𝑉𝑉𝑉𝑉𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, but Schaller 
(2018) suggests that, even if half of the rides were pooled, total VMT would still increase.  

Furthermore, stepping away from the naïve model, survey evidence suggests that 𝑉𝑉𝑉𝑉𝑇𝑇
𝑅𝑅𝑅𝑅

𝑉𝑉𝑉𝑉𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜
> 1, as 

many riders are substituting away not from driving themselves but rather from other forms of 
transportation, including walking, biking, and, more importantly, public transportation (Clewlow 
and Mishra, 2017). Thus, it is likely that pooled ride adoption would need to be extremely high to 
offset such substitution effects.   
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Assessing the effects of the introduction of RS on the quality of the average driver on the road 
is less straightforward. On the one hand, the people substituting into a rideshare, rather than driving 
themselves, may be low quality drivers (impaired or unskilled or may just prefer not to drive), but 
they may be high quality drivers who simply dislike driving. On the other hand, there is no guarantee 
that the driver who substitutes for them is of higher quality. Put another way, the introduction of RS 
makes it less costly to have someone else drive you but also makes the gains from getting out on the 
road as a driver greater (as you can make money by doing so). Lower quality drivers, who in the 
absence of compensation may not have driven, now have an incentive to drive. Moreover, more 
affluent people are more likely to use RS (Pew Research Center, 2016), and the less affluent are 
more likely to become rideshare drivers. To the extent that this substitution leads to more vehicle 
miles driven by lower quality drivers or in lower quality cars, this may positively affect accident 
rates. Yet rideshare drivers, especially those with more experience from more hours driven, may in 
fact represent improved quality. To the extent that the substitution goes the other way and lower 
quality drivers are substituted by better drivers, this may reduce accident rates if the increase in 
quality offsets the increase in VMT.  

Formally,  ∂𝐴𝐴𝑖𝑖
∂𝑄𝑄𝑖𝑖

 is negative: better drivers reduce accident rates, all else equal. The effect of RS 

on the quality of the average driver on the road, ∂𝑄𝑄𝑖𝑖
∂𝜃𝜃

, however, is ambiguous. If the quality of the 

average driver increases, this could offset the quantity effect above. If it decreases or does not 
change, the quantity effect will prevail. Which effect dominates, of course, is an empirical question. 

Many indicators suggest that both total VMT and driver quality may adjust over time. Cook et 
al. (2018) note that, even in the relatively simple production of a passenger’s ride, experience is 
valuable for drivers. A driver with more than 2,500 lifetime trips completed earns 14% more per 
hour than a driver who has completed fewer than 100 lifetime trips, in part because he learns where 

and when to drive, which may decrease 𝑉𝑉𝑉𝑉𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Similarly, Haggag et al. (2017) show that 
experience is important for New York City taxi drivers. At the same time, not all learning-by-doing 
is necessarily good for accident rates. For example, learning by doing to maximize earnings could 
lead to behavior, on the part of certain driver populations, that directly or indirectly increases the 
probability of accidents, such as gaming time-and-distance pay algorithms by taking longer routes, 
etc. 
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III. DATA AND SAMPLE 

Our sample consists of all incorporated “places” 10  in the continental United States with 
population greater than or equal to 10,000 in 2010.11 Our sample covers the period 2001 to 2016; 
all results are robust to employing shorter pre-ridesharing sample windows. Our list of incorporated 
places is obtained from the Census Bureau and covers all self-governing cities, boroughs, towns, 
and villages in the United States.12 (For ease of interpretation, we interchangeably refer to these as 
“cities” or “locations” throughout the text.) Our observations are measured at the quarterly level. 
The sample thus contains 190,080 quarterly observations on 2,970 “places” from 2001 to 2016, 
among which 1,196 adopt RS prior to 2017. Figure III shows the diffusion of RS across the United 
States, by cities and population. Diffusion of RS across U.S. cities began slowly, accelerating rapidly 
after 2013. Diffusion by population follows a standard S-curve, consistent with general historical 
patterns of new technology diffusion.13   

III.A. Fatal Accidents 

We obtain data on accidents involving at least one fatality (“fatal accidents”) from the National 
Highway Traffic Safety Administration (NHTSA) Fatal Accident Reporting System (FARS). To 
qualify as a FARS case, a crash must involve a motor vehicle traveling on a traffic way customarily 
open to the public and must have resulted in the death of a motorist or a nonmotorist within 30 days 
of the crash. Importantly, the data identify whether any drivers involved are under the influence of 
alcohol. We aggregate the incident-level FARS data into quarterly totals for each place/city. When 
the data contain geographic coordinates, we use Google Map’s Geocoding API service to determine 
the corresponding place/city. When the coordinates are not available, we use the city and state 
identifier codes to assign observations to the appropriate place. Geographic coordinates are present 
in 98% of FARS’s observations, and we successfully match more than 99% to a city in our sample. 

We construct a number of measures of accident volume from the FARS data. Total Accidents is 
the total number of fatal accidents according to the definition used by NHTSA. Total Fatalities is 

                                                 
10 We use incorporated places, rather than Census Designated Places (CDPs), because CDP annual population estimates 
are not readily available, except by individual place download, whereas population data is available for incorporated 
places for mass download through the census.  
11 Some places in our sample had lower populations than 10,000 during the sample period, most notably during the 
period of 2001–2010. We impose the cutoff on population as measured in 2010. As an example, consider Hutto, Texas, 
a suburb of the Austin-RoundRock metro area. In 2001, Hutto had a population of 3,030, the lowest in our sample. By 
2010, it had grown to over 14,000, mimicking the growth of the Austin metro area. As it has population above 10,000 
in 2010, it is included in our sample. Our results are robust to permutations to this cutoff. 
12 https://www.census.gov/content/dam/Census/data/developers/understandingplace.pdf  
13 In the Online Appendix, we further demonstrate the robustness of our results to using shorter pre-sample periods.   

https://www.census.gov/content/dam/Census/data/developers/understandingplace.pdf
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the total number of fatalities across all fatal accidents. We additionally classify our various 
categories of accidents based on their time of occurrence: (i) weekday: Monday through Thursday; 
(ii) weekend: Friday through Sunday; (iii) night: after 5 pm and before 2 am; (iv) Friday and 
Saturday night: after 5 pm and before 6 am on Friday and Saturday. Finally, we further separate out 
accidents involving pedestrians and calculate three measures of pedestrian-involved accidents. 
Pedestrian-Involved Accidents is the number of fatal accidents involving at least one pedestrian. 
Pedestrian-Involved Fatalities is the total number of fatalities in all accidents involving at least one 
pedestrian. Finally, Pedestrians Involved in Fatal Accidents is the total number of pedestrians 
involved in fatal accidents. For all our accident measures, we use log search volume in our intensity 
specifications, and so we interpret our coefficients in terms of percentage change in search volume. 
When we refer to accident “rates,” these are defined as the number of accidents per 100,000 people 
or the number of accidents per billion city VMT, as indicated.14 

III.B. Ridesharing Launch and Driver Enrollment Intensity 

Data on RS launch dates for each city are obtained directly from Uber and Lyft. 15 The companies 
provided dates of service launch for each type of service launched: (i) UberBlack/UberTaxi, which 
allows customers to hail a livery or taxi vehicle; (ii) UberX/Lyft, which allow customers to hail 
regular cars driven by driver-partners; and (iii) UberPool/Lyft Line, which allow customers to share 
a hailed vehicle with others. We merge these dates with Census Bureau’s incorporated place 
directory in 2010.  

While Uber and Lyft declined to provide data on driver enrollment and usage for this project, 
other researchers have shown a strong correlation between Google trends for searches for rideshare 
keywords and actual driver uptake (Cramer and Krueger, 2016). To measure the intensity of driver 
adoption, we thus follow the spirit of the work of Cramer and Krueger (2016) and Hall et al. (2018) 
and use Google search volume for the terms “Uber,” “Lyft,” and “rideshare.”16 We track trends for 
searches for these terms using the Google Health Trends API for all Nielsen Designated Market 

                                                 
14 In analysis in the Online Appendix, we further separate out accidents by whether or not a drunk individual was 
involved. Total Drunk Accidents is the total number of fatal accidents involving any drunk drivers. Total Drunk 
Fatalities is the total number of fatalities in all drunk-driver accidents. Total Non-Drunk Accidents is the total number 
of fatal accidents not involving any drunk drivers. Total Non-Drunk Fatalities is the total number of fatalities in all 
nondrunk-driver accidents. We discuss these further in the Online Appendix. 
15 In this version, we use the exact cities indicated by Uber and Lyft, even if we suspect or believe that the launch 
covered adjacent cities as well (e.g., San Francisco launched in 2010, and there is no separate launch date for San Jose 
or Palo Alto). Since this means some places we include in our control may in fact be treated in later years in the sample 
as service expands slowly out beyond original boundaries, we are biasing against finding an effect of treatment. 
16 We use the freebase identifiers for term “Uber” (/m/0gx0wlr) and “Lyft” (/m/0wdpqnj). Freebase identifiers denote 
all searches that were classified to be about this topic.  
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Areas (DMAs) at monthly frequency from January 2004 to December 2016. We aggregate the data 
to the quarter level and match the DMAs to census incorporated places using a crosswalk provided 
by Nielsen. 

III.C. Other Data 

We use a number of measures to explore heterogeneity by city characteristics and as control 
variables in our models. We obtain annual city population estimates and population density from 
the U.S. Census and annual county income per capita from the Bureau of Economic Analysis. 
Household vehicle ownership and means of transportation to work at the city level are gathered from 
the 2010 American Communities Survey. Controlling for population and per capita income which 
vary by time and location are of first order importance as they provide a proxy for specific 
concerning confounders. For example, a reasonable concern might be that Uber and Lyft specifically 
chose cities to enter based on smartphone adoption trends, and any increase in accidents we 
document could be due to increased levels of smartphone adoption in those specific cities relative 
the ones not entered by RS companies, with smartphone usage leading to distracted driving, which 
in turn leads to increased accidents. While data on smartphone adoption by city is not publicly 
available, smartphone adoption is known be highly correlated with per capita income, which we 
thus include as a control variable in our models.17   

To explore mechanisms that may drive any change in accident rates upon arrival of RS, we use 
a variety of data sources. We obtain data on new car registrations by zip code on a monthly level 
from Polk Automotive. We aggregate the data at city and quarter level using UDS Mapper’s zip 
code-to-ZCTA crosswalk18 and Census’ ZCTA-to-place crosswalk. We obtain estimates of city and 
freeway vehicle miles traveled, total annual excess fuel consumption, and total annual hours of 
traffic delay for a sample of 101 urban areas from the Texas A&M Transportation Institute Urban 
Mobility Scorecard, covering the period of 1982–2014. Of the 101 urban areas covered by TAMU 
in their report, 99 fall into our sample of continental U.S. cities. For a set of tests regarding road use 
and driver quality, we use the census’s urban area-to-place crosswalk to aggregate our main sample 
at urban area and annual level to merge the information with TAMU’s dataset. We discuss the 
TAMU data construction methodology in further detail in the Online Appendix.  

                                                 
17 http://www.pewinternet.org/fact-sheet/mobile/ and http://www.pewresearch.org/fact-tank/2017/03/22/digital-divide-
persists-even-as-lower-income-americans-make-gains-in-tech-adoption/    
18 The crosswalk can be found at https://www.udsmapper.org/zcta-crosswalk.cfm. The crosswalk is recommended by 
Missouri Census Data Center, http://mcdc.missouri.edu/geography/zipcodes_2010supplement.shtml. 

http://www.pewinternet.org/fact-sheet/mobile/
http://www.pewresearch.org/fact-tank/2017/03/22/digital-divide-persists-even-as-lower-income-americans-make-gains-in-tech-adoption/
http://www.pewresearch.org/fact-tank/2017/03/22/digital-divide-persists-even-as-lower-income-americans-make-gains-in-tech-adoption/
https://www.udsmapper.org/zcta-crosswalk.cfm
http://mcdc.missouri.edu/geography/zipcodes_2010supplement.shtml
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III.D. Summary Statistics 

Table I, Panel A presents summary statistics for the places in our sample over the sample period. 
The places average 54,500 in population, have an income per capita of $39,720, and a population 
density of roughly 3,000 people per square mile. Prior to the arrival of RS, 2.96% of residents in 
our average city/place used public transportation to commute, 10.6% commuted by carpool, and 
33% owned vehicles. The average city in our sample had 670 new car registrations per year. As can 
be seen from the distributional statistics in the table, there is wide variation across all these 
characteristics across the sample. The table further presents summary statistics on rate (per 100,000 
population) of accidents for the cities in our sample over the sample period. We present statistics 
for total accidents and fatalities and total pedestrian-related accidents and fatalities. Pedestrian 
accidents and fatalities are approximately 20% of the total.  

IV. EMPIRICAL ANALYSIS 

To assess the impact of RS on fatal accident rates, we employ a standard generalized difference-
in-differences approach. We index cities by 𝑐𝑐 and time by 𝑡𝑡. We estimate models of the following 
form: 

log (1 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡,𝑐𝑐) =  ∝𝑐𝑐  +  𝛾𝛾𝑡𝑡 +  𝛽𝛽′𝑋𝑋𝑡𝑡,𝑐𝑐 + 𝜃𝜃𝑐𝑐𝑡𝑡 +  𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐 +  𝜀𝜀𝑡𝑡,𝑐𝑐, 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡,𝑐𝑐 is our measure of accidents in city 𝑐𝑐 in quarter 𝑡𝑡, ∝𝑐𝑐 is a city fixed effect, 𝛾𝛾𝑡𝑡 is 

quarter-year fixed effect, 𝑋𝑋𝑡𝑡,𝑐𝑐 is a vector of time-varying, city specific control variables, and 𝜃𝜃𝑐𝑐𝑡𝑡 is 

a city-specific linear time trend. The inclusion of the location-specific linear time trend is motivated 
by descriptive evidence on the relation between accident trends and RS entry. From an observational 
perspective, RS launched first in cities that had been experiencing steeper declines in accident rates. 
(We provide further discussion of this issue and descriptive analysis in the Online Appendix.) While 
it is unlikely that Uber and Lyft were specifically selecting cities to roll out services based on trends 
in fatal accident rates, what they were selecting on (which may have been population, density, 
income, or some other variable) appears to be correlated with trends in accident rates. As a result, 
we focus our discussion on models that include location-specific trends, to get as close as possible 
to a quasi-experimental setting. For robustness, we also estimate all our models with the inclusion 
of a location-specific quadratic trend as well, with qualitatively similar results. We use robust 
standard errors, clustered at the city level. Our observations are at the quarterly level, and cover the 
first quarter of 2001 through the fourth quarter of 2016. Our control variables include the log of city 
population and county income per capita.  
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V. MAIN RESULTS 

In our estimations, we use a number of measures for 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑡𝑡,𝑐𝑐. In Panel A of Table II, we 

employ our two main measures of total fatal accidents. Columns (1), (2) and (3) use total accidents, 
and columns (4), (5) and (6) use total fatalities. The first column of each set reports estimates without 
the inclusion of the city-specific linear time trend or quadratic trend, the second column of each pair 
adds the city-specific linear trend, and the third column further adds a city-specific quadratic trend. 
For brevity, we report only the coefficient on the variable of interest— 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐 in the 
table. We report OLS specifications, but our results remain robust to the use of count models instead. 

For both total accidents and total fatalities, regardless of specification, we observe a consistently 
positive and significant coefficient on the 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐 variable. Before accounting for the 
location-specific time trend, the effect ranges in magnitude from an increase of 1.75% in total 
fatalities (column (4)) to 1.82% increase in total fatal accidents (column (1)). Once we include the 
location-specific time trend, the magnitudes of the increase are approximately 3.47% for both 
measures of accidents. The magnitude of the effect decreases slightly, to a little over 3.2%, once we 
include the quadratic trend.19 In the Online Appendix, Table A1, we further break out the effect of 
introducing each element of our main specification in turn. Figure A1 graphs the coefficient and 
associated confidence interval for the variable 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝑐𝑐, first itself, then adding year 
fixed effects, city fixed effects, and the city-specific linear trend, and city-specific quadratic trend, 
each in turn. For brevity, in much of the remainder of the reported analysis, we report only the DD 
models with city-specific linear trends, but all results remain robust to adding quadratic trends as 
well, and all model specification estimates are available upon request. 

Figure IV Panel A graphically presents the difference-in-differences estimators (with each dot 
representing two quarter-coefficients) for the eight quarters preceding and following rideshare 
adoption for total accidents and total fatalities. In both panels, the counterfactual treatment effects 

                                                 
19 The inclusion of a location-specific linear time trend is important: accident rates, particularly drunk driving-related 
accident rates, were falling steeply in the United States over the period of 1985 to 2010, when ridesharing was launched, 
and have since reversed course. Moreover, we document that ridesharing launched first in cities that had experienced 
steeper declines in accident rates. For example, cities in which ridesharing launched in 2011 had been experiencing 
significant declines in accident rates over the preceding five years, while cities in which ridesharing launched in 2013 
were not experiencing much of a decline, and cities in which ridesharing launched in 2015 were actually experiencing 
increases in accident rates. In the absence of accounting for these location-specific trends, a difference-in-differences 
model can erroneously estimate a lower, or even negative effect on accidents; this estimate, however, will be driven by 
order of entry and the pre-existing trends, rather than an actual drop in accidents. 
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in the pre-RS periods are statistically indistinguishable from zero, providing support for our 
inferences (parallel trends in the pre-period).20 Post-RS, we see a clear increasing treatment effect.21  

In Panel B of Table II we demonstrate that our results are robust to alternative formulations of 
the analysis. Specifically, we demonstrate that similar estimates obtain when using population 
weighting, using accident rates as the LHS variable, or when employing the inverse hyperbolic sine 
instead of log(1+accidents). In the Online Appendix Table A2, we further demonstrate robustness 
to controlling for the population growth rate, retail gas prices, the change in retail gas prices, and 
the unemployment rate. The coefficients are graphically presented in Figure A2.  

In many cases, RS was rolled out at the MBA or CBSA level rather than to an individual city 
within the CBSA. In Panel C of Table II, we demonstrate that our estimates remain robust and 
statistically significant when (a) clustering standard errors at the CBSA level, and (b) re-running our 
models at the CBSA level rather than the place-level, utilizing the earliest adoption date within the 
CBSA and clustering standard errors at the CBSA level. When we re-run at the CBSA level, we 
observe a somewhat larger magnitude of the effect, at roughly 5% (vs. 3.5% in main specification).  

In Table III, we break out weekend accidents, nighttime accidents, weekday accidents, and 
weekend night accidents for total accidents (Panel A) and total fatalities (Panel B). We observe 
similar patterns to those exhibited in the models in Table II. Accident and fatality increases are 
lowest on weekend nights (Friday and Saturday, after 5 pm, and before 6 am) at 2.40% and 2.58% 
respectively. For total weekend and nighttime accidents and fatalities, the magnitudes of the 
estimated increases are between 3% and 4%. We graph these estimates in Figure V. Panel A presents 
the estimates and confidence intervals for total accidents and total fatalities on weekends and nights. 
Panel B further splits the sample into large (highest quartile) and small (lowest quartile) cities by 
population, and graphs the estimates for accidents and drunk accidents on weekends and nights for 
each. The panel hints at what we will see shortly in further estimations: that the effects of RS appear 
to be larger in larger cities.    

We then examine the persistence of the documented RS effect by breaking the post-RS variables 
into quarters past. Doing this allows us to examine the dynamics of the effect up to two years after 

                                                 
20 As an additional (closely related) way to assess the validity of the parallel trends assumption, we plot univariate trends 
separately for the treatment and control groups in the pre-ridesharing period (unreported, available upon request). A 
visual inspection provides no indication of differential trends between the groups for any of the four primary outcome 
variables, which provides further assurance that the parallel trends assumption is valid in our analyses. 
21 In the appendix, we conduct a placebo test using locations that did not adopt RS (to eliminate contamination from 
cities that adopted). We use various cutoffs for the city population. For each run, we simulate 100 cities adopting RS by 
assigning a random adoption date from within the set of actual launch dates in the cities that adopted. We run the 
simulation 100 times. We then plot the number of accidents per 100,000 population in simulated event time. We observe 
no discernable pattern.     
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the introduction of RS in the cities. Table IV reports the estimates of the dynamics of RS. The table 
shows that ridesharing’s increase in accidents and fatalities persists and, in fact, appears to be 
increasing six quarters after introduction in the city, consistent with a time gap between launch and 
widespread adoption in a location.  

V.A. Additional Services and Intensity of Driver Adoption 

In Table V Panel A, we separate out the treatment effect of the different types of services: those 
that are single rides (UberBlack/taxi/X, Lyft) versus pooled rides (UberPool, LyftLine). We pool 
UberBlack/taxi with UberX, due to the very small number of cities that have (had) UberBlack/taxi 
service. We thus report the treatment effect for pooled versus nonpooled service. The estimates in 
the table suggest that the rollout of pooled ride services does not reverse the overall treatment effect 
of nonpool rideshare. The coefficients for pool launch are roughly half the magnitude of those for 
single ride (nonpool) rideshare launch—but negative—and are not statistically significant at 
conventional levels. This may be consistent with relatively low adoption rates for pooled rides, even 
in cities that offer the service.   

In Panel B of Table V, we explore the effect of the intensity of service adoption. In the main 
models presented in Table III, we employ the first launch of a RS service, irrespective of the type 
of service, as our treatment date. Take up of these services, however, is likely to intensify over time. 
To explore this issue, we now interact our 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 indicator with the intensity of Google 
searches measure and re-estimate our models. Table V Panel B presents the results of this estimation 
where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 measure are measured as total accidents in columns (1), (2) and (3) and total 
fatalities in columns (4), (5) and (6). The estimates are consistent with an increase in accidents 
following an increase in our Google Trends intensity measure. For all six models, the coefficient 
estimate on 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is positive and statistically significant. Thus, as our proxy for 
adoption intensity (Google trends search intensity) increases, so do fatal accidents.  

In unreported estimations, we perform a small falsification exercise, using only the sample of 
never-treated cities, and regress our accident measures on the Google trend search volume. We 
include our control variables, city and year-quarter fixed effects, and city-specific linear (and 
quadratic) trends. We observe no relationship between search volume for rideshare related terms 
and accident rates.   

V.B. Pedestrians versus Vehicle Occupants 
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An important question is whether the increase in accidents and fatalities suggested by the 
estimates in Table II are concentrated among vehicle occupants versus the alternative of potentially 
imposing an externality on pedestrians (nonvehicle occupants). The increase in accidents could 
primarily affect vehicle occupants, or it could additionally affect bystanders. The FARS data allow 
us to separate out accidents in which pedestrians were involved. We code an accident as pedestrian-
involved if the FARS database indicates it involves persons that are not motor vehicle occupants or 
riders (motorcycle). 22 Thus, “pedestrian” in our context refers to both pedestrians in the usual sense, 
as well as bicycle, skateboard and scooter riders, etc. 

In Table VI, we present the estimates from models similar to those in Table II, substituting our 
measures of total accidents with similar measures that solely count accidents in which a pedestrian 
was involved. Our 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 measure in columns (1) and (2) is the total number of accidents in 
which a pedestrian was involved; in columns (3) and (4), it is the total number of fatalities in 
accidents that involved a pedestrian; and in columns (5) and (6), it is the number of pedestrians 
involved in fatal accidents. The estimates from these models follow the same pattern as the estimates 
of our main models, suggesting that the increase in accidents, following rideshare entry, imposes an 
externality on nonvehicle occupants. The magnitudes of these increases mirror those in our main 
models, ranging from a 2.4% increase in total accidents involving a pedestrian and in fatalities in 
accidents involving a pedestrian, to an increase of 2.7% in the number of pedestrians who are 
involved in fatal accidents. The magnitudes of the coefficients are higher, in the range of 3.2%, if 
we do not account for the location-specific trends.  

Figure IV Panel B graphically presents the difference-in-differences estimators (with each dot 
representing two quarter-coefficients) for the eight quarters preceding and following rideshare 
adoption for pedestrian accidents. As in our main models, the counterfactual treatment effects in the 
pre-RS periods are statistically indistinguishable from zero, again providing support for our 
inferences (parallel trends in the pre-period). 

V.C. Heterogeneity of Effects 

In Table VII, we break out our results across a variety of city characteristics—population, 
income inequality, and population density—as well as by ex ante vehicle ownership, public transport 
usage, and car pool usage, as reported by the American Community Survey. For each characteristic, 
we divide cities into quartiles and re-estimate our models, interacting 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 with 
the four quartile indicators for the city characteristic. For each city characteristic, we estimate four 

                                                 
22 FARS defines a pedestrian as “any person not in or upon a motor vehicle or other vehicle.” 
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models, in which 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 measures total accidents, total fatalities, total accidents involving a 
pedestrian, and total fatalities in accidents involving a pedestrian. As before, all models include 
location and year-quarter fixed effects, a location-specific linear time trend, and control variables.  

Panel A presents the estimates for the models using quartiles of city characteristics. Column (1) 
presents the estimates where the city characteristic of interest is city population. For both measures 
of total accidents and fatalities and for measures of pedestrian accidents and fatalities, the estimates 
suggest that the increase in accidents observed in our main models is concentrated in large cities 
(fourth quartile). The estimates for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 𝑄𝑄4 are significant and range from 6.3% to 
7.7%; in contrast, the estimates for the bottom three quartiles of city population are an order of 
magnitude smaller and insignificant at conventional levels. This is consistent with the larger 
magnitude estimates that arise in Table II in the population-weighted analyses.  

Column (2) repeats this exercise, breaking cities into quartiles by Gini coefficient. Here, we see 
stronger effects for cities in the top quartile of income inequality, and for pedestrian-involved 
accidents and fatalities, the effect appears to be fully concentrated in the top three quartiles of city 
income inequality. In column (3), we break cities into quartiles by population density. Here, we 
observe no clear pattern; the only outliers are the estimates for the coefficients for the least dense 
cities in the models for pedestrian accidents and fatalities, which, unlike the rest of the coefficients, 
are insignificant and much smaller in magnitude. These estimates and the associated confidence 
intervals are also graphically presented in Figure VI, Panel A.    

Panel B of Table VII turns to measures of ex ante vehicle ownership, public transport usage, and 
car pool usage from the ACS. Some interesting patterns emerge. First, from column (1), we see that 
the increase in accidents following the launch of RS services appears to be concentrated in cities in 
the top quartile of ex ante vehicle ownership. This is consistent with a lower cost of driving for those 
individuals who already had a car with which to drive for RS. This is also consistent with many of 
the rideshare firms’ arguments that RS allows for better utilization of cars already present in the 
cities, inducing those cars to be on the road, instead of sitting idle. 

Second, in column (2), we see that the increase in accidents is concentrated in cities with higher 
ex ante usage of public transportation; the coefficients of interest are positive and significant for the 
top two quartiles of public transport use, are insignificant for the second quartile, and are even 
negative and significant at the 5% level for cities in the lowest quartile of public transport use, when 
the dependent variable is calculated using pedestrian accidents or pedestrian accident fatalities. 
Finally, consistent with the estimates for the prior two columns, column (3) suggests that the 
increase in accidents, post-RS, is concentrated in cities that had above-median carpool usage. These 



 21 

estimates would be consistent with a substitution effect to RS and away from public transport and 
carpooling. We graph the estimates and associated confidence intervals in Figure VI, Panel B.   

VI. MECHANISMS 

Having established a robust pattern of estimates consistent with an increase in fatal accidents 

and fatalities following the launch of RS services in a city, we now consider one of the two 

mechanisms discussed in our conceptual framework: increases in quantity (road utilization in the 

form of VMT) and changes in driver quality. We begin with an exploration of the effects of RS on 

measures of road congestion.  

VI.A. Quantity 

Road-utilization and congestion data for city roads are not readily available for most cities (in 
contrast to highway VMT, which are readily available from the department of transportation). To 
examine this channel, first, on the intensive margin, we use annual estimates of arterial vehicle miles 
traveled, excess gas consumption, and hours delay in traffic for 99 urban areas reported by the 
TAMU Transportation Institute for the years 2000–2014.  

In Table VIII, we estimate similar models to our main specification, replacing the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
variable as our dependent variable with arterial street daily VMT (column (1)), annual excess fuel 
consumption (column (2)), and annual hours of delay (column (3)). Due to the limited availability 
of data relative to the full sample, the models in table VIII aggregates locations up to the urban 
area.23 Moreover, we can estimate only for the years up to 2014, for these 99 urban areas, leaving 
us with 1,386 observations (as compared to 190,080 in our other models). Still, for all three models, 
we obtain a positive and significant estimate for the coefficient on our variable of interest, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, though with lower statistical significance levels. The economic magnitudes for both 
measures are roughly on the order of a 1.6% increase.   

Next, in Table XI, we examine the extensive margin in usage by estimating similar models where 
the dependent variable is the logarithm of new car registrations as reported by Polk Automotive. 
Both Lyft and Uber often report numbers from surveys of users, suggesting some of their riders 
forgo owning their own cars, and thus argue that they are removing vehicles from the road. These 

                                                 
23 TAMU uses the Department of Transportation (DOT) urban area boundaries. DOT urban areas were adopted from 
Census urban areas but have slight adjustments for transportation purposes. See 
https://www.fhwa.dot.gov/planning/census_issues/archives/metropolitan_planning/faqa2cdt.cfm#q24 and 
https://www.fhwa.dot.gov/legsregs/directives/fapg/g406300.htm. 

https://www.fhwa.dot.gov/planning/census_issues/archives/metropolitan_planning/faqa2cdt.cfm#q24%20and
https://www.fhwa.dot.gov/legsregs/directives/fapg/g406300.htm
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surveys, however, do not account for the possibility that, while some of the rider population is 
forgoing owning a vehicle, others may be purchasing vehicles precisely in order to work as rideshare 
drivers. While the advent of RS may reduce personal car usage for some, it also transforms cars into 
a productive asset, as RS now makes it lucrative to drive. Both Uber and Lyft offer programs 
subsidizing the purchase or leasing of vehicles for those willing to become driver-partners on their 
platform. Consistent with this notion, Buchak (2018), in contemporaneous analysis, documents that 
RS entry coincides with sharp increases in auto loans, auto sales, employment and vehicle utilization 
among low-income individuals. Thus, while RS may enable reductions in vehicles purchased on the 
rider (demand) side, it also provides strong incentives for the purchase of more vehicles on the 
supply (driver) side. Which effect dominates is an empirical question.  

Panel A of Table XI reports the estimates from models with and without the location-specific 
linear trend. The estimates suggest that the initiation of RS leads to an increase in new car 
registrations, rather than an overall decrease. This increase is in the range of 3-5% when including 
the location-specific time trend. In Panel B, we advance the intuition of this extensive margin effect 
by examining how new car registrations respond to the interaction of RS intensity, as proxied by the 
Google search intensity variable used in Section IV.B. The estimates suggest that new car 
registrations increase with the intensity of Google searches for Uber/Lyft/rideshare. This 
relationship intensifies when RS begins in a treated city. These results suggest that new vehicle 
purchases increase as RS services become more intensely used. We graph the estimates and 
associated confidence intervals in Figure VII.   

Turning to Panel C of the table, the heterogeneity in this increase along city characteristics lines 
up with the heterogeneity in the increase in accidents documented in Section IV.D: the new car 
registrations are concentrated in cities with above median population and in cities with above 
median ex ante vehicle ownership. Moreover, the increase in new car registrations is larger in cities 
with high ex ante public transport usage and car pool usage. They are decreasing only in the cities 
with the lowest quartile of ex ante carpool usage. These results further reinforce the likelihood that 
RS pulls riders away from noncar forms of transportation. 

Interestingly, the estimates in Panel C of Table XI suggest that the increase in new car 
registrations is higher in cities with high population density: the estimates imply a 9% increase in 
new registrations in the cities in the highest quartile of density, a 6% increase in cities in the second 
quartile of density, a 2% increase for cities in the second quartile, and a statistically insignificant 
3% decrease in cities in the lowest quartile of population density. Overall, this fact pattern suggests 
increases in congestion prompted by RS. The increase in new car registration also appears to be 



 23 

concentrated in cities with higher population levels in general, consistent with our findings regarding 
VMT (the intensive margin). In contrast, the increase in new car registrations is stronger for cities 
with lower income inequality. This is perhaps unsurprising; while the more affluent are more likely 
to use RS, the less affluent the lower tiers of society who are the likely rideshare drivers, the less 
likely they are to be able to purchase or lease new cars in order to become drivers. Overall, this may 
then lead to rideshare driving being done in existing older or lower quality cars, leading to a decrease 
in the quality channel, consistent with our finding that accident rates increase more in cities with 
higher income inequality. 

VI.B. Driver Quality 

While examining driver quality is challenging given the nature of the available data, we attempt 

to indirectly assess the existence of quality effects by recognizing that the largest quality effects on 

driving would be present primarily in the area of reducing drunk driving. To the extent that the 

substitution of inebriated drivers with sober RS drivers dominates (swamping any increases in the 

quantity effects), we would expect to see a reduction in the rate of drunk fatal accidents and fatalities 

following the introduction of RS.  

We proceed to break the sample of accidents into those involving a drunk driver and those that 

do not involve a drunk driver. We define outcome measures as follows: Total Drunk Accidents is 

the total number of fatal accidents involving any drunk drivers. Total Drunk Fatalities is the total 

number of fatalities in all drunk-driver accidents. Importantly, given that the NHTSA changed the 

manner in which accidents were recorded as alcohol-related in 2008, leading to a sharp mechanical 

drop in the incidence of alcohol-related accidents from 2008 onward as graphed in Figure 8.24 We 

thus restrict our models to the period of 2008 to 2016 for the estimation of our models. (In the Online 

Appendix, we show the sensitivity of the results when including the years prior to the change in the 

estimation: the models document a negative coefficient when linear and quadratic trends are not 

included, similar to the results that have been found in past studies that did not account for trends 

and used the prior years; the coefficients flips to a positive once when we remove the years prior to 

the definition change, or when we add linear (and/or quadratic) trends, as would be expected. 

                                                 
24 From 1999 through 2007, alcohol-related accidents were recorded as any fatal accident involving at least one vehicle 
occupant (driver or non-driver) or pedestrian being impaired (in the legal sense). From 2008 onwards, alcohol-related 
accidents are recorded as such only if the driver was impaired. 
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Table X Panel A presents the estimates from our difference-in-differences models for these 

measures for the post-definition change period. Column (1) presents estimates for the model without 

city-specific trends: we observe a positive, but statistically insignificant coefficient. Once we 

include linear or linear and quadratic trends, we observe a positive and weakly statistically 

significant coefficient, on the order of roughly 1.4% increase in fatal accidents post RS introduction. 

Thus, the estimates suggest that any quality improvements from RS in the form of removal of drunk 

drivers from the road do not seem to swamp the quantity effect. While we cannot offer evidence on 

whether some of the effects we document are driven by a reduction in overall driver quality, the 

results above suggest that there is not a significant quality improvement post-RS, at least in terms 

of removal of drunk drivers, to reduce the number of accidents.    

VII. DISCUSSION AND COST ESTIMATION 

Up until this point, our study has documented a societal cost associated with the introduction of 
RS. To make a welfare calculation, we must also consider its benefits. Benefits come from, for 
example, the consumer surplus provided by convenience. Cohen et al. (2018) use Uber’s “surge” 
pricing algorithm and the richness of its individual-level data to estimate demand elasticities at 
several points along the demand curve and then use these elasticity estimates to estimate consumer 
surplus. They estimate that, in 2015, the UberX service generated about $2.9 billion in consumer 
surplus in the four U.S. cities they examine. Moreover, their back-of-the-envelope calculations 
suggest that the overall consumer surplus generated by UberX in the United States in 2015 was $6.8 
billion.  

Our estimates allow us to attempt to quantify the cost of the RS’s increase in fatal accidents, 
using estimates of the value of a statistical life. Assuming RS services are eventually made available 
across the entire United States, we can do a back-of-the-envelope calculation of the costs of the 
increase in accidents we document. In 2010, the year before RS began, there were 32,885 motor 
vehicle fatalities in the U.S.25 The 3% annual increase associated with the introduction of RS in 
fatalities represents an additional 987 lives lost each year. 26 The U.S. Department of Transportation 
estimates the value of a statistical life (VSL) at $9.6 million for 2015; the DOT recommends analysts 
use a test range of $5.4 million (low) to $13.4 million (high) in 2015 dollars. Applying the VSL and 
assuming an annual increase of 987 lives lost per year, the annual cost of the increase in fatalities 

                                                 
25 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811552  
26 We round the estimated number of fatalities to the nearest whole number.  

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811552
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associated with RS can be estimated as roughly $9.48 billion per year, with a range of $5.33 billion 
(low) to $13.24 billion (high).  

A comparison of our cost estimate with Cohen et al.’s (2018) estimates of consumer surplus 
generated by RS services suggests that the costs from the increase in fatal accidents match or surpass 
the benefits of convenience to direct consumers of RS. Our estimates, moreover, do not include the 
costs imposed by nonfatal accidents, for which data is not readily available. We can assume that the 
pattern for fatal accidents is repeated for nonfatal accidents, leading to costs in material and 
healthcare that may dwarf these VSL estimates. The incremental cost derives from the externalities 
associated with driving and traffic congestion, where riders of RS due not bear the full cost of being 
on the road—some of this cost is borne by pedestrians, as we document above.  

Of course, consumer surplus is not the only benefit generated by RS services, and thus 
conducting overall welfare calculations would require more research on the overall impact of RS in 
the economy. Our study documents only one particular social cost associated with RS, much as 
Cohen et al. (2018) documents a particular type of surplus. Our findings, however, suggest 
significant additional costs beyond the loss of life associated with increased traffic fatalities. 
Nationally, the number of traffic accidents in which individuals are injured is an order of magnitude 
higher than the number of those in which there is a fatality. Detailed data on such accidents and the 
associated costs associated with medical care and property damage is generally unavailable, but our 
findings would suggest that an increase in such accidents is also likely to be present, with large 
associated societal costs.   

Additionally, even ignoring the contribution of increased road utilization to accident rates, our 
findings suggest an increase in road utilization and congestion that imposes additional costs on 
society. While an increase in congestion may impose incremental costs on individuals driving to 
work or to a social event, it can impose much greater costs on first responders and those being 
assisted by them. For illustration, suppose there are 100 heart attack victims transported to the 
emergency room each day by car or ambulance. These individuals face much higher costs from 
congestion and road delays. As congestion increases, a higher proportion of these 100 cases may 
encounter a delay in receiving life-saving medical attention. The disutility of the externality imposed 
by congestion is heterogeneous, however, unlike, say, the case of congestion in broadband 
telecommunication services, it is not straightforward to solve this with differential pricing. 

In sum, our findings suggest more research will be needed to better quantify both the societal 
cost and benefit of ridesharing. More generally, our work points to the need for better consideration 
of societal costs and externalities associated with the introduction of new technologies.  
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VIII. CONCLUSION 

Beginning in the mid-1980s the United States experienced a dramatic decrease in fatal accidents 
per capita and per vehicle mile driven. In 2010, 32,885 people died in motor vehicle traffic crashes 
in the United States—the lowest number of fatalities since 1949 (NHTSA, 2012). This decline halted 
and then reversed shortly after the introduction of ridesharing into U.S. cities. This increase has not 
been restricted to occupants of motor vehicles; the Governors Highway Safety Association recently 
noted that the 2018 pedestrian fatality pedestrian fatality figure was at its highest since 1990 and 35 
percent higher than it was 10 years ago, reversing a longstanding trend of decline in pedestrian 
deaths from motor vehicle crashes. In 2017, the NHTSA noted: 

There were 37,461 people killed in crashes on U.S. roadways during 2016, an 
increase from 35,485 in 2015. … Fatalities increased from 2015 to 2016 in almost 
all segments of the population—passenger vehicle occupants, occupants of large 
trucks, pedestrians, pedal cyclists, motorcyclists, alcohol-impaired driving, 
male/female, and daytime/nighttime … [W]ith the large increases in fatalities in 2015 
and 2016, [the] decade-long downward trend of 21 percent has been reduced by more 
than one-third.  

In this paper, we provide evidence consistent with ridesharing imposing an increase in fatal 
accidents and fatalities on the motor vehicle occupants and pedestrians in the cities it serves. We 
document a roughly 2% to 4% increase in the number of fatal accidents, which persists throughout 
the week, on weekends, at night, and on weekend nights. We develop a conceptual framework for 
analyzing how the introduction of ridesharing may affect accident rates, which models accidents as 
a function of vehicle miles traveled and average driver quality. We document increases in the 
intensive margin of quantity. For example, VMT, measures of excess gas consumption, and annual 
hours spent in traffic rise following the entry of ridesharing. Furthermore, at the extensive margin, 
we find a 3% increase in new car registrations. Consistent with our estimates for fatal accident rates, 
this increase in registrations is more substantial in cities with high ex-ante use of public 
transportation, strengthening the evidence for substitution away from public transport. 

While our documented effects alone are unlikely to fully explain the reversal of accident rate 
trends in recent years, they are worth further investigation and discussion. Moreover, while 
ridesharing appears associated with more motor vehicle deaths, it does also bring many benefits. 
These include improved mobility for the disabled and minorities, flexible job opportunities that are 
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especially valuable to those otherwise at high risk of unemployment, and customer convenience and 
resulting consumer surplus.  

Still, the annual cost in human lives is nontrivial, and it is higher than estimates for annual 
consumer surplus generated. And on top of this, our estimates do not include the costs imposed by 
nonfatal accidents, for which data is not readily available. We can assume that the pattern for fatal 
accidents is also repeated for nonfatal accidents, leading to costs in material and healthcare that may 
dwarf the costs in human lives. An essential contribution of our study is to point to the need for 
further research and debate about the overall cost-benefit tradeoff of ridesharing and ways to 
increase the benefits or reduce the costs. Further research on this issue will likely necessitate 
unrestricted access to private data generated by rideshare companies.  

Finally, given the relatively short period in which ridesharing has existed, our results are 
necessarily short term. The long-term consequences of ridesharing may differ, as individuals may 
change behavior as time passes. For example, some drivers may exit the market, and those who 
remain may gain knowledge and improve their driving with the platforms. Additionally, as 
competition increases in the market, the massive subsidies provided by ridesharing companies for 
drivers and riders may decline, reducing the number of riders. If usage of pooled ride services 
increases, car utilization may rise, lowering the number of vehicle miles traveled overall. Thus, any 
regulatory actions should proceed cautiously, considering the short-term effects of ridesharing 
documented here, the real and potential benefits and the necessity for further research on the 
outcomes.    
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TABLES 

Table I 
Summary Statistics  

  Mean Median Std. Dev.   
      
Population (thousands) 54.50 23.51 199.99   
Income per capita (thousands $) 39.72 37.47 12.17   
Population density 2,999.28 2,169.70 3,159.57   
Carpool usage 10.62 10.05 3.98   
Public transportation usage 2.96 1.19 4.96   
Household vehicle ownership (thousands) 32.72 15.45 80.62   
New car registration 670 264 2,340   
Accident rate 3.49 0.96 5.66   
Fatality rate 3.84 0.98 6.51   
Pedestrian-involved accident rate 0.58 0.00 1.80   
Pedestrian-involved fatality rate 0.59 0.00 1.86   
Pedestrians Involved in Fatal Accidents  0.63 0.00 2.10   
      

 
Notes: The sample contains 190,080 quarterly observations on 2,970 census incorporated places from 2001 to 2016. 
Population density measures population per square mile. Carpool usage measures the percentage of population 
commuting to work using a carpool. Public transportation usage measures the percentage of population commuting to 
work using public transportation. Household vehicle ownership measures the total number of available vehicles in 
households. New car registration measures the total number of new vehicle registrations. All rates are measured as of 
per 100,000 population. Accident is the number of fatal accidents, according to the definition used by NHTSA.  
Fatality is the total number of fatalities across all fatal accidents. Pedestrian-involved accident is the number of fatal 
accidents involving at least one pedestrian. Pedestrian-involved fatalities is the total number of fatalities in all 
accidents involving at least one pedestrian. Pedestrians involved in fatal accidents is the total number of pedestrians 
involved in fatal accidents. 
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Table II 
Effect of Ridesharing on Traffic Safety 

Panel A: Overall Effect       
  Log (1+Total Accidents) Log (1+Total Fatalities) 
  (1) (2) (3) (4) (5) (6) 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  0.0182*** 0.0348*** 0.0321*** 0.0175*** 0.0347*** 0.0323*** 

 (0.0063) (0.0074) (0.0091) (0.0065) (0.0078) (0.0096)        
       

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes 
City Linear Trend No Yes Yes No Yes Yes 
City Quadratic Trend No No Yes No No Yes 
Control Variables  Yes Yes Yes Yes Yes Yes 
Observations 190,080  190,080  190,080  190,080  190,080  190,080  
R2 0.61  0.62  0.63  0.60  0.60  0.61  
 
Panel B: Variation in Empirical Specifications      
  Variations in Accident Specifications Variation in Fatality Specifications 

 (1) (2) (3) (4) (5) (6) 

  Weighted by 
Population  Accident Rate sinh−1( Accidents) 

 
Weighted by 
Population  Fatality Rate sinh−1( Fatalities) 

 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  0.0604*** 0.2076*** 0.0428*** 0.0617*** 0.2064*** 0.0423*** 

 (0.0128) (0.0673) (0.0095) (0.0126) (0.0753) (0.0100) 
              

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes 
City Linear Trend Yes Yes Yes Yes Yes Yes 
Control Variables  Yes Yes Yes Yes Yes Yes 
Observations 190,080  190,080 190,080 190,080  190,080 190,080 
R2 0.92  0.40 0.61 0.91  0.38 0.59 

 
Panel C: CBSA Aggregation     
  Cluster Standard Errors at CBSA Level Diff-in-Diff at CBSA Level 

 (1) (2) (3) (4) 
  Log (1+Total Accidents) Log (1+Total Fatalities) Log (1+Total Accidents) Log (1+Total Fatalities) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  
 0.0348*** 0.0347*** 0.0497*** 0.0553*** 

 (0.0095) (0.0097) (0.0147) (0.0152)      
     

City and Quarter Fixed Effects Yes Yes Yes Yes 
City Linear Trend Yes Yes Yes Yes 
Control Variables  Yes Yes Yes Yes 
Observations 190,080  190,080  52,928  52,928  
R2 0.62  0.60  0.81  0.79  

 
Notes: This table presents results from generalized difference-in-difference regressions. The dependent variables are listed at the top of each column. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  is a dummy variable that equals one if city c adopted at least one rideshare service at time t. Panel A presents the overall effect of 
ridesharing on two traffic safety measures. Total accidents is the number of fatal accidents according to the definition used by NHTSA. Total fatalities is 
the total number of fatalities across all fatal accidents. Panel B presents population-weighted regression results, and regression results using accident and 
fatalities rates (per 100,000) and the inverse hyperbolic sine of accidents and fatalities. In Panel C column (1) and (2), we run the same specification as 
in Panel A, but cluster standard errors at the CBSA level instead. In Panel C column (3) and (4), the difference-in-difference specifications are run at 
CBSA level, utilizing the earliest adoption date within the CBSA. City-specific linear trends are included in all regressions in Panel B and C. Control 
variables in all regressions include the natural logarithm of population and the natural logarithm of income per capita. Standard errors, clustered at city 
level in Panel A and B, and clustered at CBSA level in Panel C, are reported in parentheses.  
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Table III 
Effect of Ridesharing on Traffic Safety by Day and Time 

Panel A: Total Accidents     
  (1) (2) (3) (4) 

 

Log 
(1+Weekday 
Accidents) 

Log 
(1+Weekend 
Accidents) 

Log 
(1+Accidents 

at Night) 

Log 
(1+Accidents 
at Fri. and Sat. 

Night) 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  0.0272*** 0.0332*** 0.0380*** 0.0240*** 

 (0.0069) (0.0065) (0.0065) (0.0055)      
     

City and Quarter Fixed Effects Yes Yes Yes Yes 
City Linear Trend Yes Yes Yes Yes 
Control Variables  Yes Yes Yes Yes 
Observations 190,080  190,080  190,080  190,080  
R2 0.52  0.54  0.55  0.45       

     
Panel B: Total Fatalities     
  (1) (2) (3) (4) 

  

Log 
(1+Weekday 

Fatalities) 

Log 
(1+Weekend 

Fatalities) 

Log 
(1+Fatalities at 

Night) 

Log 
(1+Fatalities at 

Fri. and Sat. 
Night) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  0.0278*** 0.0337*** 0.0390*** 0.0258*** 
 (0.0072) (0.0069) (0.0069) (0.0058)      
     

City and Quarter Fixed Effects Yes Yes Yes Yes 
City Linear Trend Yes Yes Yes Yes 
Control Variables  Yes Yes Yes Yes 
Observations 190,080  190,080  190,080  190,080  
R2 0.54  0.52  0.54  0.44  

 

Notes: This table presents the effect of ridesharing on accidents and fatalities, respectively in Panel A and B, by day 
and time. The dependent variables are listed at the top of the columns. Total accidents is the number of fatal accidents 
according to the definition used by NHTSA. Total fatalities is the total number of fatalities across all fatal accidents. 
Weekday is defined as Monday through Thursday. Weekend is defined as Friday through Sunday. Night is defined as 
5 pm through 2 am. Friday and Saturday Night is defined as 5 pm Friday through 6 am Saturday and 5 pm Saturday 
through 6 am Sunday. Control variables in all regressions include the natural logarithm of population and the natural 
logarithm of income per capita. Standard errors, adjusted for clustering at the city level, are reported in parentheses.  
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Table IV 
Dynamic Effect of Ridesharing on Traffic Safety 

  Log (1+Total Accidents) Log (1+Total Fatalities) 
  (1) (2) (3) (4) (5) (6) 
Rideshare Tenure       
1 - 2 Quarters 0.0234** 0.0332*** 0.0313*** 0.0227** 0.0330*** 0.0311*** 

 (0.0094) (0.0100) (0.0109) (0.0098) (0.0104) (0.0114) 
       

3 - 4 Quarters 0.0248** 0.0362*** 0.0344*** 0.0231** 0.0348*** 0.0333** 
 (0.0105) (0.0112) (0.0125) (0.0110) (0.0117) (0.0132) 
       

5 - 6 Quarters 0.0196* 0.0322** 0.0261* 0.0222* 0.0351*** 0.0288* 
 (0.0115) (0.0126) (0.0149) (0.0120) (0.0133) (0.0158) 
       

7 - 8 Quarters 0.0181 0.0384*** 0.0289* 0.0181 0.0392*** 0.0291* 
 (0.0121) (0.0130) (0.0165) (0.0127) (0.0137) (0.0174) 
       

9 - 10 Quarters 0.0064 0.0354** 0.0223 0.0014 0.0314* 0.0177 
 (0.0141) (0.0155) (0.0191) (0.0147) (0.0161) (0.0201) 
       

11 - 12 Quarters -0.0011 0.0442* 0.0245 -0.0017 0.0451* 0.0259 
 (0.0217) (0.0229) (0.0273) (0.0227) (0.0240) (0.0284) 
       

> 12 Quarters -0.0202 0.0830** 0.0105 -0.0230 0.0817** 0.0075 
 (0.0280) (0.0351) (0.0425) (0.0294) (0.0359) (0.0444)        

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes 
City Linear Trend No Yes Yes No Yes Yes 
City Quadratic Trend No No Yes No No Yes 
Control Variables  Yes Yes Yes Yes Yes Yes 
Observations 190,080  190,080  190,080  190,080  190,080  190,080  
R2 0.61  0.62  0.63  0.60  0.60  0.61  

 
Notes: This table presents the dynamic effects of ridesharing on traffic safety. The dependent variables are listed at the top of the 
columns. Total accidents is the number of fatal accidents, according to the definition used by NHTSA.  Total fatalities is the total 
number of fatalities across all fatal accidents. Rideshare tenure variables are dummy variables that take the value of one if rideshare 
has been in effect for the specified periods of time.  Control variables in all regressions include the natural logarithm of population 
and the natural logarithm of income per capita. Standard errors, adjusted for clustering at the city level, are reported in parentheses.  
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Table V 
Variation of Ridesharing Service and Adoption Intensity 

Panel A: Single Ride Services vs. Pooled Ride Services 
  Log (1+Total Accidents) Log (1+Total Fatalities) 
  (1) (2) (3) (4) (5) (6) 
Single Ride Service (UberBlack/Taxi/X, Lyft) 0.0206*** 0.0360*** 0.0326*** 0.0195*** 0.0358*** 0.0329*** 
  (0.0064) (0.0075) (0.0091) (0.0067) (0.0079) (0.0096) 
        
Pooled Ride Service (Uber Pool, Lyft Line) -0.0227 -0.0137 -0.0191 -0.0194 -0.0126 -0.0192 
  (0.0145) (0.0150) (0.0163) (0.0153) (0.0158) (0.0172) 
        
City and Quarter Fixed Effects  Yes Yes Yes Yes Yes Yes 
City Linear Trend No Yes Yes No Yes Yes 
City Quadratic Trend No No Yes No No Yes 
Control Variables  Yes Yes Yes Yes Yes Yes 
Observations 190,080  190,080  190,080  190,080  190,080  190,080  
R2 0.61  0.62  0.63  0.60  0.60  0.61  

 
Panel B: Google Trends Intensity 

  Log (1+Total Accidents) Log (1+Total Fatalities) 
 
 (1) (2) (3) (4) (5) (6) 

 Postt ∗ Treatedc ∗ Log Rideshare Google Search Volct 0.0026*** 0.0047*** 0.0027** 0.0025*** 0.0048*** 0.0027** 
  (0.0007) (0.0010) (0.0012) (0.0008) (0.0010) (0.0013) 
        
City and Quarter Fixed Effects  Yes Yes Yes Yes Yes Yes 
City Linear Trend No Yes Yes No Yes Yes 
City Quadratic Trend No No Yes No No Yes 
Control Variables  Yes Yes Yes Yes Yes Yes 
Observations 154,440  154,440  154,440  154,440  154,440  154,440  
R2 0.61  0.62  0.63  0.60  0.61  0.62  

 
Notes: This table shows how the effect of ridesharing on traffic safety varies with the intensity of service. In all panels, the dependent variables are listed at the top 
of the columns. Total accidents is the number of fatal accidents, according to the definition used by NHTSA. Total fatalities is the total number of fatalities across 
all fatal accidents. In Panel A, Single (Pooled) Ride Service is a dummy variable that takes the value of one if any single (pooled) ride service is adopted. In Panel 
B, Log Rideshare Google Search Volume is the natural logarithm of Google search volume for the terms “Uber,” “Lyft,” and “rideshare.” Control variables in all 
regressions include the natural logarithm of population and the natural logarithm of income per capita. Standard errors, adjusted for clustering at the city level, are 
reported in parentheses. 
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Table VI 
Externality of Ridesharing on Non-Vehicle Occupants 

  (1) (2) (3) 

  
Log (1+Pedestrian-Involved 

Accidents) 
Log (1+Pedestrian-Involved 

Fatalities) 
Log (1+Pedestrians 

Involved in Fatal Accidents) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐  0.0240*** 0.0240*** 0.0270*** 

 (0.0058) (0.0059) (0.0062)     
    

City and Quarter Fixed Effects Yes Yes Yes 
City Linear Trend Yes Yes Yes 
Control Variables  Yes Yes Yes 
Observations 190,080  190,080  190,080  
R2 0.52  0.54  0.55  

 
Notes: This table presents results from generalized difference-in-difference regressions. The dependent variables are listed at the top of each column. Pedestrian is 
defined as any person not in or upon a motor vehicle or other vehicle. Pedestrian-involved accident measures the number of fatal accidents involving at least one 
non-vehicle occupants. Pedestrian-involved fatalities measures the total number of fatalities in all accidents involving at least one non-vehicle occupants. 
Pedestrians involved in fatal accidents measures the total number of non-vehicle occupants involved in fatal accidents. 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 is a dummy variable that 
equals one if city c adopted at least one rideshare service at time t. City-specific linear trends are included in all columns. Control variables in all regressions include 
the natural logarithm of population and the natural logarithm of income per capita. Standard errors, adjusted for clustering at the city level, are reported in 
parentheses.  
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Table VII 
Heterogeneous Effects of Ridesharing on Traffic Fatalities 

Panel A: City Characteristics      
 Population  Income Inequality (Gini Index)  Population Density 
  (1) (2) (3) (4)  (1) (2) (3) (4)  (1) (2) (3) (4) 

  

Log 
(1+Total 

Accidents) 

Log 
(1+Total 
Fatalities) 

Log 
(1+Pedestrian-

Involved 
Accidents) 

Log 
(1+Pedestrian-

Involved 
Fatalities) 

 
Log (1+Total 

Accidents) 

Log 
(1+Total 
Fatalities) 

Log 
(1+Pedestrian-

Involved 
Accidents) 

Log 
(1+Pedestrian-

Involved 
Fatalities) 

 
Log (1+Total 
Accidents) 

Log 
(1+Total 
Fatalities) 

Log 
(1+Pedestrian-

Involved 
Accidents) 

Log 
(1+Pedestrian-

Involved 
Fatalities) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄4 
 

0.0740*** 0.0765*** 0.0636*** 0.0645***  
0.0484*** 0.0489*** 0.0475*** 0.0479*** 

 
0.0352*** 0.0344*** 0.0176** 0.0178** 

  (0.0113) (0.0117) (0.0101) (0.0102)  (0.0124) (0.0130) (0.0118) (0.0120)  (0.0109) (0.0113) (0.0089) (0.0091) 
 

    
          

 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄3 0.0002 -0.0010 -0.0077 -0.0078  0.0324** 0.0335** 0.0238** 0.0248**  0.0300** 0.0302** 0.0336*** 0.0332*** 
  (0.0136) (0.0145) (0.0094) (0.0095)  (0.0143) (0.0149) (0.0111) (0.0114)  (0.0138) (0.0145) (0.0109) (0.0111) 
 

    
          

 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄2 0.0058 0.0027 -0.0156* -0.0159*  0.0276** 0.0244* 0.0207** 0.0211**  0.0474*** 0.0452*** 0.0507*** 0.0522*** 
  (0.0154) (0.0162) (0.0090) (0.0091)  (0.0140) (0.0147) (0.0101) (0.0103)  (0.0162) (0.0169) (0.0131) (0.0134) 
 

    
          

 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄1 0.0024 -0.0003 -0.0027 -0.0019  0.0289** 0.0301** -0.0014 -0.0015  0.0270 0.0307* -0.0073 -0.0064 
  (0.0129) (0.0133) (0.0076) (0.0078)  (0.0140) (0.0146) (0.0097) (0.0098)  (0.0165) (0.0176) (0.0118) (0.0120) 
  

    
                  

City and Quarter Fixed Effects  Yes Yes Yes Yes  Yes Yes Yes Yes  Yes Yes Yes Yes 
City Linear Trend Yes Yes Yes Yes  Yes Yes Yes Yes  Yes Yes Yes Yes 
Control Variables  Yes Yes Yes Yes  Yes Yes Yes Yes  Yes Yes Yes Yes 
Observations 190,080  190,080  190,080  190,080   190,080  190,080  190,080  190,080   190,080  190,080  190,080  190,080  
R2 0.62  0.60  0.54  0.54   0.62  0.60  0.54  0.54   0.62  0.60  0.54  0.54  
 Panel B: Ex-ante Behavior      
  Ex Ante Vehicle Ownership  Ex Ante Public Transportation Usage  Ex Ante Car Pool Usage 
  (1) (2) (3) (4)  (1) (2) (3) (4)  (1) (2) (3) (4) 

 
 

Log 
(1+Total 

Accidents) 

Log 
(1+Total 
Fatalities) 

Log 
(1+Pedestrian-

Involved 
Accidents) 

Log 
(1+Pedestrian-

Involved 
Fatalities) 

 
Log (1+Total 

Accidents) 

Log 
(1+Total 
Fatalities) 

Log 
(1+Pedestrian-

Involved 
Accidents) 

Log 
(1+Pedestrian-

Involved 
Fatalities) 

 
Log (1+Total 
Accidents) 

Log 
(1+Total 
Fatalities) 

Log 
(1+Pedestrian-

Involved 
Accidents) 

Log 
(1+Pedestrian-

Involved 
Fatalities) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄4 
 0.0763*** 0.0785*** 0.0661*** 0.0668*** 

 
0.0379*** 0.0377*** 0.0437*** 0.0434*** 

 
0.0445*** 0.0442*** 0.0309** 0.0316** 

  (0.0111) (0.0115) (0.0099) (0.0101)  (0.0113) (0.0117) (0.0096) (0.0097)  (0.0151) (0.0162) (0.0126) (0.0128) 
               
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄3 -0.0025 -0.0043 -0.0094 -0.0096  0.0508*** 0.0537*** 0.0255** 0.0272***  0.0589*** 0.0575*** 0.0453*** 0.0453*** 
  (0.0146) (0.0154) (0.0107) (0.0108)  (0.0124) (0.0130) (0.0102) (0.0104)  (0.0133) (0.0136) (0.0114) (0.0115) 
               
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄2 -0.0037 -0.0052 -0.0098 -0.0096  0.0173 0.0124 0.0188 0.0175  0.0186 0.0213 0.0126 0.0132 
  (0.0149) (0.0158) (0.0097) (0.0098)  (0.0155) (0.0163) (0.0116) (0.0118)  (0.0129) (0.0133) (0.0094) (0.0095) 
               
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄1 0.0126 0.0100 -0.0099 -0.0094  0.0170 0.0181 -0.0293** -0.0267**  0.0116 0.0102 0.0019 0.0023 
  (0.0136) (0.0142) (0.0071) (0.0072)  (0.0188) (0.0197) (0.0115) (0.0119)  (0.0128) (0.0135) (0.0094) (0.0097) 
                            
City and Quarter Fixed Effects  Yes Yes Yes Yes  Yes Yes Yes Yes  Yes Yes Yes Yes 
City Linear Trend Yes Yes Yes Yes  Yes Yes Yes Yes  Yes Yes Yes Yes 
Control Variables  Yes Yes Yes Yes  Yes Yes Yes Yes  Yes Yes Yes Yes 
Observations 190,080  190,080  190,080  190,080   190,080  190,080  190,080  190,080   190,080  190,080  190,080  190,080  
R2 0.62  0.60  0.54  0.54   0.62  0.60  0.54  0.54   0.62  0.60  0.54  0.54  

 
Notes: This table presents heterogeneous effects of ridesharing on traffic safety. The dependent variables are listed at the top of each column. Panels A and B break out results across a variety of city characteristics and ex-ante behaviors, respectively. The variable used 
for sample cut is listed at the top of each panel. Population measures annual city population. Income inequality is measured using city Gini index. Population density measures population per square mile. Vehicle ownership measures the total number of available vehicles 
in households. Public transportation usage measures the percentage of population commuting to work using public transportation. Carpool usage measures the percentage of population commuting to work using carpool. Total accidents is the number of fatal accidents 
according to the definition used by NHTSA. Total fatalities is the total number of fatalities across all fatal accidents. Pedestrian-involved accident measures the number of fatal accidents involving at least one pedestrian. Pedestrian-involved fatalities measures the total 
number of fatalities in all accidents involving at least one pedestrian. The independent variables of interest are the interaction of 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐, a dummy variable that equals one if city c adopted at least one rideshare service at time t, and an indicator for the quartile 
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the observation falls in. In addition to the natural logarithm of population and the natural logarithm of income per capita, all interacted variables are included separately as control variables. All columns include city-specific linear trends. Standard errors, adjusted for 
clustering at the city level, are reported in parentheses. 
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Table VIII 
Effect of Ridesharing on Road Utilization and Congestion 

  (1) (2) (3) 

  
Log Arterial Street 

VMT 
Log Excess Fuel 

Consumption 
Log Hours of Delay 

in Traffic 
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑢𝑢 
 

0.01628* 0.01694** 0.01694** 

  (0.00837) (0.00735) (0.00734) 
       
Urban Area and Year Fixed Effects Yes Yes Yes 
Urban Area Linear Trend Yes Yes Yes 
Control Variables  Yes Yes Yes 
Observations 1,386  1,386  1,386  
R2 0.998  0.999  0.999  

 
Notes: The sample contains 1,386 annual observations on 99 urban areas from 2001 to 2014. The dependent variables 
are the natural logarithm of congestion-related measures listed at the top of each column. Arterial Street VMT 
measures the total number of vehicle miles traveled on arterial streets in an urban area. Excess fuel consumption 
measures the extra fuel consumed, due to inefficient operation in slower stop-and-go traffic. Hours of delay measures 
the amount of extra time spent traveling, due to congestion. 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑢𝑢 is a dummy variable that equals one if 
urban area u adopted at least one rideshare service at year t. Urban area-specific linear trends are included in all 
regressions. Control variables include the natural logarithm of population and the natural logarithm of income per 
capita. Standard errors, adjusted for clustering at the urban area level, are reported in parentheses.  For more detailed 
information on the dependent variables, please refer to https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-
scorecard-2015-wappx.pdf.       
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Table IX 
The Effect of Ridesharing on New Car Registrations 

Panel A: Overall Effect 
  Log (1+New Car Registrations) 
 
 (1) (2) (3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑢𝑢 0.0295*** 0.0497*** 0.0301*** 
 (0.0079) (0.0069) (0.0065) 
    

City and Quarter Fixed Effects Yes Yes Yes 
City Linear Trend No Yes Yes 
City Quadratic Trend No No Yes 
Control Variables  Yes Yes Yes 
Observations 190,080  190,080  190,080  
R2 0.94  0.97  0.98  

 
Panel B: Intensity of Effect 

  Log (1+New Car Registrations) 
  (1) (2) 
Google Search Volume   
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝐿𝐿𝐿𝐿𝑔𝑔 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐𝑐𝑐 
 0.0075***  

 (0.0009)  
Rideshare Service Type   
Single Ride Service (UberBlack/Taxi/X, Lyft)  0.0470*** 

  (0.0067)    
Pooled Ride Service (UberPool, Lyft Line)  0.0296*** 

  (0.0107)    
   

City and Quarter Fixed Effects Yes Yes 
City Linear Trend Yes Yes 
Control Variables  Yes Yes 
Observations 154,440  190,080  
R2 0.97  0.97  

 
Panel C: Heterogeneous Effects 

  (1) (2) (3) (4) (5) (6) 

Dep: Log (1+ New Car Registration) Population 
Income 

Inequality 
(Gini Index) 

Pop Density Public 
Transport Carpool Vehicle 

Ownership 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄4 0.0850*** 0.0417*** 0.0929*** 0.0818*** 0.0623*** 0.1574*** 
  (0.0096) (0.0115) (0.0118) (0.0093) (0.0110) (0.0144)        
       
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄3 0.0353** 0.0474*** 0.0556*** 0.0434*** 0.0685*** 0.0696*** 
  (0.0143) (0.0095) (0.0111) (0.0132) (0.0124) (0.0108)        
       
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄2 0.0150 0.0466*** 0.0189 0.0000 0.0308** 0.0198* 
  (0.0168) (0.0124) (0.0119) (0.0195) (0.0142) (0.0109) 
       
 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 ∗ 𝑄𝑄1 0.0050 0.0723*** -0.0272 0.0229 -0.0016 -0.0617*** 
  (0.0148) (0.0165) (0.0186) (0.0155) (0.0193) (0.0127) 
        
City and Quarter Fixed Effects  Yes Yes Yes Yes Yes Yes 
City Linear Trend Yes Yes Yes Yes Yes Yes 
Control Variables  Yes Yes Yes Yes Yes Yes 
Observations 190,080 190,080 190,080 190,080 190,080 190,080 
R2 0.97 0.97 0.97 0.97 0.97 0.97 

Notes: This table presents the effect of ridesharing on new car registrations. In all panels, the dependent variables are the natural logarithm of one plus 
new car registrations. 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 is a dummy variable that equals one if city c adopted at least one rideshare service at time t. Panel A presents 
results from generalized difference-in-difference regressions without city time trend, with linear trend, and with quadratic trend. Panel B shows how 
the effect varies with the intensity of rideshare service. Log Rideshare Google Search Volume is the natural logarithm of Google search volume for the 
terms “Uber,” “Lyft,” and “rideshare”. Single (Pooled) Ride Service is a dummy variable that takes the value of one if any single (pooled) ride service 
is adopted. Panel C breaks out results across a variety of city characteristics and ex-ante behaviors. The variable used for sample cut is listed at the top 
of each column. Population measures annual city population. Income inequality is measured using city Gini index. Population density measures 
population per square mile.  Pop Density measures the population per square mile. Public Transport measures the percentage of the population 
commuting to work using public transportation. Carpool measures the percentage of the population commuting to work using carpools. Vehicle 
Ownership measures the total number of available vehicles in households. In addition to the natural logarithm of population and the natural logarithm 
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of income per capita, all interacted variables are included separately as control variables. In Panel B and C, all regressions include city linear time trend. 
Standard errors, adjusted for clustering at the city level, are reported in parentheses. 

Table X 
The Effect of Ridesharing on Alcohol-Involved Accidents and Fatalities 

  Log (1+Drunk Accidents) Log (1+Drunk Fatalities) 
  (1) (2) (3) (4) (5) (6) 
 

0.0053 0.0132* 0.0146* 0.0045 0.0133* 0.0150 
 (0.0051) (0.0071) (0.0087) (0.0054) (0.0075) (0.0094)        

City and Quarter Fixed Effects Yes Yes Yes Yes Yes Yes 
City Linear Trend No Yes Yes No Yes Yes 
City Quadratic Trend No No Yes No No Yes 
Control Variables  Yes Yes Yes Yes Yes Yes 
Observations 106,920  106,920  106,920  106,920  106,920  106,920  
R2 0.46  0.48  0.50  0.45  0.47  0.49  

 

Notes: This table presents coefficient estimates from generalized difference-in-difference regressions. The dependent 
variables are listed at the top of each column. Drunk accidents is the number of fatal accidents involving any drunk 
drivers. Drunk fatalities is the total number of fatalities in all drunk accidents. 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 is a dummy variable 
that equals one if city c adopted at least one rideshare service at time t. Control variables in all regressions include the 
natural logarithm of population and the natural logarithm of income per capita. Standard errors, adjusted for clustering 
at the city level, are reported in parentheses

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑐𝑐 
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FIGURES 

Panel A: U.S. Motor Vehicle Death per VMT, Death per Capita, Total Death, VMT and Population

 

Panel B: U.S. Pedestrian Fatalities 

 
 

Figure I 
U.S. Traffic Safety Trends 

Panel A of this figure was produced by Dennis Bratland and is reproduced here under creative commons license. It 
uses NHTSA FARS and CrashStats data to depict total U.S. motor vehicle deaths, deaths per VMT, deaths per capita, 
VMT and population for the period of 1920–2017. Panel B is excerpted from the Governors Highway Safety 
Association (2019) report on 2018 Pedestrian Traffic Fatalities by State. It is constructed using data from FARS and 
State Highway Safety Organizations for the period of 1990–2018.
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Figure II 

Average Accidents for Treated and Matched Control Cities in Event Time 
This figure shows the level of accidents for treated cities in event time. The red vertical line at event time zero indicates 
the quarter of ridesharing entry 
 
 
 
 

 
Figure III 

Rideshare Diffusion 
This figure shows the diffusion of ridesharing across the U.S. by cities and population. The sample consists of all 
census incorporated places in the United States. The navy (red) line graphs the percentage of cities (population) that 
adopted ridesharing in each quarter between the fourth quarter of 2010 and the fourth quarter of 2017.  
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Figure IV 

Difference-in-Differences Estimators 
This figure displays the regression coefficient estimates and two-tailed 95% confidence intervals based on standard 
errors clustered at the city level. To map out the pattern in the counterfactual treatment effects, we regress the various 
outcome measures on lag and lead indicators (bunched by four quarters) for the entry of rideshare. We provide a 
description of the variables in section 2.
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Panel A: Accidents and Fatalities on Weekend and at Nights 

 
 

Panel B: Small vs. Large Cities 

 
 

Figure V 
Nights and Weekends 

This figure displays the regression coefficient estimates and two-tailed 95% confidence intervals based on standard 
errors clustered at the city level, broken down by accidents at night and on the weekend. Panel A presents estimates 
for accidents and fatalities, while Panel B presents the coefficients for accidents separately for small and large cities. 
We provide a description of the variables in Section 2.  
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Panel A: City Characteristics 

  

 

Panel B: Ex-Ante Behaviors 

Figure VI 
Heterogeneity by City Characteristics 

This figure displays the regression coefficient estimates and two-tailed 95% confidence intervals based on standard 
errors clustered at the city level, broken down by quartiles for six city characteristics: population, income inequality 
(measured by Gini Index), population density, vehicle ownership, ex ante usage of public transportation, and ex ante 
use of carpooling. The outcome variables for the regressions are listed at the bottom of each figure. We provide a 
description of the variables in Section 2 
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Figure VII 
Heterogeneous Effect on Vehicle Registration by City Characteristics 

This figure displays the regression coefficient estimates and two-tailed 95% confidence intervals based on standard 
errors clustered at the city level, broken down by quartiles for six city characteristics: population, income inequality 
(measured by Gini Index), population density, vehicle ownership, ex ante usage of public transportation, and ex ante 
use of carpooling. The outcome variable in all regressions is the natural logarithm of one plus new vehicle 
registrations. We provide a description of the variables in Section 2 
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 Figure VIII 

Mechanical Drop in Drunk Accidents Caused by the Change of NHTSA Categorization 
This figure displays the total number of drunk accidents through time. The vertical line indicates the year of the 
NHTSA drunk accidents categorization change. Specifically, prior to 2008, alcohol-related accidents were recorded 
as any fatal accident involving at least one vehicle occupant (driver or non-driver) or pedestrian being impaired (in 
the legal sense). From 2008 onwards, alcohol-related accidents are recorded as such only if the driver was impaired. 
We provide a more detailed discussion of this change in section VI.B.
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